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Introduction

The Third Workshop on Syntax and Structure in Statistical Translation (SSST-3) was held on 5 June
2009 following the NAACL-HLT 2009 conference hosted by the University of Colorado at Boulder.
Like the first two SSST workshops in 2007 and 2008, it aimed to bring together researchers from
different communities working in the rapidly growing field of statistical, tree-structured models of
natural language translation.

We were honored to have Alfred V. Aho deliver this year’s invited keynote talk. Along with Lewis
and Stearns’ (1968) seminal “Syntax-directed transduction” introducing syntax-directed transduction
grammars or SDTGs—to which synchronous CFGs are also equivalent—the classic pair of Aho and
Ullman’s (1969) articles “Syntax-directed translations and the pushdown assembler” and “Properties
of syntax-directed translations” established the foundations of formal transduction approaches to
translation. The motivation behind their formal language theory work was compiler translation of
programming languages. But much of the current work at SSST reflects the evolution of those ideas into
today’s state-of-the-art approaches to modeling of syntax and structure in statistical machine translation
of human languages.

Nowhere is it better demonstrated that research is healthily driven by the pollination of ideas across
these disciplines. These formal language pioneers foresaw clearly the importance of formalizing
compositional models of transduction. But without empirical research across various natural languages,
formal language theorists would not perhaps have anticipated the wide applicability in human language
translation of an intermediate restricted class of transductions between the syntax-directed transductions
that can be described by SDTGs (or synchronous CFGs) at one extreme, and the very restricted
finite-state transductions that can be described by FSTs at the other—like the broad equivalence class
of inversion transductions that can be described by ITGs (which include synchronous/transduction
grammars whose rules are all binary rank, ternary rank, or monotonically straight or inverted in
reordering permutation). Nor might they have foreseen the success of the rich variety of statistical
machine learning techniques that have been developed to induce such synchronous/transduction
grammars, such as the techniques introduced by the hierarchical phrase-based translation approach.
As has so often happened over the years of cross-fertilization cycles between formal language and
natural language research, the theoretical and empirical lines of research provide mutual inspiration.

We selected ten papers for this year’s workshop. Studies on alignment ranged from the theoretical
(Søgaard) to data analysis (Nakazawa and Kurohashi; Søgaard and Kuhn; Jiang, Li, Yang and Zhao),
to empirical impact on actual translation performance (Saers and Wu; Hashimoto, Yamamoto, Okuma,
Sumita and Tokuda). New contributions to translation decoding included purely unsupervised methods
leveraging compositional structure constraints (Saers and Wu), methods using explicit syntactic
information (Chang, Tseng, Jurafsky and Manning; Khalilov, Fonollosa and Dras), as well as methods
attempting to blend the two (Hashimoto, Yamamoto, Okuma, Sumita and Tokuda; Hanneman and
Lavie). The program was rounded out by a paper considering the use of explicit syntax in automatic
evaluation (Wang, Zhao, Yang and Li).

We would like to thank our authors and our Program Committee for making this year’s SSST workshop
another success.

Dekai Wu and David Chiang
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Abstract

A key concern in building syntax-based ma-
chine translation systems is how to improve
coverage by incorporating more traditional
phrase-based SMT phrase pairs that do not
correspond to syntactic constituents. At the
same time, it is desirable to include as much
syntactic information in the system as pos-
sible in order to carry out linguistically mo-
tivated reordering, for example. We apply
an extended and modified version of the ap-
proach of Tinsley et al. (2007), extracting
syntax-based phrase pairs from a large parallel
parsed corpus, combining them with PBSMT
phrases, and performing joint decoding in a
syntax-based MT framework without loss of
translation quality. This effectively addresses
the low coverage of purely syntactic MT with-
out discarding syntactic information. Further,
we show the potential for improved transla-
tion results with the inclusion of a syntactic
grammar. We also introduce a new syntax-
prioritized technique for combining syntactic
and non-syntactic phrases that reduces overall
phrase table size and decoding time by 61%,
with only a minimal drop in automatic trans-
lation metric scores.

1 Introduction

The dominance of traditional phrase-based statisti-
cal machine translation (PBSMT) models (Koehn et
al., 2003) has recently been challenged by the de-
velopment and improvement of a number of new
models that explicity take into account the syntax
of the sentences being translated. One simple ap-
proach is to limit the phrases learned by a standard

PBSMT translation model to only those contiguous
sequences of words that additionally correspond to
constituents in a syntactic parse tree. However, a to-
tal reliance on such syntax-based phrases has been
shown to be detrimental to translation quality, as the
space of phrase segmentation of a parallel sentence
is heavily constrained by both the source-side and
target-side tree structures. Noting that the number
of phrase pairs extracted from a corpus is reduced by
around 80% when they are required to correspond to
syntactic constituents, Koehn et al. (2003) observed
that many non-constituent phrase pairs that would
not be included in a syntax-only model are in fact
extremely important to system performance. Since
then, researchers have explored effective ways for
combining phrase pairs derived from syntax-aware
methods with those extracted from more traditional
PBSMT. Briefly stated, the goal is to retain the high
level of coverage provided by non-syntactic PBSMT
phrases while simultaneously incorporating and ex-
ploiting specific syntactic knowledge.

Zollmann and Venugopal (2006) overcome the re-
strictiveness of the syntax-only model by starting
with a complete set of phrases as produced by tra-
ditional PBSMT heuristics, then annotating the tar-
get side of each phrasal entry with the label of the
constituent node in the target-side parse tree that
subsumes the span. They then introduce new con-
stituent labels to handle the cases where the phrasal
entries do not exactly correspond to the syntactic
constituents. Liu et al. (2006) also add non-syntactic
PBSMT phrases into their tree-to-string translation
system. Working from the other direction, Marton
and Resnik (2008) extend a hierarchical PBSMT
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system with a number of features to prefer or dis-
prefer certain types of syntactic phrases in different
contexts. Restructuring the parse trees to ease their
restrictiveness is another recent approach: in partic-
ular, Wang et al. (2007) binarize source-side parse
trees in order to provide phrase pair coverage for
phrases that are partially syntactic.

Tinsley et al. (2007) showed an improvement over
a PBSMT baseline on four tasks in bidirectional
German–English and Spanish–English translation
by incorporating syntactic phrases derived from par-
allel trees into the PBSMT translation model. They
first word align and extract phrases from a parallel
corpus using the open-source Moses PBSMT toolkit
(Koehn et al., 2007), which provides a baseline SMT
system. Then, both sides of the parallel corpus are
parsed with independent automatic parsers, subtrees
from the resulting parallel treebank are aligned, and
an additional set of phrases (with each phrase corre-
sponding to a syntactic constituent in the parse tree)
is extracted. The authors report statistically signif-
icant improvements in translation quality, as mea-
sured by a variety of automatic metrics, when the
two types of phrases are combined in the Moses de-
coder.

Our approach in this paper is structurally similar
to that of Tinsley et al. (2007), but we extend or
modify it in a number of key ways. First, we ex-
tract both non-syntactic PBSMT and syntax-driven
phrases from a parallel corpus that is two orders of
magnitude larger, making our system competitive
in size to state-of-the-art SMT systems elsewhere.
Second, we apply a different algorithm for subtree
alignment, proposed by Lavie et al. (2008), which
proceeds bottom-up from existing statistical word
alignments, rather than inducing them top-down
from lexical alignment probabilities. Third, in addi-
tion to straightforwardly combining syntax-derived
phrases with traditional PBSMT phrases, we demon-
strate a new combination technique that removes
PBSMT phrases whose source-language strings are
already covered by a syntax-derived phrase. This
new syntax-prioritized technique results in a 61%
reduction in the size of the combined phrase table
with only a minimal decrease in automatic transla-
tion metric scores. Finally, and crucially, we carry
out the joint decoding over both syntactic and non-
syntactic phrase pairs in a syntax-aware MT sys-

tem, which allows a syntactic grammar to be put in
place on top of the phrase pairs to carry out linguis-
tically motivated reordering, hierarchical decoding,
and other operations.

After this introduction, we first describe the base
MT system we used, its formalism for specify-
ing translation rules, and the method for extract-
ing syntax-derived phrase pairs from a parallel cor-
pus (Section 2). Section 3 gives the two methods
for combining PBSMT phrases with our syntactic
phrases, and introduces our first steps with includ-
ing a grammar in the syntax-based translation frame-
work. The results of our experiments are described
in Section 4 and are further discussed in Section 5.
Finally, Section 6 offers some conclusions and di-
rections for future work.

2 Base Translation System

The base MT system used for our experiments is the
statistical transfer (“Stat-XFER”) framework (Lavie,
2008). The core of the framework is a transfer en-
gine using two language-pair-dependent resources:
a grammar of weighted synchronous context-free
rules, and a probabilistic bilingual lexicon. Once
the resources have been provided, the Stat-XFER
framework carries out translation in a two-stage pro-
cess, first applying the lexicon and grammar to syn-
chronously parse an input sentence, then running
a monotonic decoder over the resulting lattice of
scored translation pieces assembled during parsing
to produce a final string output. Reordering is ap-
plied only in the first stage, driven by the syntactic
grammar; the second-stage monotonic decoder only
assembles translation fragments into complete hy-
potheses.

2.1 Lexicon and Grammar Formalism

Each Stat-XFER bilingual lexicon entry has a syn-
chronous context-free grammar (SCFG) expression
of the source- and target-language production rules,
shown in abbreviated format below, wherecs andct

represent source- and target-side syntactic category
labels andws andwt represent source- and target-
side word or phrase strings.

cs :: ct → [ws] :: [wt]

2



Each entry in the lexicon is assigned a pair of rule
scores (rt|s andrs|t) based oncs, ws, ct, andwt

1.
The rt|s score is a maximum-likelihood estimate
of the distribution of target-language translations
and source- and target-language syntactic categories
given the source string (Equation 1); this is similar
to the usual “target-given-source” phrasal probabil-
ity in standard SMT systems. Thers|t score is sim-
ilar, but calculated in the reverse direction to give a
source-given-target probability (Equation 2).

rt|s =
#(wt, ct, ws, cs)

#(ws) + 1
(1)

rs|t =
#(wt, ct, ws, cs)

#(wt) + 1
(2)

The add-one smoothing in the denominators coun-
teracts overestimation of the rule scores of lexical
entries with very infrequent source or target sides.

Stat-XFER grammar rules have a similar form,
shown below via an example.

NP :: NP → [DET1 N2 de N3] :: [DET1 N3 N2]

The SCFG backbone may include lexicalized items,
as above, as well as non-terminals and pre-terminals
from the grammar. Constituent alignment infor-
mation, shown here as co-indexes on the non-
terminals, specifies one-to-one correspondences be-
tween source-language and target-language con-
stituents on the right-hand side of the SCFG rule.
Rule scoresrt|s andrs|t for grammar rules, if they
are learned from data, are calculated in the same way
as the scores for lexical entries.

2.2 Syntax-Based Phrase Extraction

In this section, we briefly summarize the automatic
resource extraction approach described by Lavie et
al. (2008) and recently extended by Ambati and
Lavie (2008), which we use here, specifically as ap-
plied to the extraction of syntax-based phrase pairs
for the bilingual lexicon.

The grammar and lexicon are extracted from a
large parallel corpus that has been statistically word-
aligned and independently parsed on both sides with

1If no syntactic category information is available,cs andct

can be set to dummy values, but the rule score equations remain
unchanged.

automatic parsers. Word-level entries for the bilin-
gual lexicon are directly taken from the word align-
ments; corresponding syntactic categories for the
left-hand side of the SCFG rules are obtained from
the preterminal nodes of the parse trees. Phrase-
level entries for the lexicon are based on node-to-
node alignments in the parallel parse trees. In the
straightforward “tree-to-tree” scenario, a given node
ns in one parse treeS will be aligned to a nodent

in the other parse treeT if the words in the yield of
ns are all either aligned to words within the yield of
nt or have no alignment at all. If there are multiple
nodesnt satisfying this constraint, the node in the
tree closest to the leaves is selected. Each aligned
node pair(ns, nt) produces a phrase-level entry in
the lexicon, where the left-hand sides of the SCFG
rule are the labels ofns andnt, and the right-hand
sides are the yields of those two nodes in their re-
spective trees. In the expanded “tree-to-tree-string”
configuration, if no suitable nodent exists, a new
noden′

s is introduced intoT as a projection ofns,
spanning the yield of the words inT aligned to the
yield of ns. At the end of the extraction process in
either case, the entry counts are collected and scored
in the manner described in Section 2.1.

3 Combination with PBSMT Phrases

Conceptually, we take the opposite approach to that
of Tinsley et al. (2007) by adding traditional PBSMT
phrases into a syntax-based MT system rather than
the other way around. We begin by running steps
3 through 5 of the Moses training script (Koehn et
al., 2007)2, which results in a list of phrase pair in-
stances for the same word-aligned corpus to which
we applied the syntax-based extraction methods in
Section 2.2. Given the two sets of phrases, we ex-
plore two methods of combining them.

