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Abstract

We use directed graphical models (DGMs)
to automatically detect decision discus-
sions in multi-party dialogue. Our ap-
proach distinguishes between different di-
alogue act (DA) types based on their role
in the formulation of a decision. DGMs
enable us to model dependencies, includ-
ing sequential ones. We summarize deci-
sions by extracting suitable phrases from
DAs that concern the issue under discus-
sion and its resolution. Here we use a
semantic-similarity metric to improve re-
sults on both manual and ASR transcripts.

1 Introduction

In work environments, people share information
and make decisions in multi-party conversations
known as meetings. The demand for systems that
can automatically process, understand and sum-
marize information contained in audio and video
recordings of meetings is growing rapidly. Our
own research, and that of other contemporary
projects (Janin et al., 2004), aim at meeting this
demand.

At present, we are focusing on the automatic
detection and summarization of decision discus-
sions. Our approach for detecting decision dis-
cussions involves distinguishing between differ-
ent dialogue act (DA) types based on their role
in the decision-making process. Two of these
types are DAs which describe the Issue under dis-
cussion, and DAs which describe its Resolution.
To summarize a decision discussion, we identify
words and phrases in the Issue and Resolution
DAs, which can be used to produce a concise, de-
scriptive summary.

This paper describes new experiments in both
detecting and summarizing decision discussions.
In the detection stage, we investigate the use of
Directed Graphical Models (DGMs). DGMs are
attractive because they can be used to model se-
quence and dependencies between predictor vari-
ables. In the summarization stage, we attempt to
improve phrase selection with a new feature that
measures the level of semantic similarity between
candidate Issue phrases and Resolution utterances,
and vice-versa. The feature is generated by a
semantic-similarity metric which uses WordNet as
a knowledge source. The motivation is that ordi-
narily, the Issue and Resolution components in a
decision summary should be semantically similar.

The paper proceeds as follows. Firstly, Sec-
tion 2 describes related work, and Section 3, our
data-set and annotation scheme for decision dis-
cussions. Section 4 then reports our decision de-
tection experiments using DGMs, and Section 5,
the summarization experiments. Finally, Section
6 draws conclusions and proposes ideas for future
work.

2 Related Work

User studies (Banerjee et al., 2005) have con-
firmed that meeting participants consider deci-
sions to be one of the most important meeting
outputs, and (Whittaker et al., 2006) found that
the development of an automatic decision detec-
tion component is critical to the re-use of meet-
ing archives. With the new availability of substan-
tial meeting corpora such as the AMI corpus (Mc-
Cowan et al., 2005), recent years have therefore
seen an increasing amount of research on decision-
making dialog. This research has tackled issues
such as the automatic detection of agreement and
disagreement (Galley et al., 2004), and of the
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level of involvement of conversational participants
(Gatica-Perez et al., 2005). In addition, (Verbree
et al., 2006) created an argumentation scheme in-
tended to support automatic production of argu-
ment structure diagrams from decision-oriented
meeting transcripts. As yet, there has been rela-
tively little work which specifically addresses the
automatic detection and summarization of deci-
sions.

Decision discussion detection: (Hsueh and
Moore, 2007) used the AMI Meeting Corpus, and
attempted to automatically identify DAs in meet-
ing transcripts which are “decision-related”. For
each meeting, two manually created summaries
were used to judge which DAs were decision-
related: an extractive summary of the whole meet-
ing, and an abstractive summary of its decisions.
Those DAs in the extractive summary which sup-
port any of the decisions in the abstractive sum-
mary were manually tagged as decision-related.
(Hsueh and Moore, 2007) then trained a Maxi-
mum Entropy classifier to recognize this single
DA class, using a variety of lexical, prosodic, DA
and conversational topic features. They achieved
an F-score of 0.35.

