
Proceedings of the Third Linguistic Annotation Workshop, ACL-IJCNLP 2009, pages 35–43,
Suntec, Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

By all these lovely tokens...∗

Merging Conflicting Tokenizations

Christian Chiarcos, Julia Ritz and Manfred Stede
Sonderforschungsbereich 632 “Information Structure”

University of Potsdam
Karl-Liebknecht-Str. 24-25, 14476 Golm, Germany

{chiarcos|julia|stede}@ling.uni-potsdam.de

Abstract

Given the contemporary trend to modular
NLP architectures and multiple annotation
frameworks, the existence of concurrent
tokenizations of the same text represents
a pervasive problem in everyday’s NLP
practice and poses a non-trivial theoretical
problem to the integration of linguistic an-
notations and their interpretability in gen-
eral. This paper describes a solution for
integrating different tokenizations using a
standoff XML format, and discusses the
consequences for the handling of queries
on annotated corpora.

1 Motivation

1.1 Tokens: Functions and goals

For most NLP tasks and linguistic annotations,
especially those concerned with syntax (part-of-
speech tagging, chunking, parsing) and the inter-
pretation of syntactic structures (esp., the extrac-
tion of semantic information), tokens represent
the minimal unit of analysis: words (lexemes,
semantic units, partly morphemes) on the one
hand and certain punctuation symbols on the other
hand. From a corpus-linguistic perspective, tokens
also represent theminimal unit of investigation ,
the minimal character sequence that can be ad-
dressed in a corpus query (e.g. using search tools
like TIGERSearch (König and Lezius, 2000) or
CWB (Christ, 1994)). Tokens also constitute the
basis for ‘word’distancemeasurements. In many
annotation tools and their corresponding formats,
the order of tokens provides atimeline for the
sequential order ofstructural elements (MMAX
(Müller and Strube, 2006), GENAU (Rehm et al.,
2009), GrAF (Ide and Suderman, 2007), TIGER
XML (König and Lezius, 2000)). In several multi-

∗Taken from the poemSeptemberby Helen Hunt Jackson.

layer formats, tokens also define theabsolute po-
sition of annotation elements, and only by refer-
ence to a common token layer, annotations from
different layers can be related with each other
(NITE (Carletta et al., 2003), GENAU).

Thus, by their function, tokens have the fol-
lowing characteristics: (i) tokens are totally or-
dered, (ii) tokens cover the full (annotated portion
of the) primary data, (iii) tokens are the smallest
unit of annotation, and (iv) there is only one sin-
gle privileged token layer. The last aspect is es-
pecially relevant for the study of richly annotated
data, as an integration and serialization of anno-
tations produced by different tools can be estab-
lished only by reference to the token layer. From
a corpus-linguistic perspective, i.e., when focus-
ing on querying of annotated corpora, tokens need
to be well-defined and all information annotated
to a particular text is to be preserved without any
corruption. We argue that for this purpose, char-
acteristic (iii) is to be abandoned, and we will de-
scribe the data format and an algorithm for merg-
ing different tokenizations and their respective an-
notations.

Our goal is a fully automated merging of anno-
tations that refer to different tokenizations (hence-
forth T  andT ) of the same text. We regard the
following criteria as crucial for this task:
Information preservation. All annotations ap-
plied to the original tokenizations should be pre-
served.
Theoretically well-defined notion of token. It
should be possible to give a plausible list of posi-
tive criteria that define character sequences as to-
kens. Knowledge about the token definition is es-
sential for formulating queries for words, e.g. in a
corpus search interface.
Integrative representation. All annotations that
are consistent with the merged tokenization should
refer to the merged tokenization. This is necessary
in order to query across multiple annotations orig-

35

inating from different annotation layers or tools.
Unsupervised merging. The integration of con-
flicting tokenizations should not require manual
interference.

1.2 Tokenization

Tokenization is the process of mapping sequences
of characters to sequences of words (cf. Guo
1997). However, different research questions or
applications induce different conceptions of the
term ‘word’. For ashallow morphosyntactic anal-
ysis(part of speech tagging), a ‘simple’ tokeniza-
tion using whitespaces and punctation symbols as
delimiters seems acceptable for the examples in
(1). A full syntactic analysis(parsing), however,
could profit from the aggregation of complex nom-
inals into one token each.