• Direct Combination. Following the method of
Tinsley et al. (2007), we directly combine the
counts of observed syntax-based phrase pairs
with the counts of observed PBSMT phrase
pairs. This results in a modified probability
model in which a higher likelihood is moved
onto syntactic phrase pairs that were also ex-
tractable using traditional PBSMT heuristics. It

2See alsowww.statmt.org/moses.
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Decoder Phrase Type # Phrases METEOR BLEU TER

Stat-XFER Syntactic only, PHR 917,266 0.5654 0.2734 56.49
Stat-XFER Syntactic only, frag 1,081,233 0.5653 0.2741 56.54
Stat-XFER Syntactic only, gra 1,081,233 0.5665 0.2772 56.26
Stat-XFER PBSMT only 8,069,480 0.5835 0.3018 54.26

Stat-XFER Direct combination, PHR8,071,773 0.5835 0.3009 54.21
Stat-XFER Direct combination, frag 9,150,713 0.5841 0.3026 54.52
Stat-XFER Direct combination, gra 9,150,713 0.5855 0.3034 54.28
Stat-XFER Syntax-prioritized, PHR 2,888,154 0.5800 0.2961 54.79
Stat-XFER Syntax-prioritized, frag 3,052,121 0.5802 0.2979 54.78
Stat-XFER Syntax-prioritized, gra 3,052,121 0.5813 0.2991 54.73

Moses PBSMT only, mono 8,145,083 0.5911 0.3139 53.77
Moses PBSMT only, lex RO 8,145,083 0.5940 0.3190 53.48

Figure 1: Results on the test set for all phrase table configurations. For BLEU, bold type indicates the best Stat-XFER
baseline and the configurations statistically equivalent to it (paired bootstrap resampling withn = 1000, p = 0.05).

also allows either extraction mechanism to in-
troduce new entries into the combined phrase
table that were not extracted by the other, thus
permitting the system to take full advantage of
complementary information provided by PB-
SMT phrases that do not correspond to syntac-
tic constituents.

• Syntax-Prioritized Combination. Under this
method, we take advantage of the fact that
syntax-based phrase pairs are likely to be
more precise translational equivalences than
traditional PBSMT phrase pairs, since con-
stituent boundaries are taken into account dur-
ing phrase extraction. PBSMT phrases whose
source-side strings are already covered by an
entry from the syntactic phrase table are re-
moved; the remaining PBSMT phrases are
combined as in the direct combination method
above. The effect on the overall system is
to trust the syntactic phrase pairs in the cases
where they exist, supplementing with PBSMT
phrase pairs for non-constituents.

For each type of phrase-pair combination, we test
three variants when jointly decoding syntax-based
phrases, which come with syntactic information,
along with PBSMT phrases, which do not. In the
first configuration (“PHR”), all extracted phrase la-
bels for syntactic phrases are mapped to a generic
“PHR” tag to simulate standard SMT monotonic de-

coding; this matches the treatment given throughout
to our extracted non-syntactic phrases. In the sec-
ond variant (“frag”), the phrase labels in the large
nonterminal sets used by our source- and target-side
parsers are mapped down to a smaller set of 19 la-
bels that we use for both sides. The same translation
phrase pair may occur with multiple category labels
in this case if it was extracted with different syn-
tactic categories from different trees in the corpus.
In a third variant (“gra”), a small manually devel-
oped grammar is additionally inserted into the sys-
tem. The Stat-XFER system behaves the same way
in each variant. All phrase pairs are applied jointly
to the input sentence during the parsing stage, get-
ting added to the translation according to their syn-
tactic category and scores, although phrases tagged
as PHR cannot participate in any grammar rules.
The second-stage decoder then receives the joint lat-
tice and assembles complete output hypotheses re-
gardless of syntactic category labels.

4 Experiments

We extracted the lexical resources for our MT sys-
tem from version 3 of the French–English Europarl
parallel corpus (Koehn, 2005), using the officially
released training set from the 2008 Workshop in
Statistical Machine Translation (WMT)3. This gives
us a corpus of approximately 1.2 million sentence

3www.statmt.org/wmt08/shared-task.html
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Phrase Table # Entries # Source Sides Amb. Factor

Total syntax-prioritized table 3,052,121 113,988 26.8
Syntactic component 1,081,233 39,105 27.7
PBSMT component 1,970,888 74,883 26.3
Total baseline PBSMT table 8,069,480 113,972 70.8
Overlap with syntax-prioritized 6,098,592 39,089 156.0

Figure 2: Statistical characteristics of the syntax-prioritized phrase table (top) compared with the baseline PBSMT
phrase table (bottom). The ambiguity factor is the ratio of the number of unique entries to the number of unique
source sides, or the average number of target-language alternatives per source phrase.

pairs. Statistical word alignments are learned in both
directions with GIZA++ (Och and Ney, 2003), then
combined with the “grow-diag-final” heuristic. For
the extraction of syntax-based phrase pairs, we ob-
tain English-side constituency parses using the Stan-
ford parser (Klein and Manning, 2003), and French-
side constituency parses using the Xerox XIP parser
(Aı̈t-Mokhtar et al., 2001). In phrase extraction,
we concentrate on the expanded tree-to-tree-string
scenario described in Section 2.2, as it results in
a nearly 50% increase in the number of extracted
phrase pairs over the tree-to-tree method. For de-
coding, we construct a suffix-array language model
(Zhang and Vogel, 2006) from a corpus of 430 mil-
lion words, including the English side of our train-
ing data, the English side of the Hansard corpus, and
newswire data. The “gra” variant uses a nine-rule
grammar that is meant to address the most common
low-level reorderings between French and English,
focusing mainly on the reordering between nouns or
noun phrases and adjectives or adjective phrases.

Our test set is the 2000-sentence “test2007” data
set, also released as part of the WMT workshop
series. We report case-insensitive scores on ver-
sion 0.6 of METEOR (Lavie and Agarwal, 2007)
with all modules enabled, version 1.04 of IBM-style
BLEU (Papineni et al., 2002), and version 5 of TER
(Snover et al., 2006).

Figure 1 gives an overall summary of our results
on the test2007 data. Overall, we train and test 10
different configurations of phrase pairs in the Stat-
XFER decoder. We begin by testing each type of
phrase separately, producing one set of baseline sys-
tems with only phrase pairs that correspond to syn-
tactic constituents (“Syntactic only”) and one base-
line system with only phrase pairs that were ex-

tracted from Moses (“PBSMT only”). We then test
our two combination techniques, and their variants,
as described in Section 3. Statistical significance
is tested on the BLEU metric using paired boot-
strap resampling (Koehn, 2004) withn = 1000 and
p = 0.05. In the figure, the best baseline system and
the configurations statistically equivalent to it are in-
dicated in bold type. In addition to automatic met-
ric scores, we also list the number of unique phrase
pairs extracted for each configuration. (Because of
the large number of phrase pairs, we pre-filter them
to only the set whose source sides appear in the test
data; these numbers are the ones reported.)

As an additional point of comparison, we build
and tune a Moses MT system on the same data
as our Stat-XFER experiments. The Moses system
with a 4-gram language model and a distance-6 lex-
ical reordering model (“lex RO”) scores similarly to
state-of-the-art systems of this type on the test2007
French–English data (Callison-Burch et al., 2007).
Without the reordering model (“mono”), the Moses
system is as comparable as possible in design and
resources to the Stat-XFER PBSMT-only configu-
ration. We do not propose in this paper a head-
to-head performance comparison between the Stat-
XFER and Moses decoders; rather, we report results
on both to gain a better understanding of the im-
pact of the non-syntactic lexical reordering model
in Moses compared with the impact of the syntactic
grammar in Stat-XFER.

5 Discussion

5.1 Phrasal Coverage and Precision

One observation apparent in Figure 1 is that we have
again confirmed that a total restriction to syntax-
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Source: Il faut que l’ opinion publique soit informée pleinement sur les caractéristiques du
test dont je parle .

Reference: Public opinion must be fully informed of the characteristics of the test I am talking
about .

Syntax only: It | is | that | the public| be informed| fully | on | the characteristics| of the test| I
am talking about| .

PBSMT only: We must| that public opinion gets noticed| fully | on the characteristics of the|
test| above .

Direct comb.: We must| that public opinion gets noticed| fully on | the characteristics of the|
test| above .

Syntax-prioritized: It is important that| the public | be informed | fully on | the characteristics | of the
test | I am talking about | .

Figure 3: A translation example from the test set showing theoutput’s division into phrases. In the syntax-prioritized
translation, English phrases that derived from syntax-based phrasal entries are shown in italics.

based phrases is detrimental to output quality. A
likely reason for this, as Tinsley et al. (2007) sug-
gested, is that the improved precision and infor-
mativeness of the syntactic phrases is not enough
to overcome their relative scarcity when compared
to non-syntactic PBSMT phrases. (The syntactic
phrase table is only 11 to 13% of the size of the PB-
SMT phrase table.) It is important to note that this
scarcity occurs at thephrasal level: though there are
294 unknown word types in our test set when trans-
lating with only syntactic phrase pairs, this num-
ber only drops to 277 with the inclusion of PBSMT
phrases. The largest phrase table configuration, di-
rect combination, yields statistically equivalent per-
formance to the baseline system created using stan-
dard PBSMT extraction heuristics. Its key benefit
is that the inclusion of syntactic information in the
phrase pairs, where possible, leaves open the door to
further improvement in scores with the addition of a
larger syntactic grammar. We have thus addressed
the syntax-only phrase coverage problem without
giving up syntactic information.

An interesting conclusion is revealed in the anal-
ysis of the sizes and relative overlaps of the phrase
tables in each of our translation conditions. In
the absence of significant grammar, the equiva-
lence of scores between the PBSMT-only and direct-
combination scenarios is understandable given the
minimal change in the size of the phrase table. Out
of nearly 8.1 million entries, only 2293 entirely new

entries are provided by adding the syntactic phrase
table; further, these phrases are relatively rare long
phrases that do not have much effect on the trans-
lation of the overall test set. On the other hand, the
syntax-prioritized phrase table is extremely different
in nature — and only 37.8% of the size of the base-
line PBSMT phrase table — yet still attains nearly
the same automatic metric scores. There, we can
clearly see the effect of the syntactic phrases, since
the 3,052,121 phrases used in the fragmented vari-
ant of that scenario are more noticibly split between
1,970,888 PBSMT phrases (64.6%) and 1,081,233
syntax-based phrases (35.4%).

Some statistics for the makeup of the syntax-
prioritized phrase table, compared to the baseline
PBSMT phrase table, are shown in Figure 2. For
each, we calculate the “ambiguity factor,” or the
average number of target-language alternatives for
each source-language phrase in the table. This anal-
ysis shows not only that the distribution of tradi-
tional PBSMT phrases is rather different from that
of the syntactic phrases, it is also different from the
non-syntactic PBSMT phrases that are preserved in
the syntax-prioritized table. In effect, given a base-
line PBSMT phrase table, the syntax prioritization
replaces phrase entries for 39,089 source-language
phrases, each with an average of 156 different target-
language translations, with 39,105 source phrases,
each with an average of 27.7 syntactically motivated
target translations — a net savings of 5.0 million
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Source: Je veux saluer , à mon tour , l’ intervention forte et substantielle du président Prodi .
Reference: I too would like to welcome Mr Prodi ’s forceful and meaningful intervention .

PHR
I welcome

S
, in turn ,

NP
the strong and substantial speech

ADJP
strong and substantial

ADJ
substantial

CON
and

ADJ
strong

N
speech

DET
the

PP
of President Prodi

PU
.

Figure 4: A translation example from the test set showing theresult of including the nine-rule grammar in the syntax-
prioritized combination. The SMT-only translation of the noun phrase isthe decisive intervention and substantial.

phrase pairs. This is a strong indication that, be-
cause of the more accurate phrase boundary detec-
tion, the syntactic phrases are a much more precise
representation of translational equivalence. An ad-
ditional benefit is a significant reduction in decoding
time, from an average of 27.3 seconds per sentence
with the baseline PBSMT phrase table to 10.7 sec-
onds per sentence with the syntax-prioritized table
with the grammar included.

Improved precision due to the inclusion of syn-
tactic phrases can be seen by examining a translation
example and the phrasal chunks that produce it (Fig-
ure 3). In the syntax-prioritized output, the English
phrases deriving from syntax-based phrase pairs are
shown in italic, while the phrases deriving from PB-
SMT pairs are in normal type. The example shows
an effective combination of on-target translations for
syntactic constituents, when they are available, with
non-syntactic phrases to handle constituent bound-
aries or places where parallel constituents are dif-
ficult to extract. The translation piecesbe informed
andI am talking about, though they exist in the base-
line PBSMT phrase table, do not make it into the
top-best translation in the PBSMT-only scenario be-
cause of its high ambiguity factor.

5.2 Effect of Syntactic Information

Although our current experiments do not show a sig-
nificant increase in automatic metric scores with the
addition of a small grammar, we can see the po-
tential power of grammar in examining further sen-
tences from the output. For example, in Figure 4,
standard PBSMT phrase extraction is able to pick up

the adjective–noun reordering when translating from
intervention forte to decisive intervention. However,
in this sentence we have an adjectivephrase follow-
ing the noun, and there is no pre-extracted phrase
pair for the entire constituent, so our system built
from only PBSMT phrases produces the incorrect
noun phrase translationthe decisive intervention and
substantial. Our nine-rule grammar, specifically tar-
geted for this scenario, is able to correct the structure
of the sentence by applying two rules to producethe
strong and substantial speech.

Analysis of the entire test set further suggests that
even our small grammar produces correct and pre-
cise output across all phrase table configurations, al-
though the total number of applications of the nine
rules remains low. There are 590 rule applications
in the one-best output on the test set in the syntax-
only configuration, 472 applications in the syntax-
prioritized configuration, and 216 applications in the
direct combination. In each configuration, we man-
ually inspected all rule applications in the first 200
sentences and classified them as correctly reordering
words in the English output (“good”), incorrectly re-
ordering (“bad”), or “null.” This last category de-
notes applications of monotonic structure-building
rules that did not feed into a higher-level reordering
rule. The results of this analysis are shown in Fig-
ure 5. Overall, we find that the grammar is 97% ac-
curate in its applications, making helpful reordering
changes 88% of the time.

