
Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 162–171,
Paris, October 2009. c©2009 Association for Computational Linguistics

Transition-Based Parsing of the Chinese Treebank using a Global
Discriminative Model

Yue Zhang
Oxford University

Computing Laboratory
yue.zhang@comlab.ox.ac.uk

Stephen Clark
Cambridge University
Computer Laboratory

stephen.clark@cl.cam.ac.uk

Abstract

Transition-based approaches have shown
competitive performance on constituent
and dependency parsing of Chinese. State-
of-the-art accuracies have been achieved
by a deterministic shift-reduce parsing
model on parsing the Chinese Treebank 2
data (Wang et al., 2006). In this paper,
we propose a global discriminative model
based on the shift-reduce parsing process,
combined with a beam-search decoder, ob-
taining competitive accuracies onCTB2.
We also report the performance of the
parser onCTB5 data, obtaining the highest
scores in the literature for a dependency-
based evaluation.

1 Introduction

Transition-based statistical parsing associates
scores with each decision in the parsing process,
selecting the parse which is built by the highest
scoring sequence of decisions (Briscoe and Car-
roll, 1993; Nivre et al., 2006). The parsing algo-
rithm is typically some form of bottom-up shift-
reduce algorithm, so that scores are associated
with actions such asshift and reduce. One ad-
vantage of this approach is that the parsing can be
highly efficient, for example by pursuing a greedy
strategy in which a single action is chosen at each
decision point.

The alternative approach, exemplified by
Collins (1997) and Charniak (2000), is to use
a chart-based algorithm to build the space of
possible parses, together with pruning of low-
probability constituents and the Viterbi algorithm
to find the highest scoring parse. For English de-
pendency parsing, the two approaches give similar

results (McDonald et al., 2005; Nivre et al., 2006).
For English constituent-based parsing using the
Penn Treebank, the best performing transition-
based parser lags behind the current state-of-the-
art (Sagae and Lavie, 2005). In contrast, for Chi-
nese, the best dependency parsers are currently
transition-based (Duan et al., 2007; Zhang and
Clark, 2008). For constituent-based parsing using
the Chinese Treebank (CTB), Wang et al. (2006)
have shown that a shift-reduce parser can give
competitive accuracy scores together with high
speeds, by using anSVM to make a single decision
at each point in the parsing process.

In this paper we describe a global discrimina-
tive model for Chinese shift-reduce parsing, and
compare it with Wang et al.’s approach. We ap-
ply the same shift-reduce procedure as Wang et
al. (2006), but instead of using a local classifier
for each transition-based action, we train a gener-
alized perceptron model over complete sequences
of actions, so that the parameters are learned in
the context of complete parses. We apply beam
search to decoding instead of greedy search. The
parser still operates in linear time, but the use of
beam-search allows the correction of local deci-
sion errors by global comparison. UsingCTB2,
our model achieved Parseval F-scores comparable
to Wang et al.’s approach. We also present accu-
racy scores for the much largerCTB5, using both
a constituent-based and dependency-based evalu-
ation. The scores for the dependency-based eval-
uation were higher than the state-of-the-art depen-
dency parsers for theCTB5 data.

2 The Shift-Reduce Parsing Process

The shift-reduce process used by our beam-search
decoder is based on the greedy shift-reduce parsers
of Sagae and Lavie (2005) and Wang et al. (2006).

162



The process assumes binary-branching trees; sec-
tion 2.1 explains how these are obtained from the
arbitrary-branching trees in the Chinese Treebank.

The input is assumed to be segmented andPOS

tagged, and the word-POSpairs waiting to be pro-
cessed are stored in a queue. A stack holds the
partial parse trees that are built during the parsing
process. A parsestate is defined as a〈stack,queue〉
pair. Parser actions, includingSHIFT and various
kinds of REDUCE, define functions from states to
states by shifting word-POS pairs onto the stack
and building partial parse trees.

