
Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 92–95,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Substring-based Transliteration with Conditional Random Fields

Sravana Reddy and Sonjia Waxmonsky
Department of Computer Science

The University of Chicago
Chicago, IL 60637

{sravana, wax}@cs.uchicago.edu

Abstract

Motivated by phrase-based translation research,
we present a transliteration system where char-
acters are grouped into substrings to be mapped
atomically into the target language. We show how
this substring representation can be incorporated
into a Conditional Random Field model that uses
local context and phonemic information.

1 Introduction

We present a transliteration system that is moti-
vated by research in phrase-based machine trans-
lation. In particular, we borrow the concept of
phrases, which are groups of words that are trans-
lated as a unit. These phrases correspond to multi-
charactersubstrings in our transliteration task.
That is, source and target language strings are
treated not as sequences of characters but as se-
quences of non-overlapping substrings.

We model transliteration as asequential label-
ing task where substring tokens in the source lan-
guage are labeled with tokens in the target lan-
guage. This is done using Conditional Random
Fields (CRFs), which are undirected graphical
models that maximize the posterior probabilities
of the label sequence given the input sequence. We
use as features bothlocal contexts andphonemic
information acquired from an English pronuncia-
tion dictionary.

2 The Transliteration Process

Our transliteration system has the following steps:

1. Pre-processing of the target language.

2. Substring alphabet generation for both the
source and target. This step also generates
training data for the CRFs in Step 3 and 4.

3. CRF training on aligned data from Step 2.

4. Substring segmentation and translitera-
tion of source language input.

Our training and test data consists of three sets –
English to Hindi, English to Kannada, and English
to Tamil (Kumaran and Kellner, 2007) – from the
NEWS 2009 Machine Transliteration Shared Task
(Li et al., 2009).

2.1 Step 1: Pre-Processing

The written words of Hindi, Tamil, and Kannada
correspond almost perfectly to their phonological
forms, with each character mapping to a phoneme.
The only exception to this arises from the implicit
vowel (which may be a schwa/@/ or a central
vowel /5/) that is inserted after consonants that
are not followed by thehalanta or ‘killer stroke’.
Hence, any mappings of an English vowel to a
target language schwa will not be reflected in the
alignment of the named entity pair.

To minimize misalignments of target language
strings with the English strings during training,
we convert the Indic abugida strings to an in-
ternal phonemic representation. The conversion
maps each unicode character to its correspond-
ing phonemic character and inserts a single sym-
bol (representing the schwa/central vowel) after all
consonants that are not followed by thehalanta.

These phoneme sequences are used as the in-
ternal representation of Indic character strings for
all later steps in our system. Once transliteration
is complete, the phonemic symbols are converted
back to unicode by reversing the above process.

2.2 Step 2: Substring alphabet generation

Our decision to use substrings in the transliteration
task is motivated by the differences in orthography
and phonology between the target and source lan-
guages, which prevent trivial one-to-one character
level alignment. We first discuss the cause of the
poor character alignment between English and the

92

Indic languages, and then describe how we trans-
form the input into substring representation.

English uses several digraphs for phonemes
that are represented by single characters in Indic
scripts, which are either part of standard ortho-
graphic convention (oo, ch, etc.), or necessitated
by the lack of a single phoneme that approximates
an Indic one (as in the case of aspirated conso-
nants). Conversely, English sometimes uses a sin-
gle character for a biphone (such asx for /ks/, or
u for /ju/ as inmuseum), which is represented by
two characters in the target languages. In certain
cases, a digraph in English is transliterated to a di-
graph in the target, as a result of metathesis (le →
/@l/, in words liketemple). Further, all three tar-
get languages often insert vowels between English
consonant clusters; for instance, Hindi inserts a
schwa betweens and p in ‘transport’, transliter-
ated asúrAns@porú (V~ A\spoV
).

To handle these cases, we borrow the concept of
phrases from machine translation (Och and Ney,
2004), where groups of words are translated as a
unit. In the case of transliteration, the ‘phrases’
are commonly occurringsubstrings – sequences
of characters – in one language that map to a
character or a substring in the other. We use the
term ‘substrings’ after a previous work (Sherif and
Kondrak, 2007) that employs it in a noisy channel
transliteration system. Zhao et al. (2007) also use
substrings (which they call ‘blocks’) in a bi-stream
HMM.

We bootstrap the induction of substrings by
aligning all named entity pairs in the training data,
using the GIZA++ toolkit (Och and Ney, 2003).
The toolkit performsunidirectional one-to-many
alignments, meaning that a single symbol in its
source string can be aligned toat most one sym-
bol in its target. In order to induce many-to-many
alignments, GIZA++ is run on the data in both di-
rections (source language to target language and
target language to source), and the bidirectional
alignment of a named entity pair is taken to be the
union of the alignments in each direction. Any
inserted characters (maps within the alignment
where the source or target character isnull) are
combined with the preceding character within the
string. For example, the initial bidirectional align-
ment of shivlal → Siv@lAl (EшvlAl) contains
the maps [sh → S, i → i, v → v, null → @, l → l,
a → A, andl → l]. Thenull → @ map is combined
with the preceding map to givev → v@, and hence

a one-to-one alignment.
Multicharacter units formed by bidirectional

alignments are added to source and target alpha-
bets. The above example would add the substrings
‘sh’ to the source alphabet, andv@ to the target.
Very low frequency substrings in both languages
are removed, giving the final substring alphabets
of single and multicharacter tokens. These alpha-
bets (summarized in Table 1) are used as the token
set for the CRF in Step 3.

