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Abstract

In this paper we do two things: a) we dis-

cuss in general terms the task of incre-

mental reference resolution (IRR), in par-

ticular resolution of exophoric reference,

and specify metrics for measuring the per-

formance of dialogue system components

tackling this task, and b) we present a sim-

ple Bayesian filtering model of IRR that

performs reasonably well just using words

directly (no structure information and no

hand-coded semantics): it picks the right

referent out of 12 for around 50 % of real-

world dialogue utterances in our test cor-

pus. It is also able to learn to interpret not

only words but also hesitations, just as hu-

mans have shown to do in similar situa-

tions, namely as markers of references to

hard-to-describe entities.

1 Introduction

Like other tasks involved in language comprehen-

sion, reference resolution—that is, the linking of

natural language expressions to contextually given

entities—is performed incrementally by human

listeners. This was shown for example by Tanen-

haus et al. (1995) in a famous experiment where

addressees of utterances containing referring ex-

pressions made eye movements towards target ob-

jects very shortly after the end of the first word

that unambiguously specified the referent, even if

that wasn’t the final word of the phrase. In fact, as

has been shown in later experiments (Brennan and

Schober, 2001; Bailey and Ferreira, 2007; Arnold

et al., 2007), such disambiguating material doesn’t

even have to be lexical: under certain circum-

stances, a speaker’s hesitating already seems to be

understood as increasing the likelihood of subse-

quent reference to hard-to-describe entities.

Recently, efforts have begun to build dialogue

systems that make use of incremental processing

as well (Aist et al., 2006; Skantze and Schlangen,

2009). These efforts have so far focused on as-

pects other than resolution of references ((Stoness

et al., 2004) deals with the interaction of reference

and parsing). In this paper, we discuss in gen-

eral terms the task of incremental reference res-

olution (IRR) and specify metrics for evaluating

incremental components for this task. To make

the discussion more concrete, we also describe a

simple Bayesian filtering model of IRR in a do-

main with a small number of possible referents,

and show that it performs better wrt. our metrics

if given information about hesitations—thus pro-

viding computational support for the rationality of

including observables other than words into mod-

els of dialogue meaning.

The remainder of the paper is structured as fol-

lows: We discuss the IRR task in Section 2, and

suitable evaluation metrics in Section 3. In Sec-

tion 4 we describe and analyse the data for which

we present results with our Bayesian model for

IRR in Section 5.

2 Incremental Reference Resolution

To a first approximation, IRR can be modeled as

the ‘inverse’ as it were of the task of generating re-

ferring expressions (GRE; which is well-studied in

computational linguistics, see e. g. (Dale and Re-

iter, 1995)). Where in GRE words are added that

express features which reduce the size of the set

of possible distractors (with which the object that

the expression is intended to pick out can be con-

fused), in IRR words are encountered that express

features that reduce the size of the set of possible
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referents. To give a concrete example, for the ex-

pression in (1-a), we could imagine that the logical

representation in (1-b) is built on a word-by-word

basis, and at each step the expression is checked

against the world model to see whether the refer-

ence has become unique.

(1) a. the red cross

b. ιx(red(x) ∧ cross(x))

To give an example, in a situation where there

are available for reference only one red cross, one

green circle, and two blue squares, we can say

that after “the red” the referent should have been

found; in a world with two red crosses, we would

need to wait for further restricting information

(e. g. “. . . on the left”).

This is one way to describe the task, then: a

component for incremental reference resolution

takes expressions as input in a word-by-word fash-

ion and delivers for each new input a set (possibly

a singleton set) as output which collects those dis-

course entities that are compatible with the expres-

sion up to that point. (This description is meant

to be neutral as to whether reference is exophoric,

i. e. directly to entities in the world, or anaphoric,

via previous mentions; we will mainly discuss the

former case, though.)

As we will see below, this does however

not translate directly into a usable metric for

evaluation. While it is easy to identify the

contributions of individual words in simple,

constructed expressions like (1-a), reference in

real conversations is often much more complex,

and is a collaborative process that isn’t confined

to single expressions (Clark and Schaefer, 1987):

referring is a pragmatic action that is not reducible

to denotation. In our corpus (see below), we often

find descriptions as in (2), where the speaker

continuously adds (rather vague) material, typi-

cally until the addressee signals that she identified

the item, or proposes a different way to describe it.

