
Proceedings of the 7th Workshop on Asian Language Resources, ACL-IJCNLP 2009, pages 55–62,
Suntec, Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

Basic Language Resources for Diverse Asian Languages:
A Streamlined Approach for Resource Creation

Heather Simpson, Kazuaki Maeda, Christopher Cieri

Linguistic Data Consortium

University of Pennsylvania

3600 Market St., Suite 810

Philadelphia, PA 19104, USA

{hsimpson, maeda, ccieri}@ldc.upenn.edu

Abstract

The REFLEX-LCTL (Research on En-
glish and Foreign Language Exploitation-
Less Commonly Taught Languages) pro-
gram, sponsored by the United States
government, was an effort in simultane-
ous creation of basic language resources
and technologies for under-resourced lan-
guages, with the aim to enrich sparse ar-
eas in language technology resources and
encourage new research. We were tasked
to produce basic language resources for 8
Asian languages: Bengali, Pashto, Pun-
jabi, Tamil, Tagalog, Thai, Urdu and
Uzbek, and 5 languages from Europe and
Africa, and distribute them to research and
development also funded by the program.
This paper will discuss the streamlined ap-
proach to language resource development
we designed to support simultaneous cre-
ation of multiple resources for multiple lan-
guages.

1 Introduction

Over the past decade, the scope of interest in lan-
guage resource creation has increased across mul-
tiple disciplines. The differing approaches of these
disciplines are reflected in the terms used for newly
targeted groups of languages. Less commonly
targeted languages (LCTLs) research may focus
on development of basic linguistic technologies
or language-aware applications. The REFLEX-
LCTL (Research on English and Foreign Language
Exploitation-Less Commonly Taught Languages)
program, sponsored by the United States govern-
ment, was an effort in simultaneous creation of ba-
sic language resources and technologies for LCTLs,
namely languages which have large numbers of
speakers, but are nonetheless infrequently studied
by language learners or researchers in the U.S.

Under the REFLEX-LCTL program, we pro-
duced “language packs” of basic language resources
for 13 such languages. This paper focuses on the
resources created for the 8 Asian languages: Ben-
gali, Pashto, Punjabi, Tamil, Tagalog, Thai, Urdu

and Uzbek.1

Our approach to language pack creation was to
maximize our resources. We accomplished this in a
number of ways. We engaged in thorough planning
to identify required tasks and their interdependen-
cies, and the human and technical resources needed
to accomplish them. We focused intensely on iden-
tifying available digital resources at the start of
language pack creation, so we could immediately
begin assessment of their usability, and work on
filling the resource gaps identified. We developed
annotation tools usable for multiple tasks and all
languages and designed to make manual annota-
tion more efficient. We developed standards for
data representations, to support efficient creation,
processing, and end use.

2 Planning For Basic Language

Resources Creation

2.1 Language Selection

The selection of REFLEX-LCTL target languages
was based on a number of criteria, while operating
within a fixed budget. The most basic criterion
was that the language be spoken by large num-
ber of native speakers, but poorly represented in
terms of available language resources. The Indic
languages (Bengali, Punjabi, Urdu) were chosen
to give researchers the opportunity to experiment
with bootstrapping techniques with resources in re-
lated languages. In order to maximize the useful-
ness and generality of our methods, the project
adopted the additional goals of variation in the ex-
pected availability of raw resources and also varia-
tion in linguistic characteristics both within the set
of selected languages and in comparison to more
well-resourced languages. Though we are focus-
ing, in this paper, on the Asian languages, LCTL
languages are linguistically and geographically di-
verse, representing major language families and
major geographical regions.

The following short descriptions of the Asian
LCTL languages are intended to provide some con-
text for the language pack discussions. The lan-

1The other languages were: Amazigh (Berber),
Hungarian, Kurdish, Tigrinya and Yoruba.

55

guage demographic information is taken from Eth-
nologue (Gordon, 2005).

2.2 Bengali

Bengali is spoken mostly in Bangladesh and India.
The language pack for Bengali was the first com-
plete language pack we created, and it served as
a pilot language pack for the rest of the project.
There were a relatively large number of raw mate-
rials and existing lexicons to support our lexicon
development, and our language pack included the
largest lexicon among the Asian language packs.

