
Proceedings of the 2009 Workshop on Language Generation and Summarisation, ACL-IJCNLP 2009, pages 59–62,
Suntec, Singapore, 6 August 2009. c©2009 ACL and AFNLP

Visual Development Process for

Automatic Generation of Digital Games Narrative Content

Maria Fernanda Caropreso
1
 Diana Inkpen

1
 Shahzad Khan

2
 Fazel Keshtkar

1

1
University of Ottawa

{caropres,diana}@site.uottawa.ca

akesh081@uottawa.ca

2DISTIL Interactive

s.khan2@distilinteractive.com

Abstract

Users of Natural Language Generation

systems are required to have sophisti-

cated linguistic and sometimes even pro-

gramming knowledge, which has hin-

dered the adoption of this technology by

individuals outside the computational

linguistics research community. We have

designed and implemented a visual envi-

ronment for creating and modifying NLG

templates which requires no program-

ming ability and minimum linguistic

knowledge. It allows specifying tem-

plates with any number of variables and

dependencies between them. Internally, it

uses SimpleNLG to provide the linguistic

background knowledge. We tested the

performance of our system in the context

of an interactive simulation game. We

describe the templates used for testing

and show examples of sentences that our

system generates from these templates.

1 Introduction

Natural Language Generation (NLG) is the proc-

ess of constructing outputs from non-linguistic

inputs (Bateman, 2002) (Dalianis, 1996) (Reiter

and Dale, 2000).

NLG systems are useful in systems in which

verbal or textual interaction with the users is re-

quired, as for example Gaming, Robotics, and

Automatic Help Desks. Using NLG systems in-

stead of manually authored sentences would en-

able the software to adapt the expressed mes-

sages to the context of the conversation, and ex-

press past and future actions that may form this

interaction.

However, the use of the available NLG sys-

tems is far from simple. The most complete sys-

tems often require extensive linguistic knowl-

edge. Some systems also require programming

knowledge. This knowledge cannot be assumed

for the content and subject matter experts who

are members of a development team. However,

these individuals do need to interact with the

NLG system in order to make use of the message

generation capability to support their product

development efforts. It is then necessary to pro-

vide them with an environment that will allow

them to have access in a simpler way to the fea-

tures they need of a specific NLG system.

There are two widely adopted approaches to

NLG, the ‘deep-linguistic’ and the ‘template-

based’ (van Deemter et al., 2005). The deep-

linguistic approach attempts to build the sen-

tences up from a wholly logical representation.

The template-based NLG systems provide scaf-

folding in the form of templates that contain a

predefined structure and perhaps some of the

final text.

SimpleNLG is an NLG system that allows the

user to specify a sentence by giving its content

words and its grammatical roles (such as subject

or verb). SimpleNLG also permits the user to

specify several features for the main verb, such

as: tense (present, past or future); whether or not

it is subjective, progressive, passive or perfect;

whether or not it is in interrogative form; wheth-

er or not it is negated; and which, if any, modal

to use (i.e. could, must).While some of these fea-

tures affect only the verb, others affect the struc-

ture of the whole sentence, as for example when

it has to be expressed in the passive voice.

SimpleNLG is implemented as a java library

and it requires java programming knowledge to

be used. Because of the programming nature of

SimpleNLG, it allows the user to define flexible

templates by using programming variables in the

sentence specification. The variable parts of the

templates could be filled with different values.

When templates are defined using SimpleNLG

they keep all the functionality of the NLG system

(for example, being able to modify the verb fea-

59

tures or the output format, and making use of the

grammatical knowledge), while also allowing for

the variable values to change.

We have designed an environment that pro-

vides simple access to the use of the SimpleNLG

system in order to generate sentences with vari-

able parts or templates. We developed this NLG

Template Authoring Environment guided by the

need of templates required for generating content

for digital-based training games at DISTIL Inter-

active1. An early prototype of the tool, with a

text-only interface, is presented in (Caropreso et

al., 2009).

In training games the player is typically pre-

sented with challenging situations and is encour-

aged to practice different strategies at dealing

with them, in a safe, virtual environment.

Through tips and feedback, the player develops

an understanding of the problem and what are the

successful ways of confronting it (French et al.,

1999).

In training games there is usually an explosion

of possible scenarios and situations. The narra-

tive should ideally reflect the past events and

decisions taken. The considerable amount of tex-

tual information required in order to keep the

feedback consistent with the updated narrative

can be a burden on the game designers. It is then

necessary to include templates that statically

provide the basic information, combined with

variable parts that adapt the narrative to the cir-

cumstances.

The goal of the NLG Template Authoring En-

vironment was to provide the game content de-

signers with an accessible tool they could use to

create and manipulate the NLG templates, and

thus generate sentences that would support the

narrative progression of the game.