The actions used by the parser are:

• SHIFT, which pushes the next word-POSpair
in the queue onto the stack;

• REDUCE–unary–X, which makes a new
unary-branching node with label X; the stack
is popped and the popped node becomes the
child of the new node; the new node is pushed
onto the stack;

• REDUCE–binary–{L/R}–X, which makes a
new binary-branching node with label X; the
stack is popped twice, with the first popped
node becoming the right child of the new
node and the second popped node becoming
the left child; the new node is pushed onto the
stack;

• TERMINATE, which pops the root node off
the stack and ends parsing. This action
is novel in our parser. Sagae and Lavie
(2005) and Wang et al. (2006) only used the
first three transition actions, setting the fi-
nal state as all incoming words having been
processed, and the stack containing only one
node. However, there are a small number of
sentences (14 out of 3475 from the training
data) that have unary-branching roots. For
these sentences, Wang’s parser will be unable
to produce the unary-branching roots because
the parsing process terminates as soon as the
root is found. We define a separate action to
terminate parsing, allowing unary reduces to
be applied to the root item before parsing fin-
ishes.

The trees built by the parser are lexicalized, us-
ing the head-finding rules from Zhang and Clark
(2008). The left (L) and right (R) versions of the
REDUCE-binary rules indicate whether the head of

for nodeY = X1..Xm ∈ T :
if m > 2 :

find the head nodeXk(1 ≤ k ≤ m) of Y
m′ = m
while m′ > k andm′ > 2 :

new nodeY ∗ = X1..Xm′−1

Y ← Y ∗Xm′

m′ = m′ − 1
n′ = 1
while n′ < k andk − n′ > 1 :

new nodeY ∗ = Xn′ ..Xk

Y ← Xn′Y ∗

n′ = n′ + 1

Figure 2: the binarization algorithm with inputT

the new node is to be taken from the left or right
child. Note also that, since the parser is building
binary trees, the X label in theREDUCE rules can
be one of the temporary constituent labels, such
as NP∗, which are needed for the binarization pro-
cess described in Section 2.1. Hence the number
of left and right binary reduce rules is the number
of constituent labels in the binarized grammar.

Wang et al. (2006) give a detailed example
showing how a segmented andPOS-tagged sen-
tence can be incrementally processed using the
shift-reduce actions to produce a binary tree. We
show this example in Figure 1.

2.1 The binarization process

The algorithm in Figure 2 is used to mapCTB

trees into binarized trees, which are required by
the shift-reduce parsing process. For any tree node
with more than two child nodes, the algorithm
works by first finding the head node, and then pro-
cessing its right-hand-side and left-hand-side, re-
spectively. The head-finding rules are taken from
Zhang and Clark (2008).Y = X1..Xm represents
a tree nodeY with child nodesX1...Xm(m ≥ 1).

The label of the newly generated nodeY ∗ is
based on the constituent label of the original node
Y , but marked with an asterix. Hence binariza-
tion enlarges the set of constituent labels. We
call the constituents marked with∗ temporary con-
stituents. The binarization process is reversible, in
that output from the shift-reduce parser can be un-
binarized intoCTB format, which is required for
evaluation.

163



Figure 1: An example shift-reduce parsing process, adopted from Wang et al. (2006)

2.2 Restrictions on the sequence of actions

Not all sequences of actions produce valid bina-
rized trees. In the deterministic parser of Wang et
al. (2006), the highest scoring action predicted by
the classifier may prevent a valid binary tree from
being built. In this case, Wang et al. simply return

a partial parse consisting of all the subtrees on the
stack.

In our parser a set of restrictions is applied
which guarantees a valid parse tree. For example,
two simple restrictions are that aSHIFT action can
only be applied if the queue of incoming words

164



Variables: state itemitem = (S, Q), where
S is stack andQ is incoming queue;
the agendaagenda;
list of state itemsnext;

Algorithm :
for item ∈ agenda:

if item.score= agenda.bestScore and
item.isFinished:
rval = item
break

next = []
for move ∈ item.legalMoves:

next.push(item.TakeAction(move))
agenda = next.getBBest()

Outputs: rval

Figure 3: the beam-search decoding algorithm

is non-empty, and the binary reduce actions can
only be performed if the stack contains at least two
nodes. Some of the restrictions are more complex
than this; the full set is listed in the Appendix.