2.3 Urdu

Urdu, spoken primarily in Pakistan and part of
India, is closely related to Hindi. Urdu is tra-
ditionally written using Perso-Arabic script, and
has vocabulary borrowed from Arabic and Persian.
This was a language which had a large amount of
available digital resources in comparison with other
LCTLs, but did not meet our original expectations
for raw digital text.

2.4 Thai

Thai is a Tai-Kadai language spoken by more than
20 million people, mainly in Thailand. Thai was
another language which was relatively rich in avail-
able digital language resources. The Thai language
pack includes the largest amount of monolingual
text and found parallel text among the language
packs. For Thai, tokenization, or word segmenta-
tion, was probably the most challenging aspect of
the resource creation effort. For the initial version
of the language pack, we used a tokenization tool
adopted from an opensource software package.

2.5 Tamil

Tamil is a Dravidian language with more than 60
million speakers in India, Sri Lanka, Singapore and
other countries. We benefited from having local
language experts available for consultation on this
language pack

2.6 Punjabi

Punjabi, also written as Panjabi, is an Indo-
European language spoken in both India and Pak-
istan. Ethnologue and ISO 639-3 distinguish three
variations of Punjabi: Eastern, Mirpur and West-
ern, and the Eastern variation has the largest pop-
ulation of speakers. We were able to obtain rela-
tively large amounts of monolingual text and ex-
isting parallel text.

2.7 Tagalog

Tagalog is an Austronesian language spoken by 15
million people, primarily in the Philippines. The
monolingual text we produced is the smallest (774
K words) among the eight Asian language packs,

due in part to the prevalence of English in for-
mal communication mediums such as news publi-
cations.

2.8 Pashto

Pashto an Indo-European language spoken primar-
ily in Afghanistan and parts of Pakistan. It is one
of the two official languages in Afghanistan. Eth-
nologue and ISO 639-3 distinguish three varieties
of Pashto: Northern, Central and Southern. Ma-
jor sources of data for this language pack included
BBC, Radio Free America and Voice of America.

2.9 Uzbek

Uzbek is primarily spoken in Uzbekistan and in
other Asian republics of the former Soviet Union.
The creation of the language pack for Uzbek, which
is a Turkic language, and the official language of
Uzbekistan, was outsourced to BUTE (Budapest
University of Technology and Economics) in Hun-
gary. Even though the Uzbek government officially
decided to use a Latin script in 1992, the Cyrillic
alphabet used between the 1940’s and 1990’s are
still commonly found. Our language pack contains
all resources in Latin script and includes an en-
coding converter for converting between the Latin
script and the Cyrillic script.

2.10 Designing Language Packs

Within the REFLEX-LCTL program, a language
pack is a standardized package containing the fol-
lowing language resources:

• Documentation

– Grammatical Sketch

• Data

– Monolingual Text

– Parallel Text

– Bilingual Lexicon

– Named Entity Annotated Text

– POS Tagged Text

• Tools

– Tokenizer

– Sentence Segmenter

– Character Encoding Conversion Tool

– Name Transliterators

– Named Entity Tagger

– POS Tagger

– Morphological Analyzer

Grammatical sketches are summaries (approxi-
mately 50 pages) of the features of the written lan-
guage. The primary target audience are language
engineers with a basic grounding in linguistic con-
cepts.

56

Monolingual text is the foundation for all other
language pack resources. We provided monolingual
text in both tokenized and non-tokenized format.
Parallel text is an important resource for devel-
opment of machine translation technologies, and
allows inductive lexicon creation. The bilingual
lexicons also support a variety of language tech-
nologies. The named entity annotations and part
of speech tagged text can be used to create auto-
matic taggers.

The language packs also include basic data pro-
cessing and conversion tools, such as tokenizers,
sentence segmenters, character encoding convert-
ers and name transliterators, as well as more ad-
vanced tools, such as POS taggers, named entity
taggers, and morphological analyzers.

These language packs include 6 of the 9 text re-
sources and tools in 4 of the 15 text-based modules
listed in the current BLARK matrix (ELDA, 2008).