(2) Also das S Teil sieht so aus dass es ein
einzelnes . Teilchen hat . dann . vier am Stück
im rechten Winkel .. dazu nee . nee warte ..
dann noch ein einzelnes das guckt auf der an-
deren Seite raus.
well, the S piece looks so that it has a single . piece .

and then . four together in a 90 degree angle .. and also

. no .. wait .. and then a single piece that sticks out on

the other side.

While it’s difficult to say in the individual case

what the appropriate moment is to settle on a hy-

pothesis about the intended referent, and what the

“correct” time-course of the development of hy-

potheses is, it’s easy to say what we want to be true

in general: we want a referent to be found as early

as possible, with as little change of opinion as pos-

sible during the utterance.1 Hence a model that

finds the correct referent earlier and makes fewer

wrong decisions than a competing one will be con-

sidered better. The metrics we develop in the next

section spell out this idea.

3 Evaluation Metrics for IRR

In previous work, we have discussed metrics for

evaluating the performance of incremental speech

recognition (Baumann et al., 2009). There, our

metrics could rely on time-aligned gold-standard

information against which the incremental results

could be measured. For the reasons discussed

in the previous section, we do not assume that

we have such temporally-aligned information for

evaluating IRR. Our measures described here sim-

ply assume that there is one intention behind the

referring utterances (namely to identify a certain

entity), and that this intention is there from the be-

ginning of the utterance and stays constant.2 This

is not to be understood as the claim that it is rea-

sonable to expect an IRR component to pick out a

referent even if the only part of the utterance that

has already been processed for example is “now

take the”—it just facilitates the “earlier is better”

ranking discussed above.

We use two kinds of metrics for IRR: posi-

tional metrics, which measure when (which per-

centage into the utterance) a certain event happens,

and edit metrics which capture the “jumpiness”

of the decision process (how often the component

changes its mind during an utterance).

Figure 1 shows a constructed example that il-

1We leave open here what “as early as possible” means—
a well-trained model might be able to resolve a reference
before the speaker even deems that possible, and hence ap-
pear to do unnatural (or supernatural?) ‘mind reading’. Con-
versely, frequent changes of opinion might be something that
human listeners would exhibit as well (e. g. in their gaze di-
rection). We abstract away from these finer details in our
heuristic.

2Note that our metrics would also work for corpora where
the correct point-of-identification is annotated; this would
simply move the reference point from the beginning of the
utterance to that point. Gallo et al. (2007) describe an anno-
tation effort in a simpler domain where entities can easily be
described which would make such information available.
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Figure 1: Simple constructed example that illus-

trates the evaluation measures

lustrates these ideas. We assume that reference is

to an object that is internally represented by the

letter F. The example shows two models, no-sil

and sil (what exactly they are doesn’t matter for

now). The former model guesses that reference is

to object X already after the first word, and stays

with this opinion until it encounters the final word,

when it chooses F as most likely referent. (Why

the decision for the items sil is “-” will be ex-

plained below; here this can be read as “repetition

of previous decision”.) The other model changes

its mind more often, but also is correct for the first

time earlier and stays correct earlier. Our metrics

make this observation more precise:

• average fc (first correct): how deep into the ut-

terance do we make the first correct guess? (If the

decision component delivers n-best lists instead of

single guesses, “correct” means here and below “is

member of n-best list”.)

E. g., if the referent is recognised only after the

final word of the expression, the score for this met-

ric would be 1. In our example it is 2/5 for the

sil-model and 1 for the non-sil model.

• fc applicable: since the previous measure can

only be specified for cases where the correct refer-

ent has been found, we also specify for how many

utterances this is the case.

• average ff (first final): how deep into the utter-

ance do we make the correct guess and don’t sub-

sequently change our mind? This would be 4/5 for

the sil-model in our example and 1 for the no-sil-

model.

• ff applicable: again, the previous measure can

only be given where the final guess of the compo-

nent is correct, so we also need to specify how of-

ten this is the case. Note that whenever ff is appli-

cable, fc is applicable as well, so ff applicable≤fc

applicable.

• ed-utt (mean edits per utterance): an IRR mod-

ule may still change its mind even after it has al-

ready made a correct guess. This metric measures

how often the module changes its mind before it

comes back to the right guess (if at all). Since such

decision-revisions (edits) may be costly for later

modules, which possibly need to retract their own

hypotheses that they’ve built based on the output

of this module, ideally this number should be low.

