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Abstract

The alignment problem for synchronous
grammars in its unrestricted form, i.e. whether
for a grammar and a string pair the grammar
induces an alignment of the two strings, re-
duces to the universal recognition problem,
but restrictions may be imposed on the align-
ment sought, e.g. alignments may be 1,
island-free or sure-possible sorted. The com-
plexities of 15 restricted alignment problems
in two very different synchronous grammar
formalisms of syntax-based machine transla-
tion, inversion transduction grammars (ITGs)
(Wu, 1997) and a restricted form of range
concatenation grammars ((2,2)-BRCGs) (Sg-
gaard, 2008), are investigated. The universal
recognition problems, and therefore also the
unrestricted alignment problems, of both for-
malisms can be solved in tin@(n%|G|). The
complexities of the restricted alignment prob-
lems differ significantly, however.

Introduction

2004). On a par with weak and strong generative ca-
pacity, it is thus possible to talk about the alignment

capacity of those formalisms. In this paper, two syn-

chronous grammar formalisms are discussed, inver-
sion transduction grammars (ITGs) (Wu, 1997) and

two-variable binary bottom-up non-erasing range

concatenation grammars ((2,2)-BRCGs) (Sggaard,
2008). It is known that ITGs do not induce the class

of inside-out alignments discussed in Wu (1997).

Another class that ITGs do not induce is that of

alignments with discontinuous translation units (Sg-

gaard, 2008). Sggaard (2008), on the other hand,
shows that the alignments induced by (2,2)-BRCGs
are closed under union, i.e. (2,2)-BRCGs induce all

possible alignments.

The universal recognition problems of both ITGs
and (2,2)-BRCGs can be solved in tidgn®|G|).
This may come as a surprise, as ITGs restrict the
alignment search space considerably, while (2,2)-
BRCGs do not. In the context of the NP-hardness of
decoding in statistical machine translation (Knight,
1999; Udupa and Maji, 2006), it is natural to ask
why the universal recognition problem of (2,2)-

The synchronous grammar fgrmalisms uged i%RCGS isn't NP-hard? How can (2,2)-BRCGs in-
syntax-based machine translation typically 'nduc‘auce all possible alignments and still avoid NP-

alignments by aligning all words that are reCogt, o rdness?

This paper bridges the gap between

hized simultaneously (Wu, 1997; Zhang and GiIOIe%hese results and shows that when alignments are
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The alignment structures induced by synchronous e¢ The LHS nonterminal symbol (possibly suf-
grammars in syntax-based machine translation have fixed by the empty string) can be derived from
the following property: If an alignment structure in- the start symbol.
cludes alignments|v’, v|w’ and w|w’, it also in-
cludes the alignmentv|v’, where w,w’,v,v" are
word instancesd. This follows from the fact that

only words that are recognized simultanously, are The only difference for (2,2)-BRCGs is that pro-

a!lgned. Othervwse all'gnment struct.ures are Just @ ction rules are typically referred to as clauses in
binary symmetric relation on two strings, a SOUrCehe range concatenation grammar literature.
and a target string, such that two words in the source

resp. target string, cannot be aligned. Maximallé

conneﬁteddt subglgr?phs (_|£qnor|ng precedence edg sI;i)gnments, (source-side and/or target-side) island-
are cafled transiation units. free alignments and sure-possible sorted alignments.

The _allgnr?ent problem can be formulated th'gl'he formal definitions of the three properties are as
way (with s, s’ source and target sentence, resp.): follows:

INSTANCE: G, (s, s).
QUESTION: Doeg~ induce an alignment
on (s, s')?

e The empty string can be derived from all RHS
nonterminal symbols.

' This paper considers some more complex exam-
les; namely, the alignment problems witt.: 1-

