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Abstract

In recent years Dialogue Acts have be-

come a popular means of modelling the

communicative intentions of human and

machine utterances in many modern di-

alogue systems. Many of these systems

rely heavily on the availability of dialogue

corpora that have been annotated with Di-

alogue Act labels. The manual annota-

tion of dialogue corpora is both tedious

and expensive. Consequently, there is a

growing interest in unsupervised systems

that are capable of automating the annota-

tion process. This paper investigates the

use of a Dirichlet Process Mixture Model

as a means of clustering dialogue utter-

ances in an unsupervised manner. These

clusters can then be analysed in terms of

the possible Dialogue Acts that they might

represent. The results presented here are

from the application of the Dirichlet Pro-

cess Mixture Model to the Dihana corpus.

1 Introduction

Dialogue Acts (DAs) are an important contribu-

tion from discourse theory to the design of di-

alogue systems. These linguistics abstractions

are based on the illocutionary force of speech

acts (Austin, 1962) and try to capture and model

the communicative intention of human or ma-

chine utterances. In recent years, several dia-

logue systems have made use of DAs for mod-

elling discourse phenomena in either the Dialogue

Manager (Keizer et al., 2008), Automatic Speech

Recogniser (Stolcke et al., 2000) or the Auto-

matic Speech Synthesiser (Zovato and Romportl,

2008). Additionally, they have been used also in

other tasks such as summarisation, (Murray et al.,

2006). Therefore, a correct DA classification of di-

alogue turns can bring benefits to the performance

of these modules and tasks.

Many machine learning approaches have been

used to automatically label DAs. They are usu-

ally based on Supervised Learning techniques

involving combinations of Ngrams and Hidden

Markov Models (Stolcke et al., 2000; Martı́nez-

Hinarejos et al., 2008), Neural Networks (Garfield

and Wermter, 2006) or Graphical Models (Ji and

Bilmes, 2005). Relatively few approaches to DA

classification have been based on unsupervised

learning methods. Some promising results were

reported by Anderach et al (Andernach et al.,

1997; Andernach, 1996) who applied Kohonen

Self Organising Maps (SOMs) to the problem of

DA classification. Although the SOM is nonpara-

metric in the sense that it doesn’t require that the

number of clusters to be found in the data be a pa-

rameter of the SOM that is specified before clus-

tering begins, it’s capacity to detect clusters is lim-

ited to the size of the two-dimensional lattice onto

which the clusters are projected, and the size of

this lattice is determined prior to clustering. This

paper investigates the use of an unsupervised, non-

parametric Bayesian approach to automatic DA

labelling: namely the Dirichlet Process Mixture

Model (DPMM). Specifically, the paper reports re-

sults from applying the Chinese Restaurant Pro-

cess (CRP), a popular approach to DPMMs, to

the automatic labelling of DAs in the Dihana cor-

pus. The Dihana corpus (J.M.Benedı́ et al., 2006)

has previously been used for the same task but

with a supervised learning approach (Martı́nez-

Hinarejos et al., 2008). The results reported here

indicate that, treating each utterance as a bag of

words, the CRP is capable of automatically clus-
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tering most utterances according to speaker, level

1 and in some cases level 2 DA annotations (see

below).

2 The Dihana corpus

The Dihana corpus consists of human-computer

spoken dialogues in Spanish about queuing infor-

mation of train fares and timetables. The acquisi-

tion was performed using the Wizard of Oz (WoZ)

technique, where a human simulates the system

following a prefixed strategy. User and system

utterances are different in nature, user utterances

are completely spontaneous speech whereas sys-

tem utterances are based on pre-written patterns

that the WoZ selected according to what the user

said in the previous turn, the current dialogue state

and the WoZ strategy. There is a total of 900 dia-

logues with a vocabulary of 823 words. However,

after applying a process of name entity recognition

(cities, times, number, ...) and making the distinc-

tion between system and user words there are 964

different words. The same process of name en-

tity recognition was also used by Martinez Hinare-

jos (Martı́nez-Hinarejos et al., 2008)

2.1 Annotation scheme

Dialogues were manually annotated using a dia-

logue act annotation scheme based on three lev-

els (see Table 1). The first level corresponds to

the general intention of the speaker (speech act),

the second level represents the implicit informa-

tion that is referred to in the first level and the third

level is the specific data provided in the utterance.