When we had a relatively stable definition of the
deliverables for language pack, we were able to be-
gin planning for the downstream processes

3 Standards for Data

Representation

An important step in planning was to define stan-
dards for language pack data representation, to
allow all downstream processes to run more effi-
ciently.

3.1 Language Codes

We decided to use the ISO 639-32 (also Ethnologue,
15th edition (Gordon, 2005)) three-letter language
codes throughout the language packs. For exam-
ple, the language code is stored in every text data
file in the language packs. The ISO 639-3 lan-
guage codes for our eight languages are as follows:
Urdu (URD), Thai (THA), Bengali (BEN), Tamil
(TAM), Punjabi (PAN), Tagalog (TGL), Pashto
(PBU) and Uzbek (UZN). When there were multi-
ple ISO 639-3 codes for a target language, the code
for the sublanguage for which the majority of the
written text can be obtained was used.

3.2 File Formats

One of the first tasks in planning for this data
creation effort was to define file formats for the
monolingual text, parallel text, lexicons and an-
notation files. This designing process was led by
us and a group of experts selected from the re-
search sites participating in the REFLEX-LCTL
program. The requirements included the follow-
ing:

• Monolingual and parallel text files should be
able to represent sentence segmentation, and

2See http://www.sil.org/iso639-3/ for more de-
tails

both tokenized and non-tokenized text.

• For parallel text, the text and the target lan-
guage and the translations in English should
be stored in separate aligned files.

• Unique IDs should be assigned to sen-
tences/segments, so that the segment-level
mapping in parallel text is clear.

• Annotation files should be in a stand-off for-
mat: i.e., annotations should be separate from
the source text files.

• Lexicon files should be able to represent at the
minimum of word, stem, part-of-speech, gloss
and morphological analysis.

• File formats should be XML-based.

• Files should be encoded in UTF-8 (UNI-
CODE).

After several cycles of prototyping and exchang-
ing feedback, we settled on the following original
file formats named “LCTL text format” (LTF - file
name extension: .ltf.xml), “LCTL annotation for-
mat” (LAF - file name extension: .laf.xml), and
“LCTL lexicon format” (LLF - file name exten-
sion .llf.xml. Appendix A shows the DTD for LTF
format.

3.3 Evaluation and Training Data
Partition

To support evaluation of language technologies
based on the data included in the language packs,
we designated approximately 10% of our primary
data as the evaluation data and the rest as the
training data. Any data that was included as “as-
is”, (e.g. found parallel text), was included in the
training partition.

3.4 Directory Structure and File Naming
Conventions

Giving all language packs a consistent design and
structure allows users to navigate the contents with
ease. As such, we defined the directory structure
within each language pack to be the following.

The top directory was named as follows.

LCTL_{Language}_{Version}/

For example, the version 1.0 of the Urdu lan-
guage pack would have the top directory named
LCTL Urdu v1.0.

The top directory name is also used as the official
title for the package, so the full name rather than
the language code was used for maximum clarity
for users not familiar with the ISO coding.

Under the main directory, the following subdi-
rectories are defined:

57

Documentation/

Grammatical_Sketch/

Tools/

Lexicon/

Monolingual_Text/

Parallel_Text/

Named_Entity_Annotations/

POS_Tagged_Text/

The Parallel Text directory was divided into
“Found” and “Translation” directories. The Found
directory contains parallel text that was available
as raw digital text, which we processed into our
standardized formats. The Translation directory
contains manually translated text, created by our
translators or subcontractors as well as part of
found parallel text which we were able to align
at the sentence-level. The data directories (e.g.,
Monolingual Text, Parallel Text, Named Entity
Annotation, POS Tagged Text) were further di-
vided into evaluation data (“Eval”) and training
data (“Train”) directories as requested by the pro-
gram.

We used the following format for text corpora
file names wherever possible:

{SRC}_{LNG}_{YYYYMMDD}.{SeqID}

{SRC} is a code assigned for the source; {LNG}
is the ISO 639-3 language code; {YYYYMMDD}
is the publication/posting date of the document;
and {SeqID} is a unique ID within the documents
from the same publication/posting date.

4 Building Technical Infrastructure

In creating the language resources included in the
LCTL language packs, we developed a variety of
software tools designed for humans, including na-
tive speaker informants without technical exper-
tise, to provide data needed for the resource cre-
ation efforts as efficiently as possible. In particular,
the following tools played crucial roles in the cre-
ation of language packs.

