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Abstract

We present a maximum entropy classifier
that significantly improves the accuracy of
Argumentative Zoning in scientific litera-
ture. We examine the features used to
achieve this result and experiment with
Argumentative Zoning as a sequence tag-
ging task, decoded with Viterbi using up
to four previous classification decisions.
The result is a 23% F-score increase on the
Computational Linguistics conference pa-
pers marked up by Teufel (1999).

Finally, we demonstrate the performance
of our system in different scientific do-
mains by applying it to a corpus of As-
tronomy journal articles annotated using a
modified Argumentative Zoning scheme.

1 Introduction

The task of generating automatic summarizations
of one or more texts is a central problem in Natu-
ral Language Processing (NLP). Summarization is
a fundamental component for future information
retrieval and question answering systems, incor-
porating both natural language understanding and
natural language generation.

Comprehension-based summarization, e.g.
Kintsch and Van Dijk (1978) and Brown et al.
(1983), is the most ambitious model of automatic
summarization, requiring a complete understand-
ing of the text. Due to the failure of rule-based
NLP and knowledge representation, other less
knowledge-intensive methods now dominate.

Sentence extraction, e.g. Brandow et al. (1995)
and Kupiec et al. (1995), selects a small number
of abstract worthy sentences from a larger text.
The resulting sentences form a collection of ex-
cerpt sentences meant to capture the essence of the
text. The next stage is information fusion (Barzi-
lay et al., 1999; Knight and Marcu, 2000) which

attempts to combine the excerpts into a more cohe-
sive text. These methods can create inflexible and
incoherent extracts that result in under-informative
results (Teufel et al., 1999).

Argumentative Zoning (Teufel, 1999; Teufel
and Moens, 2002) attempts to solve this prob-
lem by representing the structure of a text us-
ing a rhetorically-based schema. Sentences are
classified into one of a small number of non-
hierarchical argumentative roles, which can then
be used in both the sentence extraction and text
generation/fusion phase of automatic summariza-
tion. Argumentative Zoning can enable tailored
summarizations depending on the needs of the
user, e.g. a layperson versus a domain expert.

The first experiments in Argumentative Zon-
ing used Naı̈ve Bayes (NB) classifiers (Kupiec et
al., 1995; Teufel, 1999) which assume conditional
independence of the features. However, this as-
sumption is rarely true for the kinds of rich feature
representations we want to use for most NLP tasks.

Maximum entropy (ME) models have become
popular in NLP because they can incorporate evi-
dence from the complex, diverse and overlapping
features needed to represent language. Some ex-
ample applications include part-of-speech (POS)
tagging (Ratnaparkhi, 1996), parsing (Johnson et
al., 1999), language modelling (Rosenfeld, 1996),
and text categorisation (Nigam et al., 1999).

We have developed an Argumentative Zoning
(zone) classifier using a ME model. We compare
our zone classifier to a reimplementation of Teufel
and Moens (2002)’s NB classifier and features on
their original Computational Linguistics corpus.
Like Teufel (1999), we model zone classification
as a sequence tagging task. Our zone classifier
achieves an F-score of 96.88%, a 20% improve-
ment. We also show how Argumentative Zoning
can be applied to other domains by evaluating our
system on a corpus of Astronomy journal articles,
achieving an F-measure of 97.9%.

19



Category Abbr. Description
Background BKG general scientific background
Other OTH neutral descriptions of other researcher’s work
Own OWN neutral descriptions of the authors’ new work
Aim AIM statements of the particular aim of the current paper
Textual TXT statements of textual organisation of the current paper
Contrast CTR contrastive or comparative statements about other work

explicit mention of weaknesses of other work
Basis BAS statements that own work is based on other work

Table 1: Teufel’s (1999) Argumentative Zones

2 Argumentative Zoning

Teufel (1999) introduced a new rhetorical analy-
sis for scientific texts called Argumentative Zon-
ing. Each sentence of an article from the scien-
tific literature is classified into one of seven basic
rhetorical structures shown in Table 1.

The first three: Background, Other, and Own,
are part of the basic schema and represent attribu-
tion of intellectual ownership. The four additional
categories: aim, textual, contrast, and basis, are
based upon Swales (1990)’s Creating A Research
Space (CARS) model, and provide pointed infor-
mation about the author’s stance and the paper it-
self. Teufel assumes that each sentence only re-
quires a single classification and that all sentences
clearly fit into the above structure. The assump-
tion is clearly not always correct, but is a useful
approximation nevertheless.

