Optimizing Textual Entailment Recognition Using Particle Swarm
Optimization

Yashar Mehdad
University of Trento and FBK - Irst
Trento, Italy
mehdad@fbk.eu

Abstract

This paper introduces a new method to im-
prove tree edit distance approach to tex-
tual entailment recognition, using particle
swarm optimization. Currently, one of the
main constraints of recognizing textual en-
tailment using tree edit distance is to tune
the cost of edit operations, which is a dif-
ficult and challenging task in dealing with
the entailment problem and datasets. We
tried to estimate the cost of edit operations
in tree edit distance algorithm automati-
cally, in order to improve the results for
textual entailment. Automatically estimat-
ing the optimal values of the cost opera-
tions over all RTE development datasets,
we proved a significant enhancement in
accuracy obtained on the test sets.

1 Introduction

One of the main aspects of natural languages is to
express the same meaning in many possible ways,
which directly increase the language variability
and emerges the complex structure in dealing with
human languages. Almost all computational lin-
guistics tasks such as Information Retrieval (IR),
Question Answering (QA), Information Extrac-
tion (IE), text summarization and Machine Trans-
lation (MT) have to cope with this notion. Textual
Entailment Recognition was proposed by (Dagan
and Glickman, 2004), as a generic task in order to
conquer the problem of lexical, syntactic and se-
mantic variabilities in languages.

Textual Entailment can be explained as an as-
sociation between a coherent text (T) and a lan-
guage expression, called hypothesis (H) such that
entailment function for the pair T-H returns the
true value when the meaning of H can be inferred
from the meaning of T and false, otherwise.

Amongst the approaches to the problem of tex-
tual entailment, some methods utilize the no-
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tion of distance between the pair of T and H as
the main feature which separates the entailment
classes (positive and negative). One of the suc-
cessful algorithms implemented Tree Edit Dis-
tance (TED), based on the syntactic features that
are represented in the structured parse tree of each
string (Kouylekov and Magnini, 2005). In this
method the distance is computed as the cost of
the edit operations (insertion, deletion and substi-
tution) that transform the text T into the hypothesis
H. Each edit operation has an associated cost and
the entailment score is calculated such that the set
of operations would lead to the minimum cost.

Generally, the initial cost is assigned to each
edit operation empirically, or based on the ex-
pert knowledge and experience. These methods
emerge a critical problem when the domain, field
or application is new and the level of expertise and
empirical knowledge is very limited. In dealing
with textual entailment, (Kouylekov and Magnini,
2006) tried to experiment different cost values
based on various linguistics knowledge and prob-
abilistics estimations. For instance, they defined
the substitution cost as a function of similarity
between two nodes, or, for insertion cost, they
employed Inverse Document Frequency (IDF) of
the inserted node. However, the results could not
proven to be optimal.

Other approaches towards estimating the cost
of operations in TED tried to learn a generic or
discriminative probabilistic model (Bernard et al.,
2008; Neuhaus and Bunke, 2004) from the data,
without concerning the optimal value of each op-
eration. One of the drawbacks of those approaches
is that the cost values of edit operations are hidden
behind the probabilistic model. Additionally, the
cost can not be weighted or varied according to
the tree context and node location (Bernard et al.,
2008).

In order to overcome these drawbacks, we are
proposing a stochastic method based on Particle
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Swarm Optimization (PSO), to estimate the cost
of each edit operation for textual entailment prob-
lem. Implementing PSO, we try to learn the op-
timal cost for each operation in order to improve
the prior textual entailment model. In this paper,
the goal is to automatically estimate the best possi-
ble operation costs on the development set. A fur-
ther advantage of such method, besides automatic
learning of the operation costs, is being able to in-
vestigate the cost values to better understand how
TED approaches the data in textual entailment.

The rest of the paper is organized as follows:
After describing the TED approach to textual en-
tailment in the next section, PSO optimization al-
gorithm and our method in applying it to the prob-
lem are explained in sections 4 and 5. Then we
present our experimental setup as well as the re-
sults, in detail. Finally, in the conclusion, the main
advantages of our approach are reviewed and fur-
ther developments are proposed accordingly.

2 Tree Edit Distance and Textual
Entailment

One of the approaches to textual entailment is
based on the Tree Edit Distance (TED) between
T and H. The tree edit distance measure is a simi-
larity metric for rooted ordered trees. This metric
was initiated by (Tai, 1979) as a generalization of
the string edit distance problem and was improved
by (Zhang and Shasha, 1989) and (Klein, 1998).