Unlike (Hsueh and Moore, 2007), (Fernández et
al., 2008b) made an attempt at modelling the struc-
ture of decision-making dialogue. The authors de-
signed an annotation scheme that takes account of
the different roles which utterances can play in the
decision-making process—for example it distin-
guishes between DDAs (decision DAs) which ini-
tiate a discussion by raising an issue, those which
propose a resolution, and those which express
agreement for a proposed resolution. The authors
annotated a portion of the AMI corpus, and then
applied what they refer to as “hierarchical classi-
fication”. Here, one sub-classifier per DDA class
hypothesizes occurrences of that DDA class, and
then based on these hypotheses, a super-classifier
determines which regions of dialogue are deci-
sion discussions. All of the classifiers, (sub and
super), were linear kernel binary Support Vec-
tor Machines (SVMs). Results were better than
those obtained with (Hsueh and Moore, 2007)’s
approach—the F1-score for detecting decision dis-
cussions in manual transcripts was .58 vs. .50.
Note that (Purver et al., 2007) had previously pur-
sued the same basic approach as (Fernández et al.,
2008b) in order to detect action items.

In this paper, we build on the promising results

of (Fernández et al., 2008b), by using Directed
Graphical Models (DGMs) in place of SVMs.
DGMs are attractive because they provide a natu-
ral framework for modelling sequence and depen-
dencies between variables including the DDAs.
We are especially interested in whether DGMs
better exploit non-lexical features. (Fernández et
al., 2008b) obtained much more value from lexi-
cal than non-lexical features (and indeed no value
at all from prosodic features), but lexical features
have disadvantages. In particular, they can be do-
main specific, increase the size of the feature space
dramatically, and deteriorate more than other fea-
tures in quality when ASR is poor.

Decision summarization: Recent years have
seen research on spoken dialogue summarization
(e.g. (Zechner, 2002)). Most has attempted to gen-
erate summaries of full dialogues, but some very
recent research has focused on specific dialogue
events, namely action items (Purver et al., 2007),
and decisions (Fernández et al., 2008a).

(Fernández et al., 2008a) used the DDA an-
notation scheme mentioned above, and began by
extracting the DDAs which raise issues or pro-
vide accepted resolutions. Only manual tran-
scripts were used and the DDAs were extracted
by hand rather than automatically. The next step
was to parse each DDA with a general rule-based
parser (Dowding et al., 1993), producing multi-
ple short fragments rather than one full utterance
parse. Then, for each DDA, an SVM regression
model used various features (including parse, se-
mantic and lexical features) to select the fragment
which was most likely to appear in a gold-standard
extractive decision summary. The entire manual
utterance transcriptions were used as the baseline,
and although the SVM’s precision was high, it was
not enough to offset the baseline’s perfect recall,
and so its F-score was lower. The “Oracle”, which
always chooses the fragment with the highest F1-
score produced very good results. This motivates
deeper investigation into how to improve the frag-
ment/parse selection phase, and so we assess the
usefulness of a semantic-similarity feature for the
SVM. We conduct experiments with ASR as well
as manual transcripts.

3 Data

For the experiments reported in this study, we used
17 meetings from the AMI Meeting Corpus (Mc-
Cowan et al., 2005), a freely available corpus of
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multi-party meetings with both audio and video
recordings, and a wide range of annotated in-
formation including DAs and topic segmentation.
Conversations are in English, but some partici-
pants are non-native English speakers. The meet-
ings last around 30 minutes each, and are scenario-
driven, wherein four participants play different
roles in a company’s design team: project man-
ager, marketing expert, interface designer and in-
dustrial designer.

3.1 Modelling Decision Discussions

We use the same annotation scheme as (Fernández
et al., 2008b) to model decision-making dialogue.
As stated in Section 2, this scheme distinguishes
between a small number of DA types based on the
role which they perform in the formulation of a de-
cision. Apart from improving the initial detection
of decision discussions (Fernández et al., 2008b),
such a scheme also aids their subsequent summa-
rization, because it indicates which utterances con-
tain particular types of information.