(1) a. department store
b. Herzog-von der Heide1

c. Red Cross/Red Crescent movement

Similarly, examples (2a) and (2b) can be ar-
gued to be treated as one token for(mor-
pho)syntactic analyses, respectively. Despite in-
tervening whitespaces and punctuation symbols,
they are complex instances of the ‘classical’ part-
of-speechadjective. For certainsemantic analyses
such as in information extraction, however, it may
be useful to split these compounds in order to ac-
cess the inherent complements (E 605, No. 22).

(2) a. E 605-intoxicated
b. No. 22-rated

Finally, (3) illustrates amorphology-basedtok-
enization strategy: the principle of splitting at
morpheme boundaries (Marcus et al., 1993, PTB)
(token boundaries represented by square brack-
ets). Morphological tokenization may help distri-
butional (co-occurrence-based) semantics and/or
parsing; however, the resulting tokens might be
argued as being less intuitive to users of a corpus
search tool.

(3) a. [Mitchell][’s], [they][’ve], [do][n’t]
b. [wo][n’t], [ca][n’t], [ai][n’t]

These examples show that different applications
(tagging, parsing, information extraction) and the
focus on different levels of description (morphol-
ogy, syntax, semantics) require specialized tok-
enization strategies. When working with multiple

1Double surname consisting ofHerzogandvon der Heide.

tools for standard NLP tasks, thus, it is the norm
rather than the exception that they disagree in their
tokenization, as shown in ex. (4).

(4) doesn’t
a. [does][n’t] (Marcus et al., 1993, PTB)
b. [doesn][’][t] (Brants, 2000, TnT)

When creating a corpus that is annotated at multi-
ple levels and/or using several tools, different tok-
enizations are not always avoidable, as some tools
(automatic NLP tools, but also tools for manual
annotation) have integrated tokenizers. Another
challenge is the representation of token bound-
aries. Commonly, token boundaries are repre-
sented by a line break (‘\n’) or the whitespace
‘character’ (‘ ’) – in which case token-internal
whitespaces are replaced, usually by an under-
score (’ ’) –, thereby corrupting the original data.
This practice makes reconciling/merging the data
a difficult enterprise.

Given this background, we suggest an XML-
based annotation of token boundaries, such that
token boundaries are marked without affecting the
original primary data. In a straightforward XML
model, tokens are represented by XML elements
enclosing primary text slices (c.f. the BNC encod-
ing scheme (Burnard, 2007)). However, treating
tokens as spans of text by means of the XML hier-
archy is impossible for tokenization conflicts as in
(4.a) and (4.b).

2 Conflicting tokenizations:
Straightforward strategies

By ‘straightforward strategies’, we mean ap-
proaches that aim to preserve the definition of to-
kens as atomic, minimal, unambiguous units of
annotation when unifying different tokenizations
(henceforthT  andT ) of the same text. By ‘un-
supervised straightforward strategies’, we mean
tokenization strategies that operate on the primary
data only, without consulting external resources
such as dictionaries or human expertise.

Unsupervised straightforward strategies to the
task include:

1. no merging In a conservative approach, we
could create independent annotation projects for
every tokenization produced, and thus represent
all tokenizations independently. This, however,
rules out any integration or combined evaluation
of annotations toT  and annotations toT .

36

2. normalization Adopt one of the source tok-
enizations, sayT , as the ‘standard’ tokenization.
Preserveonly the information annotated toT  that
is consistent withT . Where tokenizationT  de-
viates fromT , all annotations toT  are lost.2

3. maximal tokens For every token boundary
in T  that is also found inT , establish a token
boundary in the merged tokenization (cf. Guo’s
1997 ‘critical tokenization’). However, with to-
kens assumed to be the minimal elements of anno-
tation, we lose linguistic analyses of fine-grained
tokens. With respect to (4.a) and (4.b), the max-
imal token would be the whole phrasedoesn’t.
Again, this results in a loss of information, as all
annotations applied todoes, doesn, n’t, ’ andt re-
fer to units that are smaller than the resulting to-
ken.

