
Proceedings of the 2009 Workshop on Text and Citation Analysis for Scholarly Digital Libraries, ACL-IJCNLP 2009, pages 71–79,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

FireCite: Lightweight real-time reference string extraction from webpages

Ching Hoi Andy Hong Jesse Prabawa Gozali
School of Computing

National University of Singapore
{hongchin,jprabawa,kanmy}@comp.nus.edu.sg

Min-Yen Kan

Abstract

We present FireCite, a Mozilla Firefox
browser extension that helps scholars as-
sess and manage scholarly references on
the web by automatically detecting and
parsing such reference strings in real-time.
FireCite has two main components: 1)
a reference string recognizer that has a
high recall of 96%, and 2) a reference
string parser that can process HTML web
pages with an overall F1 of .878 and plain-
text reference strings with an overall F1

of .97. In our preliminary evaluation, we
presented our FireCite prototype to four
academics in separate unstructured inter-
views. Their positive feedback gives evi-
dence to the desirability of FireCite’s cita-
tion management capabilities.

1 Introduction

On the Web, many web pages like researchers’ or
conference homepages contain references to aca-
demic papers much like citations in a bibliogra-
phy. These references do not always follow a spe-
cific reference style. Usually, they make use of
HTML formatting to differentiate fields and em-
phasize keywords. For example in Figure 1, paper
titles are displayed in bold.

Depending on personal preference and habit,
references found on the Web may be processed in
various ways. This process however, can possibly
be quite a long chain of events:

1. A researcher finds a PDF copy of the paper
and downloads it.

2. He reads the abstract of the paper, then de-
cides to read the rest of it.

3. He prints out the paper and reads it, making
annotations along the margin as he reads.

4. He produces a BibTeX entry for the paper.

Figure 1: A web page with a list of references.
Paper titles are displayed in bold.

5. He cites the paper in his own work.
This process is too time-consuming for re-

searchers to do for each reference, one at a time.
One solution is to collect all the references of in-
terest first. These references can then be processed
at a later time. Bibliographic Management Appli-
cations (BMAs) do exactly this by allowing the re-
searcher to record interesting references for later
use. Alternatively, the references can be recorded
manually on paper or in a text file. The paper for
each reference can also be printed and organized
physically in folders or piles.

Each method has its own disadvantages. Using
notebooks, text files or printouts imposes consid-
erable cognitive load on the researcher especially
when hundreds of references need to be managed.
BMAs seek to relieve researchers from this prob-
lem, but are often too complicated to use and
maintain. A popular BMA, EndNote, for example,
retrieves metadata from online library catalogues
and databases, but experience is necessary to know
which database or catalogue to search. Consider-
able time can be lost searching for a computer sci-
ence paper in a medical database. An automatic,
yet lightweight solution is needed.

Since the references are found on the Web, the
most suitable location for a BMA is within the web

71

browser itself. In this paper, we propose FireCite1,
a Firefox browser extension which embodies this
idea. FireCite 1) automatically recognizes refer-
ences on web pages, 2) parses these references
into title, authors, and date fields, 3) allows the
researcher to save these references for later use,
and 4) allows a local PDF copy of the paper to be
saved for each reference.

At its core, FireCite consists of a reference
string recognizer and a reference string parser with
accuracies comparable to other systems. Unlike
these systems however, as a browser extension,
FireCite needs to be fast and lightweight. Bloated
extensions can cause the browser’s memory foot-
print to grow significantly, lowering overall per-
formance. An extension must also perform its op-
erations fast. Otherwise, it will detract users from
their primary task with the browser. Nah (2004)
suggests latencies should be kept within two sec-
onds.

In the next section, we review related work. We
then discuss reference string recognition, followed
by parsing in Section 3. After component evalua-
tions, we conclude by discussing the user interface
of FireCite.

2 Related Work

Recognizing and parsing reference strings has
been a task tackled by many, as it is a necessary
task in modern digital libraries.

Past work has dealt primarily with clean data,
where reference strings are already delimited (e.g.,
in the References or Bibliography section of a
scholarly work). Many works consider both refer-
ence string recognition and reference string pars-
ing as a single combined problem. With regards
to the task, IEPAD (Chang et al., 2003) looks for
patterns among the HTML tags, while (Zhai and
Liu, 2005) looks for patterns among the presenta-
tion features of the web page. A machine learning
approach using Conditional Random Fields is also
discussed in a few works (Xin et al., 2008; Zhu et
al., 2006).