Definition 1.1. An alignment structure for a string
pair (wy ... w,,v1...0,) is a graphD = (V, E)
whereV = V; : {wy,...,w,} UV : {v1,..., 0}
The alignment problem in its unrestricted formandE = E; : {w; < w; | i < j}UE; : {v; < vj |
reduces to the universal recognition problem (Bary < YU AwhereA C V, x V. If (w;,v;) € A,
ton et al., 1987), i.e. whether for a gramn@@rand g|so writtenw; |v;, w; is said to be aligned te;,
a string pair(s,s’) it holds that(s,s’) € L(G)? and vice versa. An alignment structure is said to
Of course the alignment may in this case be emptye wellformediff for all w;, w;, vy, v; it holds that
or partial. Both ITGs and (2,2)-BRCGs permit un-f w;lvy, wilv; andw;|vy are aligned then so are
aligned nodes. wj|vj. An alignment structure is said to be 1 iff
This paper investigates the complexity of renoword occurs in two distinct tuples i. An align-
stricted versions of the alignment problem for ITGsnent structure is said to bsland-freeiff all words
and (2,2)-BRCGs. A simple example, which cann  occur in some tuple ia; it is said to be source-
be solved in linear time for both formalisms, is theside, resp. target-side, island-free if all words/ip
alignment problem wrt. alignments that consist of aesp.V;, occur in some tuple inl. The set of align-
single translation unit including all source and targeinents is divided into sure and possible alignments,

words. It may be formulated this way: i.,e. A = SU P (in most case = ()). An align-
ment structure is said to lsire-possible sorteiff if
INSTANCE: G, (s,s'). it holds that(w;,v;) € S then for allw;, v neither

QUESTION: Doeg5 induce an alignment that  (w;,vy) € P nor (w;,v;/) € P holds; similarly, if
consists of a single translation unitit holds that(w;,v;/) € P then for allw;, v; neither
with no unaligned words ofs, s")?  (w;, vy) € S nor (w;,v;) € S holds.

This can be solved for ITGs by checking if there The precedence relations i are not important
is a production rule that introduces all the words irfor any of our definitions, but are important for
the right order such that: meaningful interpretation of alignment structures.
m short hand notation for saying that a word Note that synchrono_us grammars are guaranteeq to
in the source string, and’, a word in the target string, have induce wellformed alignment structures. Some brief

been aligned. In the formal definition of alignments belavsi motivation for the properties singled out:
said thatw € V; (w is a word in the source string)y’ € V;
(w’ is a word in the target string) andv, w’) € A, i.e.w is
aligned tow’, and vice versa. Alignments are bidirectional in
what follows.

2In fact in normal form ITGs, we can simply check if there

is a production rule with the start symbol in the LHS that in-
troduces all the words in the right order, since all prodrcti
rules with nonterminal symbols in the RHS are branching and
contain no terminal symbols.
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Result| 1:1 IF(s) IF() SP| ITGs | (2,2)-BRCGs
(1) v O(n%|G|) | NP-complete
(2) v O(n®|G|) | NP-complete
3) v O(n8|G|) | NP-complete
(4) v | O(nG|) | NP-complete
(5) v v O(n8|G|) | NP-complete
(6) v v O(n®|G|) | NP-complete
(7) v v | O(n%G]|) | NP-complete
(8) v v O(n®|G|) | NP-complete
9) v v | O(n8|G|) | NP-complete
(1w | v v | O(n8|G|) | NP-complete
1) | v v v O(n®|G|) | NP-complete
(12) v v v | O(n%G]|) | NP-complete
13) | v v v | On%G]|) | NP-complete
4 | v v v | O(n8|G|) | NP-complete
15) | v v v v | On%G]) | NP-complete

Figure 1: The complexity of restricted alignment problemsiTGs and (2,2)-BRCGs.

e 1 : l-alignments have been argued to be adwhile the unrestricted alignment problem for (2,2)-
equate by Melamed (1999) and elsewhere, aBRCGs can be solved i®(n°|G|), the alignment
it may therefore be useful to know if a grammarproblem turns NP-hard as soon as restrictions are put
extracted from a parallel corpus produdesl- on the alignments sought. So the extra expressivity
alignments for a finite set of sentence pairs. of (2,2)-BRCGs in a way comes at the expense of
. . . control over the kind of alignments obtained.
¢ |sland-free alignments are interesting to the ex- On the structure of the paper: Sect. 2 and 3 briefly

tent that unaligned nodes increase the Chancef%ftroduce, resp., ITGs and (2,2)-BRCGs. Sect. 4

_translatlon errors. An island t_hreshold may forpresents three NP-hardness proofs from which the
instance be used to rule out risky translations.