The distance is computed as the cost of editing
operations (i.e. insertion, deletion and substitu-
tion), which are required to transform the text T
into the hypothesis H, while each edit operation on
two text fragments A and B (denoted as A — B)
has an associated cost (denoted as v (A — B)). In
textual entailment context, the edit operations are
defined in the following way based on the depen-
dency parse tree of T and H:

e Insertion (A — A): insert a node A from
the dependency tree of H into the depen-
dency tree of T. When a node is inserted it
is attached to the dependency relation of the
source label.

Deletion (A — \): delete a node A from
the dependency tree of T. When A is deleted
all its children are attached to the parent of
A. It is not required to explicitly delete the
children of A, as they are going to be either
deleted or substituted in a following step.
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e Substitution (A — B): change the label of
a node A in the source tree into a label of a
node B of the target tree. In the case of substi-
tution, the relation attached to the substituted
node is changed with the relation of the new
node.

According to (Zhang and Shasha, 1989), the min-
imum cost mappings of all the descendants of
each node has to be computed before the node
is encountered, so the least-cost mapping can be
selected right away. To accomplish this the al-
gorithm keeps track of the keyroots of the tree,
which are defined as a set that contains the root
of the tree plus all nodes which have a left sibling.
This problem can be easily solved using recursive
methods (Selkow, 1977), or as it was suggested in
(Zhang and Shasha, 1989) by dynamic program-
ming. (Zhang and Shasha, 1989) defined the rel-
evant subproblems of tree 1" as the prefixes of all
special subforests rooted in the keyroots. This ap-
proach computes the TED (J) by the following
equations:
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where Fr and Fy are forests of 7' and H, while
rr, and rg, are the rightmost roots of the trees
in Fp and Fp respectively. 6 is an empty forest.
Moreover, Frr(rp,) and Fy(rp, ) are the forests
rooted in r g, and rf,, respectively.

Estimating & as the bottom line of the compu-
tation is directly related to the cost of each oper-
ation. Moreover, the cost of edit operations can
simply change the way that a tree is transformed
to another. As Figure 1! shows (Demaine et al.,
2007), there could exist more than one edit script
for transforming each tree to another. Based on the

'The example adapted from (Demaine et al., 2007)
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Figure 1: Two possible edit scripts to transform one tree to another.

main definition of this approach, TED is the cost
of minimum cost edit script between two trees.

The entailment score for a pair is calculated on
the minimal set of edit operations that transform
the dependency parse tree of T into H. An entail-
ment relation is assigned to a T-H pair where the
overall cost of the transformations is below a cer-
tain threshold. The threshold, which corresponds
to tree edit distace, is empirically estimated over
the dataset. This method was implemented by
(Kouylekov and Magnini, 2005), based on the al-
gorithm by (Zhang and Shasha, 1989).

In this method, a cost value is assigned to each
operation initially, and the distance is computed
based on the initial cost values. Considering that
the distance can vary in different datasets, con-
verging to an optimal set of values for operations
is almost empirically impossible. In the follow-
ing sections, we propose a method for estimat-
ing the optimum set of values for operation costs
in TED algorithm dealing with textual entailment
problem. Our method is built on adapting PSO
optimization approach as a search process to auto-
mate the procedure of the cost estimation.

3 Particle Swarm Optimization

PSO is a stochastic optimization technique which
was introduced based on the social behaviour of
bird flocking and fish schooling (Eberhart et al.,
2001). It is one of the population-based search
methods which takes advantage of the concept of
social sharing of information. The main struc-
ture of this algorithm is not very different from
other evolutionary techniques such as Genetic Al-
gorithms (GA); however, the easy implementation
and less complexity of PSO, as two main charac-
teristics, are good motivations to apply this opti-
mization approach in many areas.

In this algorithm each particle can learn from
the experience of other particles in the same pop-
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ulation (called swarm). In other words, each parti-
cle in the iterative search process, would adjust its
flying velocity as well as position not only based
on its own acquaintance, but also other particles’
flying experience in the swarm. This algorithm has
found efficient in solving a number of engineering
problems. In the following, we briefly explain the
main concepts of PSO.

