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Abstract 

Temporal expressions are one of the important 

structures in natural language. In order to un-

derstand text, temporal expressions have to be 

identified and normalized by providing ISO-

based values. In this paper we present a shal-

low approach for automatic recognition of 

temporal expressions based on a supervised 

machine learning approach trained on an an-

notated corpus for temporal information, 

namely TimeBank. Our experiments demon-

strate a performance level comparable to a 

rule-based implementation and achieve the 

scores of 0.872, 0.836 and 0.852 for precision, 

recall and F1-measure for the detection task 

respectively, and 0.866, 0.796, 0.828 when an 

exact match is required.   

1 Introduction 

The task of recognizing temporal expressions 

(sometimes also referred as time expressions or 

simply TIMEX) was first introduced in the Mes-

sage Understanding Conference (MUC) in 1995. 

Temporal expressions were treated as a part of the 

Named Entity Recognition (NER) task, in which 

capitalized tokens in text were labeled with one of 

the predefined semantic labels, such as Date, Time, 

Person, Organization, Location, Percentage, and 

Money. As the types of temporal entities identified 

in this way were too restricted and provided little 

further information, the Automated Content Ex-

traction (ACE) launched a competition campaign 

for Temporal Expression Recognition and Norma-

lization (TERN 2004). The tasks were to identify 

temporal expressions in free text and normalize 

them providing an ISO-based date-time value. Lat-

er evaluations of ACE in 2005, 2006 and 2007 un-

fortunately did not set new challenges for temporal 

expression recognition and thus the participation 

interest in this particular task decreased.  

TempEval-2 is a successor of TempEval-2007 

and will take place in 2010. The new evaluation 

initiative sets new challenges for temporal text 

analysis. While TempEval-2007 was solely fo-

cused on recognition of temporal links, the     

TempEval-2 tasks aim at an all-around temporal 

processing with separate evaluations for recogni-

tion of temporal expressions and events, for the 

estimation of temporal relations between events 

and times in the same sentence, between events 

and document creation time, between two events in 

consecutive sentences and between two events, 

where one of them syntactically dominates the oth-

er (Pustejovsky et al., 2009). These evaluations 

became possible with a new freely available corpus 

with annotated temporal information, TimeBank 

(Pustejovsky et al., 2003a), and an annotation 

schema, called TimeML (Pustejovsky et al., 

2003b).  

For us all the tasks of TempEval-2 seem to be 

interesting. In this paper we make the first step 

towards a comprehensive temporal analysis and 

address the problem of temporal expression recog-

nition as it is set in TempEval-2. Despite a number 

of previous implementations mainly done in the 

context of the ACE TERN competition, very few, 
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and exclusively rule-based methods were reported 

for temporal taggers on TimeBank developed by 

using the TimeML annotation scheme. As a main 

result of the deep analysis of relevant work (Sec-

tion 2), we decided to employ a machine learning 

approach for constituent-based classifications with 

generic syntactic and lexical features. 

    The remainder of the paper is organized as fol-

lows: in Section 2 we provide the details of rele-

vant work done in this field along with corpora and 

annotations schemes used; Section 3 describes the 

approach; experimental setup, results and error 

analysis are provided in Section 4. Finally, Section 

5 gives an outlook for further improvements and 

research.  

2 Related Work 

For better understanding of the performance levels 

provided in the paper we first describe evaluation 

metrics defined for the temporal expression recog-

nition task and then the methods and datasets used 

in previous research.   

2.1 Evaluation metrics 

With the start of the ACE TERN competition in 

2004, two major evaluation conditions were pro-

posed: Recognition+Normalization (full task) and 

Recognition only (TERN, 2004). 

Detection (Recognition): Detection is a prelimi-

nary task towards the full TERN task, in which 

temporally relevant expressions have to be found. 

The scoring is very generous and implies a minim-

al overlap in the extent of the reference and the 

system output tags. As long as there is at least one 

overlapping character, the tags will be aligned. 

Any alignment of the system output tags are scored 

as a correct detection. 

Sloopy span: Spans usually refer to strict match of 

both boundaries (the extent) of a temporal expres-

sion (see Exact Match). “Sloopy” admits recog-

nized temporal expressions as long as their right 

boundary is the same as in the corresponding 

TimeBank’s extents (Boguraev and Ando, 2005). 