4. maximal common substrings For every
token boundary inT  or T , establish a token
boundary, thereby producingminimal tokens:
one token for every maximal substring shared
betweenT  and T  (cf. Guo’s 1997 ‘shortest
tokenization’). By defining the original tokens
(‘supertokens’) as annotations spanning over
tokens, all annotations are preserved. However,
the concept of ‘token’ loses its theoretical motiva-
tion; there is no guarantee that maximal common
substrings are meaningful elements in any sense:
The maximum common substring tokenization
of 4.a and 4.b is[does][n][’][t] , but [n] is not
a well-defined token. It is neither defined with
respect to morphology (like PTB tokens) nor is
it motivated from orthography (like TnT tokens),
but it is just the remainder of their intersection.

As shown in Table 1, none of the strategies
sketched above fulfills all criteria identified in Sec-
tion 1.1: Avoiding a merging process counteracts
data integration; token normalization and maximal
tokens violate information preservation, and maxi-
mal common substrings violate the requirement to
specify a theoretically well-defined notion of to-
ken.

As an alternative, we propose a formalism for
the lossless integration and representation of con-

2Alternatively, transformation rules to map annotations
from T  to T  would have to be developed. This does, how-
ever, not guarantee information preservation, and, addition-
ally, it requires manual work, as such transformations are
annotation-specific. Thus, it is not an option for the fully
automated merging of tokenizations.

Table 1: Deficits of ‘straightforward’ merging ap-
proaches

no normalize max. max. common
merge tokens substrings

information preservation
+ − − +

well-defined tokens
+ + (−) −

integrative
− + + +

unsupervised
(+) + + +

flicting tokenizations by abandoning the assump-
tion that tokens are an atomic, primitive con-
cept that represents the minimal unit of annota-
tion. Rather, we introduce annotation elements
smaller than the actual token – so-calledtermi-
nals or terms for short – that are defined accord-
ing to the maximum common substrings strategy
described above.

Then, tokens are defined as nodes that span
over a certain range of terms similar to phrase
nodes that dominate other nodes in syntax annota-
tions. The representation of conflicting tokeniza-
tions, then, requires a format that is capable to
express conflicting hierarchies. For this purpose,
we describe an extension of the PAULA format, a
generic format for text-oriented linguistic annota-
tions based on standoff XML.

3 Conflicting tokenizations in the
PAULA format

3.1 Annotation structures in PAULA 1.0

The PAULA format (Dipper, 2005; Dipper and
Götze, 2005) is a generic XML format, used as a
pivot format in NLP pipelines (Stede et al., 2006)
and in the web-based corpus interface ANNIS
(Chiarcos et al., 2008). It uses standoff XML rep-
resentations, and is conceptually closely related to
the formats NITE XML (Carletta et al., 2003) and
GraF (Ide and Suderman, 2007).

PAULA was specifically designed to support the
lossless representation of different types of text-
oriented annotations (layer-based/timeline anno-
tations, hierarchical annotations, pointing rela-
tions), optimized for the annotation of multiple
layers, including conflicting hierarchies and sim-
ple addition/deletion routines for annotation lay-
ers. Therefore, primary data is stored in a separate

37

Table 2: PAULA 1.0 data types
nodes(structural units of annotation)

token character spans in the primary data that form the basis
for higher-level annotation

markable (spans of) token(s) that can be annotated with lin-
guistic information. Markables represent flat, layer-based
annotations defined with respect to the sequence of tokens
as a general timeline.

struct hierarchical structures (DAGs or trees) are formed by
establishing a dominance relation between a struct (e.g.,
a phrase) node as parent, and tokens, markables, or other
struct nodes as children.

edges(relational units of annotation, connecting tokens,
markables, structs)

dominance relation directed edge between a struct
and its children

pointing relations directed edge between nodes in
general (tokens, markables, structs)

labels(annotations: node or edge labels)

features represent annotations attached to a particular
(structural or relational) unit of annotation

file. Multiple annotations are also stored in sepa-
rate files to avoid interference between concurrent
annotations. Annotations refer to the primary data
or to other annotations by means of XLinks and
XPointers.

As types of linguistic annotation, we distinguish
nodes (token, markable, struct), edges (dominance
and pointing relations) and labels (annotations), as
summarized in Table 2. Each type of annotation
is stored in a separate file, so that competing or
ambiguous annotations can be represented in an
encapsulated way.