15 results in Figure 1 can be derived. The three
e The notion of sure-possible sorted alignmentproofs are based on reconstructions of the Hamilton
is more unusual, but can, for instance, be usegircuit problem, the 3SAT problem and the vertex

to check if the use of possible alignments igover problem (Garey and Johnson, 1979).

consistently triggered by words that are hard tg i i
align. 2 Inversion transduction grammars

The results for all cross-classifications of thdnversion transduction grammars (ITGs) (Wu, 1997)
four properties —1 : 1, source-side island-free @€ @ notational variant of binary syntax-directed

(IF(s)), target-side island-free (IF(t)) and sureiranslation schemas_(Aho and Ullman, 1972) and are
possible sorted (SP) — are presented in the table #sually presented with a normal form:

Figure 13 Note that all 2* — 1 = 15) combina- A — [BC]
tions of the four properties lead to NP-hard align- A — (BQO)
ment problems for (2,2)-BRCGs. Consequently, A — elf
0ne of our reviewers remarks that the Figure 1 is "artifi- A — e | €
cially blown up’, since all combinations have the same com- A — € | f

plexity. It cannot really be left out, however. The numbers i
the figure’s left-most column serves as a reference in thefpro where A’_B’C = _N _ajnd e,f € T. The
below. Since the 15 results derive from only four proofssit i first production rule, intuitively, says that the sub-
convenient to have a short-hand notation for the decisiob-pr tree|[]z[]c]4 in the source language translates into
lems.
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a subtree[[|g[]c]a, whereas the second produc-Eacha; € (TUV)*, 1 < j < p(A), is an argument.
tion rule inverts the order in the target languageS € N is the start predicate name withiS) = 2.
i.e.[[Jc[]s]a- The universal recognition problem of Note that the order of RHS predicates in a clause
ITGs can be solved in tim&(n%|G|) by a CYK- is of no importance. Three subclasses of RCGs are
style parsing algorithm with two charts. introduced for further reference: An RCG =
Figure 1 tells us that all the restricted alignment{N, T, V, P, S) is simpleiff for all ¢ € P, it holds
problems listed can be solved in tin@(n°|G|). that no variableX occurs more than once in the
The explanation is simple. It can be read off fromLHS of ¢, and if X occurs in the LHS then it oc-
the syntactic form of the production rules in ITGscurs exactly once in the RHS, and each argument
whether they introducg : 1-alignments, island-free in the RHS ofc contains exactly one variable. An
alignments or sure-possible sorted alignments. NoRCGG = (N, T,V, P, S) is ak-RCGiff forall A €
that normal form ITGs only induce: 1-alignments. N, p(A) < k. Finally, an RCGG = (N, T,V, P, S)
Consider, for example, the following grammar,is said to bebottom-up non-erasingf for all ¢ € P

not in normal form for brevity: all variables that occur in the RHS oflso occur in
(1) S — (ASB)|(4B) s LHS. | -
2 A — ala Apositive RCGis a(2,2)-BRCG iffitisa 2-RCG,
B) A — ale if an argument of the LHS predicate contains at most
4 B — blb two variables, and if it is bottom-up non-erasing.

: _ The language of a (2,2)-BRCG is based
Note that this grammar recognizes the translaén the notion of range For a string pair

tio_n {<anz?n7bnam | n > m}. To_ check if for_a W1 -+ Wy Unts - Upitem) @ Fange is a pair
string palr.(wl...wn,vl....vm> th!s grammar in- - e g () with 0 < i < j < n or
ducgs an island-free alignment, S|m_ply remove pro; _ i< m+1+m ie a sting span,
duction rule (3). It holds that on!y strlng_s in the sub—Which denotes a substring;.; .. . w; in the source
language{(ab™,b"a™ | n > 1} induce island-free

i Similarl heck if th _string or a substring; ...v; in the target string.
alignments. imiiarty, to chec I the grammar "_]'Only consequtive ranges can be concatenated into
duces source-side island-free alignments for string

_ ducti | il have o b q ew ranges. Terminals, variables and arguments
pairs, no production rules will have to be removed. i, 3 clause are bound to ranges by a substitution

mechanism. Annstantiatedclause is a clause in
which variables and arguments are consistently
replaced by ranges; its components iaisgantiated
predicates For exampleA({g...h),{i...j)) —
(2,2)-BRCGs arepositive RCGs (Boullier, 1998) B({g...h),(i + 1...j — 1)) is an instantiation
with binary start predicate names, i€S) = 2. In  of the clauseA(X;,aY1b) — B(X;,Y1) if the
RCG, predicates can be negated (for complementerget string is such that;.; = a andv; = b.
tion), and the start predicate name is typically unaryA derive relation =—- is defined on strings of
The definition is changed only for aesthetic reainstantiated predicates. If an instantiated predicate
sons; a positive RCG with a binary start predicat¢s the LHS of some instantiated clause, it can be
namesS is turned into a positive RCG with a unaryreplaced by the RHS of that instantiated clause. The
start predicate namg’ simply by adding a clause language of a (2,2)-BRC@ = (N,T,V,P,S) is
S'(X1X3) — S(X1, Xo). the setL(G) = {{(w1...Wn,Vni2. - Untitm) |

