
Text Annotation with OpenNLP and UIMA

Graham Wilcock
University of Helsinki

graham.wilcock@helsinki.fi

Abstract

The tutorial presents a practical overview
of automatic linguistic annotation of texts
using freely available open source tools.

1 OpenNLP

Text annotation typically involves tasks at sev-
eral linguistic levels, such as sentence boundary
detection, tokenization, part-of-speech tagging,
phrase chunking, syntactic parsing, named entity
recognition, coreference resolution, and semantic
role labelling. Most of these tasks can be done
with appropriate combinations of OpenNLP tools
(http://opennlp.sourceforge.net).

Practical examples will show annotations of a
short English text. OpenNLP outputs annotations
in a simple plain text format.

The OpenNLP tools do a good job of creating
annotations automatically, but a number of issues
arise. Although the OpenNLP tools themselves
are open source Java and platform-independent,
the annotation pipelines (where the output of
one component is input to the next component)
are created by Linux shell scripts and Windows
.bat files that are platform-dependent and error-
prone. Apache Ant can be used to gain platform-
independence, but Ant requires technical skills.

2 WordFreak

OpenNLP tools can also be used in WordFreak
(http://wordfreak.sourceforge.net)
as plugins. WordFreak provides an attractive,
easy-to-use GUI for linguistic annotations. It is
open source Java and platform-independent, and
is convenient for manually correcting annotations
made by the OpenNLP tools. However, Word-
Freak creates annotations in its own specific XML
stand-off annotation format.

This raises the issue of interoperability. How
can annotations be interchanged between tools

that use different annotation formats? This can
be done by XSLT transformations, for example
WordFreak XML format can be transformed by
XSLT to OpenNLP plain text annotation format.
However, writing such XSLT stylesheets requires
specific technical skills.

3 UIMA

UIMA (Unstructured Information Management
Architecture) provides solutions to many of the
above issues. UIMA is open-source Java (http:
//incubator.apache.org/uima). It aims
to support interoperability and scalability.

In UIMA, annotators run in analysis engines.
New annotators are written in Java, and existing
annotation tools such as the OpenNLP tools are
converted to UIMA annotators by Java wrappers.
Pipelines of annotators run in aggregate analysis
engines. Pipelines can be configured by writing
XML descriptors (similar in some ways to Ant
tasks), or by means of an easy-to-use graphical
configuration tool in the Eclipse GUI (Figure 1).

UIMA supports interoperability at the level of
annotation formats by adopting XML Metadata
Interchange (XMI), which has been proposed as
an interchange standard. Instead of having its own
specific XML annotation format, the UIMA anno-
tation format is XMI.

UIMA also supports interoperability at the level
of annotation tools by means of a type system that
defines annotation types and their features. Types
are used to check that output from one component
is the right type for input to the next component.

Practical examples will show how to configure
and use pipelines of OpenNLP tools in UIMA, and
how to view the annotations in UIMA (Figure 2).

References
Graham Wilcock. 2009. Introduction to Linguistic An-

notation and Text Analytics. Morgan and Claypool.

Kristiina Jokinen and Eckhard Bick (Eds.)
NODALIDA 2009 Conference Proceedings, pp. 7–8



Figure 1: Configuring an OpenNLP annotation pipeline in UIMA

Figure 2: Viewing annotations by OpenNLP Parser in UIMA

8

Graham Wilcock

ISSN 1736-6305 Vol. 4
http://hdl.handle.net/10062/9206