4.1 Annotation Collection Kit Interface
(ACK)

In order to facilitate efficient annotation of a vari-
ety of tasks and materials, we created a web-based
judgment/annotation tool, named the Annotation
Collection Kit interface (ACK). ACK allows a task
manager to create annotation “kits,” which consist
of question text and predefined list and/or free-
form answer categories. Any UTF-8 text may be
specified for questions or answers. ACK is ideal
for remote creation of multiple types of text-based
annotation, by allowing individual “kits” to be up-
loaded onto a specific server URL which any re-
mote user can access. In fact, using this tool
we were able to support native speaker annota-

tors working on part-of-speech (POS) annotation
in Thailand.

When annotators make judgments in ACK, they
are stored in a relational database. The results can
be downloaded in CSV (comma-separated value) or
XML format, so anyone with secure access to the
server can easily access the results.

ACK was designed so that anyone with even a
basic knowledge of a scripting language such as
Perl or Python would be able to create the ACK
annotation kits, which are essentially sets of data
corresponding to a sets of annotation decisions in
the form of radio buttons, check boxes, pull-down
menus, or comment fields. Indeed some of the lin-
guists on the LCTL project created their own ACK
kits when needed. Although they are limited in
scope, creative use of ACK kits can yield a great
deal of helpful types of annotation.

For example, for POS annotation, the annota-
tors were given monolingual text from our corpus,
word by word, in order, and asked to select the
correct part of speech for that word in context.
We also used ACK to add/edit glosses and part
of speech tags for lexicon entries, to perform mor-
phological tagging, and various other tasks that
required judgment from native speakers.

Figure 1: ACK - Annotation Collection Kit

Figure 1 shows a screen shot of ACK.

4.2 Named Entity Annotation Tool

For named entity annotation task, we chose to em-
ploy very simple annotation guidelines, to facili-
tate maximum efficiency and accuracy from native-
speaker annotators regardless of linguistic training.

We used an named entity (NE) annotation tool
called SimpleNET, which we previously developed
for the named entity annotation task for another
project. SimpleNET requires almost no training
in tool usage, and annotations can be made either
with the keyboard or the mouse. The NE anno-
tated text in the LCTL language packs was created
with this tool. This tool is written in Python us-
ing the QT GUI toolkit, which allows the display

58

of bidirectional text.

Figure 2: SimpleNET Annotation Tool

Figure 2 shows a screen shot of SimpleNET.

4.3 Named Entity Taggers and POS
Taggers

We created common development frameworks for
creating named entity taggers and part-of-speech
taggers for the LCTL languages. These frame-
works allowed us to create taggers for any new
language given enough properly-formatted training
data and test data. Included are core code written
in Java as well as data processing utilities written
in Perl and Python. The framework for creating
POS taggers was centered around the MALLET
toolkit (McCallum, 2002).3

4.4 Data Package Creation and
Distribution

As per LDC’s usual mechanisms for small corpora,
language packs were to be packaged as a tar gzip
(.tgz) file, and distributed to the REFLEX-LCTL
participating research sites. The distribution of the
completed languages packs were handled by our se-
cure web downloading system. Access instructions
were sent to the participating research sites, and
all downloads were logged for future reference.

5 Steps for Creating Each

Language Pack

5.1 Identifying Local Language Experts
and Native Speakers

An intermediate step between planning and cre-
ation was to identify and contact any available lo-
cal experts in the targeted languages, and recruit
additional native speakers to serve as annotators
and language informants. Annotators were not
necessarily linguists or other language experts, but

3We thank Partha Pratim Talukdar for providing
frameworks for creating taggers.

they were native speakers with reading and writing
proficiencies who received training as needed from
in-house language experts for creating our anno-
tated corpora, and helped to identify and evaluate
harvestable online resources.

Intensive recruiting efforts were conducted for
native speakers of each language. Our recruiting
strategy utilized such resources as online discussion
boards and student associations for those language
communities, and we were also able to capitalize
on the diversity of the student/staff body at the
University of Pennsylvania by recruiting through
posted signs on campus.

