
Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language Processing, ACL-IJCNLP 2009, pages 84–92,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Quantitative analysis of treebanks using frequent subtree mining methods

Scott Martens
Centrum voor Computerlinguı̈stiek, KU Leuven

Blijde-Inkomststraat 13, bus 3315
3000 Leuven Belgium

scott@ccl.kuleuven.be

Abstract

The first task of statistical computational
linguistics, or any other type of data-
driven processing of language, is the ex-
traction of counts and distributions of phe-
nomena. This is much more difficult for
the type of complex structured data found
in treebanks and in corpora with sophisti-
cated annotation than for tokenized texts.
Recent developments in data mining, par-
ticularly in the extraction of frequent sub-
trees from treebanks, offer some solutions.
We have applied a modified version of the
TreeMineralgorithm to a small treebank
and present some promising results.

1 Introduction

Statistical corpus linguistics and many natural lan-
guage processing applications rely on extracting
the frequencies and distributions of phenomena
from natural language data sources. This is rela-
tively simple when language data is treated as bags
of tokens or as n-grams, but much more compli-
cated for corpora annotated with complex feature
schemes and for treebanks where syntactic depen-
dencies are marked. A great deal of useful infor-
mation is encoded in these more complex struc-
tured corpora, but access to it is very limited using
the traditional algorithms and analytical tools of
computational linguistics. Many of the most pow-
erful techniques available to natural language pro-
cessing have been built on the basis ofn-gramand
bag of wordsmodels, but we already know that
these methods are inadequate to fully model the
information in texts or we would have little use
for treebanks or annotation schemes.

Suffix trees provide some improvement over
n-grams and bag-of-words schemes by identify-
ing all frequently occurring sequences regard-
less of length (Weiner, 1973; McCreight, 1976;

Ravichandran and Hovy, 2002). While this has
value in identifying some multi-word phenomena,
any algorithm that models languages on the basis
of frequent contiguous string discovery will have
trouble modeling a number of pervasive phenom-
ena in natural language. In particular:

• Long distance dependencies – i.e., dependen-
cies between words that are too far apart to be
accessible to n-gram models.

• Flexible word orders – languages usually
have contexts where word order can vary.

• Languages with very rich morphologies that
mustbe taken into account or where too much
important information is lost through lemma-
tization.

• Correlations between different levels of ab-
straction in annotation, such as between the
lemma of a verb and the semantic or syntac-
tic class of its arguments.

• Extra-syntactic correlations that may involve
any nearby word, such as semantic priming
effects.

In treebanks and other annotated corpora that
can be converted into rooted, directed graphs,
many of these phenomena are accessible asfre-
quently recurring subtrees. For example, consider
the Dutch idiom “naar huis gaan”, (to go home).
The components of this phrase can appear in a va-
riety of orders and with words inserted between
the constituents:

1. Ik zou naarhuis kunnen gaan. (I could go
home.)

2. We gaannaarhuis. (We’re going home.)

In a treebank, these two sentences would share
a common subtree that encompasses the phrase
“naar huis gaan”, as in Figure 1. Note that for this
purpose, two subtrees are treated as identical if the

84



Figure 1: The two Dutch sentencesIk zou naar
huiskunnen gaanandWe gaannaar huis, parsed,
and with the frequent section highlighted. Note
that these two subtrees are identical except for the
order of the nodes. (N.B.: This tree does not take
the difference between the infinitive and conju-
gated forms into account.)

only difference between them is the order of the
children of some or all the nodes.

Most theories of syntax use trees to represent in-
terlexical dependencies, and generally theories of
morphology and phonology use either hierarchical
tree structures to represent their formalisms, or use
unstructured bags that can be trivially represented
as trees. Most types of linguistic feature systems
are at least in part hierarchical and representable in
tree form. Because so many linguistic phenomena
are manifest as frequent subtrees within hierarchi-
cal representations that are motivated by linguistic
theories, efficient methods for extracting frequent
subtrees from treebanks are therefore potentially
very valuable to corpus and computational linguis-
tics.