3 Decoding with Beam Search

Our decoder is based on the incremental shift-
reduce parsing process described in Section 2. We
apply beam-search, keeping theB highest scoring
state items in an agenda during the parsing pro-
cess. The agenda is initialized with a state item
containing the starting state, i.e. an empty stack
and a queue consisting of all word-POSpairs from
the sentence.

At each stage in the decoding process, existing
items from the agenda are progressed by applying
legal parsing actions. From all newly generated
state items, theB highest scoring are put back on
the agenda. The decoding process is terminated
when the highest scored state item in the agenda
reaches the final state. If multiple state items have
the same highest score, parsing terminates if any
of them are finished. The algorithm is shown in
Figure 3.

4 Model and Learning Algorithm

We use a linear model to score state items. Recall
that a parser state is a〈stack,queue〉 pair, with the
stack holding subtrees and the queue holding in-
coming words waiting to be processed. The score

Inputs: training examples(xi, yi)
Initialization : set ~w = 0
Algorithm :

for t = 1..T , i = 1..N :
zi = parse(xi, ~w)
if zi 6= yi:

~w = ~w + Φ(yi)− Φ(zi)
Outputs: ~w

Figure 4: the perceptron learning algorithm

for state itemY is defined by:

Score(Y ) = ~w · Φ(Y ) =
∑

i

λi fi(Y )

whereΦ(Y ) is the global feature vector fromY ,
and ~w is the weight vector defined by the model.
Each element fromΦ(Y ) represents the global
count of a particular feature fromY . The feature
set consists of a large number of features which
pick out various configurations from the stack and
queue, based on the words and subtrees in the state
item. The features are described in Section 4.1.
The weight values are set using the generalized
perceptron algorithm (Collins, 2002).

The perceptron algorithm is shown in Figure 4.
It initializes weight values as all zeros, and uses
the current model to decode training examples (the
parse function in the pseudo-code). If the output
is correct, it passes on to the next example. If
the output is incorrect, it adjusts the weight val-
ues by adding the feature vector from the gold-
standard output and subtracting the feature vector
from the parser output. Weight values are updated
for each example (making the processonline) and
the training data is iterated overT times. In or-
der to avoid overfitting we used the now-standard
averaged version of this algorithm (Collins, 2002).

We also apply theearly update modification
from Collins and Roark (2004). If the agenda, at
any point during the decoding process, does not
contain the correct partial parse, it is not possible
for the decoder to produce the correct output. In
this case, decoding is stopped early and the weight
values are updated using the highest scoring par-
tial parse on the agenda.

4.1 Feature set

Table 1 shows the set of feature templates for the
model. Individual features are generated from