CRE (Yang et al., 2008) is an automatic ref-
erence string recognizer that works on publica-
tion list pages. Given such a page, CRE iden-
tifies individual reference strings by looking for
contiguous common style patterns. The system is
based on the authors’ two observations: 1) ‘refer-

1The latest version of the extension is at:
https://addons.mozilla.org/en-US/firefox/addon/10766/

ence string records are usually presented in one or
more contiguous regions’, and 2) ‘reference string
records are usually presented by using similar tag
sequences and organized under a common parent
node’. Therefore, the system examines the DOM2

tree of the web page and identifies adjacent sub-
trees that are similar. The system then removes
subtrees that are unlikely to be reference strings,
by comparing their word count against a database
of reference strings’ word counts. The authors re-
port an F1 of around 90% for pages where refer-
ence strings make up at least 80% of the text on
the page, and an F1 of at least 70% when refer-
ence strings make up at least 30% of the page.

Of note is that their testing dataset consists
solely of computer science researchers’ home-
pages and publication list pages. There is no indi-
cation of how their system will perform for other
types of web pages. Although there are many pub-
lished works on the extraction of semi-structured
data from web pages, very few of them deal di-
rectly with the issue of reference string extraction.
Also, none of the works deal directly with the is-
sue of web pages that do not contain any relevant
data. In FireCite’s case, this is an important issue
to consider, because false positives will be parsed,
and as stated previously, almost all web pages will
have elements that are not part of any reference
string.

As for reference string parsing, the field of In-
formation Extraction (IE) has treated this task as
one of its sample applications. As such, many
different IE approaches involving different super-
vised classifiers have been tried.

Such classification methods require a gold stan-
dard corpus to train on. The CORA Information
Extraction dataset, introduced in (Seymore et al.,
1999) consists of a corpus of 500 classified refer-
ence strings extracted from computer science re-
search papers, is used as training data. The CORA
dataset is annotated with thirteen fields, including
author, title and date.

As for classification approaches, (Hetzner,
2008; Seymore et al., 1999) and AutoBib (Geng
and Yang, 2004) makes use of Hidden Markov
Models (HMM), while ParsCit (Councill et al.,
2008) and (Peng and McCallum, 2004) make use
of Conditional Random Fields (CRF).

ParsCit’s reference string parsing system makes
use of CRF to learn a model that can apply meta-

2Document Object Model. http://www.w3.org/DOM/

72

data labels to individual word tokens of a reference
string. ParsCit’s labeling model consists of 7 lex-
ical features (features that make use of the mean-
ing/category of a word, such as whether the word
is a place, a month, or a first name) and 16 local
and contextual features (features that makes use
of formatting information about the current and
neighbouring tokens, such as whether the word is
in all caps). Its lexical features require the use of
an extensive dictionary of names, places, publish-
ers and months. ParsCit achieves an overall field-
level F1 of .94.

Another competitive method, FLUX-
CiM (Cortez et al., 2007) also parses plain-text
reference strings, based on a knowledge base of
reference strings. Initially, labels are assigned to
tokens based on the (label, token) pair’s likelihood
of appearance in the knowlege base. For tokens
that do not occur in the knowledge base, a binding
step is used to associate them with neighbouring
tokens that have already been labelled. The
authors report a very high token-level accuracy in
terms of F1 of 98.4% for reference strings in the
Computer Science (CS) domain, and 97.4% for
reference strings in the Health Sciences domain.

A key difference from other parsing methods is
that tokens in FLUX-CiM are strings delimited by
punctuation rather than single words (see an ex-
ample in Figure 2). This comes from an observa-
tion by the authors that “in general, in a reference
string, every field value is bounded by a delimiter,
but not all delimiters bound a field.”

Atlas , L ., and S . Shamma ,

“ Joint Acoustic and Modulation Frequency ,”

EURASIP JASP , 2003 .

Figure 2: A tokenised reference string. Each box
contains one token.

While both ParsCit and FLUX-CiM have high
levels of performance, they are not suitable for our
use for two reasons:

• Both systems are large. ParsCit’s classi-
fier model plus dictionaries add up to about
10MB. FLUX-CiM requires a database of
3000 reference strings for each knowledge
domain, for best performance. Databases of
this size will take a significant amount of time
to load and to access, negatively impacting
the user experience.