We now transform our training data into a
substring-based representation. The original
named entity pairs are replaced by their bidirec-
tional one-to-one alignments described earlier. For
example, the〈s h i v l a l〉 → 〈S i v @ l
A l〉 training pair is replaced by〈sh i v l a l〉 →
〈S i v@ l A l〉. A few (less than3%) of the
pairs arenot aligned one-to-one, since their bidi-
rectional alignments contain low-frequency sub-
strings that have not been included in the alpha-
bet.1 These pairs are removed from the training
data, since only one-to-one alignments can be han-
dled by the CRF.

2.3 Step 3: CRF transliteration

With the transformed training data in hand, we can
now train a CRF sequential model that uses sub-
strings rather than characters as the basic token
unit. The CRF algorithm is chosen for its ability
to handle non-independent features of the source
language input sequence. We use the open-source
CRF++ software package (Kudo, 2005).

Ganesh et al. (2008) also apply a CRF to the
transliteration task (Hindi to English) but with
different alignment methods than those presented
here. In particular, multicharacter substrings are
only used as tokens on the target (English) side,
and a null token is used to account for deletion.

We train our CRF using unigram, bigram, and
trigram features over the source substrings, as well
as pronunciation information described in§2.3.1.
Table 2 describes these feature sets.

2.3.1 Phonetic information

Since the CRF model allows us to incorporate non-
independent features, we add pronunciation data
as a token-level feature. Doing so allows the CRF
to use phonetic information for local decision-
making. Word pronunciations were obtained from

1Note that if we did not filter out any of the substrings,
every pair would be aligned one-to-one.

93

Target Language Source Target
of Tokens Longest Token # of Tokens Longest Token

Hindi 196 augh, ough 141 Aj@ (aAy), ks@ (?s)
Kannada 197 aine 137 Aj@, mjA

Tamil 179 cque 117 mij, Aj@

Table 1: Overview of the substring alphabets generated in Step 2.

Feature Set Description
U Unigram:s

−1, s0, ands1

B Bigram:s
−1+s0

T Trigram: s
−2+s

−1+s0,
s
−1+s0+s1 ands0+s1+s2

P Phoneme assigned tos0

from dictionary lookup

Table 2: Feature sets used for CRF in Step 3.si is
the substring relative to the current substrings0.

the CMU Pronouncing Dictionary2. Just over a
third of the English named entities have pronun-
ciation information available for some or all the
constituent words.

The CMU dictionary provides a sequence of
phoneme symbols for an English word. We in-
clude these phonemes as CRF features if and
only if a one-to-one correspondence exists be-
tween phonemes and substring tokens. For exam-
ple, the English wordsimon has the segmentation
〈s i m o n〉 and pronunciation〈S AY M AH N〉,
both of length five. Additionally, a check is done
to ensure that vowel phonemes do not align with
consonant characters and vice-versa.

2.4 Step 4: Substring segmentation

In order to apply our trained model to unseen
data, we must segment named entities into non-
overlapping substrings that correspond to tokens
in the source alphabet generated in Step 2. For in-
stance, we need to convert the four characterdesh
to the three token sequence〈d e sh〉.

This is a non-trivial task. We must allow for
the fact that substrings are not insertedevery time
the component character sequence appears. For
instance, in our English/Hindi training set, the bi-
gramti always reduces to a single substring token
when it occurs in the-tion suffix, but does not re-
duce in any other contexts (likemartini). There
are also cases where more than one non-trivial seg-
mentation is possible. For example, two possible

2The CMU Pronouncing Dictionary (v0.7a). Available at
http://www.speech.cs.cmu.edu/cgi-bin/cmudict

segmentations ofdesh are 〈d es h〉 and 〈d e sh〉,
with the latter being the one that best corresponds
to the three-character Hindid”eS (d�ш).

One solution is to greedily choose the most
likely multi-character substring – in the example
cited, we can choose〈d e sh〉 becausesh reduces
more frequently thanes. However, this creates the
problem in cases where no reduction should occur,
as with theti in martini. Since contextual informa-
tion is necessary to determine the correct substring
segmentation, we model segmentation with a CRF,
using a combination of character unigram, bigram,
and trigram features.