A positive RCG is a 5-tuplé/ = (N, T,V, P,S).  §((0,n),(n + 1,n + 1 + m)) == ¢}, i.e. an
N is a finite set of predicate names with an aritynput string pair (w1 ... wn, Vi .- Vniiem) IS
functionp: N — N, T'andV" are finite sets of, resp., recognized iff the empty string can be derived from
terminal and variablesP is a finite set of clauses of S{0,n), (n+1,n+1+m)).
the formyg — 11 ... ¢, where each of the;, 0 < It is not difficult to see that ITGs are also (2,2)-
i < m, is a predicate of the form(a,...,a,4)). BRCGs. The left column is ITG production rules;

3 Two-variable binary bottom-up
non-erasing range concatenation
grammars
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the right column their translations in simple (2,2)-

BRCGs.
A— [BC] A(X]_XQ,Y]_}/Q)
A= (BC) | A(X1X2,Y1Ys) —
A—el|f | Ale,f) — ¢
A—ele | Alee) —
A—elf | Alef)—e

B(X1,Y1)C(X2,Ys)
B(X1,Y2)C(X2, Y1)

Note thatL(G)
m,n > 0}.

— {{a"bmcrd™, (ab)" (cd)™) |

4 Results
4.1 Checking island-freeness and sure-possible
sortedness

One possible way to check for island-freeness and
sure-possible sortedness in the context of (2,2)-

Consequently, (2,2)-BRCGs recognize all transBRCGs is to augment the CYK-style algorithm with
lations recognized by ITGs. In fact the inclusion iseature structures (Boolean vectors); all there is
strict, as shown in Sggaard (2008). The univers@leeded, e.g. to check sure-possible sortedness, is to
recognition problem of (2,2)-BRCGs can be solvegair up the nonterminals inserted in the cells of the
in time O(n°|G|) by the CYK-style parsing algo- chart with a flat feature structure of the form:
rithm presented in Sggaard (2008).
Example 3.1. Consider the (2,2)-BRCGH
({Ss, S0, S8, 51,8, A, B,C, D}, {a,b, ¢, d}, { X1,

Xo,Y1,Y2}, P, Ss) with P the following set of

clauses:
1) Se(X1,Y1)  —  So(X1,Y1)Sh(X1, Y1)
(2) So(X1X2, Y1) —  S1(X1,Y1)D(X32)
3) Si(aXic,abYy) —  S1(X1, Y1)
(4) Sl(Xl,Y1Y2) — B(Xl)C(Yl)D(YQ)
(B)  S(XiXe Y1) —  S(Xe,V1)A(Xy)
(6) Sl (led chd) — Si (Xl,Yl)
(7) Si(X1,nYz) —  C(X1)A(Y1)B(Y2)
(8) (CLXl) — A(Xl)
9) Ale) — ¢
(20) B(bX;) — B(Xy)
(11) Ble) — e
(12) C(eX1) — C(Xy)
(13) Cle) — e
(14) D(dX,) — D(Xy)
(15) D) — €
The string pairfabbedd, abeded) is derived:
S55((0,6), (0,6))
- SO(<076>7<076>)S(/J(<076>7<076>) (1)
50({0,6), (0,6))
- Sl(<173>7<276>)5(/)(<0 6>7<076>) (3)
= B((1,3))C((2,4))D((4,6)) 4)
56((0,6),(0,6))
= 5((0,6),(0,6)) (10-15)
= 51((1,6),(0,6))A({0,1)) (5)
= Si(<176>7<076>) (8_9)
= 51((2,5),(0,4)) (6)
= 51((3,4),(0,2)) (6)
= C((3,4))A({0,1)) B({1,2)) )
— € (8-13)
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where n is the length of the source, resp. tar-
get, string in the source, resp. target, chart, and
1 <i<n:wai; € {+,—}. When a clause ap-
plies that induces a sure alignment between a word
w; and some word in the target, resp. source, string,
the attributesuRE; is assigned the value +; if a pos-
sible alignment is induced between and another
word, the attribute is assigned the value -. This can
all be done in constant time. A copying clause now
checks if the appropriate nonterminals have been in-
serted in the cells in question, but also that the as-
sociated feature structures unify. This can be done
in linear time. Feature structures can be used the
same way to record what words have been aligned to
check island-freeness. Unfortunately, this technique
does not guarantee polynomial runtime. Note that
there can b&" many distinct feature structures for
each nonterminal symbol in a chart. Consequently,
whereas the size of a cell in the standard CYK algo-