• Both systems are not designed to handle web
reference strings. Neither system is able to
correctly parse a reference string such as the
one shown in Figure 3 due to its lack of punc-
tuation and the misleading tokens that resem-
ble publication dates.

Doe, J. 2000 1942-1945: World War Two
and its effects on economy and technology.
Generic Publisher. Generic Country.

Figure 3: A reference string that FLUX-CiM and
ParsCit cannot parse correctly.

3 Methodology

FireCite performs its task of reference extraction
in two logically separate stages: recognition and
parsing. Reference string recognition locates and
delimits the start and end of reference strings on a
web page, while parsing delimits the internal fields
within a recognized reference.

3.1 Recognition

Reference recognition itself can be logically seg-
mented into two tasks: deciding whether refer-
ences could occur on a page; and if so, delimiting
the individual reference strings. We build a rough
filter for the first task, and solve the second task
using a three stage heuristic cascade.

Algorithm 1 Reference recognition.
1: Exclude pages based on URL and absence of

keywords
2: Split token stream into a set S of (non-

overlapping) sequences, where each sequence
contains at most one reference string, and no
reference string is split across two token se-
quences.

3: Select sequences likely to be reference strings,
forming a set S′ which is parsed into a set of
reference strings C.

4: Remove sequences with nonsensical parse re-
sults from the set of reference strings C.

We now detail these stages.
Stage 1 immediately discards webpages that

do not meet three criteria from subsequent auto-
matic processing. For a page to be automatically
processed by subsequent recognition and parsing
phases, FireCite requires that the webpage:

73

• Is from a .edu, .org, or .ac domain. Do-
mains with country identifiers, such as
www.monash.edu.au, are also accepted;

• Contains one or more of the words ‘Publica-
tions’, ‘Readings’, ‘Citations’, ‘Papers’, and
‘References’.

• Contains one or more of the words ‘Confer-
ence’, ‘Academic’, ‘Journal’, and ‘Research’.

The included domains include web pages from
academic institutions, digital libraries such as
CiteseerX 3 and ACM Portal 4, and online ency-
clopedias such as Wikipedia 5 – basically, web
pages where reference strings are likely to be
found. The keywords serve to further filter away
pages unlikely to contain lists of reference strings,
by requiring words that are likely to appear in the
headings of such lists.

Stage 1 runs very quickly and filters most non-
scholarly web pages away from the subsequent,
more expensive processing. This is crucial in im-
proving the extension’s efficiency, and ensuring
that the extension does not incur significant la-
tency for normal browsing activity.

Stage 2 splits the web page text into distinct
chunks. In plain-text documents, we differentiate
chunks by the use of blank lines. In HTML web
pages, we use formatting tags: <p> and
.
Other tags might also indicate a fresh chunk within
ordered () and unordered () lists, list
items are marked by the tag. A horizon-
tal rule (<hr>) is used to separate sections in the
web page. Stage 2 makes use of all these HTML
tags to split the web page text into distinct, non-
overlapping sequences.

Stage 3 removes sequences that are unlikely to
be reference strings, based on their length. Se-
quences that are too long or short are removed
(i.e., with word length 5 < wl < 64, and token
lengths 4 < tl < 48). These limits are based
on the maximum and minimum word and token
lengths of reference strings in the CORA corpus.

The sequences that survive this stage are sent to
the parsing system, discussed in the next subsec-
tion to be parsed.

Stage 4 further removes sequences that are ill-
formed. We require that all reference strings in-
clude a title and a list of authors after being parsed.

3hosted at http://citeseerx.ist.psu.edu
4http://portal.acm.org
5www.wikipedia.org

Sequences that do not meet these requirements are
discarded. Remaining sequences are accepted as
valid reference strings.

3.2 Parsing

Between Steps 3 and 4 in the recognition pro-
cess, a reference string is parsed into fields. We
treat this problem as a standard classification prob-
lem for which a supervised machine learning algo-
rithm can be trained to perform. In implementing
our parsing algorithm, recall that we have to meet
the criterion of a lightweight solution, which heav-
ily influenced the resulting design.

While a full-fledged reference string parser will
extract all available metadata from the reference
string, including fields such as publisher name,
publisher address and page numbers, we con-
sciously designed our parser to only extract three
fields: the title, the authors, and the date of pub-
lication. All other tokens are classified as Miscel-
laneous. There are two reasons for this: 1) for the
purposes of sorting the reference strings and sub-
sequently searching for them, these three fields are
most likely to be used; 2) restricting classification
space to four classes also simplifies the solution,
shrinking the model size.