To be concise, for each particle at each itera-
tion, the position X; (Equation 4) and velocity V;
(Equation 5) is updated. Xjp; is the best position
of the particle during its past routes and X; is
the best global position over all routes travelled by
the particles of the swarm. r; and 73 are random
variables drawn from a uniform distribution in the
range [0,1], while ¢; and cy are two acceleration
constants regulating the relative velocities with re-
spect to the best local and global positions. The
weight w is used as a tradeoff between the global
and local best positions and its value is usually
selected slightly less than 1 for better global ex-
ploration (Melgani and Bazi, 2008). The optimal
position is computed based on the fitness func-
tion defined in association with the related prob-
lem. Both position and velocity are updated dur-
ing the iterations until convergence is reached or
iterations attain the maximum number defined by
the user. This search process returns the best fit-
ness function over the particles, which is defined
as the optimized solution.

Xi=Xi+V 4)
Vi =wVi+ a1 (Xp — X;)
+ CQTQ(XgrL' — XZ) (5)

Algorithm 1 shows a simple pseudo code of
how this optimization algorithm works. In the rest
of the paper, we describe our method to integrate
this algorithm with TED.



Algorithm 1 PSO algorithm
for all particles do
Initialize particle
end for
while C'onvergence or maximum iteration
do
for all particles do
Calculate fitness function
if fitness function value > Xj; then
Xy <= fitness function value
end if
end for

choose the best particle amongst all in Xy

for all particles do
calculate V;
update X;
end for
end while
return best particle

4 Automatic Cost Estimation

One of the challenges in applying TED for rec-
ognizing textual entailment is estimating the cost
of each edit operation which transforms the text T
into the hypothesis H in an entailment pair. Since
the cost of edit operations can directly affect the
distance, which is the main criteria to measure the
entailment, it is not trivial to estimate the cost of
each operation. Moreover, considering that imply-
ing different costs for edit operations can affect the
results in different data sets and approaches, it mo-
tivates the idea of optimizing the cost values.

4.1 PSO Setup

One of the most important steps in applying PSO
is to define a fitness function which could lead the
swarm to the optimized particles based on the ap-
plication and data. The choice of this function
is very crucial, since PSO evaluates the quality
of each candidate particle for driving the solution
space to optimization, on the basis of the fitness
function. Moreover, this function should possibly
improve the textual entailment recognition model.
In order to attain these goals, we tried to define
two main fitness functions as follows.

1. Bhattacharyya Distance: This measure was
proposed by (Bhattacharyya, 1943) as a sta-
tistical measure to determine the similarity
or distance between two discrete probabil-
ity distributions. In binary classification, this
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method is widely used to measure the dis-
tance between two different classes. In the
studies by (Fukunaga, 1990), Bhattacharyya
distance was occluded to be one of the most
effective measure specifically for estimating
the separability of two classes. Figure 2
shows the intuition behind this measure.

Figure 2: Bhattacharyya distance between two
classes with similar variances.

Bhattacharyya distance is calculated based on
the covariance (o) and mean (1) of each dis-
tribution based on its simplest formulation in
Equation 6 (Reyes-Aldasoro and Bhalerao,
2006). Maximizing the distance between
the classes would result a better separability
which aims to a better classification results.
Furthermore, estimating the costs using this
function would indirectly improve the perfor-
mance specially in classification problems. It
could be stated that, maximizing the Bhat-
tacharyya distance would increase the separa-
bility of two entailment classes which result
in a better performance.
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. Accuracy: Accuracy or any performance

measure obtained from a TED based system,
can define a good fitness function in optimiz-
ing the cost values. Since maximizing the
accuracy would directly increase the perfor-
mance of the system or enhance the model
to solve the problem, this measure is a pos-
sible choice to adapt in order to achieve our
aim. In this method, trying to maximize the
fitness function will compute the best model
based on the optimal cost values in the parti-
cle space of PSO algorithm.

In other words, by defining the accuracy ob-
tained from 10 fold cross-validation over the



development set, as the fitness function, we
could estimate the optimized cost of the edit
operations. Maximizing the accuracy gained
in this way, would lead to find the set of edit
operation costs which directly increases our
accuracy, and consequently guides us to the
main goal of optimization.

In the following section, the procedure of esti-
mating the optimal costs are described in detail.

4.2 Integrating TED with PSO for Textual
Entailment Problem

The procedure describing the proposed system to
optimize and estimate the cost of edit operations
in TED applying PSO algorithm is as follows.

a) Initialization

Step 1) Generate a random swarm of particles
(in a simple case each particle is de-
fined by the cost of three operations).

Step 2) For each position of the particle from
the swarm, obtain the fitness function
value (Bhattacharyya distance or accu-
racy) over the training data.

Step 3) Set the best position of each particle

with its initial position (Xj;).

b) Search

Step 4) Detect the best global position (X;)
in the swarm based on maximum value
of the fitness function over all explored

routes.