2 Previous and Related Work

Tree mining research is a subset of graph min-
ing focused specifically on rooted, directed acyclic
graphs. Although there is research into extracting
frequent subtrees from free (unrooted and undi-
rected) trees, free tree mining usually proceeds by
deciding which node in any particular tree will
be treated as a root, and then treating it as if it
was a rooted and directed tree (Chi et al., 2003).

(a)

(b) (c) (d)

Figure 2: Tree (a) and different types of subtree:
(b) abottom-upsubtree of (a), (c) aninducedsub-
tree of (a), and (d) anembeddedsubtree of (a).

Research on frequent subtree discovery generally
draws heavily on early work by Zaki (2002) and
Asai et al. (2002) who roughly simultaneously be-
gan applying theApriori algorithm to frequent tree
discovery (Agrawal et al., 1993). For a summary
of Apriori, which is widely used in data mining,
and a short review of its extensive literature, see
Kotsiantis and Kanellopoulos (2006). A broad
summary of algorithms for frequent subtree min-
ing can be found in Chi et al. (2004).

Research into frequent substructures in compu-
tational linguistics is quite limited. TheData Ori-
ented Processingmodel (Bod et al., 2003) along
with its extension into machine translation - the
Data Oriented Translationmodel (Poutsma, 2000;
Poutsma, 2003; Hearne and Way, 2003) - is the
most developed approach to using frequent sub-
tree statistics to do natural language processing.
There is also growing work, largely stemming out
of DOP research, into subtree alignment in bilin-
gual parsed treebanks as an aid in the development
of statistical and example-based machine transla-
tions systems (Hassan et al., 2006; Tinsley et al.,
2007; Zhechev and Way, 2008).

3 Key concepts

Among the key concepts in tree mining is the dif-
ference betweenbottom-up subtrees, induced sub-
treesandembedded subtrees. A bottom-upsubtree
T ′ of a treeT is a subtree where, for every node
in T ′, if its corresponding node inT has children,
then all those children are also inT ′. An induced

85



Figure 3: “...between the European Commission and the government of the [German] Federal Repub-
lic...” This structure is a subtree of one of the sentences in the Alpino corpus of Dutch where a node has
two children with the same labels - two NPs. This often occurs with conjunctions and can prevent the
algorithm from discovering some frequent subtrees.

subtreeT ′ of T is a subtree where every node in
T ′ is either the root ofT ′ or its parent inT is also
its parent inT ′. An embeddedsubtreeT ′ of T is
a subtree where every node inT ′ is either the root
of T ′ or its parent inT ′ is one of its ancestors in
T . See Figure 2 for an example of these different
types of subtrees.

Linear time solutions exist for finding all fre-
quent bottom-upsubtrees in a treebank because
this problem can be transformed into finding all
frequent substrings in a string, a problem for
which fast solutions are well known (Luccio et al.,
2001; Luccio et al., 2004).

Solutions for inducedand embeddedsubtrees
draw heavily on Zaki (2002) (theTreeMiner al-
gorithm) and Asai et al. (2002) (theFREQT al-
gorithm), both of whom proposeApriori-style ap-
proaches. This type of solution has the general
property that runtime is proportionate to the size
of the output: the sum of the number of times
each frequent subtree appears in the treebank. This
is not readily predictable, because the number
and frequencies of subtrees is not formally de-
terminable from the size of the treebank and can
grow very rapidly.

3.1 Ordered and unordered trees

TreeMiner/FREQTapproaches require all trees to
beorderedso that the nodes of any frequent sub-
tree will always appear in the same order every
time it appears. The children of each non-leaf
node are sorted into a lexicographic order,but
this only guarantees that frequent subtrees will al-
ways appear with the same ordering if no node
has more than one non-leaf child node with the
same label. This is not uniformly true of natural
language parse trees, as shown in Figure 3. So-
lutions exist that remove this limitation - notably
Chi et al. (2003) - but they come at a significantly
increased processing cost.