The annotation scheme is based on the observa-
tion that a decision discussion contains the follow-
ing main structural components: (a) a topic or is-
sue requiring resolution is raised, (b) one or more
possible resolutions are considered, (c) a particular
resolution is agreed upon and so becomes the de-
cision. Hence the scheme distinguishes between
three main decision dialogue act (DDA) classes:
issue (I), resolution (R), and agreement (A). Class
R is further subdivided into resolution proposal
(RP) and resolution restatement (RR). I utterances
introduce the topic of the decision discussion, ex-
amples being “Are we going to have a backup?”
and “But would a backup really be necessary?”
in Dialogue 1. On the other hand, R utterances
specify the resolution which is ultimately adopted
as the decision. RP utterances propose this reso-
lution (e.g. “I think maybe we could just go for
the kinetic energy. . . ”), while RR utterances close
the discussion by confirming/summarizing the de-
cision (e.g. “Okay, fully kinetic energy”) . Finally,
A utterances agree with the proposed resolution,
signalling that it is adopted as the decision, (e.g.
“Yeah”, “Good” and “Okay”). Note that an utter-
ance can be assigned to more than one DDA class,
and within a decision discussion, more than one
utterance can be assigned to the same DDA class.

We use both manual and ASR one-best tran-

scripts1 in the experiments described here. DDA
annotations were first made on the manual tran-
scripts, and then transferred onto the ASR tran-
scripts. Inter-annotator agreement was satisfac-
tory, with kappa values ranging from .63 to .73 for
the four DDA classes. Due to different segmen-
tation, the manual and ASR transcripts contain a
total of 15,680 and 8,357 utterances respectively,
and on average, 40 and 33 DDAs per meeting.
Hence DDAs are slightly less sparse in the ASR
transcripts: for all DDAs, 6.7% vs. 4.3% of the to-
tal number of utterances, for I, 1.6% vs. 0.9%, for
RP, 2% vs. 1%, for RR, 0.5% vs. 0.4%, and for A,
2.6% vs. 2%.

(1) A: Are we going to have a backup? Or we do
just–
B: But would a backup really be necessary?
A: I think maybe we could just go for the

kinetic energy and be bold and innovative.
C: Yeah.
B: I think– yeah.
A: It could even be one of our selling points.
C: Yeah –laugh–.
D: Environmentally conscious or something.
A: Yeah.
B: Okay, fully kinetic energy.
D: Good.2

4 Decision Discussion Detection using
Directed Graphical Models

A directed graphical model (DGM) M, (see Mur-
phy (2002)), is a directed acyclic graph consisting
of nodes which represent random variables, arcs
which represent dependencies among these vari-
ables, and a probability distribution P over the
variables. Let X = {X1, X2, ..., Xn} be a set of
random variables that are associated with nodes in
a DGM and Pa(Xi) be parents of Xi. The proba-
bility distribution of the model M satisfies:

P (X1, X2, ..., Xn) =
n∏

i=1

(P (Xi)|Pa(Xi))

When a DGM is used as a classifier, the goal is to
correctly infer the value of the class node Xc ∈ X
given a vector of values for the observed node(s)

1We used SRI’s Decipher for which (Stolcke et al., 2008)
reports a word error rate of 26.9% on AMI meetings.

2This example was extracted from the AMI dialogue
ES2015c and has been modified slightly for presentation pur-
poses.
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Xo ⊆ X\Xc. This is done by using M to find the
value of Xc which gives the highest conditional
probability P (Xc|Xo).

To detect each individual DDA class, we ex-
amined the four simple DGMs in Figure 1 (see
Appendix). The DDA node is binary where
value 1 indicates the presence of a DDA and 0
its absence. The evidence node (E) is a multi-
dimensional vector of observed values of non-
lexical features. These include utterance features
(UTT) such as length in words, duration in mil-
liseconds, position within the meeting (as percent-
age of elapsed time), manually annotated dialogue
act (DA) features3 such as inform, assess, suggest,
and prosodic features (PROS) such as energy and
pitch. These features are the same as the non-
lexical features used by Fernández et al. (2008b).
The hidden component node (C) represents the
distribution of observable evidence E as a single
Gaussian in the -sim models, and a mixture in the
-mix models. For the -mix models, the number
of Gaussian components is hand-tuned during the
training phase.

More complex models are constructed from the
four simple models in Figure 1 to allow for depen-
dencies between different DDAs. For example, the
model in Figure 2 (see Appendix) generalizes Fig-
ure 1c with arcs connecting the DDA classes based
on analysis of the annotated AMI data.