Another simplification was to use a decision
tree classifier, as 1) the trained model is easily
coded in any declarative programming language
(including Javascript, the programming language
used by Firefox extensions), and 2) classification
is computationally inexpensive, consisting of a se-
ries of conditional statements.

Also, instead of the common practice of to-
kenising a string into individual words, we follow
FLUX-CiM’s design and use punctuation (except
for hyphens and apostrophes) and HTML tags as
token delimiters (as seen in the example in Fig-
ure 2). This tokenization scheme often leads to
phrases. There are a few advantages to this style
of tokenisation: 1) considering multiple words as
a token allows more complex features to be used,
thus giving a better chance of making a correct
classification; and 2) reducing the number of to-
kens per reference string reduces the computa-
tional cost of this task.

To classify each phrase, we compile a set of ten
features for use in the decision tree, comprising:
1) Lexical (dictionary) features that contain infor-
mation about the meaning of the words within the
token; 2) Local features that contain non-lexical

74

Feature Name Description
PfieldLabel
(String)

The label of the previous token

hasNumber
(Boolean)

Whether the token contains any num-
bers

hasYear
(Boolean)

Whether the token contains any 4-
digit number between 1940 and 2040

fieldLength (In-
teger)

The number of characters the token
has

hasMonth
(Boolean)

Whether the token contains any
month words (e.g. ‘January’, ‘Jan’)

oneCap
(Boolean)

Whether the token consists of only
one capital letter e.g. ‘B’

position (Float) A number between 0 and 1 that indi-
cates the relative position of the token
in the reference string.

hasAbbreviation
(Boolean)

Whether the token contains any
words with more than one capital
letter. Examples are ‘JCDL’, and
‘ParsCit’

startPunctuation
(String)

The punctuation that preceded this
token. Accepted values are pe-
riod, comma, hyphen, double quotes,
opening brace, closing brace, colon,
others, and none

endPunctuation
(String)

The punctuation that is immediately
after this token. Accepted values are
the same as for startPunctuation

Table 1: List of classifier features

information about the token; 3) Contextual fea-
tures, which are lexical or local features of a to-
ken’s neighbours. Table 1 gives an exhaustive list
of features used in FireCite.

We had to exclude lexical features that require
a large dictionary, such as place names and first
names, as such features would add significantly to
the loading and execution times of FireCite.

FireCite uses its trained model to tag input
phrases with their output class. Before accepting
the classification results, we make one minor re-
pair to them. The repair stems from the observa-
tion that in gold standard reference strings, both
the author and title fields are contiguous. If more
than one contiguous sequence of Title or Author
classification labels exist, there must be a classifi-
cation error. When the extension encounters such
a situation, FireCite will accept the first encoun-
tered sequence as correct, and change subsequent
sequences’ labels to Miscellaneous (Figure 4).

The parser joins all contiguous tokens for each
category into a string, and returns the set of strings
as the result.

4 Evaluation

4.1 Recognition

We took faculty homepages from the domains of
four universities at random, until a set of 20 home-
pages with reference strings and 20 homepages
without reference strings were obtained. Note that
these homepages were sampled from all faculties,
not merely from computer science.

Tests were conducted using these 40 pages to
obtain the reference string recognition algorithm’s
accuracy. A reference string is considered found
if there exists, in the set of confirmed reference
strings C, a parsed text segment c that contains the
entire title as well as all the authors’ names. Each
parsed text segment can only be used to identify
one reference string, so if any text segments con-
tain more than one reference string, only one of
those reference strings will be considered found.

Active stages Recall Precision F1

1, 2, 3, 4 96.0% 57.5% .719
2, 3, 4 96.6% 53.6% .689
1, 2, 4 96.3% 51.6% .672
1, 2, 3 98.4% 40.9% .578

1, 2 99.2% 16.1% .278

Table 2: Results of reference string recognition
over forty web pages for five variations of Fire-
Cite’s reference string recognition

In order to determine the effect of each stage
on overall recognition accuracy, some stages of
the recognition algorithm were disabled in testing.
The results are presented in Table 2. As all test
pages come from university domains, all pass the
first URL test. When the keyword search is deac-
tivated, all 40 test pages pass Stage 1. Otherwise,
19 pages with reference strings and 6 pages with-
out reference strings pass Stage 1.

