Dealing with Interpretation Errors in Tutorial Dialogue

Myroslava O. Dzikovska, Charles B. Callaway, Elaine Farrow, Johanna D. Moore
School of Informatics
University of Edinburgh, Edinburgh, United Kingdom
mdzikovs,ccallawa,efarrow, jmoore@inf.ed.ac.uk

Natalie Steinhauser, Gwendolyn Campbell
Naval Air Warfare Training Systems Division
Orlando, Florida, USA

Abstract

We describe an approach to dealing with
interpretation errors in a tutorial dialogue
system. Allowing students to provide ex-
planations and generate contentful talk can
be helpful for learning, but the language
that can be understood by a computer sys-
tem is limited by the current technology.
Techniques for dealing with understanding
problems have been developed primarily for
spoken dialogue systems in information-
seeking domains, and are not always appro-
priate for tutorial dialogue. We present a
classification of interpretation errors and our
approach for dealing with them within an
implemented tutorial dialogue system.

1 Introduction

Error detection and recovery is a known problem in
the spoken dialogue community, with much research
devoted to determining the best strategies, and learn-
ing how to choose an appropriate strategy from data.
Most existing research is focused on dealing with
problems in an interaction resulting from speech
recognition errors. This focus is justified, since the
majority of understanding problems observed in cur-
rent spoken dialogue systems (SDS) are indeed due
to speech recognition errors.

Recovery strategies, therefore, are sometimes de-
vised specifically to target speech recognition prob-
lems - for example, asking the user to repeat the ut-
terance, or to speak more softly, which only makes
sense if speech recognition is the source of trouble.

However, errors can occur at all levels of process-
ing, including parsing, semantic interpretation, in-
tention recognition, etc. As speech recognition im-
proves and more sophisticated systems are devel-
oped, strategies for dealing with errors coming from
higher (and potentially more complex) levels of pro-
cessing will have to be developed.

This paper presents a classification of non-
understandings, defined as the errors where the sys-
tem fails to arrive at an interpretation of the user’s
utterance (Bohus and Rudnicky, 2005), and a set of
strategies for dealing with them in an implemented
tutorial dialogue system. Our system differs from
many existing systems in two ways. First, all di-
alogue is typed. This was done in part to avoid
speech recognition issues and allow for more com-
plex language input than would otherwise be pos-
sible. But it is also a valid modality for tutoring -
there are now many GUI-based tutoring systems in
existence, and as distance and online learning have
become more popular, students are increasingly fa-
miliar with typed dialogue in chat rooms and discus-
sion boards. Second, different genres impose dif-
ferent constraints on the set of applicable recovery
strategies - as we discuss in Section 2, certain help
strategies developed for task-oriented dialogue sys-
tems are not suitable for tutorial dialogue, because
tutoring systems should not give away the answer.

We propose a targeted help approach for dealing
with interpretation problems in tutorial dialogue by
providing help messages that target errors at differ-
ent points in the pipeline. In our system they are
combined with hints as a way to lead the student
to an answer that can be understood. While some

Proceedings of SIGDIAL 2009: the 10th Annual Meeting of the Special Interest Group in Discourse and Dialogue, pages 38—45,
Queen Mary University of London, September 2009. (©2009 Association for Computational Linguistics

38

parts of the system response are specific to tutorial
dialogue, the targeted help messages themselves can
serve as a starting point for developing appropriate
recovery strategies in other systems where errors at
higher levels of interpretation are a problem.

The rest of this paper is organized as follows. In
Section 2, we motivate the need for error handling
strategies in tutorial dialogue. In Section 3 we de-
scribe the design of our system. Section 4 discusses
a classification of interpretation problems and our
targeted help strategy. Section 5 provides a prelim-
inary evaluation based on a set of system tests con-
ducted to date. Finally, we discuss how the approach
taken by our system compares to other systems.

2 Background and Motivation

Tutorial dialogue systems aim to improve learning
by engaging students in contentful dialogue. There
is a mounting body of evidence that dialogue which
encourages students to explain their actions (Aleven
and Koedinger, 2000), or to generate contentful talk
(Purandare and Litman, 2008), results in improved
learning. However, the systems’ ability to under-
stand student language, and therefore to encourage
contentful talk, is limited by the state of current lan-
guage technology. Moreover, student language may
be particularly difficult to interpret since students
are often unaware of proper terminology, and may
phrase their answers in unexpected ways. For exam-
ple, arecent error analysis for a domain-independent
diagnoser trained on a large corpus showed that a
high proportion of errors were due to unexpected
paraphrases (Nielsen et al., 2008).