In our example the number of edits between fc

and ff is 2 for the sil-model and 0 for the non-sil

model (because here fc and ff are at the same po-

sition).

• eo (edit overhead): ratio unnecessary edits / nec-

essary edits. (In the ideal case, there is exactly one

edit, from “no decision” to the correct guess.)

• correctness: how often the model guesses cor-

rectly. This is 3/5 for the sil-model in the example

and 1/5 for the non-sil-model.

• sil-correctness: how often the model guesses

correctly during hesitations. The correctness mea-

sure applied only to certain data-points; we use

this to investigate whether informing the model

about hesitations is helpful.

• adjusted error: some of our IRR models can re-

turn “undecided” as reply. The correctness mea-

sures defined above would punish this in the same

way as a wrong guess. The adjusted error measure

implements the idea that undecidedness is better

than a wrong guess, at least early in the utterance.

More precisely, it’s defined to be 0 if the guess is

correct, pos / pos
max

if the reply is “undecided”

(with pos denoting the position in the utterance),

and 1 if the guess is incorrect. That way uncer-

tainty is not punished in the beginning of the utter-

ance and counted like an error towards its end.

Note that these metrics characterise different as-

pects of the performance of a model. In practi-

cal cases, they may not be independent from each

other, and a system designer will have to decide

which one to optimize. If it is helpful to be in-

formed about a likely referent early, for example

to prepare a reaction, and is not terribly costly to

later have to revise hypotheses, then a low first cor-

rect may be the target. If hypothesis revisions are

costly, then a low edit overhead may be preferred

over a low first correct. (first final and ff applicable,

however, are parameters that are useful for global

optimisation.)
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Figure 2: The Twelve Pentomino Pieces with their

canonical names (which were not known to the di-

alogue participants). The pieces used in the dia-

logues all had the same colour.

In the remaining sections, we describe a prob-

abilistic model of IRR that we have implemented,

and evaluate it in terms of these metrics. We begin

with describing the data from which we learnt our

model.

4 Data

4.1 Our Corpora

As the basis for training and testing of our model

we used data from three corpora of task-oriented

dialogue that differ in some details of the set-up,

but use the same task: an Instruction Giver (IG) in-

structs an Instruction Follower (IF) on which puz-

zle pieces (from the “Pentomino” game, see Fig-

ure 2) to pick up. In detail, the corpora were:

• The Pento Naming corpus described in (Siebert

and Schlangen, 2008). In this variant of the task,

IG records instructions for an absent IF; so these

aren’t fully interactive dialogues. The corpus con-

tained 270 utterances out of which we selected

those 143 that contained descriptions of puzzle

pieces (and not of their position on the game-

board).

• Selections from the FTT/PTT corpus described

in (Fernández et al., 2007), where IF and IG are

connected through an audio-only connection, and

in some dialogues a simplex / push-to-talk one.

We selected all utterances from IG that contained

references to puzzle pieces (286 altogether).

• The third part of our corpus was constructed

specifically for the experiments described here.

We set-up a Wizard of Oz experiment where users

were given the task to describe puzzle pieces for

the “dialogue system” to pick up. The system

(i. e. the wizard) had available a limited number

of utterances and hence could conduct only a lim-

ited form of dialogue. We collected 255 utter-

ances containing descriptions of puzzle pieces in

this way.
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Figure 3: Silence rate per referent and corpus

(WOz:black, PentoNaming:red, FTT:green)

All utterances were hand-transcribed and the

transcriptions were automatically aligned with the

speech data using the MAUS system (Schiel,

2004); this way, we could automatically identify

pauses during utterances and measure their length.

For some experiments (see below), pauses were

“re-ified” through the addition of silence pseudo-

words (one for each 333 ms of silence).

The resulting corpus is not fully balanced in

terms of available material for the various pieces

or contributions by sub-corpora.