The results show that disabling individual
stages of the algorithm increases recall slightly,
but increases the number of false positives dispro-
portionately more. The fully-enabled algorithm
strikes a balance between the number of reference
strings found and the number of false positives.

From the above results, we can also see that
false positives make up around 40% of the text
segments that are recognised as reference strings.
However, the majority of reference strings are
recognised by the algorithm. In our usage sce-
nario, our output will eventually be viewed by a
human user, who will be the final judge of what is
a reference string and what is not. Therefore, it is

75

Figure 4: An example of an incorrectly labelled (highlighted) reference string segment

Page (# of references) Title Authors Date All Tokens
A (72) .902 .893 .988 .708
B (52) .953 .957 .990 .960
C (29) .684 .304 .774 .651
D (68) .753 .968 .889 .917
E (8) .692 .875 1.000 .889
F (45) .847 1.000 .989 .966

Overall .836 .916 .948 .878

Table 3: Results of FireCite reference string pars-
ing. Performance figures given are Token F1.
Overall F1 includes tokens classified as Miscella-
neous, and is micro-averaged.

more important that we have a high recall rather
than high precision. In that respect, this algorithm
can be said to fulfill its purpose.

4.2 Parsing

To evaluate the reference string parsing algorithm,
we randomly selected six staff publication pages
from a computer science faculty. The presenta-
tion of each page, as well as the presentation of
reference strings on each page, were all chosen to
differ from each other. There are a total of 274
reference strings in these six pages. We annotated
the reference strings by hand; this set of annota-
tions is used as the gold standard. The six pages
are loaded using a browser with FireCite installed.
FireCite processes each page and produces a out-
put file with the parsed reference strings. These
parsing results are then compared against the gold
standard. Table 3 shows the token level results,
broken down by web page.

The FireCite reference string parser is able to
handle plain-text reference strings as well. A set of
plain-text reference strings can be converted into
a form understandable by FireCite, simply by en-
closing the set of reference strings with <html>
tags, and replacing line breaks with
 tags.
Table 4 shows the token F1 of the Firecite ref-
erence string parser compared FLUX-CiM, while
Table 5 shows the field F1 of FireCite, FLUX-CiM
and ParsCit. The test dataset used by all three sys-
tems is the FLUX-CiM Computer Science dataset6

6available at http://www.dcc.ufam.edu.br/ ẽccv/flux-cim/ Computer-
Science/

System Title Authors Date Overall
FireCite .940 .994 .982 .979

FLUX-CiM .974 .994 .986 .984

Table 4: Token F1 of FireCite and FLUX-CiM.

System Title Authors Date Overall
FireCite .92 .96 .97 .94
ParsCit .96 .99 .97 .94

FLUX-CiM .93 .95 .98 .97

Table 5: Field F1 of FireCite and other reference
string parsers.

of 300 reference strings randomly selected from
the ACM Digital Library. Note that in FireCite
and FLUX-CiM, tokens are punctuation delimited
whereas in ParsCit, tokens are word delimited.

We feel that above results show that FireCite’s
reference string parser is comparable to the re-
viewed systems (although statistically worse), de-
spite its use of a fast and simple classifier and the
lack of lexical features that require large dictio-
naries. The disparity of results between handling
web page reference strings and handling plain-text
reference strings can generally be attributed to the
differences between web page reference strings
and plain-text reference strings. Specifically:

• Among the testing data used, the reference
strings on one web page (Page C) all begin
with the title. However, in the CORA train-
ing corpus, all reference strings begin with
the authors’ names. As a result, in the trained
classifier, the first token of every reference
string is classified as ‘authors’. This error is
then propagated through the entire reference
string, because each token makes use of the
previous token’s class as a classifier feature.
As shown in Table 3 above, the performance
for page C is much worse than the perfor-
mance for the other pages.

• When web pages are created and edited
using a WYSIWIG editor, such as Adobe
Dreamweaver or Microsoft Office FrontPage,
multiple nested and redundant HTML tags

76

Min. time Max. time Avg. time
With references 90 544 192
W/o references 6 222 74

All pages 6 544 133

Table 6: FireCite execution time tests over 40 web
pages. Times given in milliseconds.

tend to be added to the page. Because Fire-
Cite treats HTML tags as token delimiters,
these redundant tags increase the number of
tokens in the string, thus affecting the to-
ken position feature of the classifier, causing
some tokens to become incorrectly classified.