In small domains, domain-specific grammars and
lexicons can cover most common phrasings used
by students to ensure robust interpretation (Aleven,
2003; Glass, 2000). However, as the size of the
domain and the range of possible questions and an-
swers grows, achieving complete coverage becomes
more difficult. For essays in large domains, sta-
tistical methods can be used to identify problems
with the answer (Jordan et al., 2006; Graesser et
al., 1999), but these approaches do not perform well
on relatively short single-sentence explanations, and
such systems often revert to short-answer questions
during remediation to ensure robustness.

To the best of our knowledge, none of these tu-

39

torial systems use sophisticated error handling tech-
niques. They rely on the small size of the domain
or simplicity of expected answers to limit the range
of student input. They reject utterances they cannot
interpret, asking the user to repeat or rephrase, or
tolerate the possibility that interpretation problems
will lead to repetitive or confusing feedback.

We are developing a tutorial dialogue system that
behaves more like human tutors by supporting open-
ended questions, as well as remediations that allow
for open-ended answers, and gives students detailed
feedback on their answers, similar to what we ob-
served with human tutors. This paper takes the first
step towards addressing the problem of handling er-
rors in tutorial dialogue by developing a set of non-
understanding recovery strategies - i.e. strategies
used where the system cannot find an interpretation
for an utterance.

In early pilot experiments we observed that if the
system simply rejects a problematic student utter-
ance, saying that it was not understood, then stu-
dents are unable to determine the reason for this
rejection. They either resubmit their answer mak-
ing only minimal changes, or else they rephrase the
sentence in a progressively more complicated fash-
ion, causing even more interpretation errors. Even
after interacting with the system for over an hour,
our students did not have an accurate picture as to
which phrasings are well understood by the system
and which should be avoided. Previous research also
shows that users are rarely able to perceive the true
causes of ASR errors, and tend to form incorrect the-
ories about the types of input a system is able to ac-
cept (Karsenty, 2001).

A common approach for dealing with these is-
sues in spoken dialogue systems is to either change
to system initiative with short-answer questions (“Is
your destination London?”), or provide targeted help
(““You can say plane, car or hotel”). Neither of these
is suitable for our system. The expected utterances
in our system are often more complex (e.g., “The
bulb must be in a closed path with the battery”), and
therefore suggesting an utterance may be equivalent
to giving away the entire answer. Giving students
short-answer questions such as “Are the terminals
connected or not connected?”’ is a valid tutoring
strategy sometimes used by the tutors. However,
it changes the nature of the question from a recall

task to a recognition task, which may affect the stu-
dent’s ability to remember the correct solution in-
dependently. Therefore, we decided to implement
strategies that give the student information about the
nature of the mistake without directly giving infor-
mation about the expected answer, and encourage
them to rephrase their answers in ways that can be
understood by the system.

We currently focus on strategies for dealing
with non-understanding rather than misunderstand-
ing strategies (i.e. cases where the system finds an
interpretation, but an incorrect one). It is less clear
in tutorial dialogue what it means for a misunder-
standing to be corrected. In task-oriented dialogue,
if the system gets a slot value different from what
the user intended, it should make immediate correc-
tions at the user’s request. In tutoring, however, it
is the system which knows the expected correct an-
swer. So if the student gives an answer that does not
match the expected answer, when they try to correct
it later, it may not always be obvious whether the
correction is due to a true misunderstanding, or due
to the student arriving at a better understanding of
the question. Obviously, true misunderstandings can
and will still occur - for example, when the system
resolves a pronoun incorrectly. Dealing with such
situations is planned as part of future work.

3 System Architecture

Our target application is a system for tutoring ba-
sic electricity and electronics. The students read
some introductory material, and interact with a sim-
ulator where they can build circuits using batteries,
bulbs and switches, and measure voltage and cur-
rent. They are then asked two types of questions:
factual questions, like “If the switch is open, will
bulb A be on or off?”, and explanation questions.
The explanation questions ask the student to explain
what they observed in a circuit simulation, for exam-
ple, “Explain why you got the voltage of 1.5 here”,
or define generic concepts, such as “What is volt-
age?”. The expected answers are fairly short, one or
two sentences, but they involve complex linguistic
phenomena, including conjunction, negation, rela-
tive clauses, anaphora and ellipsis.