by |[N| x (2n — 1), the cells are now of exponential
size in the worst case.

The following three sections provide three NP-
hardness proofs: The first shows that the alignment

“The indices used to check that two nonterminals are derived
simultaneously (Sggaard, 2008) mean that it may be negessar
within a cell in the source, resp. target, chart to keep trafck
multiple tuples with the same nonterminals. In the worsecas
there is a nonterminal for each span in the target, respcepur
chart, i.e2n — 1 many.



problem wrt.1 : 1-alignments is NP-hard for (2,2)- Since no alignment above is : 1, there is no
BRCGs and goes by reduction of the Hamilton cirsolution to the corresponding circuit problem. The
cuit problem for directed connected graphs. The setranslation goes as follows:

ond shows that the alignment problem wrt. source-

or target-side island-free and sure-possible sorted® Add a rule (X, Y1) — {5,,(X1,Y1) |
alignments is NP-hard for (2,2)-BRCGs and goes Vi 3vj.(vi, v5) € EY}.

by 3SAT reduction. _The third proof is more general | For each edge (v;,v;) c E add
and goes by reduct!o_rl of the vertex cover problem. a rule S, (X10:X2, Yiv;Ya) R
All thr(_ae formal decision problems are discussed in T(X1)T(X2) T(X3)T(X4).5

detail in Garey and Johnson (1979). All 15 results

in Figure 1 are derived from modifications of these e Forallv; € V add aruleT (v; X;) — T(X7).

proofs.
e AddaruleT(e) — e.

4.2 NP-hardness of thd : 1 restriction for o
(2,2)-BRCGs The grammar ensures source-side island-freeness,

: and therefore if there existsla 1-alignment of any
Theorem 4'.1' The alignment problem wrtl : 1- linearization ofV" and itself, by connectivity of the
alignments is NP-hard for (2,2)-BRCGs. input graph, there is a solution to the Hamilton cir-
Proof. An instance of the Hamilton circuit problem cuit problem for directed connected graphs.
for directed connected graphs is simply a directed O
connected graplty = (V, E) and the problem is
whether there is a path that visits each vertex exac
once and returns to its starting point? Consider, for

tfl.s NP-hardness of island-freeness and
sure-possible sortedness for (2,2)-BRCGs

instance, the directed connected graph: Theorem 4.2. The alignment problem wrt. target-
side island-free and sure-possible sorted alignments
0 2 is NP-hard for (2,2)-BRCGs.
3 Proof. An instance of the 3SAT problem is a propo-
sitional logic formula¢ that is a conjunction of
4 5 clauses of three literals connected by disjunctions,

) _ o and the problem whether this formula is satisfiable,
Itis easy to see that there is no path in this casg. has a model? Say= pVqVrApvgVe. Forour
starting point. The intuition behind our reconstrucin ¢ as source string, ang itself with A’'s omitted
tion of the Hamilton circuit problem for directed and conjuncts as words as the target string. One of
connected graphs is to check this via alignments bgse representations of a solution constructed by the

tween a sequence of all the vertices in the graph afhnslation described below is the following align-
itself. The grammar permits an alignment betweefment structure:

two wordsw|v if there is a directed edge between the
corresponding nodes in the graph, €g,v) € E.
The alignment structures below depict the possible |
alignments induced by the grammar obtained by the pVaqVr pPVqIVT
translation described below for our example graph:

p q r
|

Solid lines are sure alignments; dotted lines are
1 2 3 4 5 1 2 3 4 5 possible alignments. The intuition is to use sure
alignments to encode true assignments, and possi-