165



Description Feature templates
Unigrams S0tc, S0wc, S1tc, S1wc,

S2tc, S2wc, S3tc, S3wc,

N0wt, N1wt, N2wt, N3wt,

S0lwc, S0rwc, S0uwc,

S1lwc, S1rwc, S1uwc,

Bigrams S0wS1w, S0wS1c, S0cS1w, S0cS1c,

S0wN0w, S0wN0t, S0cN0w, S0cN0t,

N0wN1w, N0wN1t, N0tN1w, N0tN1t

S1wN0w, S1wN0t, S1cN0w, S1cN0t,

Trigrams S0cS1cS2c, S0wS1cS2c,

S0cS1wS2c, S0cS1cS2w,

S0cS1cN0t, S0wS1cN0t,

S0cS1wN0t, S0cS1cN0w

Bracket S0wb, S0cb

S0wS1cb, S0cS1wb, S0cS1cb

S0wN0tb, S0cN0wb, S0cN0tb

Separator S0wp, S0wcp, S0wq, S0wcq,

S1wp, S1wcp, S1wq, S1wcq

S0cS1cp, S0cS1cq

Table 1: Feature templates

these templates by first instantiating a template
with particular labels, words and tags, and then
pairing the instantiated template with a particu-
lar action. In the table, the symbolsS0, S1, S2,
andS3 represent the top four nodes on the stack,
and the symbolsN0, N1, N2 andN3 represent the
first four words in the incoming queue.S0L, S0R
andS0U represent the left and right child for bi-
nary branchingS0, and the single child for unary
branchingS0, respectively;w represents the lex-
ical head token for a node;c represents the label
for a node. When the corresponding node is a ter-
minal, c represents itsPOS-tag, whereas when the
corresponding node is non-terminal,c represents
its constituent label;t represents thePOS-tag for a
word.

The contextS0, S1, S2, S3 andN0, N1, N2, N3

for the feature templates is taken from Wang et al.
(2006). However, Wang et al. (2006) used a poly-
nomial kernel function with anSVM and did not
manually create feature combinations. Since we
used the linear perceptron algorithm we manually
combined Unigram features into Bigram and Tri-
gram features.

The “Bracket” row shows bracket-related fea-
tures, which were inspired by Wang et al. (2006).
Here brackets refer to left brackets including “（”,

““” and “《” and right brackets including “）”,
“”” and “》”. In the table, b represents the
matching status of the last left bracket (if any)
on the stack. It takes three different values:
1 (no matching right bracket has been pushed
onto stack), 2 (a matching right bracket has been
pushed onto stack) and 3 (a matching right bracket
has been pushed onto stack, but then popped off).

The “Separator” row shows features that in-
clude one of the separator punctuations (i.e. “，”,
“。”, “、” and “；”) between the head words of
S0 and S1. These templates apply only when
the stack contains at least two nodes;p repre-
sents a separator punctuation symbol. Each unique
separator punctuation betweenS0 andS1 is only
counted once when generating the global feature
vector. q represents the count of any separator
punctuation betweenS0 andS1.

Whenever an action is being considered at each
point in the beam-search process, templates from
Table 1 are matched with the context defined by
the parser state and combined with the action to
generate features. Negative features, which are the
features from incorrect parser outputs but not from
any training example, are included in the model.
There are around a million features in our experi-
ments with theCTB2 dataset.

Wang et al. (2006) used a range of other fea-
tures, including rhythmic features ofS0 and S1

(Sun and Jurafsky, 2003), features from the most
recently found node that is to the left or right ofS0

andS1, the number of words and the number of
punctuations inS0 andS1, the distance between
S0 andS1 and so on. We did not include these
features in our parser, because they did not lead to
improved performance during development exper-
iments.

5 Experiments

The experiments were performed using the Chi-
nese Treebank 2 and Chinese Treebank 5 data.
Standard data preparation was performed before
the experiments: empty terminal nodes were re-
moved; any non-terminal nodes with no children
were removed; any unaryX → X nodes resulting
from the previous steps were collapsed into oneX
node.

For all experiments, we used theEVALB tool1

for evaluation, and used labeled recall (LR), la-
beled precision (LP ) andF1 score (which is the

1http://nlp.cs.nyu.edu/evalb/

166



Figure 5: The influence of beam-size

Sections Sentences Words
Training 001–270 3475 85,058
Development 301–325 355 6,821
Test 271–300 348 8,008

Table 2: The standard split ofCTB2 data

harmonic mean ofLR andLP ) to measure pars-
ing accuracy.

5.1 The influence of beam-size

Figure 5 shows the accuracy curves using differ-
ent beam-sizes for the decoder. The number of
training iterations is on thex-axis with F -score
on the y-axis. The tests were performed using
the development test data and gold-standardPOS-
tags. The figure shows the benefit of using a beam
size greater than 1, with comparatively little accu-
racy gain being obtained beyond a beam size of8.
Hence we set the beam size to16 for the rest of the
experiments.