Due to the specific nature of these classifica-
tions it is hoped that this will allow for much more
robust automatic abstraction generation. Sum-
maries of a paper could be created specifically for
the user, either focusing on the aim of the work,
the work’s stance in the field (what other works it
is based upon or compared with) and so on.

Teufel used Argumentative Zoning to determine
the author’s use and opinion of other authors they
cite in their work and also to create Rhetorical
Document Profiles (RDP), a type of summariza-
tion used to provide typical information that a new
reader may need in a systematic manner.

For the use of Argumentative Zoning in RDPs
Teufel (1999) points out that due to the redun-
dancy in language that near perfect accuracy is not
required as important pieces of information will be
repeated in the paper. Recognising these salient
points once is enough for them to be included in
the RDP. In further tasks, such as the analysis of
the function of citations (Teufel et al., 2006) and
automatic summarization, higher levels of accu-
racy are more critical.

3 Maximum Entropy models

Maximum entropy (ME) or log-linear models are
statistical models that can incorporate evidence
from a diverse range of complex and potentially
overlapping features. Unlike Naı̈ve Bayes (NB),
the features can be conditionally dependent given
the class, which is important since feature sets in
NLP rarely satisfy this independence constraint.

The ME classifier uses models of the form:

p(y|x) =
1

Z(x)
exp

(
n∑

i=1

λifi(x, y)

)
(1)

where y is the zone label, x is the context (the sen-
tence) and the fi(x, y) are the features with asso-
ciated weights λi.

The probability of a sequence of zone labels
y1 . . . yn given a sequence of sentences is s1 . . . sn

is approximated as follows:

p(y1 . . . yn|s1 . . . sn) ≈
n∏

i=1

p(yi|xi) (2)

where xi is the context for sentence si. In our ex-
periments that treat argumentative zoning as a se-
quence labelling task, the context xi incorporates
history information – i.e. the previous labelling
decisions of the classifier. Optimal decoding of
this sequence uses the Viterbi algorithm, which we
compare against the Oracle case of knowing the
correct label for the previous sentence.

The features are binary valued functions which
pair a zone label with various elements of the sen-
tential context; for example:

fj(x, y) =
{

1 if goal ∈ x & y = AIM
0 otherwise (3)

goal ∈ x, that is, the word goal is part of the
context of the sentence, is a contextual predicate.

The central idea in maximum entropy mod-
elling is that the model chosen should satisfy all of
the constraints imposed by the training data (in the
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form of empirical feature counts from the train-
ing data) whilst remaining as unbiased as possi-
ble. This is achieved by selecting the model with
the maximum entropy, i.e. the most uniform dis-
tribution, given the constraints.

Our classifier uses the maximum entropy imple-
mentation described in Curran and Clark (2003).
Generalised Iterative Scaling (GIS) is used to esti-
mate the values of the weights and we use a Gaus-
sian prior over the weights (Chen and Rosenfeld,
1999) which allows many rare, but informative,
features to be used without overfitting. This will
be an important property when we use sparse fea-
tures like bigrams in the models below.

4 Modelling Argumentative Zones

4.1 Our Features

The two primary sources of features for our zone
classifier were the words in the sentences and the
position of the sentence relative to the rest of the
paper. A number of feature types use additional
external resources (e.g. semantic lists of agents or
common rhetorical patterns) or annotations (e.g.
named entities). Where feasible we have reimple-
mented the features described in Teufel (1999). In
other cases, our features are somewhat simpler.

Since the Curran and Clark (2003) classifier
only accepts binary features, any numerical fea-
tures had to be bucketed into smaller sets of alter-
natives to reduce sparseness, either by integer di-
vision or through reducing the number by scaling
to a small integer range. The features we imple-
mented are described below.

Unigrams, bigrams and n-grams

A sub-sequence of n words from a given sentence.
We include unigram and bigram features and re-
port them individually and together (as n-grams).
These features include all of the unigrams and
bigrams above the feature cutoff, unlike Teufel’s
cont-1 features below. Also, both the Compu-
tational Linguistics and Astronomy corpora con-
tain marked up citations, cross-references to ta-
bles, figures, and sections and mathematical ex-
pressions. In the Computational Linguistics cor-
pus self citations are distinguished from other ci-
tations. These structured elements have been nor-
malised to a single token each, e.g. __CITE__.
These tokens have been retained in the unigram
and bigram features.

first The first four words of a sentence, added in-
dividually.