12 3 45 12 3 45 ble alignments as false assignments. The alignment
1 2 3 4 5 1 2 3 4 5 — . ]

M N T is an arbitrary predicate name chosen to reflect the fact
1 2 3 4 5 1 2 3 4 5 that all possible substrings over the vocabulary are razedgn

by theT predicates.
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above thus corresponds to the moélg] 7}, which there is a target-side (clause-side) island-free align-
clearly satisfies. ment there is also an island-free alignment. Re-
For the translation, assume that each 3SAT insersely, if there is an island-free alignment there is
stance, over a set of propositional variadF&&OP, also a target-side island-free alignment of the string
consists of a set of clauses. .. ¢, that are sets of pair in question.
literals of size 3. For any literdl;, if I; = p; then Note also that a more general proof can be ob-
pos(l;) = pj andlit(l;) = —; and if; = p; then tained by introducing a clause, similar to the clause
pos(l;) = p; andlit(l;) = +. If [; is a literal in  introduced in the first bullet point of the Hamil-
ci, We writel; € ¢;. First add the following four ton circuit reduction in the proof of Theorem 4.1:

clauses: S(X1,Y1) — {S,(X1,Y1) | 1 < i < m}. The
Si(X1,Y1) —  S.(X1,Y1) | Sp(X1,Y1) fqur rulgs used to change between sure and pos-
S, (X1,Y1) sible alignments then of course need to be copied

out for all S, predicates, and the LHS predicates,
olf I € ¢ and lit(l; = —, add exceptT, of the other clauses must be properly
Sp(Xipos(l;) X, Y1¢;Y2) — T(X1)T(X2) subscripted. Now the grammar enforces target-

) |
Sp(X1, Y1) = Ss(X1, Y1) |
)

T(Y1)T(Y3). side island-freeness, and sure-possible sortedness is
. the only restriction needed on alignments. Conse-
olf [; € ¢ and Li(ly) = +, add guenty this reduction proves (4) that the alignment
Ss(X1pos(lj) Xa, YiciYa) — T(X1)T(X2)  proplem wrt. sure-possible sortedness is NP-hard for
T(Y)T(Y2). (2,2)-BRCGs.
e Forallp;, addT(p;X1) — T(X1). 4.4 NP-hardness of island-freeness for
e Forallg;, addT(cZXl) — T(Xl) (2,2)-BRCGs
Theorem 4.3. The alignment problem wrt. island-
e AddaruleT(e) — e. free alignments is NP-hard for (2,2)-BRCGs.

It is easy to see that the first rule adds at mog®roof. An instance of the vertex problem is a graph
7m clauses, which for the largest non-redundanD = (V,FE) and an integerk, and the prob-
formulas equals/((2|PROP|)?). The second rule lem whether there exists a vertex cover Bf of
adds at mos2|PROP| clauses; and the third at mostsize k? SayD = (V = {a,b,c,d},E =
m < (2|PROP|)? clauses. It is also easy to see tha{(a, c), (b,¢c), (b, d), (c,d)}) andk = 2. The trans-
the grammar induces a target-side island-free, surkation described below constructs a sentence pair

ossible sorted alignment if and only if the 3SAT in-
gtance is satisfiablge. Note that the g{ammar does not  \P1P2P3paud009, acaabbbbeceedddd)
guarantee that all induced alignments are target-sidefor this instance, and a (2,2)-BRCG with the
island-free. Nothing, in other words, correspondslauses in Figure 2. Note that there are four kinds
to conjunctions in our reconstruction. This is nobf clauses:
necessary as long as there is at least one target-side

island-free alignment that is induced. O * A clause with an5 predicate in the LHS. In

general, there will be one such clause in the
Note that the proof also applies in the case where grammar constructed for any instance of the
it is the source side that is required to be island-free.  vertex cover problem.
All needed is to make the source string the target
string, and vice versa. Note also that the proof can
be modified for the case where both sides are island-
free: Just add a dummy symbol to the clause side
and allow (or force) all propositional variables to e 8 clauses witti/? predicates in the LHS. In gen-
be aligned to this dummy symbol. Consequently, if  eral, there willbgdV| x (|V'| — k) many clauses
of this form in the grammars.

e 8 clauses withp; predicates in the LHS. In gen-
eral, there will be2|E| many clauses of this
form in the grammars.
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e 16 clauses with' predicates in the LHS. In 5 Conclusion

general, there will bé|E| x |V | — |E| — |E| x

(V] = k)) x |V] many clauses of this form in

the grammars.