The system is connected to a knowledge base
which serves as a model for the domain and a rea-

soning engine. It represents the objects and rela-
tionships the system can reason about, and is used
to compute answers to factual questions.! The stu-
dent answers are processed using a standard NLP
pipeline. All utterances are parsed to obtain syntac-
tic analyses.” The lexical-semantic interpreter takes
analyses from the parser and maps them to seman-
tic representations using concepts from the domain
model. A reference resolution algorithm similar to
(Byron, 2002) is used to find referents for named ob-
jects such as “bulb A” and for pronouns.

Once an interpretation of a student utterance has
been obtained, it is checked in two ways. First, its
internal consistency is verified. For example, if the
student says “Bulb A will be on because it is in a
closed path”, we first must ensure that their answer
is consistent with what is on the screen - that bulb A
is indeed in a closed path. Otherwise the student
probably has a problem either with understanding
the diagrams or with understanding concepts such as
“closed path”. These problems indicate lack of basic
background knowledge, and need to be remediated
using a separate tutorial strategy.

Assuming that the utterance is consistent with the
state of the world, the explanation is then checked
for correctness. Even though the student utterance
may be factually correct (Bulb A is indeed in a
closed path), it may still be incomplete or irrelevant.
In the example above, the full answer is “Bulb A
is in a closed path with the battery”, hence the stu-
dent explanation is factually correct but incomplete,
missing the mention of the battery.

In the current version of our system, we are partic-
ularly concerned about avoiding misunderstandings,
since they can result in misleading tutorial feedback.
Consider an example of what can happen if there is
a misunderstanding due to a lexical coverage gap.
The student sentence “the path is broken” should be
interpreted as “the path is no longer closed”, corre-
sponding to the is-open relation. However, the

' Answers to explanation questions are hand-coded by tutors
because they are not always required to be logically complete
(Dzikovska et al., 2008). However, they are checked for consis-
tency as described later, so they have to be expressed in terms
that the knowledge base can reason about.

“We are using a deep parser that produces semantic analyses
of student’s input (Allen et al., 2007). However, these have to
undergo further lexical interpretation, so we are treating them
as syntactic analyses for purposes of this paper.

40

most frequent sense of “broken” is i s—damaged,
as in “the bulb is broken”. Ideally, the system lex-
icon would define “broken” as ambiguous between
those two senses. If only the “damaged” sense is
defined, the system will arrive at an incorrect inter-
pretation (misunderstanding), which is false by defi-
nition, as the i s—damaged relation applies only to
bulbs in our domain. Thus the system will say “you
said that the path is damaged, but that’s not true”.
Since the students who used this phrasing were un-
aware of the proper terminology in the first instance,
they dismissed such feedback as a system error. A
more helpful feedback message is to say that the sys-
tem does not know about damaged paths, and the
sentence needs to be rephrased.’

Obviously, frequent non-understanding messages
can also lead to communication breakdowns and im-
pair tutoring. Thus we aim to balance the need to
avoid misunderstandings with the need to avoid stu-
dent frustration due to a large number of sentences
which are not understood. We approach this by us-
ing robust parsing and interpretation tools, but bal-
ancing them with a set of checks that indicate poten-
tial problems. These include checking that the stu-
dent answer fits with the sortal constraints encoded
in the domain model, that it can be interpreted un-
ambiguously, and that pronouns can be resolved.

4 Error Handling Policies

All interpretation problems in our system are han-
dled with a unified tutorial policy. Each message to
the user consists of three parts: a social response,
the explanation of the problem, and the tutorial re-
sponse. The social response is currently a simple
apology, as in “I’m sorry, I'm having trouble under-
standing.” Research on spoken dialogue shows that
users are less frustrated if systems apologize for er-
rors (Bulyko et al., 2005).

The explanation of the problem depends on the
problem itself, and is discussed in more detail below.

The tutorial response depends on the general tu-
torial situation. If this is the first misunderstanding,
the student will be asked to rephrase/try again. If

3This was a real coverage problem we encountered early on.
While we extended the coverage of the lexical interpreter based
on corpus data, other gaps in coverage may remain. We discuss
the issues related to the treatment of vague or incorrect termi-
nology in Section 4.