PAULA 1.0 is already sufficiently expressive for
capturing the data-heterogeneity sketched above,
including the representation of overlapping seg-
ments, intersecting hierarchies, and alternative an-
notations (e.g., for ambiguous annotations), but
only for annotationsabovethe token level. Fur-
ther, PAULA 1.0 relies on the existence of a
unique layer of non-overlapping, atomic tokens as
minimal units of annotation: For all nodes, their
position and sequential order is defined with re-
spect to the absolute position of tokens that they
cover; and for the special case of markables, these
are defined solely in terms of their token range.

Finally, PAULA 1.0 tokens aretotally ordered,
they cover the (annotated) primary datacom-
pletely, and they arenon-overlapping. Only on
this basis, the extension and (token-)distance of
annotated elements can be addressed; and only
by means of unambiguous reference, information
from different layers of annotation can be com-
bined and evaluated.

3.2 Introducing terminal nodes

In our extension of the PAULA format, we in-
troduce the new concept ofterm nodes: atomic
terminals that directly point to spans of primary

data.Termsare subject to the same constraints as
tokens in PAULA 1.0 (total order, full coverage,
non-overlapping). So, terms can be used in place
of PAULA 1.0 tokensto define the extension and
position of super-token level and sub-token level
annotation elements.

Markables are then defined with respect to
(spans of) terminal nodes rather than tokens, such
that alternative tokenizations can be expressed as
markables in different layers that differ in their ex-
tensions.

Although terms adopt several functions for-
merly associated with tokens, a privileged token
layer is still required: In many query languages,
including ANNIS-QL (Chiarcos et al., 2008), to-
kens define the application domain of regular ex-
pressions on the primary data. More impor-
tantly, tokens constitute the basis for conventional
(“word”) distance measurements and (“word”)
coverage queries. Consequently, the constraints
on tokens (total order, full coverage and absence
of overlap) remain.

The resulting specifications for structural units
of annotation are summarized in Table 3. Distin-
guishing terminal elements and re-defining the to-
ken layer as a privileged layer of markables al-
lows us to disentangle the technical concept of
‘atomic element’ and ‘token’ as the convention-
ally assumed minimal unit of linguistic analysis.

3.3 A merging algorithm

In order to integrate annotations on tokens, it is
not enough to represent two tokenizations side by
side with reference to the same layer of terminal
nodes. Instead, a privileged token layer is to be es-
tablished and it has to be ensured that annotations
can be queriedwith reference to the token layer.

38

Table 3: PAULA extensions: revised node types
terms specify character spans in the primary data

that form the basis for higher-level annota-
tion

markable defined as above, with terms taking the
place of tokens

structs defined as above, with terms taking the
place of tokens

tokens sub-class of structs that are non-
overlapping, arranged in a total order,
and cover the full primary data

Then, all annotations whose segmentation is con-
sistent with the privileged token layer are directly
linked with tokens.

Alg. 3.1 describes our merging algorithm, and
its application to the four main cases of conflict-
ing tokenization is illustrated in Figure 1.3 The
following section describes its main characteris-
tics and the consequences for querying.

4 Discussion

Alg. 3.1 produces a PAULA project with one sin-
gle tokenization. So, it is possible to define queries
spanning across annotations with originally differ-
ent tokenization:

Extension and precedence queries are
tokenization-independent: Markables refer to
the term layer, not thetok layer, structs also
(indirectly) dominateterm nodes.
Dominance queries for struct nodes and tokens
yield results whenever the struct node dominates
only nodes withtok-compatible source tokeniza-
tion: Structs dominatetok nodes wherever the
original tokenization was consistent with the
privileged tokenizationtok (case A and C in Fig.
1).
Distance queries are defined with respect to the
tok layer, and are applicable to all elements that
are are defined with reference to thetok layer (in
figure 1: toka, toka, tokb, tokb in case A; tokab

in case B; toka, tokb, tokab in case C; tokab, tokc

in case D). They are not applicable to elements
that do not refer to the tok layer (B: toka, tokb; D:
toka, tokbc).