The motivation was to assess the correctness of 

temporal expressions recognized in TimeBank, 

which was reported as inconsistent with respect to 

some left boundary items, such as determiners and 

pre-determiners.   

Exact Match (Bracketing or Extent Recogni-
tion): Exact match measures the ability to correct-

ly identify the extent of the TIMEX. The extent of 

the reference and the system output tags must 

match exactly the system output tag to be scored as 

correct.  

2.2 Datasets  

To date, there are two annotated corpora used for 

temporal evaluations, the ACE TERN corpus and 

TimeBank (Pustejovsky et al., 2003a). In this sec-

tion we provide a brief description of the temporal 

corpora and annotation standards, which can sub-

stantially influence recognition results.  

Most of the implementations referred as the 

state-of-the-art were developed in the scope of the 

ACE TERN 2004. For evaluations, a training cor-

pus of 862 documents with about 306 thousand 

words was provided. Each document represents a 

news article formatted in XML, in which TIMEX2 

tags denote temporal expressions. The total num-

ber of temporal expressions for training is 8047 

TIMEX2 tags with an average of 10.5 per docu-

ment. The test set comprises 192 documents with 

1828 TIMEX2 tags (Ferro, 2004).  

The annotation of temporal expressions in the 

ACE corpus was done with respect to the TIDES 

annotation guidelines (Ferro et al., 2003). The 

TIDES standard specifies so-called markable ex-

pressions, whose syntactic head must be an appro-

priate lexical trigger, e.g. “minute”, “afternoon”, 

“Monday”, “8:00”, “future” etc. When tagged, the 

full extent of the tag must correspond to one of the 

grammatical categories: nouns (NN, NNP), noun 

phrases (NP), adjectives (JJ), adjective phrases 

(ADJP), adverbs (RB) and adverb phrases 

(ADVP). According to this, all pre- and postmo-

difiers as well as dependent clauses are also in-

cluded to the TIMEX2 extent, e.g. “five days after 

he came back”, “nearly four decades of expe-

rience”. Such a broad extent for annotations is of 

course necessary for correct normalization, but on 

the other hand, introduces difficulties for exact 

match. Another important characteristic of the 

TIDES standard are the nested temporal expres-

sions as for example: 

 
<TIMEX2>The<TIMEX2 VAL = "1994">1994 

</TIMEX2> baseball season </TIMEX2> 
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The most recent annotation language for tem-

poral expressions, TimeML (Pustejovsky et al., 

2003b), with an underlying corpus TimeBank 

(Pustejovsky et al., 2003a), opens up new possibili-

ties for processing temporal information in text. 

Besides the specification for temporal expressions, 

i.e. TIMEX3, which is to a large extent inherited 

from TIDES, TimeML provides a means to capture 

temporal semantics by annotations with suitably 

defined attributes for fine-grained specification of 

analytical detail (Boguraev et al., 2007). The anno-

tation schema establishes new entity and relation 

marking tags along with numerous attributes for 

them. This advancement influenced the extent for 

event-based temporal expression, in which depen-

dent clauses are no longer included into TIMEX3 

tags. The TimeBank corpus includes 186 docu-

ments with 68.5 thousand words and 1423 

TIMEX3 tags.       

2.3 Approaches for temporal processing  

As for any recognition problem, there are two ma-

jor ways to solve it. Historically, rule-based sys-

tems were first implemented. Such systems are 

characterized by a great human effort in data anal-

ysis and rule writing. With a high precision such 

systems can be successfully employed for recogni-

tion of temporal expressions, whereas the recall 

reflects the effort put into the rule development. By 

contrast, machine learning methods require an an-

notated training set, and with a decent feature de-

sign and a minimal human effort can provide 

comparable or even better results than rule-based 

implementations. As the temporal expression rec-

ognition is not only about to detect them but also to 

provide an exact match, machine learning ap-

proaches can be divided into token-by-token classi-

fication following B(egin)-I(nside)-O(utside) 

encoding and binary constituent-based classifica-

tion, in which an entire chunk-phrase is under con-

sideration to be classified as a temporal expression 

or not. In this case, exact segmentation is the re-

sponsibility of the chunker or the parser used.  

Rule-based systems: One of the first well-known 

implementations of temporal taggers was presented 

in (Many and Wilson, 2000). The approach relies 

on a set of hand-crafted and machine-discovered 

rules, which are based upon shallow lexical fea-

tures. On average the system achieved a value of 

83.2% for F1-measure against hand-annotated da-

ta. The dataset used comprised a set of 22 New 

York Times articles and 199 transcripts of Voice of 

America taken from the TDT2 collection (Graff et 

al., 1999). It should be noted that the reported per-

formance was provided in terms of an exact match. 