41

they continue to phrase things in a way that is mis-
understood, they will be given up to two different
hints (a less specific hint followed by a more spe-
cific hint); and finally the system will bottom out
with a correct answer. Correct answers produced by
the generator are guaranteed to be parsed and under-
stood by the interpretation module, so they can serve
as templates for future student answers.

The tutorial policy is also adjusted depending
on the interaction history. For example, if a non-
understanding comes after a few incorrect answers,
the system may decide to bottom out immediately in
order to avoid student frustration due to multiple er-
rors. At present we are using a heuristic policy based
on the total number of incorrect or uninterpretable
answers. In the future, such policy could be learned
from data, using, for example, reinforcement learn-
ing (Williams and Young, 2007).

In the rest of this section we discuss the explana-
tions used for different problems. For brevity, we
omit the tutorial response from our examples.

4.1 Parse Failures

An utterance that cannot be parsed represents the
worst possible outcome for the system, since detect-
ing the reason for a syntactic parse failure isn’t pos-
sible for complex parsers and grammars. Thus, in
this instance the system does not give any descrip-
tion of the problem at all, saying simply “I’m sorry,
1 didn’t understand.”

Since we are unable to explain the source of the
problem, we try hard to avoid such failures. We use
a spelling corrector and a robust parser that outputs
a set of fragments covering the student’s input when
a full parse cannot be found. The downstream com-
ponents are designed to merge interpretations of the
fragments into a single representation that is sent to
the reasoning components.

Our policy is to allow the system to use such frag-
mentary parses when handling explanation ques-
tions, where students tend to use complex language.
However, we require full parses for factual ques-
tions, such as “Which bulbs will be off?” We found
that for those simpler questions students are able to
easily phrase an acceptable answer, and the lack of
a full parse signals some unusually complex lan-
guage that downstream components are likely to
have problems with as well.

One risk associated with using fragmentary parses
is that relationships between objects from different
fragments would be missed by the parser. Our cur-
rent policy is to confirm the correct part of the stu-
dent’s answer, and prompt for the missing parts, e.g.,
“ Right. The battery is contained in a closed path.
And then?” We can do this because we use a diag-
noser that explicitly identifies the correct objects and
relationships in the answer (Dzikovska et al., 2008),
and we are using a deep generation system that can
take those relationships and automatically generate
a rephrasing of the correct portion of the content.

4.2 Lexical Interpretation Errors

Errors in lexical interpretation typically come from
three main sources: unknown words which the lex-
ical interpreter cannot map into domain concepts,
unexpected word combinations, and incorrect uses
of terminology that violate the sortal constraints en-
coded in the domain model.

Unknown words are the simplest to deal with in
the context of our lexical interpretation policy. We
do not require that every single word of an utter-
ance should be interpreted, because we want the
system to be able to skip over irrelevant asides.
However, we require that if a predicate is inter-
preted, all its arguments should be interpreted as
well. To illustrate, in our system the interpretation of
“the bulb is still lit”is (LightBulb Bulb-1-1)
(is—-1it Bulb-1-1 true). The adverbial
“still” is not interpreted because the system is un-
able to reason about time.* But since all arguments
of the is—-1it predicate are defined, we consider
the interpretation complete.

In contrast, in the sentence “voltage is the mea-
surement of the power available in a battery”, “mea-
surement” is known to the system. Thus, its argu-
ment “power” should also be interpreted. However,
the reading material in the lessons never talks about
power (the expected answer is “Voltage is a mea-
surement of the difference in electrical states be-
tween two terminals”). Therefore the unknown word
detector marks “power” as an unknown word, and
tells the student “I’'m sorry, I'm having a problem
understanding. I don’t know the word power.”

*The lexical interpretation algorithm makes sure that fre-
quency and negation adverbs are accounted for.

42

The system can still have trouble interpreting sen-
tences with words which are known to the lexical
interpreter, but which appear in unexpected combi-
nations. This involves two possible scenarios. First,
unambiguous words could be used in a way that
contradicts the system’s domain model. For exam-
ple, the students often mention “closed circuit” in-
stead of the correct term “closed path”. The former
is valid in colloquial usage, but is not well defined
for parallel circuits which can contain many differ-
ent paths, and therefore cannot be represented in a
consistent knowledge base. Thus, the system con-
sults its knowledge base to tell the student about the
appropriate arguments for a relation with which the
failure occurred. In this instance, the feedback will
be “I’m sorry, I’'m having a problem understanding.
I don’t understand it when you say that circuits can
be closed. Only paths and switches can be closed.”