Using these three levels and making the distinc-

tion between user and system labels, there are 248

different labels (153 for the user and 95 for the sys-

tem). Combining only first and second level there

are 72 labels (45 for user and 27 for system), and

with only first level there are 16 labels (7 for user

and 9 for system).

Annotation was done at utterance level. That

is, each dialogue turn was divided (segmented)

into utterances such that each one corresponds to a

unique DA label. An example of the segmentation

and annotation of two turns of a dialogue can be

seen in Figure 1

3 Dirichlet Process Mixture Models

This paper present a Dirichlet Process Mixture

Model (DPMM) (Maceachern and Müller, 1998;

Escobar and West, 1995; Antoniak, 1974) for the

Level Labels

First Opening, Closing, Confirmation,

Undefined, Not-understood, Waiting,

Consult, Acceptance, Rejection

Second Departure-hour, Arrival-hour,

Fare, Origin, Destination, Day,

Train-Type, Service, Class, Trip-time

Third Departure-hour, Arrival-hour,

Fare, Origin, Destination, Day,

Train-Type, Service, Class,

Trip-time, Order-number,

Number-trains, Trip-type

Table 1: Set of dialogue act labels used in the Di-

hana corpus

automatic, unsupervised clustering of the utter-

ances in the Dihana corpus. This approach treats

each utterance as a bag of words (i.e. an unordered

collection of words) (Sebastiani, 2002). Utter-

ances are clustered according to the relative counts

of word occurrences that they contain so that utter-

ances with similar histograms of word counts will,

in general, appear in the same cluster.

Bayesian methods for unsupervised data clus-

tering divide into parametric and nonparametric

approaches. Parametric approaches to clustering

such as Finite Bayesian Mixture Models (Mclach-

lan and Peel, 2000) require prior estimation of the

number of clusters that are expected to be found

in the data. However, it is not always possible to

know this in advance and often it is necessary to

repeat a modelling experiment many times over a

range of choices of cluster numbers to find an op-

timal number of clusters. Sub-optimal choices for

the number of clusters can lead to a degradation

in the generalisation performance of the model.

Nonparametric approaches to mixture modelling,

on the other hand, do not require prior estimates

of the number of clusters in the data; this is dis-

covered automatically as the model clusters the

data. Dirichlet Processes offer one approach to de-

veloping Bayesian nonparametric mixture models.

The remainder of this section briefly introduces

DPMMs, beginning with a brief look at finite

Bayesian mixture models which will serve as use-

ful background for presenting the Chinese Restau-

rant Process, the Dirichlet Process paradigm used

in this paper.

342



Speaker Utterance Transcription

Level 1 Level 2 Level 3

S S1 Welcome to the railway information system. How may I help you?

Opening Nil Nil

U U1 Could you tell me the departure times from Valencia

Question Departure-hour Origin

U2 to Madrid .

Question Departure-hour Destination

Figure 1: An example of some turns from an annotated dialogue of DIHANA corpus.

Figure 2: A 3-simplex with two examples points

and the corresponding distributions

3.1 Finite Bayesian Mixture Models

A Dirichlet distribution is defined as a measure

on measures. Specifically, a Dirichlet distribution

defines a probability measure over the k-simplex.

The k-simplex is a convex hull constructed so that

each point on the surface of the simplex describes

a probability distribution over k outcomes:

Qk = {(x1, . . . , xk) : xi ≥ 0

∀i ∈ {1 . . . k},
k

∑

i=1

xi = 1}

Figure 2 shows a 3-simplex with two example

points and the corresponding distributions. The

Dirichlet distribution places a probability measure

over the k-simplex so that certain subsets of points

on the simplex (i.e. certain distributions) have

higher probabilities than others (Figure 3). The

probability measure in the Dirichlet is parame-

terised by a set of positive, non-zero concentra-

tion constants α = {α1, . . . αk : αi > 0}, written
Dirichletk(α1, . . . αk). The effects of different

values of α for the 3-simplex are shown in Figure

3.