Given the preceding analysis — and the fact that
our inclusion of a lexicalized reordering model in
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Phrase Table Good Bad Null

Syntactic only 47 3 8
Syntax-prioritized 45 1 3
Direct combination 25 0 0

Figure 5: Manual analysis of grammar rule applications
in the first 200 sentences of the test set.

Moses resulted in automatic metric gains of only
0.0051 BLEU, 0.0029 METEOR, and 0.29 TER —
we believe that further experiments with a much
larger syntactic grammar will lead to a more signif-
icant improvement in automatic metric scores and
translation quality.

6 Conclusions and Future Work

We have extended and applied an algorithm for com-
bining syntax-based phrases from a parallel parsed
corpus with non-syntactic phrases from phrase-
based SMT within the context of a statistical syntax-
based translation framework. Using a much larger
corpus than has previously been employed for this
approach, we produce jointly decoded output sta-
tistically equivalent to a monotonic decoding using
standard PBSMT phrase-extraction heuristics, re-
taining syntactic information and setting the stage
for further improvements by incorporating a syntac-
tic grammar into the translation framework. Our
preliminary nine-rule grammar, targeted for two spe-
cific English–French linguistic phenomena, already
shows promise in performing linguistically moti-
vated reordering that cannot be captured formally by
a standard PBSMT model.

We present a syntax-prioritized method of com-
bining phrase types into a single phrase table by al-
ways selecting a syntax-based phrase pair when one
is available for a given source string. This new com-
bination style reduces the size of the resulting phrase
table and total decoding time by 61%, with only
a minor degradation in MT performance. We sug-
gest that this is because the syntax-derived phrases,
when they can be extracted, are a much more precise
method of describing correct translational equiva-
lences.

As yet, we have made only minimal use of the
Stat-XFER framework’s grammar capabilities. In
our experiments, the full tree-to-tree-string rule-

extraction process of Ambati and Lavie (2008) pro-
duces more than 2 million unique SCFG rules when
applied to a corpus the size of the Europarl. Not only
is translating with such a large set computationally
intractable, but empirically nearly 90% of the rules
were observed only once in the parallel parsed cor-
pus, making it difficult to separate rare but correct
rules from those due to noise in the parses and word
alignments. With the view of moving beyond our
manually written nine-rule grammar, but wanting to
get only the most useful rules from the entire auto-
matically extracted set, we are currently investigat-
ing methods for automatic scoring or selection of a
reasonable number of grammar rules for a particular
language pair. Given that the majority of our phrase
pairs, even in the syntax-prioritized combination, are
non-syntactic, we have also conducted preliminary
experiments with “syntactifying” them so that they
may also be used by grammar rules to produce larger
translation fragments.

The experiments in this paper used the grow-diag-
final heuristic for word alignment combination be-
cause it has been shown to provide the highest preci-
sion on the subtree node alignment method by which
we extract syntax-based phrase pairs (Lavie et al.,
2008). However, this is a trade-off that sacrifices
some amount of recall. Experimenting with differ-
ent symmetric alignment heuristics may lead to a
more optimal configuration for phrase-pair extrac-
tion or combination with PBSMT phrases. We also
suspect that the choice of source- and target-side
parsers plays a significant role in the number and
nature of phrase pairs we extract; to address this,
we are in the process of re-trying our line of exper-
iments using the Berkeley parser (Petrov and Klein,
2007) for English, French, or both.
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Abstract

When aligning very different language pairs,
the most important needs are the use of struc-
tural information and the capability of gen-
erating one-to-many or many-to-many corre-
spondences. In this paper, we propose a
novel phrase alignment method which models
word or phrase dependency relations in depen-
dency tree structures of source and target lan-
guages. The dependency relation model is a
kind of tree-based reordering model, and can
handle non-local reorderings which sequen-
tial word-based models often cannot handle
properly. The model is also capable of esti-
mating phrase correspondences automatically
without any heuristic rules. Experimental re-
sults of alignment show that our model could
achieve F-measure 1.7 points higher than the
conventional word alignment model with sym-
metrization algorithms.

1 Introduction
We consider that there are two important needs in
aligning parallel sentences written in very differ-
ent languages such as Japanese and English. One
is to adopt structural or dependency analysis into
the alignment process to overcome the difference in
word order. The other is that the method needs to
have the capability of generating phrase correspon-
dences, that is, one-to-many or many-to-many word
correspondences. Most existing alignment methods
simply consider a sentence as a sequence of words
(Brown et al., 1993), and generate phrase correspon-
dences using heuristic rules (Koehn et al., 2003).
Some studies incorporate structural information into
the alignment process after this simple word align-

ment (Quirk et al., 2005; Cowan et al., 2006). How-
ever, this is not sufficient because the basic word
alignment itself is not good.

On the other hand, a few models have been pro-
posed which use structural information from the be-
ginning of the alignment process. Watanabe et al.
(2000) and Menezes and Richardson (2001) pro-
posed a structural alignment methods. These meth-
ods use heuristic rules when resolving correspon-
dence ambiguities. Yamada and Knight (2001) and
Gildea (2003) proposed a tree-based probabilistic
alignment methods. These methods reorder, insert
or delete sub-trees on one side to reproduce the other
side, but the constraints of using syntactic informa-
tion is often too rigid. Yamada and Knight flat-
tened the trees by collapsing nodes. Gildea cloned
sub-trees to deal with the problem. Cherry and Lin
(2003) proposed a model which uses a source side
dependency tree structure and constructs a discrim-
inative model. However, there is the defect that its
alignment unit is a word, so it can only find one-
to-one alignments. Nakazawa and Kurohashi (2008)
also proposed a model focusing on the dependency
relations. Their model has the constraint that content
words can only correspond to content words on the
other side, and the same applies for function words.
This sometimes leads to an incorrect alignment. We
have removed this constraint to make more flexi-
ble alignments possible. Moreover, in their model,
some function words are brought together, and thus
they cannot handle the situation where each func-
tion word corresponds to a different part. The small-
est unit of our model is a single word, which should
solve this problem.

10



In this paper, we propose a novel phrase align-
ment method which models word or phrase de-
pendency relations in dependency tree structures of
source and target languages. For a pair of correspon-
dences which has a parent-child relation on one side,
the dependency relation on the other side is defined
as the relation between the two correspondences.
It is a kind of tree-based reordering model, and
can capture non-local reorderings which sequential
word-based models often cannot handle properly.
The model is also capable of estimating phrase cor-
respondences automatically without heuristic rules.
The model is trained in two steps: Step 1 estimates
word translation probabilities, and Step 2 estimates
phrase translation probabilities and dependency re-
lation probabilities. Both Step 1 and Step 2 are per-
formed iteratively by the EM algorithm. During the
Step 2 iterations, word correspondences are grown
into phrase correspondences.

2 Proposed Model
We suppose that Japanese is the source language and
English is the target language in the description of
our model. Note that the model is not specialized
for this language pair, and it can be applied to any
language pair.

Because our model uses dependency tree struc-
tures, both source and target sentences are parsed
beforehand. Japanese sentences are converted into
dependency structures using the morphological ana-
lyzer JUMAN (Kurohashi et al., 1994), and the de-
pendency analyzer KNP (Kawahara and Kurohashi,
2006). MSTparser (McDonald et al., 2005) is used
to convert English sentences. Figure 1 shows an ex-
ample of dependency structures. The root of a tree is
placed at the extreme left and words are placed from
top to bottom.

2.1 Overview
This section outlines our proposed model in compar-
ison to the IBM models, which are the conventional
statistical alignment models.

In the IBM models (Brown et al., 1993), the best
alignment â between a given source sentence f and
its target sentence e is acquired by the following
equation:

â = argmax
a

p(f ,a|e)

= argmax
a

p(f |e,a) · p(a|e) (1)

A

photogate

is

used

for

the

photodetector

.

(accept)

(light)

(device)

(photo)

(gate)

(used)

(ni)

(ha)

(wo)

Figure 1: An example of a dependency tree and its align-
ment.

where p(f |e,a) is called lexicon probability and
p(a|e) is called alignment probability.

Suppose f consists of n words f1, f2, ..., fn, and e
consists of m words e1, e2, ..., em and a NULL word
(e0). The alignment mapping a consists of associa-
tions j → i = aj from source position j to target
position i = aj . The two probabilities above are
broken down as:

p(f |e,a) =
J∏

j=1

p(fj |eaj ) (2)

p(a|e) =
I∏

i=1

p(∆j|ei) (3)

where ∆j is a relative position of words in the
source side which corresponds to ei. Equation 2 is
the product of the word translation probabilities, and
Equation 3 is the product of relative position proba-
bilities.

In the proposed model, we refine the IBM models
in three ways. First, as for Equation 2, we consider
phrases instead of words. Second, as for Equation 3,
we consider dependencies of words instead of their
positions in a sentence.

Finally, the proposed model can find the best
alignment â by not using f -to-e alone, but simulta-
neously with e-to-f . That is, Equation 1 is modified
as follows:

â = argmax
a

p(f |e,a) · p(a|e) ·

p(e|f ,a) · p(a|f) (4)

Since our model regards a phrase as a basic unit,
the above formula is calculated in a straightforward
way. In contrast, the IBM models can consider
a many-to-one alignment by combining one-to-one
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alignments, but they cannot consider a one-to-many
or many-to-many alignment.

The models are estimated by EM-like algorithm
which is very similar to (Liang et al., 2006). The
important difference is that we are using tree struc-
tures.

We maximize the data likelihood:

max
θef ,θfe

∑

f ,e

(log pef (f , e; θef ) + log pfe(f , e; θfe))

(5)
In the E-step, we compute the posterior distribution
of the alignments with the current parameter θ:

q(a; f , e) := pef (a|f , e; θef ) · pfe(a|f , e; θfe) (6)

In the M-step, we update the parameter θ:

θ′ := argmax
θ

∑

a,f ,e

q(a; f , e) log pef (a, f , e; θef )

+
∑

a,f ,e

q(a; f , e) log pfe(a, f , e; θfe)

= argmax
θ

∑

a,f ,e

q(a; f , e) log p(e) · pef (a, f |e; θef )

+
∑

a,f ,e

q(a; f , e) log p(f) · pfe(a, e|f ; θfe)

(7)

Note that p(e) and p(f) have no effect on maxi-
mization, and pef (a, f |e; θef ) and pfe(a, e|f ; θfe)
appeared in Equation 1 or Equation 4.

In the following sections, we decompose the lexi-
con probability and alignment probability.

2.2 Phrase Translation Probability
Suppose f consists of N phrases F1, F2, ..., FN , and
e consists of M phrases E1, E2, ..., EM . The align-
ment mapping a consists of associations j → i =
Aj from source phrase j to target phrase i = Aj .

We consider phrase translation probability
p(Fj |Ei) instead of word translation probability.
There is one restriction: that phrases composed of
more than one word cannot be aligned to NULL.
Only a single word can be aligned to NULL.

We denote a phrase which the word fj belongs to
as Fs(j), and a phrase which the word ei belongs to
as Et(i). With these notations, we refine Equation 2
as follows:

p(f |e,a) =
J∏

j=1

p(Fs(j)|EAs(j)
) (8)

Suppose phrase Fj and Ei are aligned where the
number of words in Fj is denoted by |Fj | and that
number in Ei is |Ei|, the probability mass related to
this alignment in Equation 8 is as follows:

p(Fj |Ei)|Fj | · p(Ei|Fj)|Ei| (9)

We call this probability for the link between Fj and
Ei phrase alignment probability. The upper part of
Table 1 shows phrase alignment probabilities for the
alignment in Figure 1.

2.3 Dependency Relation Probability
The reordering model in the IBM Models is defined
on the relative position between an alignment and
its previous alignment, as shown in Equation 3. Our
model, on the other hand, considers dependencies of
words instead of positional relations.

We start with a dependency relation where fc de-
pends on fp in the source sentence. In a possible
alignment, fc belongs to Fs(c), fp belongs to Fs(p),
and Fs(c) depends on Fs(p). In this situation, we con-
sider the relation between EAs(p)

and EAs(c)
. Even

if two languages have different word order, their de-
pendency structures are similar in many cases, and
EAs(c)

tends to depend on EAs(p)
. Our model takes

this tendency into consideration. In order to de-
note the relationship between phrases, we introduce
rel(EAs(p)

, EAs(c)
). This is defined as the path from

EAs(p)
to EAs(c)

. It is represented by applying the
notations below:

• ’c’ if going down to the child node
• ’p’ if going down to the parent node

For example, in Figure 1, the path from “for” to
“photodetector” is ’c’, from “the” to “for” is ’p;p’
because it travels across two nodes. All the phrases
are considered as a single node, so the path from
“photogate” to “the” is ’p;c;c;c’ with the alignment
in Figure 1.

We refine Equation 3 using rel as follows:

p(a|e) =
∏

(p,c)∈Ds-pc

pt(rel(EAs(p)
, EAs(c)

)|pc)

(10)
where Ds-pc denotes a set of parent-child
word pairs in the source sentence. We call
pt(rel(EAs(p)

, EAs(c)
)|pc) target side dependency

relation probability. pt is a kind of tree-based
reordering model.
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Table 1: A probability calculation example.
Source Target Phrase alignment probability

受光素子 photodetector p(受光素子 |photodetector)3 · p(photodetector|受光素子)
には for p(には |for)2 · p(for|には)
フォトゲート photogate p(フォトゲート |a photogate)2 · p(a photogate|フォトゲート)2

を用いた is used p(を用いた |is used)2 · p(is used|を用いた)2

NULL the p(the|NULL)

Source Target dependency Target Source dependency
c p relation probability c p relation probability

受 光 pt(SAME|pc) A photogate ps(SAME|pc)
光 素子 pt(SAME|pc) photogate is ps(c|pc)
素子 に pt(c|pc) used is ps(SAME|pc)
に は pt(SAME|pc) for used ps(c|pc)
は 用いた pt(c|pc) the photodetector ps(NULL c|pc)
フォト ゲート pt(SAME|pc) photodetector for ps(c|pc)
ゲート を pt(c|pc)
を 用いた pt(SAME|pc)

There are some special cases for rel. When Fs(c)

and Fs(p) are the same, that is, fc and fp belong
to the same phrase, rel is represented as ’SAME’.
When fp is aligned to NULL, fc is aligned to NULL,
and both of them are aligned to NULL, rel is repre-
sented as ’NULL p’, ’NULL c’, and ’NULL b’, re-
spectively. The lower part of Table 1 shows depen-
dency relation probabilities corresponding to Figure
1.

