
Dependency Parsing Resources for French:
Converting Acquired Lexical Functional Grammar F-Structure

Annotations and Parsing F-Structures Directly

Natalie Schluter
Dublin City University

Dublin 9, Ireland
nschluter@computing.dcu.ie

Josef van Genabith
Dublin City University

Dublin 9, Ireland
josef@computing.dcu.ie

Abstract

Recent years have seen considerable suc-
cess in the generation of automatically ob-
tained wide-coverage deep grammars for
natural language processing, given reli-
able and large CFG-like treebanks. For
research within Lexical Functional Gram-
mar framework, these deep grammars are
typically based on an extended PCFG
parsing scheme from which dependencies
are extracted. However, increasing suc-
cess in statistical dependency parsing sug-
gests that such deep grammar approaches
to statistical parsing could be streamlined.
We explore this novel approach to deep
grammar parsing within the framework of
LFG in this paper, for French, showing
that best results (an f-score of 69.46) for
the established integrated architecture may
be obtained for French.

1 Introduction

Recent years have seen considerable success in
the generation of automatically obtained wide-
coverage deep grammars for natural language pro-
cessing, given reliable and large CFG-like tree-
banks (for example, (Cahill et al., 2002; Guo et
al., 2007; Chrupała and van Genabith, 2006)).
For research within Lexical Functional Grammar
(LFG) framework, these deep grammars are typi-
cally based on an extended PCFG parsing scheme
from which dependencies are extracted. However,
increasing success in statistical dependency pars-
ing suggests that such deep grammar approaches
to statistical parsing could be streamlined. In this
paper, we explore this novel approach to deep
grammar parsing within the framework of LFG in
this paper, for French, showing that best results
(an f-score of 69.46) for the established integrated
architecture may be obtained for French.

This paper presents a mise-en-scène between
theoretical dependency syntax and dependency
parser practical requirements, an entrée en scène
for f-structures in the literature for dependency
parsing, an approach to representing f-structures
in LFG as pseudo-projective dependencies, a first
attempt to reconcile parsing LFG and dependency
parsing, and, finally, the first treebank-based sta-
tistical dependency parsing results for French.

We begin with an brief introduction to LFG, fol-
lowed by a presentation of the Modified French
Treebank (the data source for this research), and
an overview of previous parsing architecture of
LFG f-structures (Section 2). Following this, we
discuss LFG f-structure dependencies, comparing
previously mentioned theoretical frameworks for
statistical dependency parsing in the literature and
showing their pseudo-projectivity (Section 3). In
Section 4 we describe the data conversion involved
in this research, and we end with the presentation
of results of our experiments and a brief discussion
(Section 5).

2 Preliminaries

2.1 Lexical Functional Grammar Basics

LFG is a constraint-based theory of language,
whose basic architecture distinguishes two lev-
els of syntactic representation : c-structure
(constituent structure) and f-structure (functional
structure)—c-structures corresponding to tradi-
tional constituent tree representation, and f-
structures to a traditional dependency representa-
tion in the form of an attribute value matrix.1

Like any attribute-value matrix, f-structures are
the minimal solution to a set of functional equa-
tions such as (f a) = v, where f is an f-structure,
a is some attribute, and v is the value taken by that
attribute, possibly another f-structure.

1A detailed introduction to LFG may be found in (Dal-
rymple, 2001).

Kristiina Jokinen and Eckhard Bick (Eds.)
NODALIDA 2009 Conference Proceedings, pp. 166–173

These two levels of representation (f-structure
and c-structure), for a given phrase, are explic-
itly related by a structural mapping, called the f-
description, often denoted by φ, which maps c-
structure nodes to f-structure nodes.

In the LFG framework, this mapping may be
given by functional annotations inserted into the
c-structure tree, as in Figure 1.

S ↑=↓
eeeee \\\\\\\\\\

NP ↑subj=↓ VP ↑=↓
]]]]]]]]]]]]]]]

NNP ↑=↓ V ↑=↓ NP ↑obj=↓

John

↑pred=‘John’

helped

↑pred=‘help’

NNP ↑=↓

Mary

↑pred=‘Mary’

Figure 1: Annotated C-structure for John helped
Mary.