5.2 Identifying Available Language
Resources

The first step in creating each language pack was
to identify resources that are already available. To
this end we implemented a series of “Harvest Fes-
tivals”; intensive sessions where our entire team,
along with native speaker informants, convened
to search the web for available resources. Avail-
able resources were immediately documented on
a shared and group editable internal wiki page.
By bringing together native speakers, linguists,
programmers, information managers and projects
managers in the same room, we were able to min-
imize communications latency, brainstorm as a
group, and quickly build upon each other’s efforts.
This approach was generally quite successful, es-
pecially for the text corpora and lexicons, and
brought us some of our most useful data.

5.3 Investigating Intellectual Property
Rights

As soon as Raw digital resources were identi-
fied, our local intellectual property rights special-
ist began investigation into their usability for the
REFLEX-LCTL language packs. It was necessary
to contact many individual data providers to ob-
tain an agreement, so the process was quite lengthy
and in some cases permission was not granted un-
til shortly before the package was scheduled for
release to the REFLEX community. Our general
practice was to process all likely candidate data
pools and remove data as necessary in later stages,
thus ensuring that IPR was not a bottleneck in
language pack creation. The exception to this was
for large data sources, where removal would have
significantly affected the quantity of data in the
deliverable.

5.4 Creating Basic Text Processing Tools

The next step was to create the language-specific
basic data processing tools, such as encoding con-
verter, sentence segmenter and tokenizer.

The goal for this project was to include whatever
encoding converters were needed to convert all of

59

the raw text and lexical resources collected or cre-
ated into the standard encoding selected for that
target language.

Dividing text into individual sentences is a nec-
essary first step for many processes including the
human translation that dominated much of our ef-
fort. Simple in principle, LCTL sentence segmen-
tation can prove tantalizingly complex. Our goal
was to produce a sentence segmenter that accepts
text in our standard encoding as input and outputs
segmented sentences in the same encoding.

Word segmentation, or tokenization, is also chal-
lenging for languages such as Thai. For Thai,
our approach was to utilize an existing opensource
word segmentation tool, and enhancing it by using
a larger word list than the provided one.

We designed the basic format conversion tools,
such as the text-to-LTF converter, to be able to
just plug in language-specific tokenizers and seg-
menters.

5.5 Creating Monolingual Text

The monolingual text corpora in the languages
packs were primarily created by identifying and
harvesting available resources from the Internet,
such as news, newsgroups and weblogs in the tar-
get language. Once the IPR expert determined
that we can use the resources for the REFLEX-
LCTL program, we harvested the document files –
recent documents as archived documents. The har-
vested files were then analyzed and the files that
actually have usable contents, such as news arti-
cles and weblog postings were kept and converted
into the LCTL Text format. The formatting pro-
cess was typically done in the following steps: 1)
convert the harvested document or article in html
or other web format to a plain text format, strip-
ping html tags, advertisements, links and other
non-contents; 2) convert the plain text files into
UTF-8, 2) verify the contents with native speak-
ers, and if necessary, further remove non-contents,
or divide a file into multiple files; 3) convert the
plain text files into the LCTL Text format, apply-
ing sentence segmentation and tokenization. Each
document file is assigned a unique document ID.
Essential information about the document such as
the publication date was kept in the final files.

5.6 Creating Parallel Text

Each language pack contains at least 250,000 words
of parallel text. Part of this data was found re-
sources harvested from online resources, such as
bilingual news web site. The found parallel doc-
uments were converted into the LTF format, and
aligned at the sentence level, producing segment-
mapping tables between the LTF files in the LCTL
language and the LTF files in English.

The rest of this data was created by manually
translating documents in the LCTL language into

English, or documents in English into the LCTL
language. A subset of the monolingual text corpus
was selected for translation into English.

In addition, about 65,000 words of English
source text were selected as the “Common English
Subset” for translation into each LCTL language.
Having the same set of parallel documents for all
languages will facilitate comparison between any
or all of the diverse LCTL languages. The Com-
mon Subset included : newswire text, weblogs, a
phrasebook and an elicitation corpus. The phrase-
book contained common phrases used in daily life,
such as “I’m here”, and “I have to go”. The
elicitation corpus, provided by Carnegie Mellon
University (Alvarez et al., 2006), included expres-
sions, such as “male name 1 will write a book
for female name 1, where male name 1 and fe-

male name 1 are common names in the LCTL lan-
guage. The set of elicitation expressions is designed
to elicit lexical distinctions which differ across lan-
guages.