4.1 Experiments
The DGM classifiers in Figures 1 and 2 were im-
plemented in Matlab using the BNT software4.
Since the current BNT version does not sup-
port multiple time series training for fully observ-
able Dynamic Bayesian Networks (DBNs), we ex-
tended the software for training models using this
structure (e.g., Figure 1c and Figure 2).

A DGM classifier is considered to have hy-
pothesized a DDA if the marginal probability of
its DDA node is above a hand-tuned threshold.
We tested the DGMs on manual and ASR tran-
scripts in a 17-fold cross-validation, and evaluated
their performance on both a per-utterance basis,
and also with the same lenient-match metric as
Fernández et al. (2008b). This allows a margin
of 20 seconds preceding and following a hypoth-
esized DDA, and so we refer to it as the 40 sec-
ond metric. In addition, we hypothesized decision

3We use the AMI DA annotations. These are only avail-
able for manual transcripts.

4http://www.cs.ubc.ca/∼murphyk/Software/BNT/bnt.html

discussion regions using the DGM output and the
following two simple rules:

• A decision discussion region begins with an
Issue DDA.

• A decision discussion region contains at least
one Issue DDA and one Resolution DDA.

To evaluate the accuracy of these hypothesized re-
gions, like Fernández et al. (2008b), we divided
the dialogue into 30-second windows and evalu-
ated on a per window basis.

4.2 Results
Tables 1 and 2 show the F1-scores for each
DGM when using the best feature sets (I:
UTT+DA+PROS, RP: UTT+DA, RR: UTT, A:
UTT+DA). The BN-mix model gives the highest
F1-score for A on both evaluation metrics, and the
DBN-mix model, the highest for I, RP, and RR,
but there are no statistically significant differences
between any of the alternative DGMs.

Classifier I RP RR A
BN-mix .09 .09 .04 .19
DBN-mix .16 .14 .05 .17
BN-sim .12 .09 .04 .17
DBN-sim .15 .11 .04 .16

Table 1: F1-score (per utterance) of the DGMs us-
ing the best combination of non-lexical features.

Classifier I RP RR A
BN-mix .19 .24 .07 .38
DBN-mix .27 .24 .07 .32
BN-sim .23 .22 .06 .36
DBN-sim .25 .22 .06 .31

Table 2: F1-score (40 seconds) of the DGMs using
the best combination of non-lexical features.

To determine whether modeling dependencies
between DDAs improves performance, we exper-
imented with the DGMs that are generalized from
the DBN-sim (Figure 2) and DBN-mix models.
The F1-scores did not improve for I, RP, and RR,
while for A, the DGM generalized from DBN-sim
gave a .03 improvement according to the 40 sec-
onds metric, but this was not statistically signifi-
cant.

For each DDA, Table 3 compares the results of
the best DGM and the hierarchical SVM classi-
fication method of Fernández et al. (2008b) (see
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Section 2). The DGM performs better for all
DDAs on both evaluation metrics (p < 0.005).
Note that while prosodic features proved useless
to SVM classifiers (Fernández et al. (2008b)), with
DGMs, they have some predictive power.

Per utterance 40 seconds
Classifier DDA Pr Re F1 Pr Re F1
SVM I .03 .62 .05 .04 .89 .08
DGM .11 .28 .16 .20 .44 .27
SVM RP .03 .60 .07 .05 .90 .10
DGM .09 .35 .14 .16 .57 .24
SVM RR .01 .49 .02 .01 .80 .03
DGM .02 .42 .05 .04 .58 .07
SVM A .05 .70 .10 .07 .90 .13
DGM .13 .31 .19 .29 .55 .38

Table 3: Performance of the DGM classifier vs.
the SVM classifier. Both use the best combination
of non-lexical features.

We also generated results without DA features.
Here, the best F1-scores for I, RP, and A degrade
between .07 and .09 (p < 0.05), but they are still
higher than the equivalent SVM results with DA
features. Since (Fernández et al., 2008b) report
that lexical features are the most useful for the
SVM classifiers, it will be interesting to see how
well the DGMs perform when they use lexical as
well as non-lexical features.