Sections, positions, and lengths

section A section counter which increments on
each heading to measure the distance into the doc-
ument. It does not take into consideration whether
they are sub-headings or similar. There are two
versions of this feature. The first is a straight
counter (1 to n) and the second is grouped into two
buckets representing each half of the paper (break-
ing at the middle section).
location The position of a sentence between two
headings (representing a section). There are two
versions of this feature, one counts to a maxi-
mum of 10 and the other represents a percentage
through the section bucketed into 20% intervals.
paragraph The position of the sentence within a
paragraph. Again there are two features – either
straight counts (with a maximum of 10) or buck-
eted into thirds of a paragraph.
length of sentence grouped into multiples of 3.

Named entity features

Our astronomy corpus has been manually anno-
tated with domain-specific named entity informa-
tion (Murphy et al., 2006). There are 12 coarse-
grained categories and 43 fine-grained categories
including star, galaxy, telescope, as well as a num-
ber of the usual categories including person, or-
ganisation and location. Both the coarse-grained
and fine-grained categories were used as features.

4.2 Teufel (1999)’s features

To compare with previous work, we also im-
plemented most of the features that gave Teufel
(1999) the best performance. We list all of the fea-
ture types in Table 2, indicating which ones have
and have not been implemented.

Teufel’s unigram features (cont-1) are filtered
using TF-IDF to select the top scoring 10 words in
each document, and then these are used to mark
the top 40 sentences in each document containing
those filtered words.

TLoc marks the position of the sentence over
the entire paper, using 10 unevenly sized segments
(larger segments are in the middle of the paper).

Struct-1 marks where a sentence appears in a
section. It divides each section into three equally
sized segments; singles out the first and the last
sentence as separate segments; the second and
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Name Impl? Description
Cont-1 yes An application of TF-IDF over the words and sentences
Cont-2 partial Does the sentence contain words in the title or heading (excluding stop words)
TLoc yes Position of the sentence in relation to 10 segments (A-J)
Struct-1 yes Position within a section
Struct-2 yes Relative position of sentence within a paragraph
Struct-3 partial Type of headline of the current section
TLength yes Is the sentence longer than 15 words?
Syn-1 no Voice of the first finite verb in the sentence
Syn-2 no Tense of the first finite verb in the sentence
Syn-3 no Is the first finite verb modified by a modal auxiliary
Cit-1 yes Does the sentence contain a citation or name of author?
Formu yes Does a formulaic expression occur in the sentence
Ag-1 yes Type of agent
Ag-2 yes Type of action (with or without negation)

Table 2: Teufel (1999)’s set of features

third sentence as a sixth segment; and the second-
last plus third-last sentence as a seventh segment.
Struct-3 the type of section heading for the cur-
rent section. In our case, we have not mapped
these down to the reduced set used by Teufel.

Formu uses pattern matching rules to iden-
tify formulaic expressions. Ag-1 and Ag-2 iden-
tify agent and action expressions from gazetteers.
Teufel (1999) provides these in the appendices.

4.3 Feature Cutoff

Features that occur rarely in the training set are
problematic because the statistics extracted for
these features are not reliable. They may still con-
tribute positively to the ME model because we use
Gaussian smoothing (Chen and Rosenfeld, 1999)
help avoid overfitting.

Instead of including every possible feature, we
used a cutoff to remove features that occur less
than four times. This primarily applies to the
n-gram features, especially bigrams, which were
quite sparse given the small quantity of training
data. Due to the speed of the ME implementation
it is possible to have quite a low cut-off.

4.4 History features and Viterbi

In order to take advantage of the predictabil-
ity of tags given prior sequences (for example,
AIM commonly following itself) we used history
features and treated Argumentative Zoning as a
sequence labelling task. Since each prediction
now relies on the previous decisions we used the
Viterbi algorithm to find the optimal sequence.

Given the small number of labelling alter-
natives, we experimented with several history
lengths ranging from previous label to the previ-
ous four labels. To determine the impact of this

feature in an ideal situation, we also experimented
with using an Oracle set of history features.