3Notation: prim – primary data /tok, term – annota-
tion layers /t ∈ L – t is a node on a layerL / a..b – con-
tinuous span from tok/terma to tok/termb / a, b – list of
tok/term/markable nodesa, b / t = [a] – t is a node (struct,
markable, tok) that points to a node, span or lista

The algorithm is unsupervised, and the token
concept of the output tokenization is well-defined
and consistent (if one of the input tokenizations
is adopted as target tokenization). Also, as shown
below, it is integrative (enabling queries across dif-
ferent tokenizations) and information-preserving
(reversible).

4.1 Time complexity

After a PAULA project has been created, the time
complexity of the algorithm is quadratic with re-
spect to the number of characters in the primary
datan. This is due to the total order of tokens:
Step 2 and 3.a are applied once to all original to-
kens from left to right. Step 5 can be reformulated
such that for everyterminal node, the relationship
between the directly dominatingtok andtok is
checked. Then, Step 5 is also inO(n). In terms of
the number of markablesm, the time complexity
in Step 3.b is inO(n m): for every markable, the
correspondingterm element is to be found, tak-
ing at mostn repositioning operations on theterm
layer. Assuming that markables within one layer
are non-overlapping4 and that the number of lay-
ers is bound by some constantc5, thenm ≤ n c,
so that 3.b is inO(n c).

For realistic scenarios, the algorithm is thus
quadratic.

4.2 Reversibility

The merging algorithm is reversible – and, thus,
lossless – as shown by the splitting algorithm in
Alg. 3.2. For reasons of space, the correctness
of this algorithm cannot be demonstrated here, but
broadly speaking, it just removes every node that
corresponds to an original token of the ‘other’ tok-
enization, plus every node that points to it, so that
only annotations remain that are directly applied
to the target tokenization.

4.3 Querying merged tokenizations

We focus in this paper on the merging of analy-
ses with different tokenizations for the purpose of
usersquerying a corpus across multiple annota-

4Although PAULA supports overlapping markables
within one single layer, even with identical extension, this is
a reasonable assumption: In practice, overlapping markables
within one single layer are rare. More often, there is even a
longer sequence of primary data between one markable of a
particular layer and the next. In our experience, such ‘gaps’
occur much more often than overlapping markables.

5Again, this is a practical simplication. Theoretically, the
number of layers is infinite.

39

Alg. 3.1Merging different tokenizations

0. assume that we have two annotationsanalysis andanalysis for the same primary data, but with different tokenizations

1. create PAULA 1.0 annotation projects foranalysis andanalysis with primary data filesprim andprim and token
layerstok andtok respectively.

2. harmonize primary data
if prim equalsprim, then

(i) renameprim to prim

(ii) set all references inanalysis from prim to prim

(iii) create a new annotation projectanalysis by copyingprim and all annotation layers fromanalysis andanalysis

otherwise terminate with error msg

3. harmonize terminal nodes
create a new annotation layerterm, then

(a) for all overlapping tokenst ∈ tok andt ∈ tok: identify the maximal common substrings oft andt

for every substrings, create a new elementterms pointing to the corresponding character span in the primarydata
for every substrings, redefinet andt as markables referring toterms

(b) redefine markable spans as spans of terminal nodes
for every tokent = [terms ..terms] ∈ tok ∪ tok and every markablem = [w..xty..z]: set m =
[w..xterms ..termsy..z]

4. select token layer
renametok to tok, or renametok to tok, (cf. the normalization strategy in Sect. 2) or
renameterm to tok (cf. the minimal tokens strategy in Sect. 2)

5. token integration
for every original tokenot = [a..b] ∈ (tok ∪ tok) \ tok:
if there is a tokent ∈ tok such thatt = [a..b], then defineot as a struct withot = [t], else
if there are tokenst, .., tn ∈ tok such thatt..tn form a continuous sequence of tokens andt = [a..x] andtn = [y..b],
then defineot as a struct such thatot = [t, .., tn],
otherwise: change nothing

Figure 1: Merging divergent tokenizations

40

Alg. 3.2 Splitting a PAULA annotation project
with two different tokenizations

0. given a PAULA annotation projectanalysis with token
layer tok, terminal layerterm, and two layersl andl
(that may be identical toterm or tok) that convey the
information of the original token layerstok andtok