The metavariables ↑ and ↓ refer to the f-
structure of the mother node and that of the node
itself, respectively. So that if node n, is anno-
tated ↑=↓, then n’s f-structure is mapped to the
same f-structure as n’s mother’s f-structure. Also,
if n has the annotation ↑obj=↓, this means that
the f-structure associated with n is mapped to the
value of the mother’s f-structure obj attribute.
LFG also has equations for members of sets, such
as ↓∈↑adjunct, which states that the node’s f-
structure is mapped to an element of the mother’s
ADJ attribute.

2.2 Modified French Treebank
For this research, the treebank adopted is the Mod-
ified French Treebank (MFT) (Schluter and van
Genabith, 2007). One important feature of the
MFT is the extended function tag set, which in-
cludes function path tags. Consider the sentence in
Example (1), taken directly from the MFT, whose
tree structure is given in Figure 2.

(1) C’est
It is

[...]
[...]

l’URSS
the USSR

[...]
[...]

qui
who

se
herself

trouve
finds

prise
taken

‘It is the USSR that finds itself trapped’2

In this example, the Srel constituent takes the
functional path tag SUJ.MOD, representing the

2Sentence 8151, file flmf3 08000 08499ep.xd.cat.xml.

SENT
aaaaaaaaaaaaaaa]]]]]]]]]]]]]]]

VN-SUJ
eeeee YYYYY NP-ATS

eeeee YYYYY Srel-SUJ.MOD
dddddd ZZZZZZ

CL Vfinite D N qui se

trouve prise
c’ est l’ URSS

Figure 2: MFT representation of Example (1).

fact that Srel has the function MOD and is depen-
dent on the constituent whose function is SUJ.

For this research, we followed the same random
partition as (Schluter and van Genabith, 2008) for
the training set (3800 sentences), test set (430 sen-
tences), and development set (509 sentences).

2.3 Previous Parsing Architectures of LFG
F-Structures

Previously, the technology for treebank-based ac-
quisition of multilingual LFG probabilistic parsing
resources consisted of three main stages, the basic
input for which is a CFG-type treebank. These
stages include the construction and application of
an f-structure annotation algorithm combined with
satisfiability verification, subcategorisation frame
extraction, and long-distance dependency extrac-
tion. Given the resources produced in these ini-
tial stages, four CFG-based probabilistic parsing
architectures were developed. Figure 3 shows
these parsing architectures, with, in bold grey,
the additional probabilistic dependency-based in-
tegrated architecture that is being presented here.
(For more information on these former CFG-based
probabilistic parsing architectures for French, see
(Schluter and van Genabith, 2008)).

2.3.1 F-Structure Annotation Algorithm
For the creation of the dependency bank for
French, to be used as training material, we will use
f-structures. In the LFG framework, f-structures
may be fully specified by f-structure annotated c-
structures. The f-structure annotation algorithm
outlined in (Schluter and van Genabith, 2008) will
be adopted here, to obtain f-structure annotated c-
structures. For French, it uses head-finding princi-
ples for a given constituent, to annotate MFT trees
according to one of four modules:

1. LFG Conversion Module: MFT functional
tags are directly translated into LFG func-
tion equations with respect to the constituent
under consideration. For example, the

Dependency Parsing Resources for French: Converting Acquired Lexical Functional Grammar

167

 Treebank

Automatic

F-structure

Annotation

Probabilistic

CFG-type

Parsers

LDD

Resolution

Subcate-

gorisation

Frame, LDD

Extraction

Constraint Solver

CFG trees

CFG trees

f-structure

equation

annotated

CFG

parsing

model

Proto f-structures

Proper

f-structures

Pipeline

Automatic

F-structure

Annotation

Probabilistic

CFG-type

Parsers

SVM Function

Tagging

(Function Tag)

CFG parsing

model

annotated

CFG trees

SVM F-Structure

Equation

Tagging

Integrated

Conversion to

annotated

dependency

treebank

Probabilistic

Dependency

Parsers

F-structure annotated

CFG trees

Figure 3: Overview of treebank-based LFG parsing architectures. The proposed dependency-based ar-
chitecture being outlined in this paper is in bold grey.

functional tag ATO may be mapped to ↑-
xcomp=↓, ↑-obj=↓-subj.