5.2 Test results onCTB2

The experiments in this section were performed
using CTB2 to allow comparison with previous
work, with theCTB2 data extracted from Chinese
Treebank 5 (CTB5). The data was split into train-
ing, development test and test sets, as shown in Ta-
ble 2, which is consistent with Wang et al. (2006)
and earlier work. The tests were performed us-
ing both gold-standardPOS-tags andPOS-tags au-
tomatically assigned by aPOS-tagger. We used our

Model LR LP F1
Bikel Thesis 80.9% 84.5% 82.7%

Wang 2006 SVM 87.2% 88.3% 87.8%

Wang 2006 Stacked 88.3% 88.1% 88.2%

Our parser 89.4% 90.1% 89.8%

Table 3: Accuracies onCTB2 with gold-standard
POS-tags

own implementation of the perceptron-based tag-
ger from Collins (2002).

The results of various models measured using
sentences with less than40 words and using gold-
standardPOS-tags are shown in Table 3. The
rows represent the model from Bikel and Chiang
(2000), Bikel (2004), theSVM and ensemble mod-
els from Wang et al. (2006), and our parser, re-
spectively. The accuracy of our parser is competi-
tive using this test set.

The results of various models using automati-
cally assignedPOS-tags are shown in Table 4. The
rows in the table represent the models from Bikel
and Chiang (2000), Levy and Manning (2003),
Xiong et al. (2005), Bikel (2004), Chiang and
Bikel (2002), theSVM model from Wang et al.
(2006) and the ensemble system from Wang et
al. (2006), and the parser of this paper, respec-
tively. Our parser gave comparable accuracies to
the SVM and ensemble models from Wang et al.
(2006). However, comparison with Table 3 shows
that our parser is more sensitive toPOS-tagging er-
rors than some of the other models. One possible
reason is that some of the other parsers, e.g. Bikel
(2004), use the parser model itself to resolve tag-
ging ambiguities, whereas we rely on aPOS tag-
ger to accurately assign a single tag to each word.
In fact, for the Chinese data,POS tagging accu-
racy is not very high, with the perceptron-based
tagger achieving an accuracy of only93%. The
beam-search decoding framework we use could
accommodate joint parsing and tagging, although
the use of features based on the tags of incom-
ing words complicates matters somewhat, since
these features rely on tags having been assigned to
all words in a pre-processing step. We leave this
problem for future work.

In a recent paper, Petrov and Klein (2007) re-
portedLR andLP of 85.7% and86.9% for sen-
tences with less than 40 words and81.9% and
84.8% for all sentences on theCTB2 test set, re-

167



≤ 40 words ≤ 100 words Unlimited
LR LP F1 POS LR LP F1 POS LR LP F1 POS

Bikel 2000 76.8% 77.8% 77.3% - 73.3% 74.6% 74.0% - - - - -
Levy 2003 79.2% 78.4% 78.8% - - - - - - - - -
Xiong 2005 78.7% 80.1% 79.4% - - - - - - - - -
Bikel Thesis 78.0% 81.2% 79.6% - 74.4% 78.5% 76.4% - - - - -
Chiang 2002 78.8% 81.1% 79.9% - 75.2% 78.0% 76.6% - - - - -
Wang 2006 SVM 78.1% 81.1% 79.6% 92.5% 75.5% 78.5% 77.0% 92.2% 75.0% 78.0% 76.5% 92.1%
Wang 2006 Stacked79.2% 81.1% 80.1% 92.5% 76.7% 78.4% 77.5% 92.2% 76.2% 78.0% 77.1% 92.1%
Our parser 80.2% 80.5% 80.4% 93.5% 76.5% 77.7% 77.1% 93.1% 76.1% 77.4% 76.7% 93.0%

Table 4: Accuracies onCTB2 with automatically assigned tags

≤ 40 words Unlimited
LR LP F1 POS LR LP F1 POS
87.9% 87.5% 87.7% 100% 86.9% 86.7% 86.8% 100%
80.2% 79.1% 79.6% 94.1% 78.6% 78.0% 78.3% 93.9%

Table 5: Accuracies onCTB5 using gold-standard and automatically assignedPOS-tags