4.2 Descriptive Statistics

We were interested to see whether intra-utterance

silences (hesitations) could potentially be used as

an information source in our (more or less) real-

world data in the same way as was shown in

the much more controlled situations described in

the psycholinguistics literature mentioned above

in the introduction (Arnold et al., 2007). Fig-

ure 3 shows the mean ratio of within-utterance si-

lences per word for the different corpora and dif-

ferent referents. We can see that there are clear

differences between the pieces. For example, ref-

erences to the piece whose canonical name is X

contain very few or short hesitations, whereas ref-

erences to Y tend to contain many. We can also

see that the tendencies seem to be remarkably sim-

ilar between corpora, but with relatively stable off-

sets between them, PentoDescr having the longest,

PTT/FTT the shortest silences. We speculate that

this is the result of the differing degrees of inter-

activity (none in PentoDescr, restricted in WOz,

less restricted in PTT, free in FTT) which puts dif-

ferent pressures on speakers to avoid silences. To

balance our data with respect to this difference, we

performed some experiments with adjusted data
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where silence lengths in PentoDescr were adjusted

by 0.7 and in PTT/FTT by 1.3. This brings the si-

lence rates in the corpora, if plotted in the style of

Figure 3, almost in congruence.

To test whether the differences in silence rate

between utterances referring to different pieces

are significant, we performed an ANOVA and

found a main effect of silence rate, F (11, 672) =
6.2102, p < 8.714−10. A post-hoc t-test reveals

that there are roughly two groups whose members

are not significantly different within-group, but are

across groups: I, L, U, W and X form one group

with relatively low silence rate, F, N, P, T, V, Y, and

Z another with relatively high silence rate. We will

see in the next section whether our model picked

up on these differences.

5 A Bayesian Filtering Model of IRR

To explore incremental reference resolution, and

as part of a larger incremental dialogue system we

are building, we implemented a probabilistic refer-

ence resolver that works in the pentomino domain.

At its base, the resolver has a Bayesian Filtering

model (see e. g. (Thrun et al., 2005)) that with each

new observation (word) computes a belief distri-

bution over the available objects (the twelve puz-

zle pieces); in a second step, a decision for a piece

(or a collection of pieces in the n-best case) is de-

rived from this distribution. This model is incre-

mental in a very natural and direct way: new input

increments are simply treated as new observations

that update the current belief state. Note that this

model does not start with any assumptions about

semantic word classes: whether an observed word

carries information about what is being referred to

will be learnt from data.

5.1 The Belief-Update Model

We use a Bayesian model which treats the in-

tended referent as a latent variable generating a

sequence of observations (w1:n is the sequence of

words w1, w2, . . . , wn):

P (r|w1:n) = α ∗ P (wn|r, w1:n−1) ∗ P (r|w1:n−1)

where

• P (wn|r, w1:n−1) is the likelihood of the new

observation (see below for how we approximate

that); and

• the prior P (r|w1:n−1) at step n is the posterior

of the previous step. Before the first observation is

made (i. e., the first word is seen), the prior is sim-

ply a distribution over the possible referents, P (r).

F I L N P T U V W X Y Z

intended referent:  N

 nimm <sil−0> <sil−1> <sil−2> das teil <sil−0> <sil−1> <sil−2> <sil−3> das aus einer
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Figure 4: Example of Belief Distribution after Ob-

servation

In our experiment, we set this to a uniform distri-

bution, but if there is prior information from other

sources (e. g., because the dialogue state makes

certain pieces more salient), this can be reflected.

• α is a normalising constant, ensuring that the re-

sult is indeed a probability distribution.

The output of the model is a distribution of be-

lief over the 12 available entities, as shown in Fig-

ure 4. Figure 5 shows in a 3D plot the devel-

opment of the belief state (pieces from front to

back, strength of belief as height of the peaks) over

the course of a whole utterance (with observations

from left to right).

5.2 The Decision Step

We implemented several ways to derive a decision

for a referent from such a distribution:

i) In the arg max approach, at each state the ref-

erent with the highest posterior probability is cho-

sen. For Figure 4, that would be F (and hence,

a wrong decision). As Figure 5 shows (and the

example is quite representative for the model be-

haviour), there often are various local maxima

over the course of an utterance, and hence a model

that takes as its decision always the maximum can

be expected to perform many edits.

ii) In the adaptive threshold approach, we start

with a default decision for a special 13th class,

“undecided”, and a new decision is only made if

the maximal value at the current step is above a

certain threshold, where this threshold is reset ev-

ery time this condition is met. In other words, this

draws a plane into the belief space and only makes

a new decision when a peak rises above this plane

and hence above the previous peak. In effect, this

approach favours strong convictions and reduces
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utterance #: 230 intended referent:  N

 hast eine lange ule mit drei teilen <sil−0> <sil−1> und eine kurze mit zwei
Z, Y, X, W, V, U, T, P, N, L, I, F

as.matrix(norm.vect[, 1:12])

0.0
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0.4

0.6

0.8

1.0

Figure 5: Belief Update over Course of Utterance

the “jitter” in the decision making.