2. Right-Left Annotation Module: Con-
stituent daughters are annotated with respect
to the location of the constituent head. The
constituent head is simply annotated as the
predicate (↑-pred=lemma), or the governor
of the predicate (↑=↓).

3. Verb Combinatorics Module: Combina-
tions of different verb complexes in the
MFT’s constituent VN are resolved to pred-
icates with corresponding compound tenses,
for a monoclausal f-structural representation
of verb phrases.

4. Catch-all and Clean-up Module: Any cor-
rection of detected overgeneralisations or
miscellaneous annotations (such as sentence
type) are carried out.

Verb

Combinatorics

Right-Left

Context

Annotation

LFG

Conversion

Head-Finding

Principles

Core modules

Catch-all and

Clean-up

F-structure

Equation Extraction

Coordination

Distribution

Post-processing

Figure 4: French Annotation Algorithm.

The f-structure annotation algorithm French
was evaluated against a hand-corrected gold stan-
dard dependency bank. It achieves 98.4% cover-
age, with a best preds-only f-score of 99.63 (Table
1).

coord dist precision recall f-score
no 98.57 96.38 97.46
yes 99.49 99.77 99.63

Table 1: Preds-only f-structure annotation algo-
rithm performance.

2.3.2 Previous LFG Parsing Results for
French

In this paper, because dependency parsers parse
relations between actual word-forms and not any
other features, we consider only preds-only results
for LFG f-structures. That is, we evaluate only
along those branches of the f-structures that end in
a predicate.

(Schluter and van Genabith, 2008) report pars-
ing results for both the integrated and pipeline ar-
chitectures, with a best preds-only f-score for the
integrated architecture of 67.88.3

3 LFG F-structure Dependencies

In this section, we overview the different target
frameworks for the conversion of CFG-like data
into dependency tree data (Section 3.1). We then

3The pipeline architecture outperforms the integrated ar-
chitecture in (Schluter and van Genabith, 2008).

Natalie Schluter and Josef van Genabith

168

consider projectivity in light of these conversions,
and explain why projectivity need not be a prob-
lem in LFG dependency parsing as a result of its
the property of pseudo-projectivity (Section 3.2).

3.1 A Comparison of Theoretical
Frameworks

In the statistical dependency parsing literature,
there are generally two sources of modern linguis-
tic theoretical justification behind parsing mod-
els: the theoretical framework of the Meaning-
Text Theory (Mel’čuk, 1998), and the annota-
tion guidelines of the Prague Treebank (Hajič et
al., 1999). Moreover, software converting phrase-
structure style treebanks into dependencies for sta-
tistical dependency parsing usually quote these
two annotation styles in the treatment of hard
cases. Therefore, when statistically parsing LFG
f-structures, it is vital to consider what sorts of de-
pendencies existing dependency parsers were in-
tended to parse.

Meaning-Text Theory (MTT) represents the
syntactic organisation of sentences strictly by de-
pendencies. Under this framework, syntax is sepa-
rated into surface and deep syntactic dependency-
based tree representations. The deep-syntactic
structure of a sentence has nodes that are seman-
tically full lemmata (full lexemes); abstraction is
made of any auxiliary or structural lemmata at
this level. Also, lemmata are subscripted by the
grammatical information (grammemes) expressed
by their associated word-form(s), not imposed by
government and agreement. Arcs are labeled by a
selection of around ten language-independent re-
lations. On the other hand, the surface-syntactic
structure of a sentence contains all lemmata of the
sentence and its arcs are labeled with the names of
language-specific surface-syntactic relations, each
of which represents a particular construction of
the language (Mel’čuk, 2003; Mel’čuk, 1998).
Furthermore, communicative functions such as
topic or focus are not associated with a pure
syntactic structure in the Meaning-Text Theory
(Mel’čuk, 2001).

