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Abstract

Both vector space models and graph ran-
dom walk models can be used to determine
similarity between concepts. Noting that
vectors can be regarded as local views of
a graph, we directly compare vector space
models and graph random walk models on
standard tasks of predicting human simi-
larity ratings, concept categorization, and
semantic priming, varying the size of the
dataset from which vector space and graph
are extracted.

1 Introduction

Vector space models, representing word mean-
ings as points in high-dimensional space, have
been used in a variety of semantic relatedness
tasks (Sahlgren, 2006; Padé and Lapata, 2007).
Graphs are another way of representing relations
between linguistic entities, and they have been
used to capture semantic relatedness by using both
corpus-based evidence and the graph structure of
WordNet and Wikipedia (Pedersen et al., 2004;
Widdows and Dorow, 2002; Minkov and Cohen,
2008). We study the relationship between vec-
tor space models and graph random walk mod-
els by embedding vector space models in graphs.
The flexibility offered by graph random walk mod-
els allows us to compare the vector space-based
similarity measures to extended notions of relat-
edness and similarity. In particular, a random
walk model can be viewed as smoothing direct
similarity between two vectors using second-order
and even higher-order vectors. This view leads
to the second focal point of this paper: We in-
vestigate whether random walk models can sim-
ulate the smoothing effects obtained by methods
like Singular Value Decomposition (SVD). To an-

swer this question, we compute models on reduced
(downsampled) versions of our dataset and evalu-
ate the robustness of random walk models, a clas-
sic vector-based model, and SVD-based models
against data sparseness.

2 Model definition and implementation

We use directed graphs with weighted edges, G =
(V,E,w) where V is a set of nodes, E =V x V
is a set of edges and w : £ — R is the weight-
ing function on edges. For simplicity, we assume
that G is fully connected, edges with zero weights
can be considered as non-existing in the graph. On
these graphs, we perform random walks with an
initial probability distribution q over the nodes (a
1 x |V vector). We then follow edges with prob-
ability proportional to their weights, so that the
probability of walking from node v; to node ve
is w(vi,v2)/ >, w(vi,v). A fixed length random
walk ends after a predetermined number of steps.
In flexible walks, there is a constant probability y
of stopping at each step. Thus, walk length fol-
lows a geometric distribution with parameter -y,
the probability of a walk of length k is v(1—~)*~1
and the expected walk length is 1/+. For example,
a flexible walk with v = 1/2 will produce 1-step,
2-step, and higher-step walks while the expected
average length is 2.

Relating vectors and graphs. Corpus co-
occurrence (e, ez, a12) of two entities e; and ey
that co-occur with (potentially transformed) count
a12 can be represented in either a vector or a graph.
In a vector, it corresponds to a dimension value of
a2 for the dimension es of entity e;. In a graph,
it corresponds to two nodes labeled e; and e con-
nected by an edge with weight a12.

Similarity measures. Let R(q) = p denote a
specific random walk process which transforms an
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initial probability distribution q to a final prob-
ability distribution p over the nodes. We write
g(m) for the probability assigned to the node m
under q. If the initial distribution q concentrates
all probability on a single node n, i.e., g(n) = 1
and ¢(z) 0 for all nodes x # n, we write
pr(n — m) for the probability p(m) of ending
up at node m.

The simplest way of measuring relatedness
through random walks is to consider the probabil-
ity p(m) of a single node m as an endpoint for a
walk starting with start probability distribution q,
that is, p = R(q). We call this a direct, one-
direction measure of relatedness between q and
m. Direct, one-direction measures are typically
asymmetric. In case all start probability is con-
centrated on a single node n, we can also consider
direct, two-direction measures, which will be a
combination of pr(m — n) and pr(n — m). The
point of using two-direction measures is that these
can be made symmetric, which is an advantage
when we are modeling undirected semantic sim-
ilarity. In the experiments below we focus on the
average of the two probabilities.

In addition to direct measures, we will use in-
direct measures, in which we compute the relat-
edness of endpoint probability distributions p; =
R(q1) and p2 = R(q2). As endpoint distribu-
tions can be viewed both as probability distribu-
tions and as vectors, we used three indirect mea-
sures: 1) Jensen/Shannon divergence, a symmet-
ric variant of the Kullback/Leibler divergence be-
tween probability distributions. 2) cosine similar-
ity, and 3) dot product. Dot product is a natural
choice in a graph setting because we can view it as
the probability of a pair of walks, one starting at a
node determined by qi and the other starting at a
node governed by g2, ending at the same node.