3.2 Closed trees

Given that this type of approach to subtree discov-
ery has runtime bounds proportionate to the unpre-
dictable size of the output, one way to keep subtree
discovery within manageable bounds is to restrict
the output. Many of the frequent trees present in
treebanks areredundant, since they are identically
distributed with other, larger trees, as in Figure 4.

If a corpus has a sequence of tokensABCDE
that appearsf times, then that corpus also con-
tains at leastf instances of the sequencesA, B, C,
D, E, AB, BC, CD, DE, ABC, BCD, CDE,
ABCD, andBCDE. If any of these sequences
appearsonly in the context ofABCDE, then they
areredundant, because they have the same count
and distribution as the longer sequenceABCDE.

If a set of sequences isidentically distributed-
appearing in all the same places - then the longest
of those sequences is called aclosed sequence. In
more formal terms, a sequenceS that appearsf
times in a corpus is called closed if and only if
there is no prefix or suffixa such thataS or Sa
also appearsf times in the corpus. This definition
extends easily to trees: A subtreeT in a treebank
is closed if and only if there is no node that can be
added to it to produce a new subtreeT ′ such that
the frequency ofT ′ is equal to the frequency ofT .
All subtrees in a corpus are either closed subtrees
or are subtrees of closed subtrees that appear in
exactly the same places in the treebank. The set of
closed subtrees in a treebank is the smallest set of
subtrees that encompasses all the distributions of
subtrees in the treebank. Any subtree that is not in
the list of closed subtrees is either a subtree of one
of the closed subtrees that appears exactly as often
and in all the same places, or does not appear in
the treebank at all.

There are algorithms that extractonly
closed subtrees from treebanks - notably
Chi et al. (2005a) - and thereby increase
their speed dramatically without producing less

86



(a) The common subtree
of the two parse trees in
Figure 1: “naar huis gaan”

(b) Redundant subtrees of tree (a). There
are many more such structures.

Figure 4: Closed and non-closed subtrees injust
the two sentences in Figure 1. In a larger treebank,
some of these might not be redundant.

information, since any non-closed subtree present
in the treebank is a subtree of a closed one and
shares its distribution.

4 Algorithm and data structures

The algorithm used in this research is an extension
of theTreeMineralgorithm (Zaki, 2002), modified
to extract only closed subtrees. It takes a minimum
frequency threshold as a parameter and extracts
only those subtrees which are closed and whose
frequency is at least equal to the threshold. This
algorithm suffers from the same shortcoming of
Zaki’s original algorithm in that it is only guar-
anteed to find all frequent subtrees amongordered
trees where no node has two non-leaf children with
the same label.

It has one novel property which it appears not
to share with any other subtree extraction scheme
to date: This algorithm outputs subtrees in order
from the most frequent to the least. Given the
difficulty of predicting in advance how large the
output will be, and the large size of many natural
language data sources, this can be a real boon. If
output size or memory usage grow too large, or too
much time has passed, the program can be stopped
while still guaranteeing that it has not missed any
more frequent subtree than the last one outputted.

This section can only very briefly describe the
algorithm.

4.1 Definitions

A treebank is any collection of trees where each
node bears a label and each node is uniquely ad-
dressable in such a way that the addressan of a
noden is always greater than the addressap of its
parentp. This is accomplished by representing all
trees asordered depth-first canonical strings. (See
Chi et al. (2005b).)

Each appearance of a subtree within a treebank
is characterized by the address of its root in the
treebank and the address of its rightmost node.
This data structure will be called aHit. The list
of all Hits corresponding to all the appearances
of some subtree in the treebank will be called a
HitList. So, for each subtree there is a correspond-
ing HitList and vice-versa. HitLists are always
constructed in sequential order, from first instance
in the treebank to last, and can never contain du-
plicates.