The second case arises when a highly ambiguous
word is used in an unexpected combination. The
knowledge base uses a number of fine-grained rela-
tions, and therefore some words can map to a large
number of relations. For example, the word “has”
means circuit—-component in “The circuit has
2 bulbs”, terminals—of in “The bulb has ter-
minals” and voltage-property in “The bat-
tery has voltage”. The last relation only applies to
batteries, but not to other components. These dis-
tinctions are common for knowledge representation
and reasoning systems, since they improve reason-
ing efficiency, but this adds to the difficulty of lex-
ical interpretation. If a student says “Bulb A has a
voltage of 0.5”, we cannot determine the concept to
which the word “has” corresponds. It could be either
terminals—of or voltage—property, since
each of those relations uses one possible argument
from the student’s utterance. Thus, we cannot sug-
gest appropriate argument types and instead we in-
dicate the problematic word combination, for exam-
ple, “I'm sorry, I'm having trouble understanding. I
didn’t understand bulb has voltage.”

Finally, certain syntactic constructions involving
comparatives or ellipsis are known to be difficult

Note that these error messages are based strictly on the fact
that sortal constraints from the knowledge base for the relation
that the student used were violated. In the future, we may also
want to adjust the recovery strategy depending on whether the
problematic relation is relevant to the expected answer.

open problems for interpretation. While we are
working on interpretation algorithms to be included
in future system versions, the system currently de-
tects these special relations, and produces a mes-
sage telling the student to rephrase without the prob-
lematic construction, e.g., “I’'m sorry. I'm having a
problem understanding. I do not understand same
as. Please try rephrasing without the word as.”

4.3 Reference Errors

Reference errors arise when a student uses an am-
biguous pronoun, and the system cannot find a suit-
able object in the knowledge base to match, or on
certain occasions when an attachment error in a
parse causes an incorrect interpretation. We use a
generic message that indicates the type of the ob-
ject the system perceived, and the actual word used,
for example, “I’m sorry. I don’t know which switch
you’re referring to with it.”

To some extent, reference errors are instances of
misunderstandings rather than non-understandings.
There are actually 2 underlying cases for reference
failure: either the system cannot find any referent at
all, or it is finding too many referents. In the future
a better policy would be to ask the student which of
the ambiguous referents was intended. We expect to
pilot this policy in one of our future system tests.

5 [Evaluation

So far, we have run 13 pilot sessions with our sys-
tem. Each pilot consisted of a student going through
1 or 2 lessons with the system. Each lesson lasts
about 2 hours and has 100-150 student utterances
(additional time is taken with building circuits and
reading material). Both the coverage of the interpre-
tation component and the specificity of error mes-
sages were improved between each set of pilots, thus
it does not make sense to aggregate the data from
them. However, over time we observed the trend
that students are more likely to change their behav-
ior when the system issues more specific messages.

Examples of successful and unsuccessful interac-
tions are shown in Figure 1. In (a), the student used
incorrect terminology, and a reminder about how the
word “complete” is interpreted was enough to get
the conversation back on track.

The dialogue fragment in (b) shows how mes-

43

sages which are not specific enough can cause a
breakdown in conversation. The system used an in-
sufficiently specific message at the beginning (omit-
ting the part that says that only switches and paths
can be closed). This led the student away from an
answer which was nearly correct with slightly im-
perfect terminology to an answer which was insuffi-
cient (it’s not enough for the components to be con-
nected, they have to be in a closed path), and then
to rephrase it in a more complicated way that was
impossible for the system to understand (consistent
with findings of Bulyko et al. (2005)).

The next step would be to conduct a formal evalu-
ation of our policy. We are planning to do this using
recovery rate after different strategies as our evalu-
ation measure (Bohus and Rudnicky, 2005), which
is the percentage of times when the utterance imme-
diately following a non-understanding was success-
fully interpreted by the system.

6 Discussion

Our error handling policy attempts to balance ro-
bustness in interpretation with the need for pre-
cise tutorial feedback. Human tutors accept a wide
range of variation in terminology and phrasing.
However, there is a known trade-off between non-
understandings and misunderstandings. We decided
that misunderstandings are likely to cause more seri-
ous problems with respect to tutoring. Therefore we
set strict understanding requirements and focused on
developing a policy that would encourage students
to use constructions that the system can interpret re-
liably. This is also supported by our observations in
the human-human data — tutors believe that teaching
correct terminology is important, and we observed
them saying things like “It’s good to put it into your
own words like that. Just for the sake of the lesson,
could you also use the term closed path?”.