Actually, we extend the dependency relation
probability to consider a wider relation, i.e, the
grandparent-child relation, as follows:
p(a|e) =

∏

(p,c)∈Ds-pc

pt(rel(EAs(p)
, EAs(c)

)|pc) ·

∏

(g,c)∈Ds-gc

pt(rel(EAs(g)
, EAs(c)

)|gc)

(11)

where Ds-gc denotes a set of grandparent-child word
pairs in the source sentence.

3 Model Training
Our model is trained in two steps. In Step 1, word
translation probability is estimated. Then, in Step 2,
possible phrases are acquired, and both phrase trans-
lation probability and dependency relation probabil-
ity are estimated. In both steps, parameter estima-
tion is done with the EM algorithm.
3.1 Step 1
In Step 1, word translation probability in each di-
rection is estimated independently. This is done in

exactly the same way as in IBM Model 1.
In this process, the alignment unit is a word.

When we consider f -to-e alignment, each word on
the source side fj can correspond to a word on the
target side ei or a NULL word, independently of
other source words. The probability of one possible
alignment a is calculated as follows:

p(a, f |e) =
J∏

j=1

p(fj |eaj ) (12)

By considering all possible alignments, p(f |e) is
calculated as:

p(f |e) =
∑

a

p(a, f |e) (13)

As initial parameters of p(f |e), we use uniform
probabilities. Then, after calculating Equation 12
and 13, we give the fractional count p(a,f |e)

p(f |e) to all
word alignments in a, and we estimate p(f |e) by
MLE. We perform this estimation iteratively.

The inverse model e-to-f can be calculated in the
same manner.

3.2 Step 2
Both phrase translation probability and dependency
relation probability are estimated, and one undi-
rected alignment is found using the e-to-f and f -to-e
probabilities simultaneously in this step. In contrast
to Step 1, it is impossible to enumerate all the possi-
ble alignments. To find the best alignment, we first
create an initial alignment based on phrase trans-
lation probability only, and then gradually revise it
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by considering the dependency relation probability
with a hill-climbing algorithm.

The initial parameters of Step 2 are calculated
as follows. The dependency relation probability is
calculated using the final alignment result of Step
1, and we use the word translation probability esti-
mated in Step 1 as the initial phrase translation prob-
ability.
3.2.1 Initial Alignment

We first create an initial alignment based on the
phrase translation probability without considering
the dependency relation probabilities.

For all the combinations of possible phrases
(including NULL), phrase alignment probabilities
are calculated (equation 9). Correspondences are
adopted one by one in descending order of geomet-
ric mean of the phrase alignment probabilities. All
the words should be aligned only once, that is, the
correspondences are adopted exclusively. Genera-
tion of possible phrases is explained in Section 3.2.3.
3.2.2 Hill-climbing

To find better alignments, the initial alignment is
gradually revised with a hill-climbing algorithm. We
use four kinds of revising operations:

Swap: Focusing on any two correspondences, the
partners are swapped. In the first step in
Figure2, the correspondences “光 ↔ photo-
gate” and “フォトゲート↔ photodetector” are
swapped to “光↔ photodetector” and “フォト
ゲート ↔ photogate”.

Extend: Focusing on one correspondence, the
source or target phrase is extended to include
its neighboring (parent or child) NULL-aligned
word.

Add: A new correspondence is added between a
source word and a target word both of which
are aligned to NULL.

Reject: A correspondence is rejected and the source
and target phrase are aligned to NULL.

Figure 2 shows an illustrative example of hill
climbing. The alignment is revised only if the align-
ment probability gets increased. It is repeated un-
til no operation can improve the alignment probabil-
ity, and the final state is the best approximate align-
ment. As a by-product of hill-climbing, pseudo n-
best alignment can be acquired. It is used in collect-
ing fractional counts.

3.2.3 Phrase Generation
If there is a word which is aligned to NULL in the

best approximate alignment, a new possible phrase
is generated by merging the word into a neighbor-
ing phrase which is not aligned to NULL. In the last
alignment result in Figure 2, for example, “素子”
is treated as being included in the correspondence
between “受 光” and “photodetector” and the cor-
respondence between “に” and “for”. As a result,
we consider the correspondence between “受 光 素
子” and “photodetector” and the correspondence be-
tween “素子に” and “for” existing in parallel sen-
tences. The new possible phrase is taken into con-
sideration from the next iteration.
3.2.4 Model Estimation

Collecting all the alignment results, we estimate
phrase alignment probabilities and dependency rela-
tion probabilities.

One way of estimating parameters of phrase
alignment probabilities is using the following equa-
tions:

p(Fj |Ei) =
C(Fj , Ei)∑
k C(Fk, Ei)

p(Ei|Fj) =
C(Fj , Ei)∑
k C(Ek, Fj)

(14)

where C(Fj , Ei) is a frequency of Fj and Ei is
aligned.

However, if we use this in our model, the phrase
translation probability of the new possible phrase
can become extremely high (often it becomes 1).
To avoid this problem, we use the equations below
for the estimation of phrase translation probability
in place of Equation 14:

p(Fj |Ei) =
C(Fj , Ei)

C(Ei)
, p(Ei|Fj) =

C(Fj , Ei)
C(Fj)

(15)

C(Ei) is the frequency of the phrase Ei in the train-
ing corpus which can be pre-counted. This definition
can resolve the problem where the phrase translation
probability of the new possible phrase becomes too
high.

As for the NULL, we use Equation 14 because we
cannot pre-count the frequency of NULL.

Using the estimated phrase alignment probabil-
ities and dependency relation probabilities, we go
back to the initial alignment described in Section
3.2.1 iteratively.
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Figure 2: An example of hill-climbing.

4 Experimental Results

We conducted alignment experiments. A JST1

Japanese-English paper abstract corpus consisting
of 1M parallel sentences was used for the model
training. This corpus was constructed from a 2M
Japanese-English paper abstract corpus by NICT2

using the method of Uchiyama and Isahara (2007).
As gold-standard data, we used 475 sentence pairs
which were annotated by hand. The annotations
were only sure (S) alignments (there were no possi-
ble (P ) alignments) (Och and Ney, 2003). The unit
of evaluation was word-base for both Japanese and
English. We used precision, recall, and F-measure
as evaluation criteria.

We conducted two experiments to reveal 1) the
contribution of our proposed model compared to the
existing models, and 2) the effectiveness of using
dependency tree structure and phrases, which are
larger alignment units than words. Trainings were
run on the original forms of words for both the pro-
posed model and the models used for comparison.

4.1 Comparison with Word Sequential Model
For comparison, we used GIZA++ (Och and Ney,
2003) which implements the prominent sequential
word-base statistical alignment model of IBM Mod-
els. We conducted word alignment bidirectionally
with its default parameters and merged them using
three types of symmetrization heuristics (Koehn et
al., 2003). The results are shown in Table 2.

1http://www.jst.go.jp/
2http://www.nict.go.jp/

The result of ’Step 1’ uses parameters estimated
after 5 iterations of Step 1. The alignment is ob-
tained by the method of initial alignment shown in
Section 3.2.1. In ’Step 2-1’, the phrase translation
probabilities are the same as those in ’Step 1’. In ad-
dition, dependency relation probabilities estimated
from the ’Step 1’ alignment result are used. By com-
paring ’Step 1’ and ’Step 2-1’, we can see the ef-
fectiveness of dependency relation probability. We
performed 5 iterations for Step 2 and calculated the
alignment accuracy each time. As a result, the pro-
posed model could achieve a higher F-measure by
1.7 points compared to the sequential model. ’In-
tersection’ achieved best Precision, but its Recall is
quite low. ’grow-diag-final-and’ achieved best Re-
call, but its Precision is lower than our best result
where the Recall is almost same. Thus, we can say
our result is better than sequential word alignment
models.
4.2 Effectiveness of Dependency Trees and

Phrases
To confirm the effectiveness of dependency trees and
phrases, we conducted alignment experiments on the
following four conditions:
• Using both dependency trees and phrases (re-

ferred to as ’proposed’).
• Using dependency trees only.
• Using phrases only.
• Not using dependency trees or phrases (referred

to as ’none’)
For the conditions which do not use dependency
trees, we used positional relations of a sentence as
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Table 2: Results of alignment experiment.
Precision Recall F

Step 1 77.55 33.92 47.20
Step 2-1 83.46 40.03 54.11
Step 2-2 87.74 45.37 59.81
Step 2-3 87.62 48.92 62.79
Step 2-4 86.87 50.42 63.81
Step 2-5 85.90 50.75 63.80
Step 2-6 85.54 51.00 63.90
Step 2-7 85.18 50.87 63.70
Step 2-8 84.66 50.75 63.46
intersection 90.34 34.28 49.71
grow-final-and 81.32 48.85 61.04
grow-diag-final-and 79.39 51.15 62.22

Table 3: Effectiveness of dependency trees and phrases
(results after 5 iterations in Step 2.)

Precision Recall F
proposed 85.54 51.00 63.90
dependency tree only 89.77 39.47 54.83
phrase only 84.41 47.33 60.65
none 85.07 38.06 52.59

a sequence of words instead of dependency tree re-
lations. The results are shown in Table 3. All the
results are the alignment accuracy after 5 iterations
of Step 2.

5 Discussion
Table 2 shows that our proposed model could
achieve reasonably high accuracy of alignment, and
is better than sequential word-base models. As
an example, alignment results of a word sequen-
tial model are shown in Figure 3. The gray col-
ored cells are the gold-standard alignments, and the
black boxes are the outputs of the sequential model.
The model failed to resolve the correspondence am-
biguities between “非 (not) 去勢 (castrated) マウ
ス (mice)”, and “去勢 マウス”; and “non-castrated
mice”, and “castrated mice” respectively. This is
because these words are placed close to each other
and are also close to the correspondence “同様に
↔ as” which can be a clue to the word order. Us-
ing the tree structure in Figure 4, these words were
correctly aligned. This is because in the English
tree, the phrase “castrated mice” does not depend
on “as”, and “non-castrated mice” does. Similarly
in the Japanese tree, “非去勢マウス” depends on “
同様に” and “去勢マウス” does not.

As mentioned in Section 1, sequential statistical
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the

castrated
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in

the
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mice

Figure 3: An alignment example of the word sequential
model (grow-diag-final-and).
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a

strong

inhibitory

effect
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tumor

growth

in

the

castrated

mice

as

in

the

non-castrated

mice

Figure 4: An alignment example of the proposed model.

methods, which regard a sentence as a sequence of
words, work well for language pairs that are not too
different in their language structure. Japanese and
English have significantly different structures. One
of the issues is that Japanese sentences have a SOV
word order, but in English, the word order is SVO, so
the dependency relations are often turned over. For
language pairs such as Japanese and English, deeper
sentence analysis using NLP resources is necessary
and useful. Our method is therefore suitable for such
language pairs.

As another example of an alignment failure by
the sequential model, Figure 5 shows the phrase cor-
respondence “受 光 素子 ↔ photodetector”, which
was correctly found as shown in Figure 6. The pro-
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Figure 5: An unsuccessful example of phrase detection in
the sequential model (grow-diag-final-and).

A
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Figure 6: An example of phrase detection in the proposed
model.

posed method of generating possible phrases during
iterations works well and improves alignment.

From the result of our second experiment, we can
see the following points:

1. Phrasal alignment improves the recall, but low-
ers the precision.

2. By using dependency trees, precision can be
improved.

3. We can find a balance point by using both
phrasal alignment and dependency trees.

The causes of alignment errors in our model can
be summarized into categories. The biggest one is
parsing errors. Since our model is highly dependent
on the parsing result, the alignments would easily
turn out wrong if the parsing result was incorrect.

Sometimes the hill-climbing algorithm could not
revise the initial alignment. Most of these cases
would happen when one word occurred several
times on one side, but some of those occurrences
were omitted on the other side. Let’s suppose there
are two identical words on the source side, but the

target side has only one corresponding word. Initial
alignment is created without considering the depen-
dencies at all, so it cannot judge which source word
should be aligned to the corresponding target word.
In this case, the best alignment searching sometimes
gets the local solution. This problem could be re-
solved by considering local dependencies for am-
biguous words.

One difficulty is how to handle function words.
Function words often do not have exactly corre-
sponding words in the opposite language. Japanese
case markers such as “は (ha)”, “が (ga)” (subjec-
tive case), “を (wo)” (objective case) and so on, and
English articles are typical examples of words, that
do not have corresponding parts. There is a differ-
ence between alignment criteria for function words
of gold-standard and our outputs, and it is somewhat
difficult to improve alignment accuracy.

6 Conclusion
In this paper, we have proposed a linguistically-
motivated probabilistic phrase alignment model
based on dependency tree structures. The model in-
corporates the tree-based reordering model. Experi-
mental results show that the word sequential model
does not work well for linguistically different lan-
guage pairs, and this can be resolved by using syn-
tactic information. We have conducted the experi-
ments only on Japanese-English corpora. To firmly
support our claim that syntactic information is im-
portant, it is necessary to do more investigation on
other language pairs.