We will define the function queueKey on
HitLists to output an array of four numbers in a
specific order, given aHitList as input:

1. The number ofHits in theHitList.

2. The distance from the address of the root of
the firstHit to theendof the treebank.

3. The distance from the address of the right-
most node of the firstHit to the end of the
treebank.

4. The number of nodes in the subtree associ-
ated with thatHitList.

These keys are sortable and designed to ensure
thatHitLists from a single treebank can always be
sorted into a fixed order such that, for twoHitLists
A andB, if A > B then:

1. A has moreHits thanB.

2. If A has the same number ofHits asB, then
the root of the firstHit in A precedes the root
of the firstHit in B.

3. If A’s first root is identical toB’s, then the ad-
dress of the rightmost node of the firstHit in
A precedes the address of the rightmost node
of the firstHit in B.

4. If the firstHit in A is exactly the same the first
Hit in B, then the subtree associated withA
has more nodes than the subtree associated
with B.

87



A self-sorting queueis any data structure that
stores key-data pairs and stores the keys in order
from greatest to least. The data structure used to
implement a self-sorting queue in this research is
an AVL tree(Adelson-Velskii and Landis, 1962),
however, other structures could equally well have
been used. The self-sorting queue will be used to
maintain a sorted list ofHitLists, sorted in the or-
der of theirqueueKeysas described above.

4.2 Initialization

Fix a minimum frequency thresholdt for the sub-
trees you wish to extract from the treebank. Start
processing by initializing oneHitList for each
unique label in the treebank with the set ofHits
that corresponds to each occurrence of that label.
We will treat each as aHitList with an associ-
ated subtree containing only one node. This set
is constructed in linear time by iterating over all
the nodes in the treebank.

Of the initialHitLists, throw away all those with
fewer than threshold frequencyt Hits in them.
The remainingHitLists are inserted into the self-
sorting queue.

4.3 Extracting induced subtrees without
checking for closure

Extractingall the subtrees above a fixed frequency
- not just the closed subtrees - in order from the
most frequent to the least, proceeds as follows:

1. Initialize as described in Section 4.2.
2. Pop the topHitList hl and its associated sub-

trees from the queue.
3. Extend hl:

(a) Visit each Hit in hl and find all the
nodes that can be added to the right side
of s to produce new induced subtrees.

(b) Generatenew HitLists for all subtrees
that extends by one node to the right.

(c) Test each newHitList to make sure it
appears more than threshold frequency
t times, and if it does, insert it into the
queue.

(d) Output s andhl.

4. Repeatuntil the queue is empty.

This is essentially identical to theTreeMiner
and FREQT algorithms already published by
Zaki (2002) and by Asai et al. (2002), except that
it outputs frequent subtrees in order from the most
frequent to the least.

4.4 Extracting only closed induced subtrees

By controlling the order in whichHitLists reach
the top of the queue, it is possible to efficiently
prevent any subtree which is not a closed sub-
tree or a prefix of a closed subtree from being
extended, and to prevent any subtree that is not
closed from being outputted.

Every subtree with a frequency off is either
a closed subtree, a prefix of a closed subtree that
also has a frequency off and can be constructed
by adding more nodes to the right, or is a redun-
dant non-closed subtree that need not be extended
or stored. Consider a redundant, non-closed sub-
treex and a closed subtree or prefix of a closed
subtreey which has the same frequency, and has
the same set of addresses for the rightmost node of
each of its appearances in the treebank. The sort
order of the self-sorting queue (see Section 4.1)
ensures that if a prefix of a closed subtreey is in
the queue and some subtree of itx is also in the
queue, theny is closer to the top of the queue than
x is. Furthermore, it can be proven that the pre-
fix of a closed subtree with the same distribution
as any non-closed, redundant subtree will be gen-
erated, inserted into the queue, and removed from
the top of the queue beforex can reach the top.