Another example of rule-based temporal taggers is 

Chronos described in (Negri and Marseglia, 2004), 

which achieved the highest scores (F1-measure) in 

the TERN 2004 of 0.926 and 0.878 for recognition 

and exact match.  

Recognition of temporal expressions using 

TimeBank as an annotated corpus, is reported in 

(Boguraev and Ando, 2005) based on a cascaded 

finite-state grammar (500 stages and 16000 transi-

tions). A complex approach achieved an F1-

measure value of 0.817 for exact match and 0.896 

for detecting “sloopy” spans.  Another known im-

plementation for TimeBank is an adaptation of 

(Mani and Wilson, 2000) from TIMEX2 to 

TIMEX3 with no reported performance level. 

Machine learning recognition systems: Success-

ful machine learning TIMEX recognition systems 

are described in (Ahn et al., 2005; Hacioglu et al., 

2005; Poveda et al., 2007). Proposed approaches 

made use of a token-by-token classification for 

temporal expressions represented by B-I-O encod-

ing with a set of lexical and syntactic features, e.g., 

token itself, part-of-speech tag, label in the chunk 

phrase and the same features for each token in the 

context window. The performance levels are pre-

sented in Table 1. All the results were obtained on 

the ACE TERN dataset.  

Approach F1 (detection) 
F1 

(exact match) 

Ahn et al., 2005 0.914 0.798 

Hacioglu et al., 

2005 
0.935 0.878 

Poveda et al., 

2007 
0.986 0.757 

 
Table 1. Performance of Machine Learning Ap-

proaches with B-I-O Encoding 

 

Constituent-based classification approach for 

temporal expression recognition was presented in 

(Ahn et al., 2007). By comparing to the previous 

work (Ahn et al., 2005) on the same ACE TERN 

dataset, the method demonstrates a slight decrease 

in detection with F1-measure of 0.844 and a nearly 

equivalent F1-measure value for exact match of 

0.787.   
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The major characteristic of machine learning 

approaches was a simple system design with a mi-

nimal human effort. Machine-learning based rec-

ognition systems have proven to have a 

comparable recognition performance level to state-

of-the-art rule-based detectors.  

3 Approach 

The approach we describe in this section employs a 

machine-learning technique and more specifically 

a binary constituent based classification. In this 

case the entire phrase is under consideration to be 

labeled as a TIMEX or not. We restrict the classifi-

cation for the following phrase types and grammat-

ical categories: NN, NNP, CD, NP, JJ, ADJP, RB, 

ADVP and PP. In order to make it possible, for 

each sentence we parse the initial input line with a 

Maximum Entropy parser (Ratnaparkhi, 1998) and 

extract all phrase candidates with respect the types 

defined above. Each phrase candidate is examined 

against the manual annotations for temporal ex-

pressions found in the sentence. Those phrases, 

which correspond to the temporal expressions in 

the sentence are taken as positive examples, while 

the rest are considered as negative ones. Only one 

sub-tree from a parse is marked as positive for a 

distinct TIMEX at once.  After that, for each can-

didate we produce a feature vector, which includes 

the following features: head phrase, head word, 

part-of-speech for head word, character type and 

character type pattern for head word as well as for 

the entire phrase. Character type and character type 

pattern
1
 features are implemented following Ahn et 

al. (2005). The patterns are defined by using the 

symbols X, x and 9. X and x are used for character 

type as well as for character type patterns for 

representing capital and lower-case letters for a 

token. 9 is used for representing numeric tokens. 

Once the character types are computed, the corres-

ponding character patterns are produced. A pattern 

consists of the same symbols as character types, 

and contains no sequential redundant occurrences 

of the same symbol. For example, the constituent 

“January 30th” has character type “Xxxxxxx 

99xx” and pattern “X(x) (9)(x)”.  

On this basis, we employ a classifier that im-

plements a Maximum Entropy model
2
 and per-

                                                           
1 In literature such patterns are also known as shorttypes. 
2 http://maxent.sourceforge.net/ 

forms categorization of constituent-phrases ex-

tracted from the input.  