Most frequent alignment errors are derived from
parsing errors. Because our method depends heavily
on structural information, parsing errors easily make
the alignment accuracy worse. Although the parsing
accuracy is high in general for both Japanese and
English, it sometimes outputs incorrect dependency
structures because technical or unknown words of-
ten appears in scientific papers. This problem could
be resolved by introducing parsing probabilities into
our model using parsing tools which can output n-
best parsing with their parsing probabilities. This
will not only improve the alignment accuracy, it will
allow revision of the parsing result. Moreover, we
need to investigate the contribution of our alignment
result to the translation quality.
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Abstract

The empirical adequacy of synchronous
context-free grammars of rank two (2-SCFGs)
(Satta and Peserico, 2005), used in syntax-
based machine translation systems such as
Wu (1997), Zhang et al. (2006) and Chi-
ang (2007), in terms of what alignments they
induce, has been discussed in Wu (1997) and
Wellington et al. (2006), but with a one-sided
focus on so-called “inside-out alignments”.
Other alignment configurations that cannot be
induced by 2-SCFGs are identified in this pa-
per, and their frequencies across a wide col-
lection of hand-aligned parallel corpora are
examined. Empirical lower bounds on two
measures of alignment error rate, i.e. the one
introduced in Och and Ney (2000) and one
where only complete translation units are con-
sidered, are derived for 2-SCFGs and related
formalisms.

1 Introduction

Syntax-based approaches to machine translation
typically use synchronous grammars to recognize or
produce translation equivalents. The synchronous

∗This work was done while the first author was a Senior
Researcher at the Dpt. of Linguistics, University of Potsdam,
supported by the German Research Foundation in the Emmy
Noether projectPtolemaioson grammar learning from paral-
lel corpora; and while he was a Postdoctoral Researcher at the
ISV Computational Linguistics Group, Copenhagen Business
School, supported by the Danish Research Foundation in the
projectEfficient syntax- and semantics-based machine transla-
tion.

†The second author is supported by the German Research
Foundation in the Emmy Noether projectPtolemaioson gram-
mar learning from parallel corpora.

production rules are typically learned from align-
ment structures (Wu, 1997; Zhang and Gildea, 2004;
Chiang, 2007) or from alignment structures and
derivation trees for the source string (Yamada and
Knight, 2001; Zhang and Gildea, 2004). They are
also used for inducing alignments (Wu, 1997; Zhang
and Gildea, 2004).

It is for all three reasons, i.e. translation, in-
duction from alignment structures and induction of
alignment structures, important that the synchronous
grammars are expressive enough to induce all the
alignment structures found in hand-aligned gold
standard parallel corpora (Wellington et al., 2006).
Such alignments are supposed to reflect the structure
of translations, typically contain fewer errors and are
used to evaluate automatically induced alignments.

In this paper it is shown that the synchronous
grammars used in Wu (1997), Zhang et al. (2006)
and Chiang (2007) are not expressive enough to do
that. The synchronous grammars used in these sys-
tems are, formally, synchronous context-free gram-
mars of rank two (2-SCFGs), or equivalently (nor-
mal form) inversion transduction grammars (ITGs).1

The notion ofrank is defined as the maximum num-
ber of constituents aligned by a production rule,
i.e. the maximum number of distinct indeces. Our
results will be extended to slight extensions of 2-
SCFGs, incl. the extension of ITGs proposed by
Zens and Ney (2003) (xITGs), synchronous tree
substitution grammars of rank two (2-STSGs) (Eis-
ner, 2003; Shieber, 2007), i.e. where tree pairs in-
clude at most two linked pairs of nonterminals, and
synchronous tree-adjoining grammars of rank two

12-SCFGs allow distinct LHS nonterminals, while ITGs do
not; but for any 2-SCFG an equivalent ITG can be constructed
by creating a cross-product of nonterminals from two sides.
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(2-STAGs) (Shieber and Schabes, 1990; Harbusch
and Poller, 1996; Nesson et al., 2008). The over-
all frequency of alignment structures that cannot
be induced by these approaches is examined across
a wide collection of hand-aligned parallel corpora.
Empirical lower bounds on the coverage of the sys-
tems are derived from our results.

Our notion of an alignment structure is standard.
Words can be aligned to multiple words. Unaligned
nodes are permitted. Maximally connected sub-
graphs are called translation units. There is one
more choice to make in the context of many-to-many
alignments, namely whether the alignment relation
is such that ifwi|w′

k andwi|w′
l, resp., are aligned,

and wj |w′
k are aligned too, thenwj |w′

l are also
aligned. If so, the alignment structure is divided into
complete translation units. Such alignment struc-
tures are therefore calledcomplete; in Goutte et
al. (2004), alignment structures with this property
are said to be closed under transitivity. An align-
ment structure is simply written as a sequence of
alignments, e.g.〈wi|w′

k, wi|w′
l, wj |w′

k, wj |w′
k〉, or,

alternatively, as sequences of (possibly discontinu-
ous) translation units, e.g.〈wiwj|w′

kw
′
l〉.

A translation unit induced by a synchronous
grammar is a set of terminals that are recognized
or generated simultaneously. Consequently, syn-
chronous grammars can only induce complete align-
ment structures (by transitivity of simultaneity).2

Syntax-based approaches to machine translations
are commonly evaluated in terms of their alignment
error rate (AER) on one or more parallel corpora
(Och and Ney, 2000; Zhang and Gildea, 2004). The
AER, in the case where all alignments are sure align-
ments, is

AER = 1− 2|SA ∩GA|
|SA|+ |GA|

whereGA are the gold standard alignments, andSA

the alignments produced by the system.
AER has been criticized by Fraser and

Marcu (2007). They show that AER does not
penalize unequal precision and recall when a
distinction between sure and possible alignments is

2One of the hand-aligned parallel corpora used in our exper-
iments, the one also used in Padó and Lapata (2006), includes
incomplete alignment structures.

made. Since no such distinction is assumed below,
the classical definition is used.

We introduce also the notion oftranslation unit
error rate (TUER), which is defined as

TUER= 1− 2|SU ∩GU |
|SU |+ |GU |

whereGU are the translation units in the gold stan-
dard, andSU the translation units produced by the
system. In other words, what is measured is a sys-
tem’s ability to predict translation units relative to
the Gold standard, not just its ability to predict align-
ments. If the system only gets part of a translation
unit right, it is not rewarded.

In the context of many-to-many alignments, this
measure may tell us more about translation quality
than AER. Consider, for instance, the small chil-
dren’s book discourse in Danish:

(1) Mads
Mads

og
CONJ

Mette
Mette

lægger
put.FIN.PRES

tal
number.PL

sammen.
together

’Mads and Mette add numbers.’

(2) Mads
Mads

og
CONJ

Mette
Mette

lægger
put.FIN.PRES

tal
number.PL

sammen
together

hver
every

dag.
day

’Mads and Mette add numbers every day.’

(3) Mads
Mads

og
CONJ

Mette
Mette

kan
can.FIN.PRES

godt
good

lide
like.INF

at
to

addere.
add.INF

’Mads and Mette like to add.’

(4) Mette
Mette

spørger
ask.FIN.PRES

ofte:
often:

Skal
Shall.FIN.FUT/PRES

vi
PRON.PL.1

addere
add.INF

sammen?
together

’Mette often asks: Do you want to add together?’

Say (1-4) and the English translations are a par-
allel corpus on which we would like to evaluate an
aligner or a statistical machine translation system.
Say also that the test corpus has been aligned. Let
the first three sentences be our training data and (4)
our test data.
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Note that the wordslægger. . .sammenform a dis-
continuous translation unit (’add’). Say our aligner
aligned onlysammenandadd, but not læggerand
add. This would mean that the alignments or trans-
lations ofaddwould most likely be associated with
the following probabilities:

.66 (add, sammen)

.33 (add, addere)

which again means that our system is likely to
arrive at the wrong alignment or translation in (4).
Nevertheless these alignments are rewarded in AER.
TUER, on the other hand, reflects the intuition that
unless you get the entire translation unit it’s better to
get nothing at all.

The hand-aligned parallel corpora in our exper-
iments come from the Copenhagen Dependency
Treebank (Buch-Kromann, 2007), for five different
language pairs, the German-English parallel corpus
used in Padó and Lapata (2006), and the six par-
allel corpora of the first 100 sentences of Europarl
(Koehn, 2005) for different language pairs docu-
mented in Graca et al. (2008). Consequently, our
experiments include a total of 12 parallel corpora.
The biggest parallel corpus consists of 4,729 sen-
tence pairs; the smallest of 61 sentence pairs. The
average size is 541 sentence pairs. The six paral-
lel corpora documented in Graca et al. (2008) use
sure and possible alignments; in our experiments, as
already mentioned, the two types of alignments are
treated alike.3

3The annotations of the parallel corpora differ in format and
consistency. In fact the empirical lower bounds obtained be-
low are lower bounds in two senses: (i) they are lower bounds
on TUERs because TUERs may be significantly higher than
the empirical lower bounds found here, and (ii) they are lower
bounds in the sense that there may be hidden instances of the
configurations in question in the parallel corpora. Most seri-
ously, our search algorithms only sort alignments, but not their
elements; instead they assume that their elements are listed in
chronological order. Sometimes, but rarely, this is not thecase.
Consider, for instance, file 1497, line 12 in the Danish–Spanish
parallel corpus in the Copenhagen Dependency Treebank:

<align out=”a56” type=”” in=”b30+b32+b8” outsign=”af”
insign=”del de de”/>

This is a translation unit. The word in position 56 in the source
string is aligned to the words in positions 8, 30 and 32 in the
target string, but note that the target string words do not appear
in chronological order. In some cases our algorithms take care
of this; they do not, however, in general search all possiblecom-
binations of words and alignments, but rely on the linear order

Sect. 2 discusses the frequency of inside-out
alignments in our hand-aligned corpora, whereas
Sect. 3 is about complex translation units. Sect. 4
briefly introduces formalisms for syntax-based ma-
chine translation, but some prior knowledge is as-
sumed. Sect. 5 brings the three sections together
and presents lower bounds on the coverage of the
systems discussed in Sect. 4, obtained by inspection
of the results in Sect. 2 and 3. Sect. 6 compares
our results to related work, in particular Zens and
Ney (2003).

2 Inside-out alignments

Wu (1997) identified so-called inside-out align-
ments, two alignment configurations that cannot be
induced by binary synchronous context-free gram-
mars; these alignment configurations, while infre-
quent in language pairs such as English–French
(Cherry and Lin, 2006; Wellington et al., 2006),
have been argued to be frequent in other lan-
guage pairs, incl. English–Chinese (Wellington et
al., 2006) and English–Spanish (Lepage and De-
noual, 2005). While our main focus is on config-
urations that involve discontinuous translation units,
the frequencies of inside-out alignments in our par-
allel corpora are also reported. Recall that inside-out
alignments are of the form (or upside-down):

a b c d

e f g h
or

a b c d

e f g h

Our findings are summarized in Figure 1. Note
that there is some variation across the corpora. The
fact that there are no inside-out alignments in cor-
pora 2–4 may be because annotators of these corpora
have been very conservative, i.e. there are many un-
aligned nodes; the first corpus, which is also part of
the Danish Dependency Treebank, also has very few
inside-out alignments. It is not entirely clear to us if
this has to do with the languages in question or the
annotation guide lines (cf. Danish–Spanish).

In the Danish–Spanish corpus and in the English–
German corpus the number of inside-out alignments
is very high. This, to some extent, has to do with the
number of words that are aligned to multiple words.

of the annotation. This was necessary to do relatively efficient
queries. The effect, however, is that our results are lower than
the actual frequencies in the parallel corpora. They are in this
sense also lower bounds.
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Snt. TUs IO IO-m IO-m/Snt.
Danish–English: 4,729 110,511 28 4 0.001
Danish–German: 61 1,026 0 0 0
Danish–Italian: 181 2,182 0 0 0
Danish–Russian: 61 618 0 0 0
Danish–Spanish: 710 6,110 2,562 158 0.223
English–German 987 68,760 191,490 1,178 1.194
English–French: 100 937 2,651 80 0.800
English-Portuguese: 100 941 3,856 66 0.660
English–Spanish: 100 950 2,287 67 0.670
Portuguese–French: 100 915 3,643 84 0.840
Portuguese–Spanish:100 991 1,194 58 0.580
Spanish–French 100 975 1,390 61 0.610

Figure 1: Frequency of inside-out alignments.

Say, in the case of English–German, each inside-out
alignment is made out of eight two-word translation
units. There are 1,178 inside-out alignmentmodulo
translation units, i.e. when one or more inside-out
alignments over the same eight translation units only
count as one; this means that there would be28 ×
1, 178 : 301, 568 inside-out alignments in total. The
actual number (191, 491) is smaller, but comparable.

The first example in the English–German corpus,
from sentence 2, illustrates this point. The sentences
are:

(5) Mr Jonckheer, I would like to thank you just as
warmly for your report on the seventh survey
on State aid in the European Union .

(6) Ebenso herzlich möchte ich Ihnen, Herr
Jonckheer, für Ihren Bericht über den
siebenten Bericht über staatliche Beihilfen in
der Europäischen Union danken (24).

and the alignment structure is (commas count):

1 2 3 4 5 6 7 8 9

τ1

3 4 5 7 8 9 24

The aligned translation units are:4

4Note that the alignment3|5 is probably a mistake made by
the annotator. It should, it seems, be3|6. Note also that this
alignment is not involved in any of the inside-out alignments.