The Prague Treebank (PT) annotation guide-
lines (Hajič et al., 1999) also distinguishes be-
tween two levels of dependency-based syntactic
representation: analytical and tectogrammatical.
These guidelines are written in the spirit of Func-
tional Generative Description.4 These two levels

4See, for example, (Hajičová and Sgall, 2003) for a dis-

of syntactic representation roughly correspond to
those of the Meaning-Text Theory—the analyti-
cal level corresponding to the surface-syntax of
the MTT and the tectogrammatical level corre-
sponding to the deep-syntactic level of the MTT
(Žabokrtský, 2005). In the PT, word-forms have
attributes for their lemmata as well as for gram-
matical and lexical information expressed mor-
phologically. The syntactic structure of the tree-
bank is given for the analytic level of representa-
tion, though work is under way on complement-
ing this with a tectogrammatical level of repre-
sentation (Sgall et al., 2004). Also similarly to
the MTT, communicative structure is not associ-
ated with pure syntax in Functional Generative
Description, and therefore does not figure among
annotations defined for the PT.

LFG does not have a uniform dependency syn-
tax, distinguishing between c-structure and f-
structure. These two systems contain different
sorts of information, represented by means of
phrase-structure trees, for the c-structure, and de-
pendency dags, for f-structures. The f-structure
is an abstract functional syntactic representa-
tion of a sentence, thought to contain deeper or
more language-independent information than the
c-structure (Dalrymple, 2001).

There are several important ways in which f-
structures differ from the tree-dependencies out-
lined by the literature on dependency syntax
within the MTT framework or the annotation
guidelines of the Prague Treebank. For instance,
included in the f-structure is communicative in-
formation, such as topic and focus, that LFG
theorists consider to be grammaticised or syn-
tacticised components of information structure).
This introduces the notion of long-distance de-
pendencies. Moreover, subject and object-raising
are represented with re-entrancies at the syntac-
tic level in LFG. This creates dags rather than
just dependency trees, since some grammatical
functions share the same f-structure value; these
shared f-structures are called re-entrancies. Also,
f-structure syntax corresponds, in fact, to a sort of
mix of surface and deep dependency MTT syn-
tax (respectively, a mix of analytic and tectogram-
matical syntax). Like a surface dependency syn-
tax, some lemmata, like copular verbs, that are not
semantically full, appear in f-structures. On the

cussion of dependency syntax according to Functional Gen-
erative Description.

Dependency Parsing Resources for French: Converting Acquired Lexical Functional Grammar

169

other hand, like deep dependency syntax, some
lemmata that are not semantically full are ex-
cluded (for example, for the monoclausal treat-
ment of compound tenses of verbs).

Other differences between dependency struc-
tures may be found in the notions of grouping and
sets. In particular, coordination receives differ-
ent treatments that must be considered. Accord-
ing to the PT annotation guidelines, coordination
is treated as sets (conjuncts are sister nodes, el-
ements of a set of conjuncts). Also, every node
of a dependency tree must be associated with a
word-form, which makes the coordinating con-
junction or punctuation the governor of the set.
On the other hand, in the MTT, coordination has
a cascaded representation, with the first conjunct
as governor. To distinguish between modifiers or
arguments of the first conjunct and those of the co-
ordinated structure, MTT theorists resort to group-
ing: the first conjunct essentially forms a distin-
guished group with its modifiers and arguments,
much like the notion of constituent (Mel’čuk,
2003). In this sense, the first conjunct grouping is
really the governor of the coordination.5 Also ac-
cording to the MTT, every node of a dependency
tree must be associated with a word-form. But in
LFG this is not necessary, in particular, in the rep-
resentation of both coordination; coordinated ele-
ments, like in the PT, are treated as sets. In dag
form, it can be seen that these coordinated struc-
tures have a null governor; that is, they do not have
a governor that corresponds to any word-form as
the node has no label. Because today’s statistical
dependency parsers cannot handle null elements,
some pre-processing will be needed to convert our
LFG representation of coordination (Section 4.1).