5 Results

Our results are produced using ten-fold cross val-
idation and are reported in terms of precision, re-
call and f-score for each of the zone classes, and a
weighted average over all classes. We have inves-
tigated the impact of each feature type using sub-
tractive analysis, where we have also calculated
paired t-test confidence intervals (the error values
reported are the 95% confidence interval).

The baselines for both sets were already quite
high (at least 70%) due to the common tag of
OWN, representing the author’s own work, but our
results show significant improvements over this
baseline.

5.1 CMP-LG Corpus

The CMP-LG corpus is a collection of 80 con-
ference papers collected by Teufel (1999) from
the Computation and Language E-Print Archive 1.
The LATEX source was converted to HTML with La-
tex2HTML then transformed into XML with cus-
tom PERL scripts. This text was then tokenized us-
ing the TTT (Text Tokenization) System into Penn
Treebank format. The result is a corpus of 12,000
annotated sentences, containing 333,000 word to-
kens, in XML format.

We attempted to recreate Teufel’s original ex-
periments by emulating the features she used with
the same type of classifier. We used Weka’s (Frank
et al., 2005) implementation of the NB classifier.

Table 3 reproduces the results from Teufel and
Moens (2002) alongside our reimplementation of

1http://xxx.lanl.gov/cmp-lg/
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original reproduced
Tag P R F P R F

AIM 44 65 52 45.8 57.8 51.1
BAS 37 40 38 23.8 37.0 28.9
CTR 34 20 26 33.1 19.2 24.3
BKG 40 50 45 46.9 53.6 50.1
OTH 52 39 44 70.6 55.0 61.8
TXT 57 66 61 66.3 47.6 55.4
OWN 84 88 86 86.7 90.8 88.7
Weighted 72 73 72 76.8 76.8 76.8

Table 3: Teufel and Moens (2002)’s and our NB

performance on CMP-LG

History Type Order Performance
Baseline None 93.16
Viterbi First 1.77 ± 0.49%
Viterbi Second 1.97 ± 0.42%
Viterbi Third 2.08 ± 0.45%
Viterbi Fourth 2.1 ± 0.46%
Viterbi Fifth 2.13 ± 0.46%
Oracle First 3.67 ± 0.68%
Oracle Second 4.06 ± 0.70%

Table 4: History features on the CMP-LG corpus
with ME model of unigram/bigram features only

Feature Classifier Viterbi
Ngrams -21.39±2.35% -23.23±3.24%
Unigram -8.00±1.02% -7.53±1.14%
Bigram -7.89±1.20% -6.87±1.44%
Concept -0.06±0.24% -0.06±0.16%
First -1.24±0.44% -1.14±0.39%
Length -0.34±0.24% -0.40±0.25%
Section -0.42±0.27% -0.27±0.33%
Location 0.03±0.20% 0.04±0.07%
Paragraph 0.10±0.15% 0.01±0.08%
All 95.69% 96.88%

Table 5: Subtractive analysis CMP-LG ME model

the features using Weka’s NB classifier. We have
been able to replicate their results to a reasonable
extent – gaining higher overall performance using
most of their original features. Notably, our Other
class is significantly more accurate whilst the orig-
inal Basis class did better.

Our next experiment investigated the value of
treating Argumentative Zoning as a sequence la-
belling task, i.e. the impact of the Markov history
features and Viterbi decoding on performance. For
these experiments we only used the unigram and
bigram features with the maximum entropy clas-
sifier. Table 4 presents the results: the baseline is
already much higher than the NB classifier which
is a result of both the unigram/bigram features and
the ME classifier itself.

The improvement using longer Markov win-
dows (up to 2.13%) is also shown – and longer

windows are better, although there is diminishing
returns. We chose a Markov history of the four
previous decisions for the rest of our experiments.
Table 4 also shows that knowing the previous label
perfectly (with the Oracle experiment) can make a
large difference to classification accuracy.