We use an approach motivated by the In-
side/Outside representation of NP-chunking
which treats segmentation as a tagging process
over words (Ramshaw and Marcus, 1995). As
in NP-chunking, our goal is to identify non-
overlapping, non-recursive segments in our input
sequence. Our tagset is{I, O, B} where I
indicates that a character is inside a substring,O
indicates a character is outside a substring, andB
marks a right boundary.

After the test data has been segmented into its
substring representation, it can be passed as input
to the CRF model trained in Step 3 to produce our
final transliteration output.

3 Results

We first report our results on the development data
provided by the NEWS task, for different feature
sets and segmentation methods. We then present
the performance of our system on the test data.3

3.1 Development Data

Table 3 shows the results across feature sets.
Noting that the trigram featureT provides a
sizable improvement, we compare results from
U+B+T+P and U+B+P feature sets. Of the im-
proved cases,75-84% are a single vowel-to-vowel

3For the development runs, we use thetraining set for
training, and thedevelopment for testing. For the final test
runs, we use both thetraining anddevelopment sets for train-
ing, and thetest set for evaluation.

94

Language Feature Set ACC F-Score
U+P 24.6 86.2

Hindi U+B+P 26.2 86.5
U+B+T+P 34.5 88.6

U+B+T 34.2 88.3
U+P 26.7 87.8

Tamil U+B+P 27.6 88.0
U+B+T+P 34.9 89.8

U+B+T 33.1 89.7
U+P 22.5 86.0

Kannada U+B+P 22.6 86.2
U+B+T+P 28.7 88.0

U+B+T 27.5 87.9

Table 3: Accuracy (ACC) and F-score results (in
%) for CRF model on thedevelopment data.

Language Feature Set ACC F-Score
Hindi U+B+T+P 34.4 90.2

U+B+T 33.6 89.5
Tamil U+B+T+P 29.1 91.1

U+B+T 25.5 90.6
Kannada U+B+T+P 27.2 89.8

U+B+T 23.4 89.2

Table 4: Results on development data, restricted to
NEs whereP is included as a feature.

change, with the majority of the changes involving
a schwa/central vowel.

We see small gains from using the phonetic fea-
ture in both accuracy and F-Score. We further ex-
amine only those named entities where dictionary
information is applied, and as expected, this subset
shows greater improvement (Table 4).

Table 5 compares our the Inside/Outside tag-
ging approach with a greedy approach described
earlier. The greedy approach only inserts a multi-
character substring when that substring reduces
more than50% of the time in the overall train-
ing corpus. Since the Greedy method uses no
local contextual information, results are signifi-
cantly lower given the same feature set.

Language Segmentation ACC F-Score
Hindi I-O-B 34.5 88.6

Greedy 30.3 86.7
Tamil I-O-B 34.9 89.8

Greedy 28.2 87.5
Kannada I-O-B 28.7 88.0

Greedy 25.0 86.7

Table 5: Comparison of segmentation methods
on development data, using theU+B+T+P feature
set.

3.2 Test Data

Our model produces10 candidates for each named
entity in the test data, ranked by the probability
that the model assigns the candidate. We filter out
candidates below the rank of5 whose scores are
less than0.5 lower than that of the highest rank-
ing candidate. Table 6 shows our results on the
test data, using a CRF trained on the training and
development data, with the feature setU+B+T+P.

Hindi Kannada Tamil

Accuracy 41.8 36.3 43.5
F-Score 87.9 87.0 90.2
MRR 54.6 48.2 57.2

MAPref 41.2 35.5 43.0
MAP10 18.3 16.4 19.5
MAPsys 24.0 21.8 26.5

Table 6: Final results on thetest data (in %).

References

Surya Ganesh, Sree Harsh, Prasad Pingali, and Va-
sudeva Varma. 2008. Statistical transliteration for
cross language information retrieval using HMM
alignment model and CRF. InProceedings of the
2nd Workshop on Cross Lingual Information Access.

Taku Kudo. 2005. CRF++: Yet another CRF toolkit.
Available at http://chasen.org/ taku/software/crf++/.

A. Kumaran and Tobias Kellner. 2007. A generic
framework for machine transliteration. InProceed-
ings of SIGIR-07.

Haizhou Li, A Kumaran, Min Zhang, and Vladimir
Pervouchine. 2009. Whitepaper of NEWS 2009
machine transliteration shared task. InProceed-
ings of ACL-IJCNLP 2009 Named Entities Work-
shop (NEWS 2009).

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models.Computational Linguistics, 29(1):19–51.

Franz Josef Och and Hermann Ney. 2004. The align-
ment template approach to statistical machine trans-
lation. Computational Linguistics, 30(4):417–449.

Lance Ramshaw and Mitch Marcus. 1995. Text
chunking using transformation-based learning. In
Proceedings of WVLC-3.

Tarek Sherif and Grzegorz Kondrak. 2007. Substring-
based transliteration. InProceedings of ACL-07.

Bing Zhao, Nguyen Bach, Ian Lane, and Stephan Vo-
gel. 2007. A log-linear block transliteration model
based on bi-stream HMMs. InProceedings of
NAACL HLT 2007.

95