In the rest of this paper we describe our NLG

Template Authoring Environment, its design,

implementation and capabilities. We describe the

templates that we used to test the system and we

explain the user’s knowledge required in order to

create them. We finish the paper presenting our

conclusions and future work.

2 Template Authoring Environment

The NLG Template Authoring Environment

asks for a model sentence and allows the user to

mark the sections that are variable. For each va-

riable indicated, the user has to specify its type

(i.e., personal pronoun, possessive pronoun, Em-

1
 http://www.distilinteractive.com/

ployee_type) and which values of that type are

allowed (i.e., all personal pronouns, or only

“she” and “he”). Additionally, the user can also

indicate dependencies between variable elements

and information for the verb (i.e., tense, form,

modals). The system then shows the user all the

possible sentences that could be generated from

the given template by calculating all the possible

combinations of variable values that respect the

specified dependencies and follow the verb se-

lections. The user can then refine the template by

changing the given example or the specified va-

riables, dependencies or verb options, in order to

adjust the generated sentences to the needs of the

game.

The NLG Template Authoring Environment

has been implemented in Java. The SimpleNLG

library was used to automatically generate cor-

rect sentences and provide the user with the pos-

sibility of exploring different attributes to the

verb. It has a user-friendly intuitive graphical

interface, part of which is shown in Figure 1.

Figure 1: Graphical Interface

After entering an example sentence and click-

ing on Analyze, the user indicates that a section

is variable by giving a type or semantic class to

the word in that section. The values of a semantic

class are stored in a text file, which allows the

user to create new semantic classes as needed.

These files contain all the possible values and

their respective syntactic information (person,

number and gender) which will be used for

agreement with the verb and for dependency be-

tween variables purposes. Restrictions to the val-

ues that a variable can take are also indicated

60

through the graphical interface. Dependencies

can be indicated only between already declared

variables. The main verb and all its options are

indicated in the section at the bottom of the

graphical interface.

In the template shown in Figure 1, the exam-

ple sentence is “I walk my dog”, “I” is a variable

of type personal pronoun, “walk” is the main

verb, “my” is a variable of type possessive pro-

noun, “dog” is a variable of type animal and

there is a dependency between “I” and “my”

(which will allow to make their values agree in

person, number and gender when generating all

possible combinations).

In Figure 1 we also see that the user has se-

lected the values “present and past” for the verb

tense and “normal” and “imperative” for the verb

form. Therefore, four sentences will be generated

for each combination of the variables’ values

(one sentence for each combination of the tense

and form selections). All these sentences will

have the verb negated and will use the perfect

tenses (as indicated by the extra verb options).

3 Testing the NLG Template Authoring

Environment

In order to verify the correct functioning of the

NLG Template Authoring Environment, we se-

lected a set of sentence templates from the game

“Business in Balance: Implementing an Envi-

ronmental Management System” from DISTIL

Interactive. The templates were selected manu-

ally, while keeping in mind the need to cover

different aspects, as for example the number and

type of the variables and dependencies. The test-

ing of these examples covers for many more

templates of the same type. The five selected

sentence templates that form our testing set are

displayed in Table 1 and are identified in the rest

of this section by their reference number or order

in the table.

Table 1. Testing examples

Ref.

number

Template

1 The ACTORS (ME/US) could help

DEPARTMENTS.

2 The ACTORS IS/ARE now avail-

able to help.

3 I/WE struggled because of

MY/OUR lack of knowledge.

4 I/WE AM/ARE pleased to report

that I/WE completed the task

TASKS.

5 I/WE WAS/WERE not the great-

est choice for keeping things

moving along quickly.

In these template examples, we show in capi-

tals the variable parts of the templates. ACTORS,

DEPARTMENTS and TASKS refer to one of several

possible nouns previously defined for each of the

classes with those names. The terms in capitals

separated by a “/” already display all the ac-

cepted values for that variable (for example

I/WE represent a variable of type personal pro-

noun which could take only the selected values

“I” or “we” and the rest are filtered out).

The first template example has two variables

of predefined closed class nouns, ACTORS and

DEPARTMENTS. The latter is independent, while

the former has a dependency with a variable of

type personal pronoun (in objective case form)

that could only take the values “me” or “us”.

This template is used in the game when the ac-

tor/character available to help is the same ac-

tor/character that is providing the information.

This template can be successfully generated with

our system by declaring the variables, restricting

the values of the pronoun variable, and establish-

ing the dependency. When filtering non-valid

sentences, the system will eliminate those cases

where the value’s number of the variable ACTOR

and the personal pronoun do not agree (i.e., it

will only allow sentences that use “me” if the

actor is singular, and sentences that use “us”, if

the actor is plural). When creating this template,

the user will have to be aware that the main verb

is “to help” and indicate “could” as a modal to be

used. This is important as otherwise SimpleNLG

will modify the main verb in order to agree with

the number of the subject. It is also necessary in

case some of the options to change the main verb

are specified.