4 Experiments, Results and Error Analy-

sis 

After processing the TimeBank corpus of 183 

documents we had 2612 parsed sentences with 

1224 temporal expressions in them. 2612 sentences 

resulted in 49656 phrase candidates. We separated 

the data in order to perform 10-fold cross valida-

tion, train the classifier and test it on an unseen 

dataset. The evaluations were conducted with re-

spect to the TERN 2004 evaluation plan (TERN, 

2004) and described in Section 2.1.    

After running experiments the classifier demon-

strated the performance in detection of TIMEX3 

tags with a minimal overlap of one character with 

precision, recall and F1-measure at 0.872, 0.836 

and 0.852 respectively. Since the candidate phrases 

provided by the parser do not always exactly align 

annotated temporal expressions, the results for the 

exact match experiments are constrained by an es-

timated upper-bound recall of 0.919. The experi-

ments on exact match demonstrated a small decline 

of performance level and received scores of 0.866, 

0.796 and 0.828 for precision, recall and F1-

measure respectively.  

Putting the received figures in context, we can 

say that with a very few shallow features and a 

standard machine learning algorithm the recogniz-

er of temporal expressions performed at a compa-

rable operational level to the rule-based approach 

of (Boguraev and Ando, 2005) and outperformed it 

in exact match. A comparative performance sum-

mary is presented in Table 2.  

Sometimes it is very hard even for humans to 

identify the use of obvious temporal triggers in a 

specific context. As a result, many occurrences of 

such triggers remained unannotated for which 

TIMEX3 identification could not be properly car-

ried out.   Apart of obvious incorrect parses, in-

exact alignment between temporal expressions and 

candidate phrases was caused by annotations that 

occurred at the middle of a phrase, for example 

“eight-years-long”, “overnight”, “yesterday’s”. In 

total there are 99 TIMEX3 tags (or 8.1%) misa-

ligned with the parser output, which resulted in 53 

(or 4.3%) undetected TIMEX3s. 
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 P R F1 

Detection 

Our approach 0.872 0.836 0.852 

Sloopy Span 

(Boguraev and 

Ando, 2005) 
0.852 0.952 0.896 

Exact Match 

Our approach 0.866 0.796 0.828 

(Boguraev and 

Ando, 2005) 
0.776 0.861 0.817 

 
Table 2. Comparative Performance Summary 

 

Definite and indefinite articles are unsystemati-

cally left out or included into TIMEX3 extent, 

which may introduce an additional bias in classifi-

cation.    

5 Conclusion and Future Work 

In this paper we presented a machine learning 

approach for detecting temporal expression using a 

recent annotated corpus for temporal information, 

TimeBank. Employing shallow syntactic and lexi-

cal features, the performance level of the method 

achieved comparable results to a rule-based ap-

proach of Boguraev and Ando (2005) and for the 

exact match task even outperforms it. Although a 

direct comparison with other state-of-the-art sys-

tems is not possible, due to different evaluation 

corpora, annotation standards and size in particu-

lar, our experiments disclose a very important cha-

racteristic. While the recognition systems in the 

TERN 2004 reported a substantial drop of F1-

measure between detection and exact match results 

(6.5 – 11.6%), our phrase-based detector demon-

strates a light decrease in F1-measure (2.4%), whe-

reas the precision declines only by 0.6%. This 

important finding leads us to the conclusion that 

most of TIMEX3s in TimeBank can be detected at 

a phrase-based level with a reasonably high per-

formance.  

Despite a good recognition performance level 

there is, of course, room for improvement. Many 

implementations in the TERN 2004 employ a set 

of apparent temporal tokens as one of the features. 

In our implementation, the classifier has difficul-

ties with very simple temporal expressions such as 

“now”, “future”, “current”, “currently”, “recent”, 

“recently”. A direct employment of vocabularies 

with temporal tokens may substantially increase 

the F1-measure of the method, however, it yet has 

to be proven. As reported in (Ahn et al., 2007) a 

precise recognition of temporal expressions is a 

prerequisite for accurate normalization.  

With our detector and a future normalizer we 

are able make the first step towards solving the 

TempEval-2 tasks, which introduce new challenges 

in temporal information processing: identification 

of events, identification of temporal expressions 

and identification of temporal relations (Puste-

jovsky et al., 2009). Our future work will be fo-

cused on improving current results by a new 

feature design, finalizing the normalization task 

and identification of temporal relations. All these 

components will result in a solid system infrastruc-

ture for all-around temporal analysis.  
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