Some of the inaccuracies can also be attributed
to mistakes from reference string recognition.
When the reference string is not correctly delim-
ited, text that occurs before or after the actual ref-
erence string is also sent to the reference string
parser. This affects the token position and previ-
ous token label features.

The competitive advantage of FireCite’s refer-
ence string parser is that it is very small compared
to the other systems. FireCite’s reference string
parser consists only of a decision tree coded into
JavaScript if-then-else statements, and a couple of
JavaScript functions, taking up a total of around
38KB of space. On the other hand, as mentioned
above, FLUX-CiM optimally requires a database
of around 3000 reference strings, while ParsCit’s
classifier model and dictionaries require a total of
10MB of space. These characteristics also make
the reference string parser fast. Speed tests were
conducted over 40 web pages taken from the do-
mains of four universities, 20 of which contain ref-
erence strings and 20 of which do not. The results
are summarised in Table 6. From these results we
can infer with some confidence that FireCite will
add no more than one second to the existing time
a page takes to load.

5 Extension Front End

We thus implemented a prototype BMA as a Fire-
fox extension that uses the recognizer and parser
as core modules. As such an extension interacts
with users directly, the extension’s front end de-
sign concentrated on functionality and usability
issues that go beyond the aforementioned natural
language processing issues.

Browser extension based BMAs are not new.

Zotero7 as well as Mendeley8 both offer BMAs
that manage reference (and other bookmark) in-
formation for users. However, neither recognizes
or delimits free formed reference strings found on
general webpages. Both rely on predefined tem-
plates to process specific scholarly websites (e.g.
Google Scholar, Springer).

In developing our front end, our design hopes
to complement such existing BMAs. We followed
a rapid prototyping design methodology. The cur-
rent user interface, shown in Figure 5, is the re-
sult of three cycles of development. Up to now,
feedback gathering has been done through focus
groups with beginning research students and indi-
vidual interviews with faculty members. Rather
than concentrate on the design process, we give a
quick synopsis of the major features that the Fire-
Cite prototype implements.

One-Click Addition of References: FireCite
appends a clickable button to each reference string
it detects through the recognition and parsing
modules. Clicking this button adds the reference
string’s metadata to the reference library. The de-
sign draws attention to the presence of a reference
without disrupting the layout of the webpage.

Reference Library: The reference library
opens as a sidebar in the browser. It is a local
database containing the metadata of the saved ref-
erences. The library allows reference strings to be
edited or deleted, and sorted according to the three
extracted metadata fields.

Manual recognition and addition: The core
modules occasionally miss valid references. To
remedy this, users can manually highlight a span
of text, and through the right click context menu,
ask FireCite to parse the span and append an “add
citation” button. The user may also manually add
or edit reference metadata directly in the sidebar.
This feature allows the user to add entries from his
existing collections of papers, or to add entries for
which no reference string can be found (such as
papers that have not been published).

PDF download: When a reference is added to
the local library, any Portable Document Format
(PDF) file associated with the reference string is
downloaded as well. Appropriate PDF files are
found heuristically by finding a hyperlink lead-
ing to a PDF file within the text segment. The
downloaded PDF files are stored in a single folder

7http://www.zotero.org
8http://www.mendeley.com

77

Figure 5: Screenshot of FireCite prototype illus-
trating (a) the reference string library, (b) button
appended to each reference string, and (c) button
state after the reference string has been added to
the list.

within Firefox’s storage location for the extension,
and can be opened or deleted through the sidebar
interface. With this feature, the user will not need
to juggle his PDF files and reference string library
separately.

As a preliminary evaluation, we presented Fire-
Cite to four academics in separate unstructured
interviews. All four subjects saw the potential
of FireCite as a BMA, but not the usefulness of
recognising reference strings on the Web. Two of
them pointed out that they rarely encounter refer-
ence strings while browsing the Web, while an-
other only needs to search for specific, known pa-
pers. When asked in detail, it was apparent that
subjects do actually visit web pages that contain
many reference strings. In DBLP, each entry is
actually a reference string. In the ACM Digital Li-
brary, in every article information page, there is
a list of reference strings that have been extracted
from the bibliography of the article using Optical
Character Recognition (OCR).

From our study, we conclude that integration
with template based recognition (a la Zotero) of
sites such as DBLP, Google Scholar and ACM
Portal, has better potential. As expected, since
the subjects all have significant research expe-
rience, they have already developed suitable re-
search methods. The challenge is for FireCite to
fit into their workflow.