Step 5) Update the velocity of each particle
(V).

Step 6) Update the position of each particle
(X;). In this step, by defining the
boundaries, we could stop the particle
to exit the allowed search space.

Step 7) For each candidate particle calculate
the fitness function (Bhattacharyya
distance or accuracy).

Step 8) Update the best position of each parti-
cle if the current position has a larger
value.

c) Convergence

Step 9) Run till the maximum number of iter-
ation (in our case set to 10) is reached
or start the search process.
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d) Results

Step 10) Return the best fitness function value
and the best particle. In this step the
optimum costs are returned.

Following the steps above, in contrary to de-
termine the entailment relation applying tree edit
distance, the operation costs can be automatically
estimated and optimized. In this process, both fit-
ness functions could be easily compared and the
cost values leading to the better model would be
selected. In the following section, the experimen-
tal procedure for obtaining the optimal costs by
exploiting the PSO approach to TE is described.

5 Experimental Design

In our experiments we show an increase in the per-
formance of TED based approach to textual en-
tailment, by optimizing the cost of edit operations.
In the following subsections, the framework and
dataset of our experiments are elaborated.

5.1 Dataset Description

Our experiments were conducted on the basis
of the Recognizing Textual Entailment (RTE)
datasets”, which were developed under PASCAL
RTE challenge. Each RTE dataset includes its own
development and test set, however, RTE-4 was re-
leased only as a test set and the data from RTE-1
to RTE-3 were used as development set. More de-
tails about the RTE datasets are illustrated in Table
5.1.

Number of pairs

Development Test
Datasets | YES NO  YES NO
RTE-1 [/ 283 284 400 400
RTE-2 | 400 400 400 400
RTE-3 || 412 388 410 390
RTE-4 | — — 500 500

Table 1: RTE-1 to RTE-4 datasets.

5.2 Experimental Framework

In our experiments, in order to deal with TED
approach to textual entailment, we used EDITS?
package (Edit Distance Textual Entailment Suite)

Zhttp://www.pascal-network.org/Challenges/RTE1-4

3The EDITS system has been supported by the EU-
funded project QALL-ME (FP6 IST-033860). Available at
http://edits.fbk.eu/



(Magnini et al., 2009). This system is an open
source software based on edit distance algorithms,
and computes the T-H distance as the cost of the
edit operations (i.e. insertion, deletion and substi-
tution) that are necessary to transform T into H.
By defining the edit distance algorithm and a cost
scheme (assigning a cost to the edit operations),
this package is able to learn a TED threshold, over
a set of string pairs, to decide if the entailment ex-
ists in a pair.

In addition, we partially exploit the JSwarm-
PSO* (Cingolani, 2005) package, with some adap-
tations, as an implementation of PSO algorithm.
Each pair in the datasets is converted to two syn-
tactic dependency parse trees using the Stanford
statistical parser’, developed in the Stanford uni-
versity NLP group by (Klein and Manning, 2003).

Cost - ‘
scheme Train

v 1y
2
s
v5 3,
=

Figure 3: Five main steps of the experimental
framework.

In order to take advantage of PSO optimization
approach, we integrated EDITS and JSwarm-PSO
to provide a flexible framework for the experi-
ments (Figure 5.3). In this way, we applied the
defined fitness functions in the integrated system.
The Bhattacharyya distance between two classes
(YES and NO), in each experiment, could be com-
puted based on the TED score of each pair in the
dataset. Moreover, the accuracy, by default, is
computed by EDITS over the training set based
on 10-fold cross-validation.

5.3 Experimental Scheme

We conducted six different experiments in two sets
on each RTE dataset. The costs were estimated on
the training set and the results obtained based on
the estimated costs over the test set. In the first

*http://jswarm-pso.sourceforge.net/
>http://nlp.stanford.edu/software/lex-parser.shtml
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set of experiments, we set a simple cost scheme
based on three operations. Implementing this cost
scheme, we expect to optimize the cost of each
edit operation without considering that the opera-
tion costs may vary based on different character-
istics of a node, such as size, location or content.
The results were obtained considering three dif-
ferent settings: 1) the random cost assignment; 2)
assigning the cost based on the human expertise
knowledge and intuition (called Intuitive), and 3)
automatic estimated and optimized cost for each
operation. In the second case, we used the same
scheme which was used in EDITS by its develop-
ers (Magnini et al., 2009).