The probability density function of the Dirichlet

Figure 3: Three example Dirichlet Distributions

over the 3-simplex with darker regions showing

areas of high probability: (a) Dirichlet(5,5,5), (b)

Dirichlet(0.2, 5, 0.2), (c) Dirichlet(0.5,0.5,0.5).
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distribution is given by:

Dirichletk(α1, . . . , αk) = f(x1, . . . , xk; α1, . . . , αk)

=
Γ(

∑k
i=1 αi)

∏k
i=1 Γ(αi)

k
∏

i=1

xai−1
i

where Γ(x) (=
∫

∞

0 t(x−1)e−tdt) extends the fac-
torial function to the real numbers. Since a

draw from a Dirichlet distribution (written β ∼
Dirichletk(α)) gives a distribution, a Dirichlet

can be used as the prior for a Bayesian finite mix-

ture model:

β ∼ Dirichletk(α1, . . . , αk)

β is a distribution over the k components φ of

the finite mixture model. Each component φzi
is

drawn from a base measure G0 (φzi
∼ G0). The

choice of distribution G0 depends on the nature

of the data to be clustered; with data that is rep-

resented using the bag of words model, G0 must

generate distributions over the word vocabulary.

Hence the Dirichlet distribution is an appropriate

choice in this case:

φzi
∼ Dirichletv(α1, . . . , αv)

where v is the size of the vocabulary.

For each data point (utterance) xi a component

φzi
is selected by a draw zi from the multinomial

distribution β:

zi ∼ Multinomialk(β)

A suitable distribution F (φzi
) is then used to draw

the data point (utterance). In the bag of words

model, the multinomial distribution is used to

draw the words for each data point xi:

xi ∼ Multinomialv(φzi
)

A small example will illustrate this generative

process. Imagine that there are just two types

of utterances with a vocabulary consisting sim-

ply of the words A, B and C. A finite Bayesian

mixture model in this case would first draw β

from a suitable Dirichlet distribution (e.g. β ∼
Dirichlet2(0.5, 1)) as, for example, is shown in

Figure 4(a). Next the two components φz1
and

φz2
would be drawn from a suitable base distribu-

tion G0 (e.g. φz1
∼ Dirichlet3(1, 0.5, 0.5) and

φz2
∼ Dirichlet3(0.5, 0.5, 1), see Figure 4(b)

and 4(c)). In this case, φz1
will tend to generate

Figure 4: An example finite Bayesian mixture

model. (a) The prior distribution over components

φz1
(b) and φz2

(c)

utterances containing more occurrences of word

A than B or C, whilst φz2
will tend to gener-

ate utterances with more C’s than A’s or B’s. A

component zi is then selected for each utterance

(zi ∼ Multinomialk(β)). Note that in this ex-

ample, the distribution β would lead to more utter-

ances generated by φz2
than by φz1

. Suppose that

five utterances are to be generated by this model

and that the components for each utterance are

z1 = 1, z2 = 2, z3 = 2, z4 = 1 and z5 = 2.
The words in each utterance are then generated

by repeated draws from the corresponding com-

ponent (e.g. x1 = ACAAB, x2 = ACCBCC,

x3 = CCC, x4 = CABAAC and x5 = ACC).

3.2 Dirichlet Processes

A Dirichlet Process can be thought of as an exten-

sion of a Dirichlet distribution where the dimen-

sions of the distribution are infinite. The prob-

lem with the infinite dimension Dirichlet distri-

bution, though, is that its probability mass would

be distributed across the whole of the distribution.

However, in most practical applications of mixture

modelling there will be a finite number of clusters.

The solution is to have a process which will tend

to place most of the probability mass at the be-

ginning of the infinite distribution, thereby mak-

ing it possible to assign probabilities to clusters

without restricting the number of clusters avail-

able. The GEM stick breaking construction (the

name comes from the first letters of Griffiths, En-

gen and McCloskey (Pitman, 2002)) achieves pre-

cisely this (Pitman and Yor, 1997). Starting with
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a stick of unit length, random portions β′k are re-

peatedly broken off the stick, with each part that

is broken off representing the proportion of prob-

ability assigned to a component:

β′k ∼ Beta(1, α) βk =
∏k−1

i+1 (1− β′i) · β
′

k

The Dirichlet Process mixture model can now

be specified as:

β ∼GEM(α) φzi
∼G0 zi ∈ (1 . . .∞)

zi ∼Multinomial(β) xi ∼ F (φzi
)

3.3 Chinese Restaurant Process

The Chinese Restaurant Process (CRP) is a popu-

lar Dirichlet Process paradigm that has been suc-

cessfully applied to many clustering problems. In

the CRP, one is asked to imagine a Chinese restau-

rant with an infinite number of tables. The cus-

tomers enter the restaurant and select, according to

a given distribution, a table at which to sit. All the

customers on the same table share the same dish.