Discussion. Direct and indirect relatedness mea-
sures together with variation in walk length give us
a simple, powerful and flexible way to capture dif-
ferent kinds of similarity (with traditional vector-
based approach as a special case). Longer walks
or flexible walks will capture higher order effects
that may help coping with data sparseness, similar
to the use of second-order vectors. Dimensionality
reduction techniques like Singular Value Decom-
position (SVD) also capture these higher-order ef-
fects, and it has been argued that that makes them
more resistant against sparseness (Schiitze, 1997).
To our knowledge, no systematic comparison of
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SVD and classical vector-based methods has been
done on different corpus sizes. In our experiments,
we will compare the performance of SVD and
flexible-walk smoothing at different corpus sizes
and for a variety of tasks.

Implementation: We extract tuples from the 2-
billion word ukWaC corpus,! dependency-parsed
with MINIPAR.> Following Padé and Lapata
(2007), we only consider co-occurrences where
two target words are connected by certain de-
pendency paths, namely: the top 30 most fre-
quent preposition-mediated noun-to-noun paths
(soldier+with+gun), the top 50 transitive-verb-
mediated noun-to-noun paths (soldier+use+gun),
the top 30 direct or preposition-mediated verb-
noun paths (kill+obj+victim, kill+in+school), and
the modifying and predicative adjective-to-noun
paths. Pairs (w1, ws) that account for 0.01%
or less of the marginal frequency of w; were
trimmed. The resulting tuple list, with raw counts
converted to mutual information scores, contains
about 25 million tuples.

To test how well graph-based and alternative
methods “scale down” to smaller corpora, we sam-
pled random subsets of tuples corresponding to
0.1%, 1%, 10%, and 100% of the full list. To put
things into perspective, the full list was extracted
from a corpus of about 2 billion words; so, the
10% list is on the order of magnitude of the BNC,
and the 0.1% list is on the order of magnitude of
the Brown corpus. From each of the 4 resulting
datasets, we built one graph and two vector space
models: one space with full dimensionality, and
one space reduced to 300 dimensions using singu-
lar value decomposition.

3 Experiments

First, we report the results for all tasks obtained on
the full data-set and then proceed with the compar-
ison of different models on differing graph sizes
to see the robustness of the models against data
sparseness.

Human similarity ratings: We use the dataset
of Rubenstein and Goodenough (1965), consist-
ing of averages of subject similarity ratings for
65 noun pairs. We use the Pearson’s coefficient
between estimates and human judgments as our
performance measure. The results obtained for

"http://wacky.sslmit.unibo.it
http://www.cs.ualberta.ca/~1lindek/
minipar.htm



Direct (average) Vector (cosine) Indirect (dot product) Previous
0.5 1 2 svd vector 0.5 1 2

RG 0.409  0.326 0.571 0.798 0.689 0.634  0.673  0.400 BL: 0.70
CLW: 0.849

AAMP Purity | 0.480  0.418 0.669 0.701 0.704 0.664  0.667 0.612 AP: 0.709
RS: 0.791

Hodgson

synonym 2,563 1.289 5,408* | 10.015** 6,623** | 5,462*" 5,954** 5,537**

coord 4,275 3,969 6,319™" | 11.157* 7,593™" | 8,466™" 8,477** 4,854

antonym 2,853% 2,237  5,319"" | 7,724** 5,455 | 4,589"* 4,859*" 6,810™"

conass 9,209 10.016™* 5,889*" | 9,299 6,950™" | 5,993*" 5,455 4,994

supersub 4,038%" 4,113"* 6,773 | 10.422** 7,901*" | 6,792 7,165"* 4,828**

phrasacc 4,577 4,718 2,911* | 3,532" 3,023" |3,506" 3,612 1.038

Table 1: All datasets. * (**) indicates significance level p < 0.01 (p < 0.001). BL: (Baroni and Lenci,
2009), CLW: (Chen et al., 2006), AP: (Almuhareb, 2006), RS: (Rothenhausler and Schiitze, 2009)

0.1% 1% 10%
cossvd cosvector dot2 | cossvd cosvector dot2 | cossvd cosvector dot2
RG | 0.219 0.244 0.669 | 0.676 0.700 1.159 | 00911 0.829 1.068
AAMP | 0.379 0.339 0.366 | 0.723 0.622 0.634 | 0.923 0.886 0.948
Synonym | 0.369 0.464 0.610 | 0.493 0.590 0.833 | 0.857 0.770 1.081
Antonym 0.449 0.493 0.231 0.768 0.585 0.730 1.044 0.849 0.977
Conass 0.187 0.260 0.261 0.451 0.498 0.942 | 0.857 0.704 1.062
Coord | 0.282 0.362 0.456 | 0.527 0.570 1.050 | 0.927 0.810 1.187
Phrasacc 0.268 0.132 0.761 0.849 0.610 1.215 0.920 0.868 1.049
Supersub | 0.313 0.353 0.285 0.645 0.601 1.029 | 0.936 0.752 1.060

Table 2: Each cell contains the ratio of the performance of the corresponding model for the corresponding
downsampling ratio to the performance of the same model on the full graph. The higher ratio means the

less deterioration due to data sparseness.

the full graph are in Table 1, line 1. The SVD
model clearly outperforms the pure-vector based
approach and the graph-based approaches. Its per-
formance is above that of previous models trained
on the same corpus (Baroni and Lenci, 2009). The
best model that we report is based on web search
engine results (Chen et al., 2006). Among the
graph-based random walk models, flexible walk
with parameter 0.5 and fixed 1-step walk with in-
direct relatedness measures using dot product sim-
ilarity achieve the highest performance.