Two examples of the generated sentences us-

ing the first template are shown below.
• The HR Training Manager (me) could

help the Design Department.

• The Implementation Team (us) could

help the Deputy Management Represen-

tative.

The second template is one that found a prob-

lem with our system and provided us with a rea-

son and an opportunity to improve it. This exam-

ple template also uses a variable of the closed

class noun ACTOR together with the verb “to be”

in the present tense, agreeing in number with the

actor. It might seem trivial to indicate this de-

pendency between the actor variable and the

verb. But in our system the verbs are not treated

as a regular variable (even when their values can

be variable), but they are left for SimpleNLG to

find the correct verb form. We needed then to

61

inform SimpleNLG the number to which the

verb should agree (by default it would assume

singular). In this case we needed to inform Sim-

pleNLG that the number to agree with would be

the number of the variable ACTOR. We also have

to consider the case when the subject number

does not depend on a variable and is plural, as

for example in a template where the subject is

“The members of DEPARTMENT”. To accom-

modate for these cases, we improved our system

by asking the user to indicate in a pull down

menu whether the template’s verb should agree

with a variable value or it should be always used

in plural or in singular. (This option is displayed

in the bottom right corner of the interface and not

shown in the partial screen shot on Figure 1.)

The third template presents a dependency be-

tween a variable of type personal pronoun in the

subjective case form, and a variable of type pos-

sessive pronoun in the complement. Both vari-

ables accept only a pair of their possible values,

and the dependency between them establishes

that they have to agree in person, number and

gender. That is not a problem for our system.

With respect to the verb, the user has to indicate

the past tense as the only option.

In the fourth and fifth template, there is a per-

sonal pronoun variable taking the place of the

subject, which should agree in person and num-

ber with the verb. This is, as mentioned before,

left to SimpleNLG to solve. As the subject in

these cases consists of only a personal pronoun

and SimpleNLG can detect this fact, no extra

information is required. In the fourth template,

there is also a dependency between the personal

pronoun variable in the subject role and the per-

sonal pronoun variable in the complement. Once

again the person and number of these two vari-

ables have to agree, and the sentences not satis-

fying this restriction are filtered out by our sys-

tem. Finally, for the fifth template the user is

forced to specify that the verb “to be” has to be

used in its past tense.

4 Conclusions and Future Work

We have identified the need for an NLG Tem-

plate Authoring Environment that allows game

content designers without linguistic and pro-

gramming background to experiment with and

finally create language templates.

We have designed and implemented a system

that allows the user to specify an example sen-

tence together with variables, its dependencies,

and verb options that complete the template. This

system shows the user all the possible sentences

that could be generated with the specified tem-

plate. It can be used to refine the template until it

satisfies the user’s needs.

The system makes use of the SimpleNLG java

library which provides us with correct sentences

and the possibility of including many verb varia-

tions, such as tense, form and modals.

We have evaluated our NLG Template Au-

thoring Environment in a set of sentence tem-

plates from a digital-based interactive simulation

game that covered different characteristics.

We have implemented a user-friendly intuitive

graphical interface for the system. The conven-

ience of use of this interface will be evaluated in

the context of the development of a new game.

Acknowledgements

This work is supported by the Ontario Centres of

Excellence (OCE) and Precarn Incorporated.

References

J. A. Bateman. 2002. Natural Language Generation:

an introduction and open-ended review of the state

of the art.

M. F. Caropreso, D. Inkpen, S. Khan and F. Keshtkar.

2009. Novice Friendly Natural Language Genera-

tion Template Authoring Environment. Proceeding

of the Canadian Artificial Intelligence Conference

2009, Kelowna, BC, pp.195-198.

H. Dalianis. 1996. Concise Natural Language Genera-

tion from Formal Specifications, Ph.D. Thesis,

(Teknologie Doktorsavhandling), Department of

Computer and Systems Sciences, Royal Institute of

Technology/ Stockholm University. Report Series

No. 96-008, ISSN 1101-8526, SRN SU-

KTH/DSV/R 96/8 SE.

K. van Deemter, E. Krahmer and M. Theune. 2005.

Real versus Template-Based Natural Language

Generation: A False Opposition? In Computational

Linguistics, 31(1): 15-24.

D. French, C. Hale, C. Johnson and G. Farr. 1999.

Internet Based Learning: An introduction and

framework for higher education and business. Lon-

don, UK: Kogan Page.

E. Reiter and R. Dale. 2000. Building Natural Lan-

guage Generation Systems (Studies in Natural

Language Processing), Cambridge University

Press.

E. Reiter. 2007. SimpleNlg package:

http://www.csd.abdn.ac.uk/ereiter/simplnlg

62