Our approach is similar to the TargetedHelp ap-
proach of (Hockey et al., 2003), where in the case of
an interpretation failure the task assistant produces
a report of what the recognizer heard, a description
of the problem, and a possible in-domain utterance
as an alternative. In a user evaluation such targeted
help messages resulted in significantly lower task
completion times compared to a system that pro-
duced a generic “I didn’t understand” message, and

(a)
S: the open switch makes the path incomplete
T: I’'m sorry, I'm having a problem understanding. Paths can’t be complete. Only circuits can be
complete. Please try again.
S: the open switch makes the path open
T: Right. An open switch creates a gap.
(b)
T: What are the conditions that are required to make a bulb light up?
S: The lightbulb has to be in a closed circuit with a battery
T: I'm sorry, ’'m having a problem understanding. I don’t understand when you say that circuits
can be closed. Please try again.
S: The lightbulb has to be connected to a battery
T: Yes. You correctly mentioned a battery and a bulb. Keep trying.
S: Both the positive and negative connectors have to be connected to
T: I’m sorry, 'm having a problem understanding. Try rephrasing your answer.
S: The lightbulb has to be connected to the positive and negative connectors of the battery
T: I’'m sorry, I didn’t understand. Here’s the answer. The battery and the bulb must be contained
in the same closed path.

Figure 1: Sample student-system interactions. S: is student, T: is tutor (system). (a) A successful interaction
where the student changes their language; (b) a failed interaction where system feedback was unhelpful.

subjects gradually learned how to talk to the sys-
tem, reducing the number of misunderstandings over
time. This gives us reason to believe that our sys-
tem can achieve similar effects in tutorial dialogue.
While we don’t suggest alternative domain utter-
ances due to the tutoring reasons described earlier,
the progressively more specific hints serve a simi-
lar function. To what extent this impacts learning
and interaction with the system will have to be de-
termined in future evaluations.

The error handling in our system is significantly
different from systems that analyze user essays be-
cause it needs to focus on a single sentence at a time.
In a system that does essay analysis, such as AUTO-
TUTOR (Graesser et al., 1999) or Why2-Atlas (Jor-
dan et al., 2006) a single essay can have many flaws.
So it doesn’t matter if some sentences are not fully
understood as long as the essay is understood well
enough to identify at least one flaw. Then that par-
ticular flaw can be remediated, and the student can
resubmit the essay. However, this can also cause stu-
dent frustration and potentially affect learning if the
student is asked to re-write an essay many times due
to interpretation errors.

Previous systems in the circuit domain focused on

44

troubleshooting rather than conceptual knowledge.
The SHERLOCK tutor (Katz et al., 1998) used only
menu-based input, limiting possible dialogue. Cir-
cuit Fix-It Shop (Smith and Gordon, 1997) was a
task-oriented system which allowed for speech in-
put, but with very limited vocabulary. Our system’s
larger vocabulary and complex input result in differ-
ent types of non-understandings that cannot be re-
solved with simple confirmation messages.

A number of researchers have developed er-
ror taxonomies for spoken dialogue systems (Paek,
2003; Moller et al., 2007). Our classification does
not have speech recognition errors (since we are us-
ing typed dialogue), and we have a more complex
interpretation stack than the domain-specific pars-
ing utilized by many SDSs. However, some types
of errors are shared, in particular, our “no parse”,
“unknown word” and “unknown attachment” errors
correspond to command-level errors, and our sor-
tal constraint and reference errors correspond to
concept-level errors in the taxonomy of Mdéller et al.
(2007). This correspondence is not perfect because
of the nature of the task - there are no commands in
a tutoring system. However, the underlying causes
are very similar, and so research on the best way

to communicate about system failures would benefit
both tutoring and task-oriented dialogue systems. In
the long run, we would like to reconcile these differ-
ent taxonomies, leading to a unified classification of
system errors and recovery strategies.