〈Mr|Herr〉 〈Jonckheer|Jonckheer〉
〈,|Ihnen . . . ,〉 〈I|ich〉
〈would like to|möchte〉 〈thank|danken〉
〈you|Ihnen〉
Note that the following sets of alignments make

up distinct inside-out alignmentsmodulotranslation
units:

{〈1|7, 4|4, 8|24, 9|5〉, 〈2|8, 4|4, 8|24, 9|5〉,
〈3|9, 4|4, 8|24, 9|5〉, 〈1|7, 5|3, 8|24, 9|5〉,
〈2|8, 5|3, 8|24, 9|5〉, 〈3|9, 5|3, 8|24, 9|5〉}

The following sets of alignments in addition make
up distinct inside-out alignments, but the new align-
ments6|3 and7|3 are from the same translation unit
as5|3:

{〈1|7, 6|3, 8|24, 9|5〉, 〈2|8, 6|3, 8|24, 9|5〉,
〈3|9, 6|3, 8|24, 9|5〉, 〈1|7, 6|3, 8|24, 9|5〉,
〈2|8, 6|3, 8|24, 9|5〉, 〈3|9, 6|3, 8|24, 9|5〉}

Consequently, the alignment of sentences (5) and
(6) in the English–German parallel corpus contains
12 inside-out alignments, but only six inside-out
alignmentsmodulotranslation units.

3 Cross-serial discontinuous translation
units

A discontinuous translation unit (DTU) is a transla-
tion unit where either the substring of source string
words or the substring of target string words that oc-
cur in it, is discontinuous, i.e. there is a gap in it.

Since translation units are induced by simulta-
neous recognition, it is necessary for synchronous
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grammars to have rules that introduce multiple
source side terminals and/or multiple target side ter-
minals with at least one intervening nonterminal to
induce DTUs. A DTU with multiple gaps in the
same side is called a multigap DTU; it is easy to see
that binary grammars cannot induce multigap DTUs
with more than two gaps.

A sequence of DTUs is said to becross-serialif it
is of the following form (or upside-down):

ai aj

bk bl bm bn

Call any sequence of cross-serial DTUs a cross-
serial DTU (CDTU). So a CDTU is an alignment
configuration such that the source-side, resp. target-
side, contains four tokensbk, bl, bm, bn such that (i)
bk ≺ bl ≺ bm ≺ bn, (ii) bk andbm belong to the
same translation unitT , andbl andbn belong to the
same translation unitT ′, and (iii) T andT ′ are dis-
tinct translation units. The inability of ITGs, xITGs
and 2-STSGs to induce CDTUs follows from the ob-
servation that ifbk andbm in the above are gener-
ated or recognized simultatenously in any of these
formalisms,bl andbn cannot be generated or recog-
nized simulaneously. This is a straight-forward con-
sequence of the context-freeness of the component
grammars.

The distinction between CDTUs and CDTUs
modulo translation units (CDTU-ms) is again im-
portant. The number of CDTU-ms is the number of
CDTUs such that all CDTUs differ by at most one
translation unit. The English–German parallel cor-
pus, for example, contains 15,717 CDTUs, but only
2,079 CDTU-ms. Since our evaluation measure is
TUER, we only systematically counted the occur-
rences of CDTU-ms. In a few cases, the number of
CDTUs was extracted too. In general, it was about
eight times higher than the number of CDTU-ms.

Our findings are summarized in Figure 2. There is
again variation, but the average ratio of CDTU-ms is
0.514, i.e. there is a CDTU-m in about every second
aligned sentence pair.

4 Syntax-based machine translation

Syntax-directed translation schemas (SDTSs) were
originally introduced by Culik (1966) and studied
formally by Aho and Ullman (1972), who stressed

the importance of using only binary SDTSs for effi-
ciency reasons,5 and later led to the development of
a number of near-equivalent theories, incl. 2-SCFGs
and (normal form) ITGs. Henceforth, we will refer
to this class of near-equivalent theories as ITGs (see
footnote 1). This also means that production rules
have at most one source-side and one target-side ter-
minal on the RHS (see below).

It is the ability of ITGs to induce alignments that
is our main focus. Related work includes Wu (1997),
Zens and Ney (2003) and Wellington et al. (2006).
Our results will also be extended to xITGs, 2-STSGs
and 2-STAGs. O(|G|n6) time recognition algo-
rithms are known for ITGs, xITGs and 2-STSGs. 2-
STAGs (O(|G|n12)) are more complex.

The production rules in ITGs are of the follow-
ing form (Wu, 1997), with a notation similar to what
is typically used for SDTSs and SCFGs in the right
column:

A → [BC] A → 〈B1C2, B1C2〉
A → 〈BC〉 A → 〈B1C2, C2B1〉
A → e | f A → 〈e, f〉
A → e | ǫ A → 〈e, ǫ〉
A → ǫ | f A → 〈ǫ, f〉

It is important to note that RHSs of production
rules have at most one source-side and one target-
side terminal symbol. This prevents induction of
multiword translation units in any straight-forward
way. xITGs (Zens and Ney, 2003) in part solves this
problem. All production rules in ITGs can be pro-
duction rules in xITGs, but xITG production rules
can also be of the following form:

A → [e/f1Aǫ/f2] | 〈e/f1Aǫ/f2〉
Note, however, that these production rules still do

not enable double-sided DTUs, i.e. DTUs that trans-
late into DTUs. Such, however, occur relatively fre-
quently in hand-aligned parallel corpora, e.g. 148
times in the Danish–Spanish corpus.

There is no room for detailed introductions of the
more complex formalisms, but briefly their differ-
ences can be summarized as follows:

The move from ITGs to 2-STSGs is relatively
simple. All production rules in ITGs characterize

5The hierarchy of SDTSs of rankk is non-collapsing, and
the recognition problem without a fixed rank is NP-hard (Aho
and Ullman, 1972; Rambow and Satta, 1994). See Zhang et
al. (2006) for an efficient binarization algorithm.
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Snt. TUs DTUs DTUs/Snt. CDTU-ms CDTU-ms/Snt.
Danish–English: 4,729 110,511 1,801 0.381 6 0.001
Danish–German: 61 1,026 43 0.705 0 0
Danish–Italian: 181 2,182 63 0.348 1 0.006
Danish–Russian: 61 618 27 0.443 0 0
Danish–Spanish: 710 6,693 779 1.097 121 0.170
English–German 650 68,760 5,062 7.788 2,079 3.199
English–French: 100 937 95 0.950 38 0.380
English-Portuguese: 100 941 100 1.000 85 0.850
English–Spanish: 100 950 90 0.900 50 0.500
Portuguese–French: 100 915 77 0.770 27 0.270
Portuguese–Spanish:100 991 80 0.800 55 0.550
Spanish–French 100 975 74 0.740 24 0.240

Figure 2: Frequency of cross-serial DTUs.

binary trees of depth 1. It is said that this is the do-
main of locality in ITGs. 2-STSGs extend the do-
main of locality to arbitrarily big trees. 2-STSGs
are collections of ordered pairs of aligned trees with
at most two pairs of linked nonterminals. The leaf
nodes in the trees may be decorated by terminals or
insertion slots where subtrees can be “plugged in”.
This is exactly what is meant by tree substitution.
It is assumed that all terminals in a tree pair con-
stitute a translation unit. There exists aO(|G|n6)
time parsing algorithm for 2-STSGs. 2-STSGs in-
duce DTUs, double-sided DTUs and DTUs with at
most two gaps, butnot inside-out alignments, CD-
TUs and multigap DTUs with more than two gaps.

The substitution operation on elementary trees is
supplied with an adjunction operation in 2-STAGs
(Shieber and Schabes, 1990; Harbusch and Poller,
1996; Nesson et al., 2008). In adjunction, auxil-
iary trees, i.e. elementary trees with a designated leaf
node labeled by a nonterminal identical to the non-
terminal that labels the root node, extend the derived
tree by expanding one of its nodes. If an auxiliary
treet, with a root node and a leaf node both labeled
A, is adjoined at some noden also labeledA in a
derived treet′, the subtrees′ (of t′) rooted atn is re-
placed byt, ands′ is then inserted at the leaf node of
t. In 2-STAGs, paired nodes across the source-side
and target-side trees are simultaneously expanded by
either substitution or adjunction. AO(|G|n12) pars-
ing algorithm can be deviced for 2-STAGs using the
techniques in Seki et al. (1991). The following 2-

STAG translates Swiss-style cross-serial dependen-
cies{wambnxcmdny} into {w(ac)mx(bd)ny} and
thus induces cross-serial DTUs wheneverm,n ≥ 1
(superscripts are pairings).

〈
S
b

bb
"

""
w Z1 y

, S
b

bb
"

""
w Z1 y

〉〈
Z1

x

, Z1

x

〉

〈 ZNA

ZZ��
a Z1

@@��
ZNA c

, Z
QQ��

a c Z1

〉

〈 ZNA

ZZ��
Z1

@@��
b ZNA

d

, Z
bb""

Z1 b d

〉

2-STAGs thus induce DTUs, double-sided DTUs,
CDTUs, but not multigap DTUs with more than two
gaps. 2-STAGs also induce inside-out alignments.
Consider, for instance:

〈 S
b

bb
"

""
X1 c X2

, S
ee%%

X1

X2

h

〉
〈

X1

ee%%
a X2

, X1

ee%%
X2 g

〉

〈
X1

ee%%
X2 b

, X1

ee%%
e X2

〉〈
X2

d

, X2

f

〉
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It is left for the reader to verify that this gram-
mar induces the first of the two inside-out alignment
configurations in Sect. 2.

5 Lower bounds on translation unit error
rates

The ratio of inside-out alignments over TUs is a
lower bound on the TUER for the binary versions
of all the formalisms listed above, except 2-STAGs.

IOs/TUs
Danish–English 0
Danish–German 0
Danish–Italian 0
Danish–Russian 0
Danish–Spanish 0.026
English–German 0.017
English–French 0.085
English–Portuguese 0.070
English–Spanish 0.070
Portuguese–French 0.092
Portuguese–Spanish0.059
Spanish–French 0.063

For ITGs the ratio of DTUs over TUs is a lower
bound on the TUER.

DTUs/TUs
Danish–English 0.016
Danish–German 0.042
Danish–Italian 0.029
Danish–Russian 0.044
Danish–Spanish 0.121
English–German 0.074
English–French 0.101
English–Portuguese 0.106
English–Spanish 0.095
Portuguese–French 0.084
Portuguese–Spanish0.081
Spanish–French 0.076

This is a considerable lower bound in itself,
even for closely related languages such as Danish–
German (4.2%) or Portuguese–Spanish (8.1%),
which seems to have motivated research on exten-
sions of ITGs (Zens and Ney, 2003). The ratio of
CDTU-ms over TUs is a lower bound on the TUER
for all the formalisms listed, except 2-STAGs:

CDTU-ms/TUs
Danish–English 0
Danish–German 0
Danish–Italian 0.001
Danish–Russian 0
Danish–Spanish 0.018
English–German 0.030
English–French 0.041
English–Portuguese 0.090
English–Spanish 0.053
Portuguese–French 0.030
Portuguese–Spanish0.056
Spanish–French 0.025

From these tables, empirical lower bounds on
TUERs can be derived. ITGs, for instance, will have
a TUER of at least2.6% + 12.1% = 14.7% for
Danish–Spanish,6 while 2-STSGs, ignoring prob-
lems caused by multigap DTUs with more than two
gaps, will have a TUER of at least7.0% + 9.0% =
16.0% for English–Portuguese. Similarly lower
bounds on AER for ITGs can be obtained by sum-
ming IOs/As, i.e. the number of inside-out align-
ments over the number of alignments, DTUs/As
and CDTUs/As; for 2-STSGs, the lower bounds are
given by IOs/As + CDTUs/As; and so on. Even
2-STAGs exclude alignments found in the data,
namely multigap DTUs. The number of multi-
gap DTUs (MDTUs) in the corpora documented in
Graca et al. (2008) range from 3–11 (in a 100 sen-
tences) with an average of 5.8. Exact results for
each formalism that include double-sided DTUs and
multigap DTUs will be included in a future publi-
cation, but it is clear to us that both configurations
are less frequent than inside-out alignments and CD-
TUs. In the Danish–Spanish parallel corpus the
number of DTUs with three or more gaps is 448 out
of which 182 are CDTUs. In the English–German
parallel corpus, the numbers are, resp., 2,529 and
996.

6It was recently suggested to us by a colleague that the lower
bounds need not be additive. It is, theoretically, possiblethat
the errors associated with CDTUs subsume some of the errors
associated with inside-out alignments, i.e. that it is possible to
remove one alignment or translation unit from the Gold standard
alignment structure such that both the CDTU-ms count goes
down by one, and the inside-out alignment count goes down by
one. It is left for future work to estimate this bias, but it seems
to us that such subsumptions will be infrequent.
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6 Related work

Zens and Ney (2003) used GIZA++ to word-align
the Verbmobil task (English and German) and the
Canadian Hansards task (English and French) and
tested the coverage of ITGs and xITGs, i.e. the ratio
of the number of alignment configurations that could
be induced by the theories and the sentences in the
two tasks. The results are presented below:

ITG xITG
Verbmobil (G→E) 91.6% 96.5%
Verbmobil (E→G) 87.0% 96.9%
Can. Hansards (F→E) 81.3% 96.1%
Can. Hansards (E→F) 73.6% 95.6%

Note that the average differences in coverage be-
tween ITGs and xITGs for English-German (7.4%)
and English–French (18.4%) are comparable to
the DTUs/TUs ratios for English–German (7.4%),
resp. English–French (10.1%) in our parallel cor-
pora. Compare also the average error rate of
xITGs for English and German (3.3%) and English
and French (4.15%) to the CDTU-ms/TUs ratios
for English–German (3.0%) and English–French
(4.1%).