In the second set of experiments, we tried to
compose an advanced cost scheme with more
fine-grained operations to assign a weight to the
edit operations based on the characteristics of the
nodes. For example if a node is in the list of stop-
words, the deletion cost is set to zero. Otherwise,
the cost of deletion would be equal to the number
of words in H multiplied by word’s length (num-
ber of characters). Similarly, the cost of inserting
a word w in H is set to O if w is a stop word,
and to the number of words in T multiplied by
words length otherwise. The cost of substituting
two words is the Levenshtein distance (i.e. the edit
distance calculated at the level of characters) be-
tween their lemmas, multiplied by the number of
words in T, plus number of words in H. By this in-
tuition, we tried to optimize nine specialized costs
for edit operations (i.e. each particle is defined by
9 parameters to be optimized). We conducted the
experiments using all three cases mentioned in the
simple cost scheme.

In each experiment, we applied both fitness
functions in the optimization; however, at the final
phase, the costs which led to the maximum results
were chosen as the estimated operation costs. In
order to save breath and time, we set the number
of iterations to 10, in addition, the weight w was
set to 0.95 for better global exploration (Melgani
and Bazi, 2008).

6 Results

Our results are summarized in Table 2. We show
the accuracy gained by a distance-based (word-
overlap) baseline for textual entailment (Mehdad
and Magnini, 2009) to be compared with the re-
sults achieved by the random, intuitive and op-
timized cost schemes using EDITS system. For



Data set

Model RTE-4 RTE-3 RTE-2 RTE-1
Random 49.6 53.62 50.37 50.5
Simple Intuitive 51.3 59.6 56.5 49.8
Optimized 56.5 61.62 58 58.12
Random 53.60 52.0 54.62 53.5
Advanced Intuitive 57.6 59.37 57.75 55.5
Optimized 59.5 62.4 59.87 58.62
Baseline 55.2 60.9 54.8 514
RTE-4 Challenge 57.0

Table 2: Comparison of accuracy on all RTE datasets based on optimized and unoptimized cost schemes.

the better comparison, we also present the results
of the EDITS system in RTE-4 challenge using a
combination of different distances as features for
classification (Cabrio et al., 2008).

In the first experiment, we estimated the cost of
each operation using the simple cost scheme. Ta-
ble 2 shows that in all datasets, accuracy improved
up to 9% by optimizing the cost of each edit opera-
tion. Results prove that the optimized cost scheme
enhances the quality of the system performance,
even more than the cost scheme used by experts
(Intuitive cost scheme) (Magnini et al., 2009).

Furthermore, in the second set of experiments,
using the fine-grained and weighted cost scheme
for edit operations we could achieve the highest re-
sults in accuracy. The chart in Figure 4, illustares
that all optimized results outperform the word-
overlap baseline for textual entailment as well as
the accuracy obtained in RTE-4 challenge using
combination of different distances as features for
classification (Cabrio et al., 2008).

By exploring the estimated optimal cost of each
operation, another interesting point was discov-
ered. The estimated cost of deletion in the first
set of experiments was 0, which means that delet-
ing a node from the dependency tree of T does not
effect the quality of results. This proves that by
setting different cost schemes, we could explore
even some linguistics phenomena which exists in
the entailment dataset. Studying the dataset from
this point of view might be interesting to find some
hidden information which can not be explored eas-
ily.

In addition, the optimized model can reflect
more consistency and stability (from 58 to 62 in
accuracy) than other models, while in unoptimized
models the result varies more, on different datasets
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(from 50 in RTE-1 to 59 in RTE-3). Moreover, we
believe that by changing some parameters such as
maximum number of iterations, or by defining a
better cost scheme, there could be still a room for
improvement.

‘= Simple - Random

*#*Simple - Expert
*Slmple - Optimized
** Advanced - Random
> Advanced - Expert

=¥ Advanced - Optimized
FBaseline

Accuracy

RTE-4 RTE-3 RTE-2

Figure 4: Accuracy obtained by different experi-
mental setups.

7 Conclusion

In this paper, we proposed a novel approach for es-
timating the cost of edit operations for the tree edit
distance approach to textual entailment. With this
work we illustrated another step forward in im-
proving the foundation of working with distance-
based algorithms for textual entailment. The ex-
perimental results confirm our working hypothe-
sis that by improving the results in applying tree
edit distance for textual entailment, besides out-
performing the distance-based baseline for recog-



nizing textual entailment.

We believe that for further development, ex-
tending the cost scheme to find weighted and
specialized cost operations to deal with different
cases, can lead to more interesting results. Besides
that, exploring and studying the estimated cost of
operations, could be interesting from a linguistics
point of view.
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