Finally, f-structures may be specified in terms
of annotated c-structures with the local meta-
variables ↑ and ↓, and grammatical function regu-
lar paths. This restricts the structure of dependen-
cies actually occurring in LFG f-structure syntax,
as we will show in Section 3.2.

3.2 The Breadth of Functional Equations in
LFG

LFG’s f-structures often have re-entrancies (or
shared sub-f-structures)—two functional equa-
tions resolve to take the same (f-structure)
value—making them dags, rather than simple de-

5Grouping may be indicated on labels (Nilsson et al.,
2006).

pendency trees. In LFG, the term functional un-
certainty describes the uncertainty in the resolu-
tion given a simple grammatical function, in the
definition of the grammar. The set of options for
resolution may be finite and given by a disjunc-
tion, in which case resolution is down a chain of
f-structure nodes of bounded length, or (theoret-
ically) infinite in which case they are given by a
regular expression (including the Kleene star oper-
ator) and resolution is down a chain of f-structure
nodes of unbounded length. We note, however,
that in statistical parsing of f-structures, the func-
tional uncertainty in the resolution of a grammati-
cal function will never be infinite, since the data is
finite.

3.2.1 Projectivity
Consider a labeled dependency tree (directed tree)
T = (V,E, L), where V is its set of vertices (or
nodes), E = {(a, l, b) | a, b ∈ V, l ∈ L} its
set of directed edges, and L the set of labels for
edges. If e = (a, l, b) ∈ E, we say that a immedi-
ately dominates b; in this case, we say that a is the
governor of b, or that b is a dependent on a. We
say that v1 dominates vn if there is a chain of arcs
e1, e2, . . . , en−1, such that e1 = (v1, l1, v2), e2 =
(v2, l2, v3), . . . , en−1 = (vn−1, ln−1vn). In this
case, we also say that vn is a descendent of v1 or
that v1 is an ancestor of vn.

An ordered tree is a tree having a total order,
(V,≤), over its nodes, which for dependency trees
is just the linear order of the symbols (or natu-
ral language words) in the generated string. An
edge e = (a, b) covers nodes v1, v2, . . . , vn if
a ≤ v1, . . . , vn ≤ b, or b ≤ v1, . . . , vn ≤ a.

An edge, e = (v1, l, v2), of a tree is said to be
projective if and only for every vertex v covered
by e, v is dominated by v1. A tree T is projective
if and only if all its edges are projective (Robin-
son, 1970). (Gaifman, 1965) explains that a pro-
jective dependency tree can be associated with a
dependency tree whose constituents are the projec-
tions of the nodes of the dependency tree, showing
that projectivity in dependency trees corresponds
to constituent continuity in phrase-structure trees.

These definitions are easily extended to dags.
However in the case of dags, there are some-
times two governors for a single node that must
be considered. For f-structure dags, we must ad-
ditionally consider the mixed surface/deep depen-
dency structure: some lemmata do not appear in f-
structures as predicates. For those f-structure dags

Natalie Schluter and Josef van Genabith

170

for which there is a one-to-one correspondence be-
tween predicates and original word-forms, these
extended definitions may easily be applied.

However, LFG’s treatment of long-distance de-
pendency resolution and of subject/object raising
is non-projective, illustrate non-projective dags.
For French, for example, an interesting non-
projective structure is found in en pronouns and
NP extraction.

Projectivity in dependency trees or dags is ob-
viously a result of the definition of the generating
dependency grammar. This is true also of cases
that are not LFG re-entrancies. For example, (Jo-
hansson and Nugues, 2007) propose a conversion
of the Penn Treebank into dependency trees that
introduces more projective edges than the conver-
sion proposed by (Yamada and Matsumoto, 2003;
Nivre, 2006). In addition to long-distance depen-
dencies, for example, their representation of gap-
ping always introduces non-projective branches
(Johansson and Nugues, 2007).

LFG is capable of locally representing non-
projective dependencies in phrase structures,
which should, by definition, be impossible. This
is because the only types of non-projective depen-
dencies theoretically represented in LFG are actu-
ally pseudo-projectivities.