This data provides strong support that inside-out
alignments and cross-serial DTUs are the main the-
oretical challenge for syntax-based machine trans-
lation; in addition, training is a major challenge
(Zhang and Gildea, 2004). In real-life applications,
AERs and TUERs will be significantly higher than
the empirical lower bounds obtained here, e.g. 40%
for Chinese–English in Zhang and Gildea (2004),
but in principal future results should converge on
them.

7 Discussion

In machine translation, as in all other branches of
computer science, there is a trade-off between ex-
pressivity and complexity. The results presented
here, namely that classes of alignment structures ex-
cluded by syntax-based translation systems, occur
frequently in hand-aligned parallel corpora, could
be taken to indicate that more expressive formalisms
are needed. This at least seems to be the case to the
extent alignment error rates are reasonable measures
of the adequacy of syntax-based machine translation
systems. On the other hand parsing complexities in

syntax-based machine translation are very high al-
ready, i.e.O(|G|n6) and higher. Consequently, it
is not advisable to gain more expressivity at the ex-
pense of parsing complexity. This need not be nec-
essary either, however. There are at least two other
possibilities:

• Either the cake can be cut differently, i.e. to ex-
clude other classes of alignment structures that
occur less frequently. This idea has to the best
of our knowledge not been explored in the con-
text of syntax-based machine translation.

• It is also possible to design formalisms for
syntax-based machine translation that induce
all possible alignment structures and maintain
a reasonable parsing complexity (O(|G|n6)),
e.g. Søgaard (2008b); but as noted by
Søgaard (2008a) the gain in expressivity is
at the expense of the complexity of learn-
ing. Finally, it can be shown that there are
no computable tight estimators for the proba-
bilistic extension of the formalism introduced
in Søgaard (2008b).7

8 Conclusion

It was shown how the frequency of certain classes of
alignment structures induce empirical lower bounds
on the alignment error rates that can be obtained
with these systems. Some of these lower bounds
are quite significant, e.g. 14.7% (TUER) for ITGs
wrt. Danish–Spanish and 17.6% wrt. Portuguese-
French. Slightly lower, but still significant, bounds
exist for more complex formalisms such as 2-STSGs
and 2-STAGs.

7Two other challenges for this type of approach are: (i)
The use of intersection in Søgaard (2008b) to induce inside-
out alignments and cross-serial DTUs seems to miss important
generalizations; see Chiang (2004) for a similar point in the
context of parsing. (ii) If the class of alignment structures is re-
stricted in any natural way, i.e. to1 : 1 alignments, the problem
whether there exists a possible alignment given two sentences
and a grammar becomes NP-hard (Søgaard, 2009). NB: The
undecidability of computing tight estimators was pointed out to
us by Mark-Jan Nederhof (p.c.), but Alexander Clark (p.c.) and
others have suggested that pseudo-tight estimators can be used
in practice.
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Sebastian Padó and Mirella Lapata. 2006. Optimal con-
stituent alignment with edge covers for semantic pro-
jection. InACL-COLING’06, pages 1161–1168.

Owen Rambow and Giorgio Satta. 1994. A two-
dimensional hierarchy for parallel rewriting systems.
Technical report, University of Philadelphia, Philadel-
phia, Pennsylvania.

Giorgio Satta and Enoch Peserico. 2005. Some computa-
tional complexity results for synchronous context-free
grammars. InHLT-EMNLP’05, pages 803–810, Van-
couver, Canada.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free gram-
mars.Theoretical Computer Science, 88(2):191–229.

Stuart Shieber and Yves Schabes. 1990. Synchronous
tree-adjoining grammars. InCOLING’90, pages 253–
258, Helsinki, Finland.

Stuart Shieber. 2007. Probabilistic synchronous tree-
adjoining grammars for machine translation. In
SSST’07, pages 88–95, Rochester, New York.

Anders Søgaard. 2008a. Learning context-sensitive syn-
chronous rules. InEAMT’08, pages 168–173, Ham-
burg, Germany.

Anders Søgaard. 2008b. Range concatenation gram-
mars for translation. InCOLING’08, pages 103–106,
Manchester, England.

Anders Søgaard. 2009. The complexity of restricted
alignment problems in two formalisms for syntax-
based machine translation. InSSST’09, Boulder, Col-
orado. To appear.

Benjamin Wellington, Sonjia Waxmonsky, and Dan
Melamed. 2006. Empirical lower bounds on the com-
plexity of translational equivalence. InACL’06, pages
977–984, Sydney, Australia.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–403.

Kenji Yamada and Kevin Knight. 2001. A syntax-based
statistical translation model. InACL’01, pages 531–
538, Toulouse, France.

Richard Zens and Hermann Ney. 2003. A compara-
tive study on reordering constraints in statistical ma-
chine translation. InACL’03, pages 144–151, Sap-
poro, Japan.

Hao Zhang and Daniel Gildea. 2004. Syntax-based
alignment: supervised or unsupervised? InCOL-
ING’04, pages 418–424, Geneva, Switzerland.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin
Knight. 2006. Synchronous binarization for machine
translation. InNAACL-HLT’06, pages 256–263, New
York, New York.

27



Proceedings of SSST-3, Third Workshop on Syntax and Structure in Statistical Translation, pages 28–36,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Improving Phrase-Based Translation via Word Alignments 
from Stochastic Inversion Transduction Grammars 

 Markus SAERS 
  

Dept. of Linguistics and Philology 
 Uppsala University 

Sweden  
 markus.saers@lingfil.uu.se 

Dekai WU  
 Human Language Technology Center 

Dept. of Computer Science & Engineering 
HKUST 

Hong Kong 
dekai@cs.ust.hk  

Abstract 

We argue that learning word alignments 
through a compositionally-structured, joint 
process yields higher phrase-based transla-
tion accuracy than the conventional heuris-
tic of intersecting conditional models. 
Flawed word alignments can lead to flawed 
phrase translations that damage translation 
accuracy. Yet the IBM word alignments 
usually used today are known to be flawed, 
in large part because IBM models (1) 
model reordering by allowing unrestricted 
movement of words, rather than con-
strained movement of compositional units, 
and therefore must (2) attempt to compen-
sate via directed, asymmetric distortion and 
fertility models. The conventional heuris-
tics for attempting to recover from the re-
sulting alignment errors involve estimating 
two directed models in opposite directions 
and then intersecting their alignments – to 
make up for the fact that, in reality, word 
alignment is an inherently joint relation. A 
natural alternative is provided by Inversion 
Transduction Grammars, which estimate 
the joint word alignment relation directly, 
eliminating the need for any of the conven-
tional heuristics. We show that this align-
ment ultimately produces superior 
translation accuracy on BLEU, NIST, and 
METEOR metrics over three distinct lan-
guage pairs. 

1 Introduction 

In this paper we argue that word alignments 
learned through a compositionally-structured, joint 

process are able to significantly improve the train-
ing of phrase-based translation systems, leading to 
higher translation accuracy than the conventional 
heuristic of intersecting conditional models. To-
day, statistical machine translation (SMT) systems 
perform at state-of-the-art levels; their ability to 
weigh different translation hypotheses against each 
other to find an optimal solution has proven to be a 
great asset. What sets various SMT systems apart 
are the models employed to determine what to con-
sider optimal. The most common systems today 
consist of phrase-based models, where chunks of 
texts are substituted and rearranged to produce the 
output sentence. 

Our premise is that certain flawed word align-
ments can lead to flawed phrase translations that in 
turn damage translation accuracy, since word 
alignment is the basis for learning phrase transla-
tions in phrase-based SMT systems. A critical part 
of such systems is the word-level translation 
model, which is estimated from aligned data. Cur-
rently, the standard way of computing a word 
alignment is to estimate a function linking words in 
one of the languages to words in the other. Func-
tions can only define many-to-one relations, but 
word alignment is a many-to-many relation. The 
solution is to combine two functions, one in each 
direction, and harmonize them by means of some 
heuristic. After that, phrases can be extracted from 
the word alignments. 

The problem is that the starting point for word 
alignments is usually the IBM models (Brown et 
al., 1993), which are known to produce flawed 
alignments, in large part because they (1) model 
reordering by allowing unrestricted movement of 
words, rather than constrained movement of com-
positional units, and therefore must (2) attempt to 
compensate via directed, asymmetric distortion and 
fertility models. 

28



The conventional heuristics for attempting to re-
cover from the resulting alignment errors is to es-
timate two directed models in opposite directions 
and then intersect their alignments – to make up 
for the fact that, in reality, word alignment is an 
inherently joint relation. It is unfortunate that such 
a critical stage in the training process of an SMT 
system relies on inaccurate heuristics, which have 
been largely motivated by historical implementa-
tion factors, rather than principles explaining lan-
guage phenomena. 

Inversion Transduction Grammar (ITG) models 
provide a natural, alternative approach, by estimat-
ing the joint word alignment relation directly, 
eliminating the need for any of the conventional 
heuristics. A transduction grammar is a grammar 
that generates sentences in two languages (L0 and 
L1) simultaneously; i.e., one start symbol expands 
into two strings, as for example in Figure 1(b).  A 
transduction grammar explains two languages si-
multaneously.  ITGs model a class of transductions 
(sets of sentence translations) with expressive 
power and computational complexity falling be-
tween (a) finite-state transducers or FSTs and (b) 
syntax-directed transduction grammars1 or SDTGs.  
An ITG produces both a common structural form 
for a sentence pairs, as well as relating the words – 
aligning them.  This could actually work as the 
joint word alignment that is usually constructed by 
heuristic function combination. 

Yet despite the substantial body of literature on 
word alignment, ITG based models, and phrase-
based SMT, the existing work has not assessed the 
potential for improving phrase-based translation 
quality by using joint ITG based word alignments 
to replace the error-prone conditional IBM model 
based word alignments and associated heuristics 
for intersecting bidirectional IBM alignments. 

On one hand, word alignment work is usually 
evaluated not on actual translation quality, but 
rather on artificial metrics like alignment error rate 
(AER, Och & Ney, 2003), which relies on a manu-
ally annotated gold standard word alignment. 
There are some indications that ITG produces bet-
ter alignment then the standard method (Zhao & 
Vogel, 2003, Zhang & Gildea 2005, Chao & Li, 
2007). There is, however, little inherent utility in 
alignments – their value is determined by the SMT 
systems one can build from them. In fact, recent 

                                                           
1 Which “synchronous CFGs” are essentially identical to. 

studies have discredited the earlier assumption that 
lower AER is correlated with improved translation 
quality – the opposite can very well occur (Ayan & 
Dorr, 2006). Therefore it is essential to evaluate 
the quality of the word alignment not in terms of 
AER, but rather in terms of actual translation qual-
ity in a system built from it. 

On the other hand, ITG models have been em-
ployed to improve translation quality as measured 
by BLEU (Papineni et al., 2002), but still without 
directly addressing the problem of dependence on 
inaccurate IBM alignments. Sánchez & Benedí 
(2006) construct an ITG from word alignments 
computed by the conventional IBM model, which 
does little to alleviate the problems. Sima’an & 
Mylonakis (2008) use an ITG to structure a prior 
distribution to a phrase extraction system, which is 
an altogether different approach. Cherry & Lin 
(2007) do use ITG to build word alignments, but 
blur the lines by still mixing in the conventional 
IBM method, and focus on phrase extraction. 

The present work clearly demonstrates, for the 
first time to our knowledge, that replacing the 
widely-used heuristic of intersecting IBM word 
alignments from two directed conditional models 
instead with a single ITG alignment from a joint 
model produces superior translation accuracy.  The 
experiments are performed on three distinct lan-
guage pairs: German–English, Spanish–English, 
and French–English. Translation accuracy is re-
ported in terms of BLEU, NIST, and METEOR 
metrics. 

2 Background 

Statistical Machine Translation is a paradigm 
where translation is considered as a code-breaking 
problem. The goal is to find the most likely output 
sentence (clear text message) given the supplied 
input sentence (coded message), according to some 
model. 

To get a probabilistic model, large amounts of 
training data are used. These data have to be 
aligned so that an understanding of correspon-
dences between the languages is there to be learnt 
from. Even if the data is assumed to be aligned at 
sentence level, sub-sentence alignment is also 
needed. This is usually carried out by training 
some statistical model of a word-to-word function 
(Brown et al., 1993), or a hidden Markov model 
consuming input words and emitting output words 
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(Vogel, Ney & Tillmann, 1996). The toolkit 
GIZA++ (Och & Ney, 2000) is freely available and 
widely used to compute such word alignments. 

All these models learn a directed translation 
function that maps input words to output words. 
Since these functions focus solely on surface phe-
nomena, they have no mechanisms for dealing with 
the kind of structured reordering between lan-
guages that could account for, e.g., the difference 
between SVO languages and SOV languages. 

What emerges is in fact a rather flawed model of 
how one language is rewritten into another. The 
conventional way to alleviate this flaw is to train 
an equally flawed model in the other direction, and 
then intersect the two. This practice certainly alle-
viates some of the problems, but far from all. 

To build a phrase-based SMT system, the word 
alignment is used as a starting point to try to ac-
count for the entire sentence. This means that the 
word alignment is gradually expanded, so that all 
words in both sentences are accounted for, either 
by words in the other language, or by the null 
empty word ε. This process is called grow-diag-
final (Koehn, Och & Marcu, 2003). 

The grow-diag-final process does smooth over 
some of the flaws still left in the word alignment, 
but error analysis gives reason to doubt that it re-
pairs enough of the errors to avoid damaging trans-
lation accuracy. Thus, we are motivated to 
investigate a completely different approach that 
attempts to avoid the noisy directed alignments in 
the first place. 