Detecting DDAs in ASR transcripts: Table 4
compares the DGM F1-scores when using ASR
one-best and manual transcripts. The DGMs per-
form well on ASR output. For I and RP, the results
on ASR are actually higher, perhaps because the
DDAs are less sparse. In the absence of DA fea-
tures, prosodic features improve the performance
for A in both sources.

UTT UTT+PROS
I RP RR A I RP RR A

ASR .20 .21 .06 .24 .16 .24 .07 .28
Man .18 .17 .07 .27 .16 .15 .05 .30

Table 4: F1-scores (40 seconds) computed using
ASR one-best vs. manual transcriptions.

Detecting decision discussion regions: Table 5
shows that according to the 30-second window
metric, rule-based classification with DGM output
compares well with hierarchical SVM classifica-
tion (Fernández et al., 2008b). In fact, even when
the latter uses lexical as well as non-lexical fea-
tures, its F1-score is still about the same as the
DGM-based classifier. Our future work will in-
volve dispensing with the rule-based approach and

designing a DGM which can detect decision dis-
cussion regions.

Classifier Pr Re F1
SVM .35 .88 .50
DGM .39 .93 .55

Table 5: Results in detecting decision discussion
regions for the SVM super-classifier and rule-
based DGM classifier, both using the best com-
bination of non-lexical features.

5 Decision Summarization

We now turn to the task of extracting useful
phrases for summarization. Since a summary of a
decision discussion should minimally contain the
issue under discussion, and its resolution, we leave
Agreement (A) utterances aside, and concentrate
on extracting phrases from Issues (I) and Resolu-
tions (R).

Our basic approach is the same taken in
(Fernández et al., 2008a): The WCN5 of each I
and R utterance is parsed by the Gemini parser
(Dowding et al., 1993) to produce multiple short
fragments, and then an SVM regression model
uses certain features in order to select the parse
that is most likely to match a gold-standard extrac-
tive summary. Our work is new in two respects:
summarizing from ASR output in addition to man-
ual transcriptions, and using a semantic-similarity
feature in the SVM. This new feature is generated
using Ted Pedersen’s semantic-similarity package
(Pedersen, 2002), and is motivated by the fact that
ordinarily the Issue summary should be semanti-
cally similar to the Resolution and vice versa.

The next section describes the lexical resources
used by Gemini, and Section 5.2, the metric for
calculating semantic similarity.

5.1 Open-Domain Semantic Parser

Since human-human spoken dialogue, especially
after being processed by an imperfect recognizer,
is likely to be highly ungrammatical, we have de-
veloped a semantic parser that only attempts to
find basic predicate-argument structures of the ma-
jor phrase types (S, VP, NP, and PP) and has access
to a broad-coverage lexicon. To build a broad-
coverage lexicon, we used publicly available lex-
ical resources for English, including COMLEX,

5When using manual transcripts, we create “dummy
WCNs”: WCNs with a single path.
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VerbNet, WordNet, and NOMLEX.
COMLEX provides detailed syntactic informa-

tion for the 40k most common words of En-
glish, and VerbNet, detailed semantic information
for verbs, including verb class, verb frames, the-
matic roles, mappings of syntactic position to the-
matic roles, and selection restrictions on thematic
role fillers. From WordNet we extracted another
15K nouns and the semantic class information for
all nouns. These semantic classes were hand-
aligned to the selectional classes used in Verb-
Net, based on the upper ontology of EuroWord-
Net. NOMLEX provides syntactic information for
event nominalizations, and information for map-
ping the noun arguments to the corresponding verb
syntactic positions.

These resources were combined and converted
to the Prolog-based format used in the Gemini
framework, which includes a fast bottom-up ro-
bust parser in which syntactic and semantic in-
formation is applied interleaved. Gemini can
compute parse probabilities on the context-free
skeleton of the grammar. In the experiments de-
scribed here these parse probabilities are trained
on Switchboard tree-bank data.