3.2.2 Non-Projectivity and
Pseudo-Projectivity

Dependency trees also model non-projective struc-
tures that have no correspondence with any con-
stituent trees—that is, they may be non-projective.
This added “increase” in power for dependency
grammars is shown to be useful for syntactic rep-
resentations of certain languages (for example, the
cross-serial dependencies of Dutch). However, as
(Kahane et al., 1998) explain, pseudo-projective
dependency trees may be parsed as projective trees
with the aid of a simple transformation.

Consider two non-projective labeled depen-
dency trees, T1 = (V,E1, L1) and T2 =
(V,E2, L2). T2 is called a lift if one of the follow-
ing conditions hold, for some e = (a, l, b), e′ =
(b, l′, c) ∈ E1.6

1. E2 = (E1 − {e, e′}) ∪ {(a, l : l′, c)}, L2 ⊆
L1 ∪ {l : l′}, or

2. T3 is a lift of T1 and T2 is a lift of T3.
6This definition is equivalent to the one given in (Kahane

et al., 1998), where a lift was defined as in terms of gover-
nance for unlabeled dependency trees.

Corresponding to item 1 of the above condi-
tions, the action of creating the tree T2 from T1

by removing the edges e, e′ and adding the edge
e′′, will be referred to as lifting. A labeled ordered
dependency tree T is said to be pseudo-projective
if there is some lift T ′ of T that is projective.

(Kahane et al., 1998) explain that (for unla-
beled dependency trees) one may make these def-
initions meaningful through the specification of
lifting rules of the form LD ↑ SG w LG, mean-
ing that a node of category LD can be lifted to
its syntactic governor of category LG through a
path consisting of nodes of category C1, . . . , Cn,
where Ci is among a specific set of categories (la-
bels) (Lw) for all i ∈ {1, . . . , n}. Equivalently,
for a labeled ordered dependency tree, the path
w may be specified by a path of labels. In this
sense, building a projective tree by means of lift-
ing results in arcs with path labels. Projecting
the nodes would result in a sort of annotated c-
structure. In this sense, and making abstraction
of any contractions resulting from the annotations
↑=↓, lifting is the opposite of the correspondence
φ from c-structure to f-structure.7 Re-entrancies
may simply be considered as complex labels. Let
us call the transformation opposite to lifting a de-
contraction (used to undo the lifting transforma-
tion). Since generating an f-structure from an an-
notated c-structure involves simple contractions of
the form ↑=↓ and de-contractions, all f-structures
are at most pseudo-projective. That means, we do
not have to worry about non-projective structures
in the parsing of LFG dependencies in f-structures.

4 Transforming Annotated C-Structures
into Dependency Trees

To generate dependency trees, rather than using
f-structures, we start with annotated c-structures.
The motivation for this choice is straightforward:
we need only carry out a certain number of con-
tractions for the equations ↑=↓ in order to get
a projective dependency tree (rather than just a
pseudo-projective dependency tree on which we
must perform lifts). Moreover, the association
of labels for handling re-entrancies is sitting in
the annotated tree and does not need to be re-
calculated. There are some problems that remain
in the result.

7(Kahane et al., 1998) remark that the idea of building a
projective tree by means of lifting can be compared to the
functional uncertainty of LFG.

Dependency Parsing Resources for French: Converting Acquired Lexical Functional Grammar

171

Firstly, not every terminal will get have a pred-
icate annotation. For example, in causative con-
structions like for the phrase faire danser (’to
make dance’), the word-form faire would only be
annotated with the feature ↑ factive = +, not
as a predicate. These will simply be turned into
f-structures rather than features, by changing an-
notations such as these to ↑ factive:pred =
‘faire′.

Another problem is that coordination structures
have no governor. These structures must be trans-
formed. We choose to follow the annotation
guidelines for the PT for this transformation, due
to its similarity with LFG analyses. Some coordi-
nation structures of the treebank need alternative
treatment. In particular, non-constituent coordi-
nation and unlike constituent coordination require
analyses that are not covered in the those guide-
lines. We resort to extended dependency tag sets
to treat these cases and retain projectivity.