Sections Sentences Words
Set A 001–270 3,484 84,873
Set B Set A; 400–699 6,567 161,893
Set C Set B; 700–931 9,707 236,051

Table 6: Training sets with different sizes

spectively. These results are significantly better
than any model from Table 4. However, we did
not include their scores in the table because they
used a different training set fromCTB5, which is
much larger than theCTB2 training set used by all
parsers in the table. In order to make a compari-
son, we split the data in the same way as Petrov
and Klein (2007) and tested our parser using auto-
matically assignedPOS-tags. It gaveLR andLP
of 82.0% and80.9% for sentences with less than
40 words and77.8% and77.4% for all sentences,
significantly lower than Petrov and Klein (2007),
which we partly attribute to the sensitivity of our
parser to pos tag errors (see Table 5).

5.3 The effect of training data size

CTB2 is a relatively small corpus, and so we in-
vestigated the effect of adding more training data
from CTB5. Intuitively, more training data leads
to higher parsing accuracy. By using increased
amount of training sentences (Table 6) fromCTB5
with the same development test data (Table 2),
we draw the accuracy curves with different num-
ber of training iterations (Figure 6). This exper-
iment confirmed that the accuracy increases with
the amount of training data.

Figure 6: The influence of the size of training data

Another motivation for us to use more training
data is to reduce overfitting. We invested consid-
erable effort into feature engineering usingCTB2,
and found that a small variation of feature tem-
plates (e.g. changing the feature templateS0cS1c
from Table 1 toS0tcS1tc) can lead to a compar-
atively large change (up to1%) in the accuracy.
One possible reason for this variation is the small
size of theCTB2 training data. When performing
experiments using the larger set B from Table 6,
we observed improved stability relative to small
feature changes.

168



Sections Sentences Words

Training
001–815;

16,118 437,859
1001–1136

Dev
886–931;

804 20,453
1148–1151

Test
816–885;

1,915 50,319
1137–1147

Table 7: Standard split ofCTB5 data

Non-root Root Complete
Zhang 2008 86.21% 76.26% 34.41%
Our parser 86.95% 79.19% 36.08%

Table 8: Comparison with state-of-the-art depen-
dency parsing usingCTB5 data

5.4 Test accuracy usingCTB5

Table 5 presents the performance of the parser on
CTB5. We adopt the data split from Zhang and
Clark (2008), as shown in Table 7. We used the
same parser configurations as Section 5.2.

As an additional evaluation we also produced
dependency output from the phrase-structure
trees, using the head-finding rules, so that we
can also compare with dependency parsers, for
which the highest scores in the literature are cur-
rently from our previous work in Zhang and Clark
(2008). We compare the dependencies read off our
constituent parser usingCTB5 data with the depen-
dency parser from Zhang and Clark (2008). The
same measures are taken and the accuracies with
gold-standardPOS-tags are shown in Table 8. Our
constituent parser gave higher accuracy than the
dependency parser. It is interesting that, though
the constituent parser uses many fewer feature
templates than the dependency parser, the features
do include constituent information, which is un-
available to dependency parsers.

6 Related work

Our parser is based on the shift-reduce parsing
process from Sagae and Lavie (2005) and Wang
et al. (2006), and therefore it can be classified
as a transition-based parser (Nivre et al., 2006).
An important difference between our parser and
the Wang et al. (2006) parser is that our parser
is based on a discriminative learning model with
global features, whilst the parser from Wang et al.
(2006) is based on a local classifier that optimizes

each individual choice. Instead of greedy local de-
coding, we used beam search in the decoder.

An early work that applies beam search to con-
stituent parsing is Ratnaparkhi (1999). The main
difference between our parser and Ratnaparkhi’s is
that we use a global discriminative model, whereas
Ratnaparkhi’s parser has separate probabilities of
actions chained together in a conditional model.

Both our parser and the parser from Collins and
Roark (2004) use a global discriminative model
and an incremental parsing process. The major
difference is the use of different incremental pars-
ing processes. To achieve better performance for
Chinese parsing, our parser is based on the shift-
reduce parsing process. In addition, we did not in-
clude a generative baseline model in the discrimi-
native model, as did Collins and Roark (2004).