5.2 Semantic Similarity Metric: Normalized
Path Length

Ted Pedersen’s semantic similarity package (Ped-
ersen, 2002) can be used to apply a number of
different metrics that use WordNet as a knowl-
edge base. The metric used here, Normalized Path
Length (Leacock and Chodorow, 1998), defines
the semantic similarity sim between words w1 and
w2 as:

simc1,c2 = − log
len(c1, c2)

2×D
(1)

where c1 and c2 are concepts corresponding to w1

and w2, len(c1, c2) is the length of the shortest
path between them, and D is the maximum depth
of the taxonomy.

5.3 Experiments
Data: For the manual transcripts in our sub-
corpus, the average length in words of I and R ut-
terances is 12.2 and 11.9 respectively, and for the
ASR, 22.4 and 18.1. To provide a gold-standard,
phrases from I and R utterances in the man-
ual transcriptions were annotated as summary-
worthy. The aim was to select those phrases
which should appear in an extractive summary, or

could be the basis of a generated abstractive sum-
mary. As a general guideline, we tried to select
the phrase(s) which describe the issue/resolution
as succinctly as possible. This does not include
phrases which express the speaker’s attitude to-
wards the issue/resolution. Dialogue 2 is an exam-
ple where square brackets indicate which phrases
were selected as summary-worthy.

(2) A:(I) So we we’re looking at [sliders for both
volume and channel change]

B:(R)I was thinking kind of [just for the
volume]

Regression models: We use SVMlight
(Joachims, 1999) to learn separate SVM re-
gression models for Issues and Resolutions.
These rank the Gemini parses for each utterance
according to their likelihood of matching the
gold-standard summary. The top-ranked parse
is then entered into the automatically-generated
decision summary.

Features: We train the regression models with
various types of feature (see Table 6), including
properties of the WCN paths, parse, semantic and
lexical features. As lexical features are likely to be
more domain-specific, and they dramatically in-
crease size of the feature space, we prefer to avoid
them if possible.

To generate the semantic-similarity feature for
an I/R parse, we compute its semantic similarity
with the full transcripts of each of the R/I utter-
ances within the same decision discussion. The
feature’s value is then equal to the greatest of the
resulting semantic-similarity scores. Since Ted
Pedersen’s package operates on the noun portion
of WordNet, we must first extract all of the nouns
in the parse/utterance transcription. Next, we form
all of the possible pairs containing one noun from
the parse, and one from the utterance transcrip-
tion. Then we compute the semantic similarity
for each pair, and take their sum to be the level
of semantic similarity between the parse and the
utterance transcription. We experimented with av-
eraging rather than summing these scores, but the
resulting semantic-similarity feature was less pre-
dictive.

Evaluation: The models are evaluated in 10-
fold cross-validations using the same metric as
(Fernández et al., 2008a): Recall is the total pro-
portion of the gold-standard extractive summary
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WCN phrase length (WCN arcs)
start/end point (absolute & percentage)

Parse parse probability
phrase type (S/VP/NP/PP)

Semantic main verb VerbNet class
head noun WordNet synset

Sem-sim Normalized Path Length
Lexical main verb, head noun

Table 6: Features for parse fragment ranking

Issue Resolution
Re Pr F1 Re Pr F1

Baseline 1.0 .50 .67 1.0 .60 .75
Oracle .77 .96 .85 .74 .99 .84
WCN,parse,sem .63 .69 .66 .61 .66 .64
+ sem-sim .65 .71 .68 .64 .69 .67
+ lexical .65 .67 .66 .65 .70 .67

Table 7: Parse ranking results for I & R Utterances
using manual transcriptions.

covered by the selected parse; precision is the to-
tal proportion of the chosen parse which overlaps
with the gold-standard summary. The baseline is
the entire transcription, and we also compare to
an “oracle” that always chooses a parse with the
highest F1-score. Note that we use the extractive
summaries from the manual transcriptions as the
gold-standard for the evaluation of the results ob-
tained with ASR.