In our example from Figure 4, this would mean

that the maximum, F, would only be the decision

if its value was higher than the threshold and there

was no previous guess that was even higher.

iii) The final model implements a threshold n-

best approach, where not just a single piece is se-

lected but all pieces that are above a certain thresh-

old. Assuming that the threshold is 0.1 for exam-

ple this would select F, I, N, Y, and Z—and hence

would include the correct reference in Figure 4.

5.3 Implementation

To learn and query the observation likelihoods

P (wn|r, w1:n−1), we used referent-specific lan-

guage models. More precisely, we computed the

likelihood as P (r, w1:n)/P (r, w1:n−1) (definition

conditional probability), and approximated the

joint probabilities of referent and word sequence

via n-grams with specialised words. E. g., an ut-

terance like “take the long, narrow piece” refer-

ring to piece I (or tested for reference to this piece)

would be rewritten as “take I the I long I narrow I

piece I” and presented to the n-gram learner / in-

ference component. (Both taken from the SRI LM

package, (Stolcke, 2002).)

During evaluation of the models, the test utter-

ances are fed word-by-word to the model and the

decision is evaluated against the known intended

referent. Since we were interested in testing

whether disfluencies contained information that

would be learned, for one variant of the system

we also fed pseudo-words for silences and hesi-

tation markers like uhm, numbered by their posi-

tion (i. e., “take the ..” becomes “take the sil-1 sil-

2”), to both learning and inference for the silence-

sensitive variant; the silence-ignorant variant sim-

ply repeats the previous decision at such points

and does not update its belief state; this way, it

is guaranteed that both variants generate the same

number of decisions and can be compared directly.

(Cf. the dashes in the “no-sil-model” in Figure 1

above: those are points where no real computation

is made in the no-sil case.)

5.4 Experiments

All experiments were performed with 10-fold

cross-validation. We always ran both versions, the

one that showed silences to the model and the one

that didn’t. We tested various combinations of lan-

guage model parameters and deciders, of which

the best-performing ones are discussed in the next

section.

5.5 Results

Table 1 shows the results for the different deci-

sion methods and for models where silences are

included as observations and where they aren’t,

and, as a baseline, the result for a resolver that

makes a random decision after each observation.

As we can see, the different decision methods

have different characteristics wrt. individual mea-

sures. The threshold n-best approach performs

best across the board—but of course has a slightly

easier job since it does not need to make unam-

biguous decisions. We will look into the develop-

ment of the n-best lists in a second, but for now

we note that this model is for almost all utterances

correct at least once (97 % fc applicable) and if

so, typically very early (after 30 % of the utter-

ance). In over half of the cases (54.68 %), the fi-

nal decision is correct (i. e. is an n-best list that

contains the correct referent), and similarly for a

good third of all silence observations. Interest-

ingly, silence-correctness is decidedly higher for

the silence model (which does actually make new

decisions during silences and hence based on the

information that the speaker is hesitating) than for

the non-sil model (which at these places only re-

peats the previously made decision). The model

performs significantly bettern than a baseline that

randomly selects n-best lists of the same size (see

rnd-nb in Table 1).

As can be expected, the adaptive threshold ap-

proach is more stable with its decisions, as wit-

nessed by the low edit overhead. The fact that it

changes its decision not as often has an impact on

the other measures, though: in more cases, the

model is correct not even once (fc applicable is
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n-best rnd-nb adapt max random