Our parser in this paper shares similarity
with our transition-based dependency parser from
Zhang and Clark (2008) in the use of a discrimina-
tive model and beam search. The main difference
is that our parser in this paper is for constituent
parsing. In fact, our parser is one of only a few
constituent parsers which have successfully ap-
plied global discriminative models, certainly with-
out a generative baseline as a feature, whereas
global models for dependency parsing have been
comparatively easier to develop.

7 Conclusion

The contributions of this paper can be summarized
as follows. First, we defined a global discrimina-
tive model for Chinese constituent-based parsing,
continuing recent work in this area which has fo-
cused on English (Clark and Curran, 2007; Car-
reras et al., 2008; Finkel et al., 2008). Second, we
showed how such a model can be applied to shift-
reduce parsing and combined with beam search,
resulting in an accurate linear-time parser. In stan-
dard tests usingCTB2 data, our parser achieved
comparable Parseval F-score to the state-of-the-
art systems. Moreover, we observed that more
training data lead to improvements on both accu-
racy and stability against feature variations, and
reported performance of the parser usingCTB5
data. By converting constituent-based output to
dependency relations using standard head-finding
rules, our parser also obtained the highest scores
for aCTB5 dependency evaluation in the literature.

Due to the comparatively low accuracy for Chi-
nesePOS-tagging, the parsing accuracy dropped

169



significantly when using automatically assigned
POS-tags rather than gold-standardPOS-tags. In
our further work, we plan to investigate possible
methods of jointPOS-tagging and parsing under
the discriminative model and beam-search frame-
work.

A discriminative model allows consistent train-
ing of a wide range of different features. We
showed in Zhang and Clark (2008) that it was pos-
sible to combine graph and transition-based de-
pendency parser into the same global discrimina-
tive model. Our parser framework in this paper
allows the same integration of graph-based fea-
tures. However, preliminary experiments with fea-
tures based on graph information did not show
accuracy improvements for our parser. One pos-
sible reason is that the transition actions for the
parser in this paper already include graph infor-
mation, such as the label of the newly gener-
ated constituent, while for the dependency parser
in Zhang and Clark (2008), transition actions do
not contain graph information, and therefore the
use of transition-based features helped to make
larger improvements in accuracy. The integration
of graph-based features for our shift-reduce con-
stituent parser is worth further study.

The source code of our parser is publicly avail-
able at http://www.sourceforge.net/projects/zpar.2

Appendix

The set of restrictions which ensures a valid binary
tree is shown below. The restriction on the num-
ber of consecutive unary rule applications is taken
from Sagae and Lavie (2005); it prevents infinite
running of the parser by repetitive use of unary re-
duce actions, and ensures linear time complexity
in the length of the sentence.

• the shift action can only be performed when
the queue of incoming words is not empty;
• when the node on top of the stack is tempo-

rary and its head word is from the right child,
no shift action can be performed;
• the unary reduce actions can be performed

only when the stack is not empty;
• a unary reduce with the same constituent la-

bel (Y → Y ) is not allowed;
• no more than three unary reduce actions can

be performed consecutively;

2The make target for the parser in this paper is chi-
nese.conparser.

• the binary reduce actions can only be per-
formed when the stack contains at least two
nodes, with at least one of the two nodes on
top of stack (withR being the topmost andL
being the second) being non-temporary;
• if L is temporary with labelX∗, the result-

ing node must be labeledX or X∗ and left-
headed (i.e. to take the head word fromL);
similar restrictions apply whenR is tempo-
rary;
• when the incoming queue is empty and the

stack contains only two nodes, binary reduce
can be applied only if the resulting node is
non-temporary;
• when the stack contains only two nodes, tem-

porary resulting nodes from binary reduce
must be left-headed;
• when the queue is empty and the stack con-

tains more than two nodes, with the third
node from the top being temporary, binary re-
duce can be applied only if the resulting node
is non-temporary;
• when the stack contains more than two nodes,

with the third node from the top being tempo-
rary, temporary resulting nodes from binary
reduce must be left-headed;
• the terminate action can be performed when

the queue is empty, and the stack size is one.