Feature Change
TLength -2.09±9.96%
Struct-1 0.38±6.08%
TLoc 0.96±7.25%
Struct-3 -1.65±6.76%
Cont-2 -1.10±6.39%
Struct-2 1.59±7.99%
Ag-1/2 -0.39±8.97%
Formu 0.14±8.46%
Cit-1 -1.88±5.19%
Cont-1 -0.38±5.85%
All 70.25%

Table 6: Teufel’s Subtractive analysis CMP-LG ME

Table 5 presents the subtractive analysis to de-
termine the impact of different feature types. From
this we can see that the n-grams (unigrams and bi-
grams) have by far the largest impact – and neither
of these feature types was directly implemented by
Teufel and Moens (2002). The next most impor-
tant features are the first few words (again a uni-
gram type feature), length and the section number.
The Markov history features also have an impact
of just over 1%.

Table 6 shows a different story for Teufel’s fea-
tures using the maximum entropy model. It seems
that none of the feature types alone are making an
enormous contribution and that the impact of them
varies enormously between folds (the confidence
intervals are far bigger than the differences).

Finally, Table 7 gives the results of using the
maximum entropy model with Markov history
length four and all of the features. Overall, we
improve Teufel and Moens’ performance by just
under 20% on our reproduced experiments.

5.2 Astronomical Corpus

The astronomical corpus was created by Mur-
phy et al. (2006) and consists of papers obtained
from arXiv (2005)’s astrophysics section (astro-
ph). The papers were converted from LATEX to
Unicode by a custom script which attempted to re-
tain as much of the paper’s special characters and
formatting as possible.

The resulting text was then processed using
MXTerminator (Reynar and Ratnaparkhi, 1997)
with an additional Python script to find sentence
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Category Abbr. Description
Background BKG As has been noted in prior studies , Abell|GXYC 2255|GXYC has an unusually large number

of galaxies with extended radio emission .
Other OTH This is consistent with the findings of Hogg|P Fruchter|P ( 1999|DAT ) who found that GRB

hosts are in general subluminous galaxies .
Own OWN We scanned the data of about 1.8|DUR year|DUR ( TJDs|DUR 11000-11699|DUR ) and found

30 new GRB-like events .
Data DAT In Fig . REF we present the 1.4|FRQ GHz|FRQ radio images of the cluster A2744|GXYC ,

at different angular resolutions . (subclassed from OWN)
Observation OBS Smith|P et al. ( 2001|DAT ) reported no detection of transient emission at sub-mm ( 850|WAV

um|WAV ) wavelengths . (subclassed from OTH)
Technique TEC Reduction of the NIR images was performed with the IRAF|CODE and STSDAS|CODE pack-

ages . (subclassed from OWN)

Figure 1: Examples of sentences with the given tags in the astronomical corpus

Tag P R F
AIM 96.5 88.2 92.2
BAS 86.7 89.8 88.2
CTR 92.1 89.0 90.5
BKG 86.0 96.3 90.9
OTH 96.3 91.7 93.9
TXT 98.2 93.8 95.9
OWN 98.6 99.2 98.9
Weighted 96.88 96.88 96.88

Table 7: Final CMP-LG ME performance

Feature Classifier Viterbi
Ngrams -18.83±3.74% -16.03±2.99%
Unigram -5.51±1.37% -5.25±2.00%
Bigram -2.04±0.78% -1.79±0.87%
Concept -0.18±0.29% -0.05±0.12%
Entity -0.18±0.39% -0.31±0.23%
First -0.02±0.29% -0.86±0.79%
Length -0.06±0.16% -0.08±0.10%
Paragraph -0.04±0.20% 0.07±0.19%
Section -0.29±0.24% -0.40±0.57%
Location -0.09±0.25% 0.06±0.15%
All 98.15% 96.68%

Table 8: Subtractive analysis ASTRO ME model

boundaries, and then tokenized using the Penn
Treebank (Marcus et al., 1993) sed script, with an-
other Python script fixing common errors. The
LATEX, which the tokenizer split off incorrectly,
was then reattached.

Each sentence of the corpus was then anno-
tated using a modified version of the Argumen-
tative Zoning schema. While the original three
zones: Background, Own, Other are used, we have
replaced the CARS labels with content labels de-
scribing aspects of the work: DAT for data used
in the analysis, OBS for observations performed,
and TEC for techniques applied. Only Own and
Other are subclassed with the extended schema of
Data, Observation and Techniques. Examples of
each zone classification are shown in Figure 1.