1. createanalysis andanalysis as copies ofanalysis

2. if l represents a totally ordered, non-overlapping list of
nodes that cover the primary data completely, then modify
analysis:

a. for every node inl: substitute references totok by
references toterm

b. removel from analysis

c. if l 6= tok, removetok from analysis

d. for every annotation element (node/relation)e in
analysis that directly or indirectly points to another
node inanalysis that is no longer present, removee
from analysis

e. remove every annotation layer fromanalysis that
does not contain an annotation element

f. for every markable inl: remove references toterm,
define the extension ofl nodes directly in terms of
spans of text inprim

g. if l 6= term, removeterm

3. perform step 2. forl andanalysis

tion layers. Although the merging algorithm pro-
duces annotation projects that allow for queries in-
tegrating annotations from analyses with different
tokenization, the structure of the annotations is al-
tered, such that the behaviour of merged and un-
merged PAULA projects may be different. Obvi-
ously, token-level queries must refer to the priv-
ileged tokenizationT . Operators querying for
the relativeprecedence or extensionof markables
are not affected: in the merged annotation project,
markables are defined with reference to the layer
term: originally co-extensional elementsE and
E (i.e. elements covering the same tokens in the
source tokenization) will also cover the sameter-
minalsin the merged project.Distance operators
(e.g. querying for two tokens with distance 2, i.e.
with two tokens in between), however, will oper-
ate on the new privileged tokenization, such that
results from queries onanalysis may differ from
those onanalysis. Dominance operatorsare
also affected, as nodes that directly dominated a
token inanalysis or analysis now indirectly
dominate it inanalysis, with a supertoken as an
intermediate node.

Alg. 3.3 Iterative merging: modifications of Alg.
3.1, step.3
if analysis has a layer of terminal nodesterm, then let
T  = term, otherwiseT  = tok

if analysis has a layer of terminal nodesterm, then let
T  = term, otherwiseT  = tok

create a new annotation layerterm, then

1. for all overlapping terminals/tokenst ∈ T  andt ∈
T : identify the maximal common substrings oft and
t

for every substrings, create a new elementterms

pointing to the corresponding character span in the pri-
mary data
for every substrings, redefinet andt as markables
referring toterms

2. redefine markable spans as spans of terminal nodes
for every nodet = [terms ..terms] ∈ T  ∪ T 

and every markablem = [w..xty..z]: set
m = [w..xterms ..termsy..z]

3. for all original terminalst ∈ T ∪T : if t is not directly
pointed at, removet from analysis

Accordingly, queries applicable to PAULA
projectsbeforethe merging are not directly appli-
cable to merged PAULA projects. Users are to be
instructed to keep this in mind and to be aware of
the specifications for the merged tokenization and
its derivation.6

5 Extensions

5.1 Merging more than two tokenizations

In the current formulation, Alg. 3.1 is applied to
two PAULA 1.0 projects and generates extended
PAULA annotation projects with aterm layer.
The algorithm, however, may be applied itera-
tively, if step 3 is slightly revised, such that ex-
tended PAULA annotation projects can also be
merged, see Alg. 3.3.

5.2 Annotation integration

The merging algorithm creates a struct node for
every original token. Although this guarantees re-
versibility, one may consider to remove such re-
dundant structs. Alg. 3.4 proposes an optional
postprocessing step for the merging algorithm.
This step is optional because these operations are

6The information, however, is preserved in the format and
may be addressed by means of queries that, for example, op-
erate on the extension of terminals.

41

Alg. 3.4 Annotation integration: Optional post-
processing for merging algorithm

6.a. remove single-token supertoken
for every original tokenot = [t] ∈ tok ∪ tok with
t ∈ tok: replace all references inanalysis to ot by
references tot, removeot

6.b. merging original token layerstok and tok (if
tok 6= tok andtok 6= tok)
define new ‘super token’ layerstok.
for everyot ∈ tok ∪ tok:

if ot = [t] for somet ∈ tok, then see 6.a

if ot = [t, .., tn] for somet, .., tn ∈ tok, and
there isot = [t, .., tn] ∈ tok ∪ tok ∪ stok,
then replace all references inanalysis to ot by
references toot, moveot to layerstok, remove
ot from analysis

move all remainingot ∈ tok ∪ tok to stok, remove
layerstok andtok

6.c. unify higher-level annotations
for every markablemark = [term..termn] and
term, .., termn ∈ term:

if there is a markablemark in analysis such
thatmark = [term..termn], then replace all
references inanalysis tomark by references to
mark, removemark

for every structstruct = [c, .., cn] that covers ex-
actly the same children as another structstruct =
[c, .., cn], replace all references tostruct by refer-
ences tostruct, removestruct

destructive: We lose the information about the ori-
gin (analysis vs. analysis) of stok elements
and their annotations.