The universal recognition problems of both ITGs
and (2,2)-BRCGs can be solved in tidgn®|G|).
This may come as a surprise, as ITGs restrict the

For an instancéD = (V, E), k), the translation alignment space considerably, while (2,2)-BRCGs
function in general constructs the following clausesinduce all possible alignments. In the context of

S(X1,Y1) — A{pi(X1, Y1) [1<i < |E[}U
{UIVI=F (X1, Y1) U
[O1EIXIVIZIEI- 1B (VI-R) (X, ¥3))

andforalll <i <|E|iff e, € E = (e,€):

pi(X1piXo, YieYs) —  T(X1)T(X2)T(Y1)T(Y2)
pi(X1piXo, Y1€'Ys) —  T(X1)T(X2)T(Y1)T(Y2)

Forall2 <i < |V|—kandforallv e V:

Ui(X]_UXQ,Y]_'U...'UYQ) — Uiil(Xl,Yl)
T(X2)T(Yz)

where|v...v| = |E|. For the casd/!, add the
clauses for alb € V:

Ul(XlUXQ,Yl'U...'U)/Q) — T(Xl)T(Yl)
T(X2)T(Y2)

The string pair is constructed this way:
(p1-- U1 - Uyi—p
01+ - O|B|x|V|~|B|-| E|x(|V|-k) T)
Finally, for all wordsw in this string pair, add:

Since this translation is obviously polynomial, it

the NP-hardness of decoding in statistical machine
translation (Knight, 1999; Udupa and Maji, 2006),

it is natural to ask why the universal recognition
problem of (2,2)-BRCGs isn't NP-hard? This pa-
per bridges the gap between these results and shows
that when alignments are restricted to be: 1,
island-free or sure-possible sorted, or all combi-
nations thereof, the alignment problem of (2,2)-
BRCGsis NP-hard. Consequently, while the un-
restricted alignment problem for (2,2)-BRCGs can
be solved in0(n%|G|), the alignment problem turns
NP-hard as soon as restrictions are put on the align-
ments sought. So the extra expressivity in a way
comes at the expense of control over the kind of
alignments obtained. Note also that an alignment
of two words may be enforced multiple times in a
(2,2)-BRCGs parse, since two derivation trees that
share leaves on both sides can align the same two
words.

Our results are not intended to be qualifications of
the usefulness of (2,2)-BRCGs (Sggaard, 2008), but
rather they are attempts to bridge a gap in our under-
standing of the synchronous grammar formalisms at
hand to us in syntax-based machine translation.

follows that the alignment problem wrt. island-free

alignments for (2,2)-BRCGs is NP-hard. O

Note that the proof also applies if only the source,
resp. target, side is required to be island-free, since
the grammar restricts the alignments in a way such
that if one side is island-free then so is the other side.

This gives us results (2) and (3).

It is not difficult to see either that it is possible

to convert the grammar into a grammar that induces
1 : 1-alignments. This gives us results (5), (8) and
(11). Of course by the observation that all the gram-
mars only use sure alignments, it follows that the
alignment problems in (7), (9-10) and (12-15) are

also NP-hard.
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S(X1,Y1) —  pi(X1,Y1)p2(X1, 1)
p3(X1, Y1)pa(X1, Y1)
U%(X1,Y1)64 (X1, Y1)

p1(X1p1 X2, Y1aYs) —  T(X1)T(X2)T(Y1)T(Y2)

p1(X1p1 X2, YicYs) —  T(X7)T(X2)T(Y1)T(Yz)
U?(X1UXs5,aaaaY;) — UYX1,Y1)T(Xo)

UM (X1U X5, Y1bbbbY2)  —  T(X1)T(Y1)T(X2)T(Ya2)

U?(X1U Xo, Y1 bbbbY?) UM X1, Y1) T(X2)T(Y2)

!

54(X15X2, YiaYQ)

8 (X1, Y1) T(X2)T(Y2)
54 (X16 X2, Y1bY2) 5

(X1, Y1) T(X2) T(Yz)

Ll

Figure 2: A (2,2)-BRCG for the instance of the vertex covatpem{({{a, b, ¢, d}, {(a, ¢), (b,¢), (b,d), (¢,d)}), 2).
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