Measure / Model w/ h w/o h w/ h w/ h w/o h w/ h w/o h w/ h

fc applicable 97.22 % 95.03 % 85.38 % 63.15 % 66.67 % 86.55 % 82.89 % 59.94 %

average fc 30.43 % 33.73 % 29.61 % 53.87 % 55.25 % 46.55 % 49.31 % 42.60 %

ff applicable 54.68 % 54.24 % 17.54 % 48.68 % 53.07 % 39.77 % 40.64 % 9.65 %

average ff 87.74 % 85.01 % 97.08 % 71.24 % 70.89 % 96.08 % 94.28 % 98.44 %

edit overhead 93.49 % 90.65 % 96.65 % 69.61 % 67.66 % 92.57 % 89.44 % 93.16 %

correctness 37.81 % 36.81 % 23.37 % 23.01 % 26.61 % 17.83 % 20.23 % 7.83 %

sil-correctness 36.60 % 31.09 % 26.39 % 18.71 % 22.58 % 13.67 % 19.34 % 8.63 %

adjusted error 60.07 % 56.96 % 76.63 % 76.29 % 70.90 % 82.17 % 79.42 % 92.16 %

Table 1: Results for different decision methods (n-best, adaptive, max arg and random) and for models

with and without silence-observations (w/ h and w/o h, respectively)

lower than for the other two models). But it is

still correct with almost half of its final decisions,

and these come even earlier than for the n-best

model. Silence information does not seem to help

this model; this suggests that the information pro-

vided by knowledge about the fact that the speaker

hesitates is too subtle to push through the thresh-

old in order to change decisions.

The arg max approach fares worst. Since nei-

ther the relative strength of the strongest belief (as

compared to that in the competing pieces) nor the

global strength (have I been more convinced be-

fore?) is taken into account, the model changes

its mind too often, as evidenced by the edit over-

head, and does not settle on the correct referent of-

ten (and if, then late). Again, silence information

does not seem to be helpful for this model.

As a more detailed look at what happens dur-

ing silence sequences, Figure 6 plots the average

change in probability from onset of silence to a

point at 1333 ms of silence. (Recall that the un-

derlying Bayesian model is the same for all mod-

els evaluated above, they differ only in how they

derive a decision.) We can see that the gains and

losses are roughly as expected from the analysis of

the corpora: pieces like L and P become more ex-

pected after a silence of that length, pieces like X

less. So the model does indeed seem to learn that

hesitations systematically occur together with cer-

tain pieces. (The reader can convince herself with

the help of Figure 2 that these shapes are indeed

comparatively hard-to-describe; but the interesting

point here is that this categorisation does not have

to be brought to the model but rather is discovered

by it.)

Finally, a look at the distribution and the sizes of

the n-best groupings: the most frequent decision is

F I L N P T U V W X Y Z
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Figure 6: Average change in probability from on-

set of silence to 1333 ms into silence

“undecided” (474 times), followed by the group-

ings F N, N Y, and N Y P (343, 342 and 196, re-

spectively). Here again we find groupings that re-

flect the differences w.r.t. hesitation rate. The av-

erage size of the n-best lists is 2.58 (sd = 1.4).

6 Conclusions and Further Work

We discussed the task of incremental reference

resolution (IRR), in particular with respect to ex-

ophoric reference. From a theoretical perspective,

it might seem easy to specify what the ideal be-

haviour of an IRR component should be, namely

to always produce the set of entities (the exten-

sion) that is compatible with the part of the ex-

pression seen so far. In practice, however, this is

difficult to annotate, for both practical reasons as

well as theoretical (referring is a pragmatic activ-

ity that is not reducible to denotation). The met-

rics we defined for evaluation of IRR components

account for this in that they do not require a gold
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standard annotation that fixes the dynamics of the

resolution process; they simply make it possible

to quantify the assumption that “early and with

strong convictions” is best.

We then presented our probabilistic model of

IRR that works directly on word observations

without any further processing (POS tagging,

parsing). It achieves a reasonable success (as mea-

sured with our metrics); for example, in over half

of the cases, the final guess of the model is correct,

and comes before the utterance is over. As an ad-

ditional interesting feature, the model is able to in-

terpret hesitations (silences lifted to pseudo-word

status) in a way shown before only in controlled

psycholinguistic experiments, namely as making

reference to hard-to-describe pieces more likely.3

In future work, we want to explore the model’s

performance on ASR output. It is not clear a

priori that this would degrade performance much,

as it can be expected that the learning components

are quite robust against noise. Connected to

this, we want to explore more complex statis-

tical models, e. g. a hierarchical model where

one level generates parts of the utterance (e. g.

non-referential parts and referential parts) and the

second the actual words. We also want to test how

this approach scales up to worlds with a larger

number of possible referents, where consequently

approximation methods like particle filtering have

to be used. Finally, we will test how the module

contributes to a working dialogue system, where

further decisions (e. g. for clarification requests)

can be built on its output.
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