Concept categorization: Almuhareb (2006) pro-
posed a set of 402 nouns to be categorized into
21 classes of both concrete (animals, fruit...) and
abstract (feelings, times. ..) concepts. Our results
on this clustering task are given in Table 1 (line
2). The difference between SVD and pure-vector
models is negligible and they both obtain the best
performance in terms of both cluster entropy (not
shown in the table) and purity. Both models’ per-
formances are comparable with the previously re-
ported studies, and above that of random walks.

Semantic priming: The next dataset comes
from Hodgson (1991) and it is of interest since
it requires capturing different forms of seman-
tic relatedness between prime-target pairs: syn-
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onyms (synonym), coordinates (coord), antonyms
(antonym), free association pairs (conass), super-
and subordinate pairs (supersub) and phrasal as-
sociates (phrasacc). Following previous simula-
tions of this data-set (Pad6 and Lapata, 2007), we
measure the similarity of each related target-prime
pair, and we compare it to the average similar-
ity of the target to all the other primes instanti-
ating the same relation, treating the latter quan-
tity as our surrogate of an unrelated target-prime
pair. We report results in terms of differences be-
tween unrelated and related pairs, normalized to
t-scores, marking significance according to two-
tailed paired t-tests for the relevant degrees of free-
dom. Even though the SVD-based and pure-vector
models are among the top achievers in general, we
see that in different tasks different random walk
models achieve comparable or even better perfor-
mances. In particular, for phrasal associates and
conceptual associates, the best results are obtained
by random walks based on direct measures.

3.1 Robustness against data sparseness

So far, we reported only the results obtained on
the full graph. However, in order to see the re-
sponse of the models to using smaller corpora



we ran another set of experiments on artificially
down-sampled graphs as explained above. In this
case, we are not interested in the absolute perfor-
mance of the models per se but the relative per-
formance. Thus, for ease of comparison we fixed
each model’s performance on the full graph to 1
for each task and linearly scaled its performance
on smaller graphs. For example saying that the
SVD-based model achieves a score of 0.911 on
10% graph for the Rubenstein and Goodenough
dataset means that the ratio of the performance
of SVD-based model on 10% graph to the per-
formance of the same model on the full graph is
0.911. The results are given in Table 2, where the
only random walk model we report is dot 2, i.e., a
2-step random walk coupled with the dot product-
based indirect measure. This is by far the random
walk model most robust to downsampling. In the
10% graph, we see that on all tasks but one, dot 2
is the model least affected by the data reduction.
On the contrary, down-sampling has a positive ef-
fect on this model because on 6 tasks, it actually
performs better than it does on the full graph! The
same behavior is also observed on the 1% graph
- as an example, for phrasal associates relations,
dot 2 performance increases by a factor of around
1.2 when we use one hundredth of the graph in-
stead of the full one. For the smallest graph we
used, 0.1%, still dot 2 provides the highest relative
performance in 5 out of the 8 tasks.

4 Conclusion

We compared graph-based random walk models
and vector models. For this purpose, we showed
how corpus co-occurrences could be represented
both as a graph and a vector, and we identified
two different ways to calculate relatedness based
on the outcomes of random walks, by direct and
indirect measures. The experiments carried out
on 8 different tasks by using the full graph re-
vealed that SVD-based model performs very well
across all types of semantic relatedness. How-
ever, there is also evidence that -depending on
the particular relation- some random walk models
can achieve results as good as or even better than
those of SVD-based models. Our second ques-
tion was whether the random walk models would
be able to simulate the smoothing effects obtained
by SVD. While answering this question, we also
carried out a systematic comparison of plain and
SVD-based models on different tasks with differ-
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ent sizes of data. One interesting result is that an
SVD-based model is not necessarily more robust
to data sparseness than the plain vector model.
The more interesting result is that a 2-step ran-
dom walk model, based on indirect measures with
dot product, consistently outperforms both SVD-
based and plain vector models in terms of relative
performance, thus it is able to achieve compara-
ble results on very small datasets. Actually, the
improvement on absolute performance measures
of this random walk by making the dataset even
smaller calls for future research.
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