4.1 Coordination Transformations
In general, coordination will be transformed in the
spirit of the PT annotation guidelines. If there is
a coordinating conjunction, then the last of these
will be taken as the governor of the coordination,
as in the Figure 5. In the case where there is no
coordinating conjunction but there is coordination
punctuation (like a comma or semicolon), we will
take the last of these as the governor. Otherwise
we will take the first conjunct of the coordination
as the governor and revert to grouping through ex-
tended labels.

à court et moyen terme

-obj

�elem coord -elem coord
�coord adjunct

Figure 5: Dependency graph for a court et moyen
terme (‘short and mid-term’).

For non-constituent coordination, the goal is
twofold: (1) show that the different elements
of each of the conjuncts belong together8 and

8The dependency treatment of coordination outlined by
(Johansson and Nugues, 2007) for the treatment of gapping
also introduced ambiguity for the case where there are more
than two conjuncts; in this solution, they have removed the
relation that the components of gapping are part of a same

(2) show that they are missing something that is
present in the first conjunct (done by the function
tags). For this reason, the LFG analysis is ideal.
However, a surface dependency analysis cannot
do this; constituent structure is not simply depen-
dency structure that projects lexical units to termi-
nals. It shows groupings of elements based depen-
dence on a item that is there or not. To do this, we
use extended labels, forcing a ”fake” lexical head.

5 Dependency Parsing Results

The parsing architecture works as follows. The an-
notation algorithm is applied to MFT trees, creat-
ing f-structure annotated trees that are then trans-
formed into the projective depenendency represen-
tation described in Section 4, using the c-structure
with the (only) f-structure equations. A depen-
dency parser is then trained on this data, and the
test set parsed. The parser output is then trans-
formed back to f-structure equations, which are
evaluated against the f-structure gold standard.

Two different dependency parsers were used for
this research: MST parser (McDonald et al., 2005)
and MALT parser (Nivre et al., 2006). Experi-
ments were done with the simplified architecture
(in which long-distance dependencies are given as
complex path equations in training), and in the
established architecture (with a separated long-
distance dependency resolution task).9 The results
are given in Tables 2 and 3.

Parser coord dist precision recall f-score
MST no 87.46 54.67 67.28

yes 87.45 54.66 67.27
MALT no 86.23 52.17 65.01

yes 86.17 51.95 64.82

Table 2: Simplified Architecture Parsing Results

Parser LDDs coord precision recall f-score
resolved dist

MST no no 86.90 57.07 68.89
yes 86.89 57.06 68.88

yes yes 86.48 58.03 69.46
MALT no no 85.98 51.13 64.13

yes 86.02 50.9 63.96
yes yes 86.08 51.62 64.54

Table 3: Parsing Results with Long Distance De-
pendency Resolution

element/constituent.
9More information on the difference between these two

architectures can be found in (Schluter and van Genabith,
2008).

Natalie Schluter and Josef van Genabith

172

We observe that best results are obtained by the
MST parser when LDD recovery separated and
coordination distribution is carried out.

6 Concluding Remarks

In this paper, we have shown that best statistical
parsing results for French in the integrated LFG
parsing architecture are achievable by extending
this architecture for statistical dependency pars-
ing. However, best results, in general are still
obtained via the original PCFG based LFG pars-
ing approach. Future work would look at extend-
ing the use of machine learning to approximate
the integrated parsing architecture, which has been
shown to improve results in the PCFG based LFG
parsing approach.

Acknowledgments

This research was supported by Science Founda-
tion Ireland GramLab grant 04/IN/I527.

References
A. Cahill, M. McCarthy, J. van Genabith, and A. Way.

2002. Automatic annotation of the penn tree-
bank with lfg f-structure information. In A. Lenci,
S. Montemagni, and V. Pirelli, editors, Proceedings
of the LREC 2002 workshop on Linguistic Knowl-
edge Acquisition and Representation, Paris. ELRA.