The manual translation tasks were outsourced
to translation agencies or independent translators.
Since the translators were instructed to translate
text which had already been sentence-segmented,
the creation of sentence-level mappings was trivial.
However, we found that it was important to create
a sentence-numbered template for the translators
to use, otherwise we were likely to receive trans-
lations where the source text sentence boundaries
were not respected.

5.7 Creating Lexicons

Bilingual lexicons are also an important resource
that can support a variety of human language tech-
nologies, such as machine translation and informa-
tion extraction. The goal for this resource was a
lexicon of at least 10,000 lemmas with glosses and
parts of speech for each language. For most of the
languages, we were able to identify existing lexi-
cons, either digital or printed, to consult with and
extract information for a subset of the lexical en-
tries; however, in all cases we needed to process
them substantially before they could be used effi-
ciently. We performed quality checking, normaliz-
ing, added parts of speech and glosses, added en-
tries and removed irrelevant entries.

5.8 Creating Annotated Corpora

A subset of the target language text in each lan-
guage pack received up to three types of annota-
tions: part-of-speech tags, morphological analysis,
and named entity tags. Named entity annotations
were created for all language packs.

Annotations were created by native speakers us-
ing the annotation tools discussed in section 4.

60

5.9 Creating Morphological Analyzers

To address the requirement to include some kind
of tool for morphological analysis in each language
pack, we created either a morphological analyzer
implementing hand-written rules or a stemmer us-
ing an unsupervised statistical approach, such as
the approach described in (Hammarstrom, 2006).

5.10 Creating Named Entity Taggers

We created a named entity tagger for each lan-
guage pack using our common development frame-
work for named entity taggers4.3. The tagger was
created using the named entity annotated text we
created for the language packs.

5.11 Creating Part-of-Speech Taggers

Similarly, we created a POS tagger for each lan-
guage pack using our common development frame-
work for POS taggers (See Section 4.3). We coor-
dinated the POS tag sets for the taggers and lexi-
cons.

5.12 Creating Name Transliterators

A transliterator that converts the language’s na-
tive script into Latin script is a desired resource.
For some languages, this is not a straightforward
task. For example, not all vowels are explicitly rep-
resented in Bengali script, and there can be mul-
tiple pronunciations possible for a given Bengali
character. Names, especially names foreign to the
target language exhibit a wide variety of spelling,
and in HLTs, make up a large percentage of the
out-of-vocabulary terms. We focused on creating
a transliterator to for romanization of names in the
LCTL languages. This resource was generally cre-
ated by the programming team with consultation
from native speakers.

5.13 Writing Grammatical Sketches

The grammatical sketches provide an outline of the
features of the written language, to provide the
language engineers with description of challenges
specific to the languages in creating language tech-
nologies. These sketches were written mainly by
senior linguists in our group, for readers who do
not necessarily have training in linguistics. The
format of these documents was either html or pdf.

6 Summary of Completed

Language Packs

Table 1 summarizes the contents of the 8 Asian
language packs .4 All of the language packs have
already been distributed to REFLEX-LCTL par-
ticipating research sites. The packs continue to
be used to develop and test language technologies.
For example, the Urdu pack was used to support a

4The numbers represent the number of tokens.

task in the 2006 NIST Open MT Evaluation cam-
paign (of Standards and Technology, 2009). Once
a language pack has been used for evaluation it will
be placed into queue for general release.

7 Conclusion

We have developed an efficient approach for creat-
ing basic text language resources for diverse lan-
guages. Our process integrated the efforts of soft-
ware programmers, native speakers, language spe-
cialists, and translation agencies to identify and
built on already available resources, and create new
resources as efficiently as possible.

Using our streamlined processes, we were able
to complete language packs for eight diverse Asian
languages. We hope that the completed resources
will provide valuable support for research and tech-
nology development for these languages.