Results and analysis: Results with manual tran-
scriptions are shown in Table 7, and those with
ASR, in Table 8. In all cases, when starting with
a feature set containing WCN, parse and seman-
tic features, the F1-score is improved by adding
the semantic-similarity feature. For Issues, the F1-
score improves from .66 to .68 with manual tran-
scripts, and from .30 to .32 with ASR. The im-
provements for Resolutions are highly significant:
with manual transcripts, the F1 score increases
from .64 to .67 (p < 0.005), and with ASR, from
.33 to .37 (p < 0.005). Note that the further addi-
tion of lexical features only produces a significant
improvement in the case of I summarization with
ASR.

Compared to the full transcript baseline, we
achieve higher F1-scores for Issues—.68 vs. .67
with manual transcriptions, and .35 vs. .31 with
ASR—but slightly lower for Resolutions. There
remains a fairly large gap between our best scores
and their corresponding oracles (especially with
ASR), and so there may still be potential for sub-
stantial improvement.

Issue Resolution
Re Pr F1 Re Pr F1

Baseline .77 .20 .31 .80 .27 .40
Oracle .61 .87 .72 .59 .91 .72
WCN,parse,sem .28 .33 .30 .31 .35 .33
+ sem-sim .30 .34 .32 .35 .38 .36
+ lexical .35 .35 .35 .34 .39 .37

Table 8: Parse ranking results for I & R Utterances
using ASR.

6 Conclusions and Future Work

This paper has presented work on the detec-
tion and summarization of decision discussions
in multi-party dialogue. In the detection experi-
ments, we investigated the use of directed graph-
ical models (DGMs), and found that when us-
ing non-lexical features, the DGMs outperform
the hierarchical SVM classification method of
Fernández et al. (2008b). The F1-score for the
four DDA classes increased between .04 and .19
(p < .005), and for identifying decision discus-
sion regions, by .05. This is encouraging because
lexical features have disadvantages—for example
they can be domain specific and greatly increase
the feature space. In addition, modelling the de-
pendencies between the DDA classes increased
performance for Agreement utterances, and the
DGMs were robust to ASR.

In the summarization experiments, we sum-
marized decision discussions by extracting key
words/phrases from their Issue (I) and Resolu-
tion (R) utterances. Each utterance’s Word Confu-
sion Network was parsed with an open-domain se-
mantic parser, thus producing multiple candidate
phrases, and then an SVM regression model se-
lected one of these phrases to enter into the sum-
mary. The experiments here investigated the use-
fulness of a new SVM feature which measures the
level of semantic similarity between candidate I
parses and R utterances, and vice-versa. This fea-
ture was generated with a semantic-similarity met-
ric which uses WordNet as a knowledge source.
It was found to improve performance with both
manual transcripts and ASR, and for R summa-
rization, the improvements were highly significant
(p < .005).

In future work, we plan to integrate lexical fea-
tures into our DGMs by using a switching Dy-
namic Bayesian Network similar to that reported
in (Ji and Bilmes, 2005). We also plan to extend
the decision discussion annotation scheme so that
we can try to automatically extract supporting ar-
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guments for decisions.
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Çetin, Adam Janin, Matthew Magimai-Doss, Chuck
Wooters, and Jing Zheng. 2008. The ICSI-SRI
spring 2007 meeting and lecture recognition system.
In Proceedings of CLEAR 2007 and RT2007.

Daan Verbree, Rutger Rienks, and Dirk Heylen. 2006.
First steps towards the automatic construction of
argument-diagrams from real discussions. In Pro-
ceedings of the 1st International Conference on
Computational Models of Argument, volume 144,
pages 183–194. IOS press.

Steve Whittaker, Rachel Laban, and Simon Tucker.
2006. Analysing meeting records: An ethnographic
study and technological implications. In S. Renals
and S. Bengio, editors, Machine Learning for Multi-
modal Interaction: Second International Workshop,
MLMI 2005, Revised Selected Papers, volume 3869
of Lecture Notes in Computer Science, pages 101–
113. Springer.

Klaus Zechner. 2002. Automatic summarization of
open-domain multiparty dialogues in diverse genres.
Computational Linguistics, 28(4):447–485.

242



Appendix
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Figure 1: Simple DGMs for individual decision
detection. During training, the shaded nodes are
hidden, and the clear nodes are observable.
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Figure 2: A DGM that takes the dependencies be-
tween decisions into account.
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