G. Chrupała and J. van Genabith. 2006. Improving
treebank-based automatic lfg induction for spanish.
In Proc. of LFG06, Konstanz, Germany.

Mary Dalrymple. 2001. Lexical Functional Gram-
mar, volume 34 of Syntax and Semantics. Academic
Press, San Diego.

Haim Gaifman. 1965. Dependency systems and
phrase-structured systems. Information and Con-
trol, 8:304–337.

Y. Guo, J. van Genabith, and H. Wang. 2007.
Treebank-based acquisition of lfg resources for chi-
nese. In Proc. of LFG07, Stanford, CA.

J. Hajič, J. Panevová, E. Buráňová, Z. Urešová, and
A. Bémová. 1999. Annotations at analytical
level. instructions for annotators. Technical report,
Prague.

E. Hajičová and P. Sgall, 2003. Dependency Syntax in
Functional Generative Description, pages 570–592.
Walter de Gruyter, Berlin and New York.

R. Johansson and P. Nugues. 2007. Extended
constituent-to-dependency conversion. In NODAL-
IDA 2007 Conference Proceedings, pages 105–112,
Tartu, Estonia.

S. Kahane, A. Nasr, and O. Rambow. 1998. Pseudo-
projectivity: a polynomially parsable non-projective
dependency grammar. In Proceedings of the 17th
international conference on Computational linguis-
tics, pages 646–652.

R. McDonald, K. Crammer, and F. Pereira. 2005. On-
line large-margin training of dependency parsers. In
Proc. of ACL 2005.

I. Mel’čuk. 1998. Vers une linguistique Sens-Texte.
Leçon inaugurale. Collège de France, Paris.

I. Mel’čuk. 2001. Communicative Organisation
in Natural Language. The Semantic-Communicative
Structure of Sentences. Benjamins, Amsterdam and
Philadelphia.

I. Mel’čuk, 2003. Levels of Dependency in Linguis-
tic Description: Concepts and Problems, volume 1,
pages 188–229. Walter de Gruyter, Berlin and New
York.

J. Nilsson, J. Nivre, and J. Hall. 2006. Graph transfor-
mations in data-driven dependency parsing. In ACL
’06: Proceedings of the 21st International Confer-
ence on Computational Linguistics and the 44th an-
nual meeting of the ACL, pages 257–264.

J. Nivre, J. Hall, and J. Nilsson. 2006. Malt-parser: A
data-driven parser generator for dependency parsing.
In Proceedings of LREC’06.

J. Nivre. 2006. Inductive Dependency Parsing.
Springer Verlag.

J. J. Robinson. 1970. Dependency structure and trans-
formational rules. 46:259–285.

N. Schluter and J. van Genabith. 2007. Preparing, re-
structuring, and augmenting a french treebank: Lex-
icalised parsers or coherent treebanks? In Proc. of
the PACLING 2007, Melbourne, Australia.

N. Schluter and J. van Genabith. 2008. Treebank-
based acquisition of lfg parsing resources for french.
In Proc. of LREC 2008, Marrakech, Morocco.

P. Sgall, J. Panevová, and E. Hajičová. 2004. Deep
syntactic annotation: Tectogrammatical representa-
tion and beyond. In A. Meyers, editor, HLT-NAACL
2004 Workshop: Frontiers in Corpus Annotation,
pages 32–38, Boston, MASS. Association for Com-
putational Linguistics.

Z. Žabokrtský. 2005. Resemblances between
meaning-text theory and functional generative de-
scription. In J.D. Apresjian and L.L. Iomdin, ed-
itors, Proceedings of the 2nd International Con-
ference of Meaning-Text Theory, pages 549–557,
Moscow, Russia. Slavic Culture Languages Publish-
ers House.

H. Yamada and Y. Matsumoto. 2003. Statistical de-
pendency analysis with support vector machines.
In Proceedings of the 8th International Workshop
on Parsing Technologies, pages 195–206, Nancy,
France.

Dependency Parsing Resources for French: Converting Acquired Lexical Functional Grammar

173 ISSN 1736-6305 Vol. 4
http://hdl.handle.net/10062/9206