In this paradigm, the tables represent data clusters,

the customers represent data points (xi) and the

dishes represent components (φz). As each cus-

tomer (data point) enters the restaurant the choice

of which table (cluster) and therefore which dish

(component) is determined by a draw from the fol-

lowing distribution:

φi|φ1, . . . , φi−1 ∼
1

(α + i− 1)





i−1
∑

j=1

δφj
+ αG0





where α is the concentration parameter for the

CRP. The summation over the δφj
’s counts the

number of customers sat at each of the occupied

tables. The probability of sitting at an already oc-

cupied table, therefore, is proportional to the num-

ber of customers already sat at the table, whilst the

probability of starting a new table is proportional

to αG0. Figure 5 illustrates four iterations of this

initial clustering process.

Once all the customers (data points) have been

placed at tables (clusters), the inference process

begins. The posterior p(β, φ, z|x) cannot be cal-
culated exactly, but Gibbs sampling can be used.

Gibbs sampling for the CRP involves iteratively

removing a randomly selected customer from their

table, calculating the posterior probability distri-

bution across all the occupied tables together with

a potential new table (with a randomly drawn dish,

Figure 5: The first four steps of the initial cluster-

ing process of the CRP. The probability distribu-

tion over the tables is also shown in each case.

i.e. component), and making a draw from that dis-

tribution to determine the new table for that cus-

tomer. The posterior distribution across the tables

is calculated as follows:

φi|φ1, . . . ,φi−1, x

∼
1

B





i−1
∑

j=1

δφj
p(xi|φj) + αG0p(xi|φi)





where B = αp(xk) +
∑i−1

j=1 p(xi|φi) is the nor-
malising constant. After a predetermined number

of samples, the dish (component) of each occupied

table is updated to further resemble the customers

(data points) sitting around it. In the bag of words

approach used here, this involves converting the

histogram of word counts in each customer (utter-

ance) sitting at the table into an empirical distribu-

tion H(xi), taking the average of these empirical
distributions and modifying the dish (component)

to further resemble this distribution:

φi = φi +
µ

mi

mi
∑

j=1

H(xj)

where µ (0 ≤ µ < 1) is the learning con-

stant and mi is the number of customers around
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table i. The inference process continues to it-

erate between Gibbs sampling and updating the

table dishes (components) until the process con-

verges. Convergence can be estimated by observ-

ing n consecutive samples in which the customer

was returned to the same table they were taken

from.

4 Results

The CRP with Gibbs sampling was used to clus-

ter both user and system utterances from the 900

dialogues in the Dihana corpus. Each utterance is

treated as an independent bag of words where all

information about the dialogue that it came from

and the context in which it was uttered is ignored

during training. Intra-cluster and inter-cluster sim-

ilarity measures were used to evaluate the resulting

clusters. Intra-cluster similarity S′i is calculated

by averaging the Euclidean distance between ev-

ery pair of data points in the cluster i:

S′i =
1

2mi

mi
∑

i=1;j=1

|xi − xj |

Inter-cluster similarity S′′ is calculated by sum-

ming the Euclidean distance between the centroids

of all pairs of clusters:

S′′ =
n

∑

i=1;j=1

|Ci − Cj |

where Ci is the centroid of cluster i and n is the

number of clusters.

Two classification error measures were also

used, one from the cluster (table) perspective E′,

and the other from the perspective of the Dialogue

Act (DA) annotations (first level) of the Dihana

corpus E′′. The cluster classification error of ta-

ble i is calculated by summing up the occurrences

of each DA on the table, finding the DA with the

largest total and allocating that DA as the correct

classification for that table Di. The number of

false positives f
p
i for that table is the count of all

customers (utterances) with DA annotations not in

Di. The number of false negatives fn
i is the count

of utterances with label Di that occur on other ta-

bles. The cluster classification error for table i is

therefore:

E′

i =
1

n
(fp

i + fn
i )

The DA classification error E′′

i measures how

well DA i has been clustered, using the size of the

Cluster

No. Ans Ask Clo Not Rej Und

1 1 5

4 2 91 2

9 2 1 9

12 7 161 1 1

13 273 26 8

14 382 12 1 5

15 6 1 909 1 327 22

17 47 39 1 1

18 73 1 3

19 1 4

20 131 115 1 3 1

22 270 29 3 3

23 135 8 2 2

25 83 31 1 4

28 247 16 1 4

29 349 6 1 12

33 13 3 5 1 4 25

41 202 45 1 2 3

46 4 1

49 6 251 1 2 4

51 124 896 1 12

53 45 477 10

Table 2: Clusters of user utterances, with the

counts for each level 1 speech act. The largest

cluster for each speech act is in bold. The abbrevi-

ations are: Und = Undefined, Ans = Answering,

Ask = Asking, Clo = Closing, Rej = Rejection,

Not = Not-understood.