7 Conclusion

In this paper we described our approach to handling
non-understanding errors in a tutorial dialogue sys-
tem. Explaining the source of errors, without giving
away the full answer, is crucial to establishing ef-
fective communication between the system and the
student. We described a classification of common
problems and our approach to dealing with different
classes of errors. Our experience with pilot studies,
as well as evidence from spoken dialogue systems,
indicates that our approach can help improve dia-
logue efficiency. We will be evaluating its impact on
both student learning and on dialogue efficiency in
the future.

8 Acknowledgments

This work has been supported in part by Office of
Naval Research grant N0O00140810043.

References

V. A. Aleven and K. R. Koedinger. 2000. The need for
tutorial dialog to support self-explanation. In Proc. of
AAAI Fall Symposion on Building Dialogue Systems
for Tutorial Applications.

O. P. V. Aleven. 2003. A knowledge-based approach
to understanding students’ explanations. In School of
Information Technologies, University of Sydney.

. Allen, M. Dzikovska, M. Manshadi, and M. Swift.
2007. Deep linguistic processing for spoken dialogue
systems. In Proceedings of the ACL-07 Workshop on
Deep Linguistic Processing.

D. Bohus and A. Rudnicky. 2005. Sorry, i didn’t catch
that! - an investigation of non-understanding errors
and recovery strategies. In Proceedings of SIGdial-
2005, Lisbon, Portugal.

. Bulyko, K. Kirchhoff, M. Ostendorf, and J. Goldberg.
2005. Error-correction detection and response gener-
ation in a spoken dialogue system. Speech Communi-
cation, 45(3):271-288.

D. K. Byron. 2002. Resolving Pronominal Refer-
ence to Abstract Entities. Ph.D. thesis, University of
Rochester.

45

M. O. Dzikovska, G. E. Campbell, C. B. Callaway, N. B.
Steinhauser, E. Farrow, J. D. Moore, L. A. Butler, and
C. Matheson. 2008. Diagnosing natural language an-
swers to support adaptive tutoring. In Proceedings
21st International FLAIRS Conference.

M. Glass. 2000. Processing language input in the
CIRCSIM-Tutor intelligent tutoring system. In Proc.
of the AAAI Fall Symposium on Building Dialogue Sys-
tems for Tutorial Applications.

A. C. Graesser, P. Wiemer-Hastings, P. Wiemer-Hastings,
and R. Kreuz. 1999. Autotutor: A simulation of a
human tutor. Cognitive Systems Research, 1:35-51.

. A. Hockey, O. Lemon, E. Campana, L. Hiatt, G. Aist,
J. Hieronymus, A. Gruenstein, and J. Dowding. 2003.
Targeted help for spoken dialogue systems: intelligent
feedback improves naive users’ performance. In Pro-
ceedings of EACL.

P. Jordan, M. Makatchev, U. Pappuswamy, K. VanLehn,
and P. Albacete. 2006. A natural language tuto-
rial dialogue system for physics. In Proceedings of
FLAIRS 06.

. Karsenty. 2001. Adapting verbal protocol methods to
investigate speech systems use. Applied Ergonomics,
32:15-22.

. Katz, A. Lesgold, E. Hughes, D. Peters, G. Eggan,
M. Gordin, and L. Greenberg. 1998. Sherlock 2: An
intelligent tutoring system built on the Irdc framework.
In C. Bloom and R. Loftin, editors, Facilitating the
development and use of interactive learning environ-
ments. ERLBAUM.

. Moller, K.-P. Engelbrecht, and A. Oulasvirta. 2007.
Analysis of communication failures for spoken dia-
logue systems. In Proceedings of Interspeech.

. D. Nielsen, W. Ward, and J. H. Martin. 2008. Clas-
sification errors in a domain-independent assessment
system. In Proc. of the Third Workshop on Innovative
Use of NLP for Building Educational Applications.

. Pack. 2003. Toward a taxonomy of communication
errors. In Proceedings of ISCA Workshop on Error
Handling in Spoken Dialogue Systems.

A. Purandare and D. Litman. 2008. Content-learning
correlations in spoken tutoring dialogs at word, turn
and discourse levels. In Proc.of FLAIRS.

R. W. Smith and S. A. Gordon. 1997. Effects of variable
initiative on linguistic behavior in human-computer
spoken natural language dialogue. Computational
Linguistics.

J. D. Williams and S. Young. 2007. Scaling POMDPs for
spoken dialog management. IEEE Trans. on Audio,
Speech, and Language Processing, 15(7):2116-2129.