So, to preventx from being extended or stored,
all that is necessary is to check to see there is some
closed subtree or prefix of a closed subtreey such
that:

• y has already been at the top of the queue.
• y has the same frequency asx.
• The set of rightmost nodes of everyHit in

y’s HitList is identical to the set of rightmost
nodes of everyHit in x’s HitList.

• x is a subtree ofy

This can be checked by constructing a hash
value for eachHitList based on its frequency and
some subset of the set of rightmost nodes of ev-
ery Hit. In our experiments, we used only the first
node of each HitList. Ifx’s hash value matches
some previously processedy’s hash value, then
check if x is a subtree ofy and reject it if it is.
The result is to only instantiate closed subtrees and
their prefixes, and subtrees which are one node ex-
tensions of closed subtrees and their prefixes.

Like TreeMiner, worst case space and time
bounds are proportionate to the number of sub-
trees instantiated and the number of times each
appears in the corpus. This is smaller than the

88



worst case bounds forTreeMinerbecause it does
not instantiate all frequent subtrees. There is addi-
tional approximately constant time processing for
each instantiated subtree to check for closure and
to store it in the self-sorting queue. At the lowest
frequency thresholds, this can take up the major-
ity of runtime, but is generally negligible at high
frequencies.

5 Results

We applied this algorithm to a parsed and hand-
corrected 7137 sentence subset of the Alpino Tree-
bank of Dutch.1 The average sentence length in
this small treebank is roughly 20 words, and the
corresponding trees have an average of approx-
imately 32 nodes for a total of 230,673 nodes.
With the minimum frequency set to 2, this algo-
rithm extracted 342,401 closed subtrees in about
2000 seconds on a conventional workstation run-
ning Linux2. The same implementation but with-
out testing for closure - which makes this algo-
rithm equivalent toTreeMiner- extracted some 4.2
million trees in roughly 11,000 seconds. Closed
tree extraction contrasts quite favorably to extrac-
tion without closure, even over a small dataset.

Min. Freq. Subtrees extracted Runtime
Threshold

2 342401 1952.33s
3 243484 1004.30s
4 176885 588.58s
5 134495 402.26s
8 72732 209.51s

10 53842 163.22s
15 30681 112.39s
20 20610 85.24s
30 11516 66.05s
40 7620 54.14s
50 5549 47.98s
60 4219 43.24s
70 3365 39.97s

Table 1: Runtime and closed trees extracted at dif-
ferent minimum frequency thresholds, using the
7137 sentence sample of the Alpino Treebank.

Runtime and the number of trees produced fall
very dramatically as thresholds rise - so much so

1http://www.let.rug.nl/vannoord/trees/
2A Dell Precision 490 workstation with an Intel Dual-

Core Xeon processor and 8GB of memory. The algorithm
was not implemented to use two processors.

Sentences Total Subtrees Runtime
nodes extracted

2500 94528 37607 61.08s
5000 189170 98538 260.91s

10000 379980 264616 1495.19s
15000 573629 477750 3829.29s
20000 763502 704018 7998.57s

Table 2: Runtime and closed trees extracted from
automatically parsed samples of theEuroparl
Dutch corpus, keeping the minimum frequency
threshold constant at 5 for all sizes of treebank.

that setting the minimum frequency to 3 instead of
2 halvedthe runtime. This pattern is characteristic
of a power law distribution like Zipf’s law. (See
Table 1 and Figure 5.) Given the pervasiveness
of power law distributions in word frequencies, it
should perhaps not be surprising to discover that
frequent closed subtrees in treebanks are similarly
distributed. This research may be the first effort
to empirically support such a conclusion, although
admittedly only very tentatively.