Tag P R F
BKG 92.1 97.1 94.5
OTH 95.0 97.1 96.1
OTH-DAT 100.0 92.3 96.0
OTH-OBS 91.3 93.3 92.3
OTH-TEC 100.0 100.0 100.0
OWN 99.9 99.3 99.6
OWN-DAT 95.9 86.6 91.0
OWN-OBS 98.2 89.4 93.6
OWN-TEC 90.4 100.0 94.9
Weighted 97.9 97.9 97.9

Table 9: Final ASTRO ME model performance

Table 8 shows the impact of different feature
types on classification accuracy for the Astron-
omy corpus. Again, the most important features
are the n-grams (although to a slightly lesser ex-
tent than for the Computational Linguistics cor-
pus). The other features make very little contri-
bution at all. Disappointingly, the (gold-standard)
named entity features contribute very little addi-
tional information – which is surprising given that
the content categories (data and observation) are
directly connected with some of the entity types
(like telescope).

In the Astronomy corpus, the Markov history
features actually have a detrimental effect, which
suggests the history is misleading. This warrants
further exploration, but we suspect there may be
more changing backwards and forwards between
argumentative zones in the Astronomy corpus.
Overall, we can see that the two tasks are of a sim-
ilar level of difficulty of around 96% F-score.

Table 9 shows the distribution over zones and
content labels for the Astronomy corpus. The
Background label is the hardest to reproduce even
though it is not split into content sub-types. The
sub-types are relatively rare for Other, so the re-
sults should not be considered as reliable.
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Tag P R F
BKG NB CMP-LG 51.5% 61.1% 55.9%
OTH NB CMP-LG 73.0% 64.2% 68.3%
OWN NB CMP-LG 91.9% 93.1% 92.5%
BKG NB ASTRO 63.1% 63.5% 63.3%
OTH NB ASTRO 53.9% 39.7% 45.7%
OWN NB ASTRO 88.5% 93.0% 90.7%
BKG ME CMP-LG 53.6% 27.5% 36.3%
OTH ME CMP-LG 63.0% 24.4% 35.2%
OWN ME CMP-LG 81.7% 96.8% 88.6%
BKG ME ASTRO 61.2% 29.5% 39.8%
OTH ME ASTRO 50.4% 20.0% 28.6%
OWN ME ASTRO 81.2% 96.7% 88.2%

Table 10: Comparing CMP-LG and ASTRO directly
on the basic annotation scheme

Table 10 compares the performance of our
Naı̈ve Bayes and Maximum Entropy classifiers
on the two corpora for just the basic annotation
scheme: Background, Own and Other. The fea-
tures used are the set of Teufel features we have
implemented (so it does not include unigram or
bigram features).

The results show that classifiers for both cor-
pora behave in quite similar ways on the basic
scheme. Own is by far the most frequent category,
and not surprisingly, it is most accurately classi-
fied in both domains. Background seems to be eas-
ier to distinguish in Astronomy, but Other is more
distinct in Computational Linguistics.

Further, we see no advantage to using maximum
entropy models over Naı̈ve Bayes when the fea-
ture set is not sophisticated/overlapping enough,
and the dataset large enough, to warrant the extra
power (and cost).

6 Conclusion

This paper has presented new models of Argumen-
tative Zoning using Maximum Entropy (ME) mod-
els. We have demonstrated that using ME models
with standard word features, such as unigrams and
bigrams, significantly outperforms Naı̈ve Bayes
models incorporating task-specific features. Fur-
ther, these task-specific features had very little ad-
ditional impact on the ME model.

Our ME model has raised the state-of-the-art
in automatic Argumentative Zoning classification
from 76% to 96.88% F-score on Teufel’s Compu-
tational Linguistics conference paper corpus.

To test the wider applicability of Argumentative
Zoning, we have annotated a corpus of Astronomy
journal articles with a modified zone and content
scheme, and achieved a similar level of perfor-

mance using our maximum entropy classifier. We
found that more sophisticated semantic features,
e.g. gold-standard named entities, also had little
impact on the accuracy of our classifier.

Now that we have a very accurate Argumenta-
tive Zone classifier, we would like to investigate
the impact of Argumentative Zones in information
retrieval, question answering, and summarization
tasks, particularly in the astronomy domain, where
we have additional tools such as the named entity
recognizer.

In summary, using a maximum entropy classi-
fier with simple unigram and bigram features re-
sults in a very accurate classifier for Argumenta-
tive Zones across multiple domains.
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