170



References

Daniel M. Bikel and David Chiang. 2000. Two sta-
tistical parsing models applied to the Chinese Tree-
bank. InProceedings of SIGHAN Workshop, pages
1–6, Morristown, NJ, USA.

Daniel M. Bikel. 2004. On the Parameter Space of
Generative Lexicalized Statistical Parsing Models.
Ph.D. thesis, University of Pennsylvania.

Ted Briscoe and John Carroll. 1993. Generalized prob-
abilistic LR parsing of natural language (corpora)
with unification-based grammars.Computational
Linguistics, 19(1):25–59.

Xavier Carreras, Michael Collins, and Terry Koo.
2008. Tag, dynamic programming, and the percep-
tron for efficient, feature-rich parsing. InProceed-
ings of CoNLL, pages 9–16, Manchester, England,
August.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. InProceedings of NAACL, pages
132–139, Seattle, WA.

David Chiang and Daniel M. Bikel. 2002. Recovering
latent information in treebanks. InProceedings of
COLING.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG
and log-linear models.Computational Linguistics,
33(4):493–552.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. InProceed-
ings of ACL, pages 111–118, Barcelona, Spain, July.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. InProceedings of
the 35th Meeting of the ACL, pages 16–23, Madrid,
Spain.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. InProceedings
of EMNLP, pages 1–8, Philadelphia, USA, July.

Xiangyu Duan, Jun Zhao, and Bo Xu. 2007. Proba-
bilistic models for action-based Chinese dependency
parsing. InProceedings of ECML/ECPPKDD, War-
saw, Poland, September.

Jenny Rose Finkel, Alex Kleeman, and Christopher D.
Manning. 2008. Efficient, feature-based, con-
ditional random field parsing. InProceedings of
ACL/HLT, pages 959–967, Columbus, Ohio, June.
Association for Computational Linguistics.

Roger Levy and Christopher D. Manning. 2003. Is it
harder to parse Chinese, or the Chinese Treebank?
In Proceedings of ACL, pages 439–446, Sapporo,
Japan, July.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. InProceedings of ACL, pages 91–
98, Ann Arbor, Michigan, June.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen
Eryiǧit, and Svetoslav Marinov. 2006. Labeled
pseudo-projective dependency parsing with support
vector machines. InProceedings of CoNLL, pages
221–225, New York City, June.

Slav Petrov and Dan Klein. 2007. Improved infer-
ence for unlexicalized parsing. InProceedings of
HLT/NAACL, pages 404–411, Rochester, New York,
April. Association for Computational Linguistics.

Adwait Ratnaparkhi. 1999. Learning to parse natural
language with maximum entropy models.Machine
Learning, 34(1-3):151–175.

Kenji Sagae and Alon Lavie. 2005. A classifier-based
parser with linear run-time complexity. InProceed-
ings of IWPT, pages 125–132, Vancouver, British
Columbia, October.

Honglin Sun and Daniel Jurafsky. 2003. The effect of
rhythm on structural disambiguation in Chinese. In
Proceedings of SIGHAN Workshop.

Mengqiu Wang, Kenji Sagae, and Teruko Mitamura.
2006. A fast, accurate deterministic parser for Chi-
nese. InProceedings of COLING/ACL, pages 425–
432, Sydney, Australia.

Deyi Xiong, Shuanglong Li, Qun Liu, Shouxun Lin,
and Yueliang Qian. 2005. Parsing the Penn Chinese
Treebank with semantic knowledge. InProceedings
of IJCNLP.

Yue Zhang and Stephen Clark. 2008. A tale of
two parsers: investigating and combining graph-
based and transition-based dependency parsing us-
ing beam-search. InProceedings of EMNLP, pages
562–571, Hawaii, USA, October.

171