To test the impact of varying the size of the tree-
bank, but keeping the minimum frequency thresh-
old constant, we used a section of the Dutch por-
tion of theEuroparl corpus(Koehn, 2005) auto-
matically parsed using the Alpino Dutch parser
(van Noord, 2006) without any manual correction.
Random samples of 2500, 5000, 10000, 15000
and 20000 sentences were selected, and all sub-
trees of frequency 5 or higher were extracted from
each, as summarized in Table 2. As treebank size
grows, the number of subtrees extracted at the
same minimum frequency threshold, and the time
and memory used extracting them, grows expo-
nentially. This is in sharp contrast to algorithms
that extract frequently recurring strings, which in-
crease linearly in time and memory usage as the
data grows.

However, if the minimum frequency threshold
is kept constant as a proportion of the size of the
treebank, then the number of trees extracted re-
mains roughly constant and the time and memory
used to extract them grows roughly linearly with
the size of the treebank. Table 3 shows the result
for different sized random samples of the parsed
Europarlcorpus.

Lastly, since this algorithm has known difficul-
ties when presented with trees where more than
one non-leaf child of a node can have the same

89



(a) Runtime by minimum fre-
quency threshold.

(b) Subtrees extracted by mini-
mum frequency threshold.

(c) Log-log plot of (b).

Figure 5: Runtime (a) and subtrees extracted (b) from the Alpino sample using different minimum fre-
quency thresholds. Figure (c) is a log-log plot of (b). Figure (c) looks close to a straight line, which is
characteristic of a power law distribution.

Sents Total Min. Subtrees Run
nodes Freq. extracted time

Thres.
2500 99323 5 42905 72.95s
5000 194736 10 42783 122.18s

10000 382022 20 41988 216.23s
15000 574632 30 43078 325.86s
20000 770240 40 44416 435.19s

Table 3: Runtime and closed trees extracted from
automatically parsed samples of theEuroparl
Dutch corpus, with minimum frequency thresh-
olds kept roughly constant as a proportion of the
sample size.

label (see sections 3.1 and 4), we attempted to
determine if this problem is marginal or perva-
sive. The 7137 sentence Alpino Treebank sample
contains 3833 nodes with more than one non-leaf
child node with identical labels or roughly 1.7% of
all nodes. Furthermore, these nodes are present in
2666 sentences - some 37% of all sentences! This
is a very large minority.

In order to estimate the effect this phenomenon
has on the extraction of closed trees, we looked
for outputted trees that are not closed by compar-
ing theHitLists of all outputted trees to all other
outputted trees with the same frequency. Table 4
shows the number of trees with identical distribu-
tions to other outputted trees - i.e. trees that ap-
peared to be closed to this algorithm, but in fact
are not. The number was surprisingly large, but
distributed overwhelmingly at the very lowest fre-
quencies.

Min. Freq. Non-closed as a % of
Threshold trees all trees extracted

2 2874 0.84%
3 693 0.28%
4 225 0.13%
5 101 0.08%
8 18 0.02%

10 11 0.02%
15 6 0.02%
20 3 0.01%
30 0 0.00%

Table 4: Non-closed trees from the 7137 sentence
sample of the Alpino Treebank, produced erro-
neously as closed trees because of repeated labels.
There were no non-closed trees extracted at fre-
quencies over 30.

6 Conclusions

The algorithm presented above opens up tree-
banks and annotated corpora to much more de-
tailed quantitative analysis, and extends the tools
available for data-driven natural language process-
ing. This makes a number of new applications
possible. We are developing treebank indexing for
fast retrieval by tree similarity, in order to make
full treebanks available for example-based parsing
and machine translation in real time. This algo-
rithm also has applications in constructing concor-
dances of syntactic, morphological and semantic
structures - types of information that are not tradi-
tionally amenable to indexing. Furthermore, sta-
tistical models of natural language data can take

90



advantage of comprehensive subtree censuses to
become fully syntax-aware, instead of relying on
bag of wordsandn-grammodels.

However, there are a number of drawbacks and
caveats that must be highlighted.