DA classN c
i , the size of the largest cluster of utter-

ances from that DA classM c
i , and the total number

of utterances n in the corpus:

E′′

i =
1

n
(N c

i −M c
i )

Table 6 summarises the results from three sep-

arate runs of the CRP, each increasing in number

of epochs. It should be noted here that the Dihana

corpus has 72 DA categories, so the ideal number

of clusters discovered by the CRP would be 72. It

should also be noted that given an initial random

clustering, a good clustering algorithm will reduce

intra-cluster similarity (S̄′), increase inter-cluster

similarity (S′′) and reduce the classification errors

(Ē′ and Ē′′).
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Epochs (K) No. Clusters S̄′ S′′ Ē′ Ē′′

0 70 99703.6 243.74 0.05303 0.00979

1000 44 14975.4 217.56 0.01711 0.00385

1500 54 10093.7 336.15 0.01751 0.00435

Figure 6: The results from three separate runs of the CRP on utterances from the Dihana corpus. Cluster

similarity measures and classification error values are shown after 0 (i.e. random clustering), 1000K, and

1500K epochs. S̄′, Ē′ and Ē′′ are averaged values.

Level 1 Level 2 Cluster

No.

Answering Day 14

Destination 22

Fare 29

Departure-hour 28, 41

Asking Departure-hour,Fare 4

Train-type 12

Fare 49

Departure-hour 51, 53

Table 3: Clusters that have specialised on level 1

and level 2 annotations.

5 Discussion

The first row of the table in Figure 6 shows the

cluster similarity measures and classification er-

rors after 0 epochs of the inference procedure (i.e.

for a random clustering of utterances). This gives a

baseline for the measures and error values used in

subsequent runs. The second row of values shows

the results after a run of 1000K epochs of the in-

ference procedure. This run finds only 44 clusters

but has a much lower value for S̄′ than was found

in the random clustering, showing a significant in-

crease in the similarity between utterances within

each cluster. Surprisingly, the value for S′′ is also

reduced, showing that the differentiation between

the clusters formed at this stage is even lower than

there was with the random clustering. Ē′ and Ē′′

show suitable reductions indicating that the classi-

fication errors are being reduced by the inference

process. The third row of values show that after

1500K epochs 54 clusters have been found, intra-

cluster similarity is increased beyond that for the

random clustering, but the classification errors re-

main essentially the same as for the 1500K run.

Although the 1500K epoch run found only 54

clusters, it was able to clearly distinguish between

system and user utterances: with 30 clusters con-

taining system utterances only, 22 clusters con-

taining user utterances only and 2 clusters contain-

ing instances of both. Given that the system utter-

ances in the Dihana corpus are generated from a

restricted set of sentences, it is not surprising that

these were easy to cluster and differentiate from

user utterances. However, the CRP was also able

to cluster user utterances well, which is more of

a challenge. Table 2 shows the clusters that have

specialised on user utterances, with the counts of

the level 1 annotations in each case. The largest

cluster for each level 1 annotation is shown in bold

typeface. From here it can be seen that cluster 15

has specialised on bothClosing and Rejection. It is

not surprising that these fall within the same clus-

ter since the words used in each are often the same

(e.g. “No thank you” can act as either a closing

statement or a rejection statement). Clusters 14,

22, 29, 28 and 41 have specialised to the Answer-

ing annotation, whilst clusters 4, 12 49, 51 and 53

have specialised to Asking. Table 3 shows how

each of these clusters have specialised to level 2

annotations. Cluster 14, for example, specialises

on the Answering:Day pair, whilst 22 specialises

on Answering:Destination pair.

These initial results show that, at least for the

Dihana corpus, the DPMM can successfully clus-

ter utterances into Speaker, Level 1, and Level2

classes. Whilst this looks promising, it must be

acknowledged that the Dihana corpus is restricted

to train service inquiries and it remains unclear

whether this approach will generalise to other di-

alogue corpora with a broader range of topics and

wider vocabularies. Future work will include in-

vestigating the use of ngrams of words, syntactic

features, the DAs of previous utterances and ex-

perimentation with other corpora such as Switch-

board (Godfrey et al., 1992).
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