We faced various challenges at the beginning of
the project which led us to revisions of our meth-
ods, and some of these challenges would surely be
encountered during a similar effort. We hope that
our approach as described here will be of service to
future endeavors in HLT development for under-
resourced languages.

References

Alison Alvarez, Lori S. Levin, Robert E. Fred-
erking, Simon Fung, and Donna Gates. 2006.
The MILE corpus for less commonly taught lan-
guages. In Proceedings of HLT-NAACL 2006.

ELDA. 2008. BLARK Resource/Modules
Matrix. From Evaluations and Language Re-
sources Distribution Agency (ELDA) web site
http://www.elda.org/blark/matrice res mod.php
, accessed on 2/23/2008.

Raymond G. Gordon, Jr., editor. 2005. Eth-
nologue: Languages of the World, Fifteenth
edition, Online version. SIL International.
http://www.ethnologue.com/.

Harald Hammarstrom, 2006. Poor Man’s Stem-
ming: Unsupervised Recognition of Same-Stem
Words. Springer Berlin / Heidelberg.

Andrew Kachites McCallum. 2002. MAL-
LET: A machine learning for language toolkit.
http://mallet.cs.umass.edu.

National Institute of Standards and
Technology. 2009. NIST Open
Machine Translation Evaluation.
http://www.itl.nist.gov/iad/mig/tests/mt/,
accessed on June 7, 2009.

61

Urdu Thai Bengali Tamil Punjabi Tagalog Pashto Uzbek
Mono Text 14,804 39,700 2,640 1,112 13,739 774 5,958 790
Parallel Text (L ⇒ E) 1,300 694 237 308 203 180 206
Parallel Text (Found) 947 1,496 243 230
Parallel Text (E ⇒ L) 65 65 65 65 65 65 65 65
Lexicon 26 232 482 10 108 18 10 25
Encoding Converter Yes Yes Yes Yes Yes Yes Yes Yes
Sentence Segmenter Yes Yes Yes Yes Yes Yes Yes Yes
Word Segmenter Yes Yes Yes Yes Yes Yes Yes Yes
POS Tagger Yes Yes Yes Yes Yes Yes Yes Yes
POS Tagged Text 5 5 59
Morphological Analyzer Yes Yes Yes Yes Yes Yes Yes Yes
Morph-Tagged Text 11 144
NE Annotated Text 233 218 138 132 157 136 165 93
Named Entity Tagger Yes Yes Yes Yes Yes Yes Yes Yes
Name Transliterator Yes Yes Yes Yes Yes Yes Yes Yes
Descriptive Grammar Yes Yes Yes Yes Yes Yes Yes Yes

Table 1: Language Packs for Asian Languages (Data Volume in 1000 Words)

A DTD for LTF Files

<!ELEMENT LCTL_TEXT (DOC+) >
<!ATTLIST LCTL_TEXT lang CDATA #IMPLIED

source_file CDATA #IMPLIED
source_type CDATA #IMPLIED
author CDATA #IMPLIED
encoding CDATA #IMPLIED >

<!ELEMENT DOC (HEADLINE|DATELINE|AUTHORLINE|TEXT)+ >
<!ATTLIST DOC id ID #REQUIRED

lang CDATA #IMPLIED
>

<!ELEMENT HEADLINE (SEG+) >
<!ELEMENT DATELINE (#PCDATA) >
<!ELEMENT AUTHORLINE (#PCDATA) >
<!ELEMENT TEXT (P|SEG)+ >

<!ELEMENT P (SEG+) >

<!ELEMENT SEG (ORIGINAL_TEXT?, TOKEN*) >
<!ATTLIST SEG id ID #REQUIRED

start_token IDREF #IMPLIED
end_token IDREF #IMPLIED
start_char CDATA #IMPLIED
end_char CDATA #IMPLIED

>

<!ELEMENT ORIGINAL_TEXT (#PCDATA) >

<!ELEMENT TOKEN (#PCDATA) >
<!ATTLIST TOKEN id ID #REQUIRED

attach (LEFT|RIGHT|BOTH)
#IMPLIED

pos CDATA #IMPLIED
morph CDATA #IMPLIED
gloss CDATA #IMPLIED
start_char CDATA #IMPLIED
end_char CDATA #IMPLIED

>

62