Runtime, memory usage and output size are dif-
ficult to estimate in advance. This is mitigated in
part by the order in which subtrees are outputted,
making it possible to extract only the most fre-
quent subset of subtrees given fixed time and space
bounds. Empirically, it appears that resource re-
quirements and output size can also be estimated
by sampling, if minimum frequency thresholds
can be kept constant as a proportion of total tree-
bank size.

The formalisms used in most theories of syn-
tax allow nodes to have multiple non-leaf chil-
dren with the same labels. Although errors caused
by non-unique labels are overwhelmingly present
only among the lowest frequency subtrees, er-
rors appear often enough to pose a non-negligible
problem for this algorithm.

We are investigating the degree to which this
can be mitigated by making different choices of
linguistic formalism. Syntax trees that contain
only binary trees - for example, those constructed
usingChomsky Normal Formrules (Jurafsky and
Martin, 2009) - cannot have identically labelled
non-leaf children, but must suffer some loss of
generality in their frequent subtrees because if it.
Other theories can reduce the size of this source of
error, notably dependency syntax which often uses
fewer abstract labels (Tesnière, 1959; Mel’̌cuk,
1988; Sugayama and Hudson, 2006), but will most
likely be poor sources of highly general rules as a
consequence.

Furthermore, tree mining algorithms exist that
eliminate this problem, but at some cost. We are
investigating a hybrid solution to the non-unique
label problem that identifies only those subtrees
where more resource-intensive closure checking is
necessary. This will guarantee the correct extrac-
tion of closed subtrees in all cases while minimiz-
ing the additional processing burden.

Among the open problems suggested by this re-
search is the degree to which the empirical results
obtained above are dependent on the language of
the underlying data and the linguistic formalisms
used to produce treebanks. Different linguistic
theories use different abstractions and use their ab-
stract categories differently. This has an immedi-

ate effect on the number of nodes in a treebank
and on the topology of the trees. Some theories
produce more compact trees than others. Some
produce deep trees, others produce shallow trees.
It is likely that the formalisms used in treebanks
have a pervasive influence on the number and kind
of frequent subtrees extracted. By doing quantita-
tive research on the structures found in treebanks,
it may become possible to make reliable opera-
tional choices about the linguistic formalisms used
in treebanks on the basis of the kinds of structures
one hopes to get out of them.

Acknowledgments

This research is supported by the AMASS++
Project3 directly funded by theInstitute for the
Promotion of Innovation by Science and Technol-
ogy in Flanders(IWT) (SBO IWT 060051).

References

Georgiy M. Adelson-Velskii and Yevgeniy M. Landis.
1962. An algorithm for the organization of informa-
tion. Proceedings of the USSR Academy of Sciences,
146(2):263–266.

Rakesh Agrawal, Tomasz Imielinski and Arun Swami.
1993. Mining association rules between sets of
items in large databases.Proceedings of the 1993
ACM SIGMOD International Conference on Man-
agement of Data, 207–216.

Tatsuya Asai, Kenji Abe, Shinji Kawasoe, Hi-
roki Arimura, Hiroshi Sakamoto and Set-
suo Arikawa. 2002. Efficient substructure
discovery from large semi-structured data.Proceed-
ings of the Second SIAM International Conference
on Data Mining, 158–174.

Rens Bod, Khalil Sima’an and Remko Scha, editors.
2003. Data-Oriented Parsing. CLSI Publicatons,
Stanford, CA.

Yun Chi, Yirong Yang and Richard R. Muntz. 2003.
Indexing and Mining Free Trees.UCLA Computer
Science Department Technical Report No. 030041.

Yun Chi, Richard R. Muntz, Siegfried Nijssen and
Joost N. Kok. 2004. Frequent Subtree Mining – An
Overview. Fundamenta Informaticae, 66(1-2):161–
198.