6 Conclusion

This paper describes FireCite, a Firefox extension
that can recognise and delimit metadata from ref-
erence strings on freeform web pages. FireCite’s

“Liquidity-Based Model of Security Design,”
with Darrell Duffie, Econometrica, 1999, 67,
65-99.

Figure 6: A reference string with one author’s
name omitted.

Michael Collins and Terry Koo.
Discriminative Reranking for Natural Lan-
guage Parsing.
Computational Linguistics 31(1):25-69.

Figure 7: A reference string with its year omitted.
Part of a list of reference strings organised by their
year of publication.

implementation demonstrates it is possible to do
these tasks in real-time and with a usable level of
accuracy.

We have validated the accuracy of FireCite’s
embedded recognition and parsing modules by
comparing against the state-of-the-art systems,
both on web based reference strings that use
HTML tags as well as gold-standard reference
strings in plain text. FireCite achieves a usable
level of reference string recognition and parsing
accuracy, while remaining small in size, a criti-
cal requirement in building a browser extension.
This small model allows FireCite to complete its
processing of reference heavy webpages in un-
der one second, an acceptable level of latency for
most users. Preliminary user studies show that
the FireCite system should incorporate template
based recognition of large scholarly sites as well
for maximum effectiveness.

Future work on the parsing and recognition will
focus on capturing implied contextual informa-
tion. On some web pages the author may omit
their own name, or place the year of publication in
a section head (Figures 6 and 7). We are working
towards recognizing and incorporating such con-
textual information in processing.

Acknowledgements

This work was partially supported by a National
Research Foundation grant ”Interactive Media
Search” (grant # R 252 000 325 279).

References
Chia-Hui Chang, Chun-Nan Hsu, and Shao-Cheng Lui.

2003. Automatic information extraction from semi-

78

structured web pages by pattern discovery. Decis.
Support Syst., 35(1):129–147.

Eli Cortez, Altigran S. da Silva, Marcos André
Gonçalves, Filipe Mesquita, and Edleno S.
de Moura. 2007. FLUX-CIM: flexible unsuper-
vised extraction of citation metadata. In Proc. JCDL
’07, pages 215–224, New York, NY, USA. ACM.

Isaac G. Councill, C. Lee Giles, and Min-Yen Kan.
2008. ParsCit: An open-source CRF reference
string parsing package. In LREC ’08, Marrakesh,
Morrocco, May.

Junfei Geng and Jun Yang. 2004. Autobib: automatic
extraction of bibliographic information on the web.
pages 193–204, July.

Erik Hetzner. 2008. A simple method for citation
metadata extraction using hidden markov models.
In Proc. JCDL ’08, pages 280–284, New York, NY,
USA. ACM.

Fiona Fui-Hoon Nah. 2004. A study on tolerable wait-
ing time: how long are web users willing to wait?
Behaviour & Information Technology Special Issue
on HCI in MIS, 23(3), May-June.

Fuchun Peng and Andrew McCallum. 2004. Accu-
rate information extraction from research papers us-
ing conditional random fields. pages 329–336. HLT-
NAACL.

Kristie Seymore, Andrew McCallum, and Roni Rosen-
feld. 1999. Learning hidden markov model struc-
ture for information extraction. In AAAI’99 Work-
shop on Machine Learning for Information Extrac-
tion.

Xin Xin, Juanzi Li, Jie Tang, and Qiong Luo. 2008.
Academic conference homepage understanding us-
ing constrained hierarchical conditional random
fields. In Proc. CIKM ’08, pages 1301–1310, New
York, NY, USA. ACM.

Kai-Hsiang Yang, Shui-Shi Chen, Ming-Tai Hsieh,
Hahn-Ming Lee, and Jan-Ming Ho. 2008. CRE:
An automatic citation record extractor for publica-
tion list pages. In Proc. WMWA’08 of PAKDD-2008,
Osaka, Japan, May.

Yanhong Zhai and Bing Liu. 2005. Web data extrac-
tion based on partial tree alignment. In Proc. WWW
’05, pages 76–85, New York, NY, USA. ACM.

Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, and
Wei-Ying Ma. 2006. Simultaneous record detec-
tion and attribute labeling in web data extraction.
In Proc. KDD ’06, pages 494–503, New York, NY,
USA. ACM.

79