6 Summary and Related Reasearch

In this paper, we describe a novel approach for the
integration of conflicting tokenizations, based on
the differentiation between a privileged layer of
tokens and a layer of atomic terminals in a stand-
off XML format: Tokens are defined as structured
units that dominate one or more terminal nodes.

Terminals are atomic units onlywithin the re-
spective annotation project (there is no unit ad-
dressed that is smaller than a terminal). By iter-
ative applications of the merging algorithm, how-
ever, complex terms may be split up in smaller
units, so that they are not atomic in an absolute
sense.

Alternatively, terms could be identified a priori
with the minimal addressable unit available, i.e.,

characters (as in the formalization of tokens as
charspans andcharseqs in the ACE information
extraction annotations, Henderson 2000). It is not
clear, however, how a character-based term defini-
tion would deal with sub-character and zero exten-
sion terms: A character-based definition of terms
that represent traces is possible only by corrupt-
ing the primary data.7 Consequently, a character-
based term definition is insufficient unless we re-
strict ourselves to a particular class of languages,
texts and phenomena.

The role of terminals can thus be compared to
timestamps: With reference to a numerical time-
line, it is always possible to define a new event
between two existing timestamps. Formats specif-
ically designed for time-aligned annotations, e.g.,
EXMARaLDA (Schmidt, 2004), however, typi-
cally lack a privileged token layer and a formal
concept of tokens. Instead, tokens, as well as
longer or shorter sequences, are represented as
markables, defined by their extension on the time-
line.

Similarly, GrAF (Ide and Suderman, 2007), al-
though being historically related to PAULA, does
not have a formal concept of a privileged token
layer in the sense of PAULA.8 We do, however,
assume that terminal nodes in GrAF can be com-
pared to PAULA 1.0 tokens.

For conflicting tokenizations, Ide and Suderman
(2007) suggest that ‘dummy’ elements are defined
covering all necessary tokenizations for controver-
sially tokenized stretches of primary data. Such
dummy elements combine the possible tokeniza-
tions for strategies 1 (no merging) and 3 (maxi-
mal tokens), so that the information preservation
deficit of strategy 3 is compensated by strategy 1,
and the integrativity deficit of strategy 1 is com-
pensated by strategy 3 (cf. Table 1). However, to-
kens, if defined in this way, are overlapping and
thus only partially ordered, so that distance opera-
tors are no longer applicable.9

7Similarly, phonological units that are not expressed in
the primary data can be subject to annotations, e.g., shorte
ando in various Arabic-based orthographies, e.g., the Ajami
orthography of Hausa. A term with zero extension at the po-
sition of a short vowel can be annotated as having the phono-
logical valuee or o without having character status.

8https://www.americannationalcorpus.
org/graf-wiki/wiki/WikiStart#GraphModel,
2009/05/08

9This can be compensated by marking the base segmen-
tation differently from alternative segmentations. In theab-
stract GrAF model, however, this can be represented only by
means of labels, i.e., annotations. A more consistent con-

42

Another problem that arises from the introduc-
tion of dummy nodes is their theoretical status, as
it is not clear how dummy nodes can be distin-
guished from annotation structured on a concep-
tual level. In the PAULA formalization, dummy
nodes are not necessary, so that this ambiguity is
already resolved in the representation.

References

Thorsten Brants. 2000.TnT A Statistical Part-of-
Speech Tagger. In Proceedings of the Sixth Con-
ference on Applied Natural Language Processing
ANLP-2000. Seattle, WA.

Lou Burnard (ed.). 2007. Reference Guide
for the British National Corpus (XML Edi-
tion). http://www.natcorp.ox.ac.uk/
XMLedition/URG/bnctags.html.

Jean Carletta, Stefan Evert, Ulrich Heid, Jonathan
Kilgour, Judy Robertson, and Holger Voormann.
2003. The NITE XML Toolkit: Flexible Annotation
for Multi-modal Language Data. Behavior Research
Methods, Instruments, and Computers 35(3), 353-
363.