Yun Chi, Yi Xia, Yirong Yang and Richard R. Muntz.
2005a. Mining Closed and Maximal Frequent
Subtrees from Databases of Labeled Rooted Trees.
IEEE Transactions on Knowledge and Data Engi-
neering, 17(2):190–202.

3http://www.cs.kuleuven.be/˜liir/
projects/amass/

91



Yun Chi, Yi Xia, Yirong Yang and Richard R. Muntz.
2005b. Canonical forms for labelled trees and
their applications in frequent subtree mining.IEEE
Transactions on Knowledge and Data Engineering,
8(2):203–234.

Hany Hassan, Mary Hearne, Khalil Sima’an and
Andy Way. 2006. Syntactic Phrase-Based Statisti-
cal Machine Translation.Proceedings of the IEEE
2006 Workshop on Spoken Language Translation,
238–241.

Mary Hearne and Andy Way. 2003. Seeing the Wood
for the Trees: Data-Oriented Translation.Proceed-
ings of the 9th Machine Translation Summit, 165–
172.

Daniel Jurafsky and James H. Martin. 2009.Speech
and Language Processing. Pearson Prentice Hall,
Upper Saddle River, NJ.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation.Proceedings of the
10th Machine Translation Summit, 79–86.

Sotiris Kotsiantis and Dimitris Kanellopoulos. 2006.
Association Rules Mining: A Recent Overview.
GESTS International Transactions on Computer
Science and Engineering, 32(1):71–82.

Fabrizio Luccio, Antonio Enriquez, Pablo Rieumont
and Linda Pagli. 2001. Exact Rooted Subtree
Matching in Sublinear Time. Universit̀a Di Pisa
Technical Report TR-01-14.

Fabrizio Luccio, Antonio Enriquez, Pablo Rieumont
and Linda Pagli. 2004. Bottom-up subtree isomor-
phism for unordered labeled trees.Universit̀a Di
Pisa Technical Report TR-04-13.

Edward M. McCreight. 1976. A Space-Economical
Suffix Tree Construction Algorithm.Journal of the
Association for Computing Machinery, 23(2):262–
272.

Igor A. Mel’čuk. 1988. Dependency Syntax: Theory
and Practice. State University of New York Press,
Albany, NY.

Arjen Poutsma. 2000. Data-Oriented Translation.
Proc. of the 18th International Conference on Com-
putational Linguistics (COLING 2000), 635–641.

Arjen Poutsma. 2003. Machine Translation with Tree-
DOP. Data-Oriented Parsing, 63–81.

Deepak Ravichandran and Eduard Hovy 2002. Learn-
ing surface text patterns for a question answering
system. Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics
(ACL-02), 41–47.

Kensei Sugayama and Richard Hudson, editors. 2006.
Word Grammar: New Perspectives on a Theory of
Language Structure. Continuum International Pub-
lishing, London.

Lucien Tesnìere. 1959.Eléments de la syntaxe struc-
turale. Editions Klincksieck, Paris.

John Tinsley, Mary Hearne and Andy Way. 2007.
Exploiting Parallel Treebanks for use in Statisti-
cal Machine Translation.Proceedings of Treebanks
and Linguistic Theories (TLT ’07), Bergen, Norway
175–187.

Gertjan van Noord. 2006. At last parsing is now
operational. Verbum Ex Machina. Actes de la
13e conf́erence sur le traitement automatique des
langues naturelles (TALN6), 20–42.

Peter Weiner. 1973 Linear pattern matching algorithm.
14th Annual IEEE Symposium on Switching and Au-
tomata Theory, 1–11.

Mohammed J. Zaki. 2002. Efficiently mining fre-
quent trees in a forest.Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, 1021–1035.

Ventsislav Zhechev and Andy Way. 2008. Auto-
matic Generation of Parallel Treebanks.Proceed-
ings of the 22nd International Conference on Com-
putational Linguistics (COLING 2008), 1105–1112.

92