Christian Chiarcos, Stefanie Dipper, Michael Götze,
Ulf Leser, Anke Lüdeling, Julia Ritz, and Manfred
Stede. 2009.A Flexible Framework for Integrating
Annotations from Different Tools and TagsetsTAL
(Traitement automatique des langues) 49(2).

Oli Christ. 1994. A modular and flexible architec-
ture for an integrated corpus query system. COM-
PLEX’94, Budapest, Hungary.

Stefanie Dipper. 2005.XML-based Stand-off Repre-
sentation and Exploitation of Multi-Level Linguistic
Annotation. In Rainer Eckstein and Robert Tolks-
dorf (eds:): Proceedings of Berliner XML Tage,
pages 39-50.

Stefanie Dipper and Michael Götze. 2005.Accessing
Heterogeneous Linguistic Data — Generic XML-
based Representation and Flexible Visualization. In
Proceedings of the 2nd Language & Technology
Conference 2005, Poznan, Poland, pages 23–30.

Stefanie Dipper, Michael Götze. 2006. ANNIS:
Complex Multilevel Annotations in a Linguistic
Database.Proceedings of the 5th Workshop on NLP
and XML (NLPXML-2006): Multi-Dimensional
Markup in Natural Language Processing. Trento,
Italy.

Jin Guo. 1997.Critical Tokenization and its Proper-
ties, Computational Linguistic, 23(4), pp.569-596.

ception would encode structural information on the structural
level, and only linguistic annotation and metadata on the con-
tents level.

John C. Henderson. 2000.A DTD for Reference Key
Annotation of EDT Entities and RDC Relations
in the ACE Evaluations (v. 5.2.0, 2000/01/05),
http://projects.ldc.upenn.edu/ace/
annotation/apf.v5.2.0.dtd (2009/06/04)

Nancy Ide and Keith Suderman. 2007.GrAF: A
Graph-based Format for Linguistic Annotations. In
Proceedings of the Linguistic Annotation Work-
shop,held in conjunction with ACL 2007, Prague,
June 28-29, 1-8.

Esther König and Wolfgang Lezius. 2000.A descrip-
tion language for syntactically annotated corpora.
In: Proceedings of the COLING Conference, pp.
1056-1060, Saarbrücken, Germany.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993.Building a large annotated
corpus of English: the Penn treebank.Computa-
tional Linguistics 19, pp.313-330.

Christoph Müller and Michael Strube. 2006.Multi-
Level Annotation of Linguistic Data with MMAX2.
In: S. Braun et al. (eds.), Corpus Technology and
Language Pedagogy. New Resources, New Tools,
New Methods. Frankfurt: Peter Lang, 197–214.

Georg Rehm, Oliver Schonefeld, Andreas Witt, Chris-
tian Chiarcos, and Timm Lehmberg. 2009.
SPLICR: A Sustainability Platform for Linguistic
Corpora and Resources. In: Text Resources and
Lexical Knowledge. Selected Papers the 9th Confer-
ence on Natural Language Processing (KONVENS
2008), Berlin, Sept. 30 – Oct. 2, 2008. Mouton de
Gruyter.

Helmut Schmid. 2002. Tokenizing & Tagging. In
Lüdeling, Anke and Kytö, Merja (Hrsg.) Corpus
Linguistics. An International Handbook. (HSK Se-
ries). Mouton de Gryuter, Berlin

Thomas Schmidt. 2004. Transcribing and Annotat-
ing Spoken Language with Exmaralda.Proceedings
of the LREC-workshop on XML Based Richly Anno-
tated Corpora. Lisbon, Portugal. Paris: ELRA.

Manfred Stede, Heike Bieler, Stefanie Dipper, and
Arthit Suriyawongkul. 2006. SUMMaR: Combin-
ing Linguistics and Statistics for Text Summariza-
tion. Proceedings of the 17th European Conference
on Artificial Intelligence (ECAI-06). pp 827-828.
Riva del Garda, Italy.

Ralph Weischedel, Sameer Pradhan, Lance Ramshaw
and Linnea Micciulla. 2006. OntoNotes Release
1.0. Linguistic Data Consortium, Philadelphia.

43