2.1 Inversion Transduction Grammars 

A transduction is a set of sentence translation 
pairs – just as a language is a set of sentences.  The 
set defines a relation between the input and output 
languages. 

In the generative view, a transduction gram-
mar generates a transduction, i.e., a set of sentence 
translation pairs or bisentences – just as an ordi-
nary (monolingual) language grammar generates a 
language, i.e., a set of sentences.  In the recogni-
tion view, alternatively, a transduction grammar 
biparses or accepts all sentence pairs of a trans-
duction – just as a language grammar parses or 
accepts all sentences of a language.  And in the 
transduction view, a transduction grammar trans-
duces (translates) input sentences to output sen-
tences. 

Two familiar classes of transductions have been 
in widespread use for decades in many areas of 
computer science and linguistics: 

 
A syntax-directed transduction is a set of bisen-
tences generated by some syntax-directed transduc-
tion grammar or SDTG (Lewis & Stearns, 1968; 
Aho & Ullman, 1969, 1972).  A “synchronous CFG” 
is equivalent to an SDTG. 
 
A finite-state transduction is a set of bisentences 
generated by some finite-state transducer or FST.  
It is possible to describe finite-state transductions us-
ing SDTGs (or synchronous CFGs) by restricting 
them alternatively to the special cases of either “right 
regular SDTGs” or “left regular SDTGs”.  However, 
such characterizations rather misleadingly overlook 
the key point – by severely limiting expressive 
power, finite-state transductions are orders of magni-
tude cheaper to biparse, train, and induce than syn-
tax-directed transductions – and are often even more 
accurate to induce. 
 

More recently, an intermediate equivalence class 
of transductions whose generative capacity and 
computational complexity falls in between these 
two has become widely used in state-of-the-art MT 
systems – due to numerous empirical results indi-
cating significantly better fit to modeling transla-
tion between many human language pairs: 

 
An inversion transduction is a set of bisentences 
generated by some inversion transduction gram-
mar or ITG (Wu, 1995a, 1995b, 1997).  As above 
with finite-state transductions, it is possible to de-
scribe inversion transductions using SDTGs (or syn-
chronous CFGs) by restricting them alternatively to 
the special cases of “binary SDTGs”, “ternary 
SDTGs”, or “SDTGs whose transduction rules are 
restricted to straight and inverted permutations only”.  
Again however, as above, such characterizations 
rather misleadingly overlook the key point – by se-
verely limiting expressive power, inversion transduc-
tions are orders of magnitude cheaper to biparse, 
train, and induce than syntax-directed transductions – 
and are often even more accurate to induce. 
 
Any SDTG (or synchronous CFG) of binary 

rank – i.e., that has at most two nonterminals on 
the right-hand-side of any rule – is an ITG.  (Simi-
larly, any SDTG (or synchronous CFG) that is 
right regular is a finite-state transduction gram-
mar.)  Thus, for example, any grammar computed 
by the binarization algorithm of Zhang et al. 
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FSA 
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CFG that is 
right regular 
or left regular  

 
 
 
 

O(n2) 

 
regular or 
finite-state 

transductions 
FST 
or  

SDTG (or syn-
chronous CFG) 

that is 
right regular 
or left regular 

 

 
 
 
 

O(n4) 

context-free 
languages 

CFG 

 
 

O(n3) 

inversion 
transductions 

ITG 
or  

SDTG (or syn-
chronous CFG) 
that is binary 

or ternary 
or inverting 

 
 

O(n6) 

   
syntax-directed 
transductions 

SDTG 
(or synchro-
nous CFG) 

 

 
 
 

O(n2n+2) 

 
Table 1: Summary comparison of computational 
complexity for Viterbi and chart (bi)parsing, and 
EM training algorithms for both monolingual and 

bilingual hierarchies. 
 

 

(2006) is an ITG.  Similarly, any grammar induced 
following the hierarchical phrase-based translation 
method, which always yields a binary transduction 
grammar (Chiang 2005), is an ITG. 

Moreover, any SDTG (or synchronous CFG) of 
ternary rank – i.e., that has at most three nontermi-
nals on the right-hand-side of any rule – is still 
equivalent to an ITG.  Of course, this does not hold 
for SDTGs (or synchronous CFGs) in general, 
which allow arbitrary rank (possibly exceeding 
three) at the price of exponential complexity, as 
summarized in Table 1. 

Without loss of generality, any ITG can be con-
veniently written in a 2-normal form (Wu, 1995a, 
1997).  This cannot be done for SDTGs (or syn-
chronous CFGs) – unlike the monolingual case of 
CFGs, which form an equivalence class of context-
free languages that can all be written in Chomsky’s 
2-normal form.  In the bilingual case, only ITGs 

form an equivalence class of inversion transduc-
tions that can all be written in a 2-normal form. 

Formally, an ITG in this 2-normal form, which 
segregates syntactic versus lexical rules, consists 
of a tuple  where N is a set of non-
terminal symbols, V0 and V1 are the vocabularies of 
L0 and L1 respectively, R is a set of transduction 
rules, and  is the start symbol.  Each trans-
duction rule takes one of the following forms: 

 
S → X 
X → [Y Z] 
X → <Y Z> 
X → segmentL0/ε 
X → ε/segmentL1 
X → segmentL0/segmentL1 

 
where X, Y and Z may be any nonterminal. 

Aside from the start rule, there are two kinds of 
syntactic transduction rules, namely straight and 
inverted.  In the above notation, straight transduc-
tion rules X → [Y Z] use square brackets, 
whereas inverted rules X → <Y Z> use angled 
brackets.  The transductions generated by straight 
nodes have the same order in both languages, 
whereas the transduction generated by the inverted 
nodes are inverted in one of the languages, mean-
ing that the children are read left-to-right in L0 and 
right-to-left in L1. In Figure 1(b) for example, the 
parse tree node instantiating an inverted transduc-
tion rule is marked with a horizontal bar.  This 
mechanism allows for a minimal amount of reor-
dering, while keeping the complexity down. 

The last three forms are for lexical transduction 
rules.  Each segment comes from the vocabulary 
of one of the languages, indicated by the subscript.  
In the simplest case, the two ε-rule forms define 
singletons, which insert “spurious” segments into 
either language.  Spurious segments lack any cor-
respondence in the other language – they are 
“aligned to null” – and singletons are lexical rules 
that associate a null-aligned segment in one of the 
languages with an empty segment (ε) in the other. 

On the other hand, the last rule form defines a 
lexical translation pair that aligns the 
word/phrase segmentL0 to its translation 
segmentL1.  Such rules can also be written com-
positionally as a pair of singletons, although it 
reads less transparently: 

 
X → segmentL0/ε ε/segmentL1 
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Note that segments typically consist of multiple 
tokens. Common examples include: 

• Chinese word/phrase segments consisting of 
multiple unsegmented character tokens 

• Chinese word/phrase segments consisting of 
multiple smaller, presegmented multi-
character word/phrase tokens 

• English phrase/collocation segments consist-
ing of multiple word tokens (roller coaster) 

ITGs inherently model phrasal translation – lin-
guistically speaking, ITGs assume the set of lexical 
translation pairs constitutes a phrasal lexicon (just 
as lexicographers assume in building ordinary eve-
ryday dictionaries). An advantage of this is that the 
ITG biparsing and decoding algorithms perform 
integrated translation-driven segmentation si-
multaneously with optimizing the parse (Wu, 
1997; Wu & Wong, 1998). 

These properties allow an ITG to (1) insert and 
delete words/phrases, which matches the ability of 
the conventional methods for word alignment as 
well as phrase alignment, and (2) account for the 
reordering in a more principled and restricted way 
than conventional alignment methods. 

A stochastic ITG or SITG is an ITG where 
every rule is associated with a probability. As with 
a stochastic CFG (SCFG), the probabilities are 
conditioned on the left-hand-side symbol, so that 
the probability of rule X → χ is p(χ|X). 

A bracketing ITG or BITG or BTG (Wu, 
1995a) contains only one nonterminal symbol, 
with syntactic transduction rules X → [X X] and 
X → <X X>, which means that it produces a 
bracketing rather than a labeled tree. With a sto-
chastic BITG (SBITG or SBTG) it is still possible 
to determine an optimal tree, since inversion and 
alignment are coupled: where inversions are 
needed is decided by the translations, and vice 
versa. 

In Wu (1995b) algorithms for training a SITG 
using expectation maximization, as well as finding 
the optimal parse of a sentence pair given a SITG 
are presented. These are polynomial time O(n6), as 
seen in Table 1. Further pruning methods can also 
be added, especially for longer sentences. 

2.2 Previous uses of ITG in alignment 

There have been several attempts to use various 
forms of ITGs in an alignment setting. 

Zhao & Vogel (2003) and Sánchez & Benedí 
(2006) both use GIZA++ to establish their SITG. 
Since they use GIZA++ to create their ITG, little 
light is shed on the question of whether an ITG 
produces better alignments than GIZA++. 

Zhang & Gildea (2005) compare lexicalized and 
standard ITGs on an alignment task, and conclude 
that both are superior to IBM models 1 and 4, and 
that lexicalization helps. They also employ some 
pruning techniques to speed up training. Chao & Li 
(2007) incorporate the reordering constraints im-
posed by an ITG to their discriminative word 
aligner, and also note a lower alignment error rate 
in their system. Since neither work evaluates re-
sults on a translation task, it is hard to know 
whether better AER would translate into improved 
translation quality, in light of Ayan & Dorr (2006). 

Sima’an & Mylonakis (2008) use an ITG as the 
basis of a prior distribution in their system that ex-
tracts all possible phrases rather than employing a 
length cut-off, and report an increase in translation 
quality as measured by the BLEU score (Papineni 
et al., 2002). In this paper, it is not primarily pure 
ITG that is being evaluated, but it lends some 
credibility to our assumption that the ITG structure 
helps when aligning. 

Cherry & Lin (2007) use an ITG to produce 
phrase tables that are then used in a translation sys-
tem. However, to make their system outperform 
GIZA++, they blend in a non-compositionality 
constraint that is still based on GIZA++ word 
alignments. We would very much like to clearly 
see and understand the difference between ITG and 
GIZA++ alignments, and the lines are somewhat 
blurred in their work. 

3 Model 

First, the lexicon of the SBITG is initialized, by 
extracting lexical transduction rules from cooccur-
rence data from the corpus. Each pair of tokens in 
each sentence pair is initially considered equally 
likely to be a lexical translation pair. Each token is 
also considered to be a possible singleton. The two 
syntactic transduction rules X → [X X] and X → 
<X X> are initially assumed to be equally likely. 

Then full expectation-maximization training 
(Wu, 1995b) is carried out on the training data. 
Instead of waiting for full convergence, the process 
is halted when the increase in the training data’s 
probability starts to decline. 

32



 sentence pairs tokens 
de-en 115,323 1,602,781 
es-en 108,073 1,466,132 
fr-en 95,990 1,340,718 

Table 2: Summary of training data. 
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Figure 1: (a) Bidirectional IBM 
alignments and their intersection 

and (b) ITG alignments. 

 
Figure 2: (a) Bidirectional IBM 
alignments and their intersection 

and (b) ITG alignments. 

 
Figure 3: (a) Bidirectional IBM 

alignments and their intersec-
tion and (b) ITG alignments. 

 
 
 
At this point, we extract the optimal parses from 

the training data, and use the word alignment im-
posed by the ITG instead of the one computed by 
GIZA++ (Och & Ney, 2000). Training after this 
point is carried out according to the guidelines for 
the WSMT08 baseline system (see section 4.2). In 
Figure 1(a) is an example of a sentence aligned 
with GIZA++, and in Figure 1(b) is the same sen-
tence, aligned with ITG. In this case it is clearly 
visible how the structured reordering constraints 
that the ITG enforces results in a clear alignment, 
whereas GIZA++ is unable to sort it out. 

4 Experimental setup 

4.1 Data 

We used a subset of the data provided for the Sec-
ond Workshop on Statistical Machine Translation2, 
which consists mainly of texts from the Europarl 
corpus (Koehn, 2005). We used the Europarl part 
for the translation tasks: German–English (de-en), 
Spanish–English (es-en), and French–English 
(fr-en). Table 2 summarizes the datasets used for 
training. For tuning and testing, the tuning and de-
velopment test sets provided for the workshop 
were used – each measuring 2,000 sentence pairs. 

4.2 Baseline system 

For baseline system we trained phrase-based SMT 
models with GIZA++ (Och & Ney, 2000), the 
training scripts supplied with Moses (Koehn et al., 
                                                           
2 www.statmt.org/wmt08 
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2007), and minimum error rate training (MERT, 
Och, 2003), all according to the WSMT08-
guidelines for baseline systems. This means that 5 
iterations are carried out with IBM model 1 train-
ing, 5 iterations with HMM training, 3 iterations of 
IBM model 3 training, and finally 3 iterations of 
IBM model 4 training. After GIZA++ training, the 
Moses training script extracts and scores phrases, 
and establishes a lexicalized reordering model. 

The WSMT08 guidelines call for the combina-
tion heuristic “grow-diag-final-and” (GDFA). We 
also tried the “intersect” combination heuristic, 
which simply calculates the intersection of align-
ment points in the two directed alignments pro-
vided by GIZA++. 

4.3 SBITG system 

Since imposing an SBITG biparse on a sentence 
pair forces a word alignment on the sentence pair, 
word alignment under SBITG models is identical 
to biparsing. 

Expectation-maximization training was used to 
induce a SBITG from the training data. Training is 
halted when the EM-process started to converge. In 
our experience, convergence typically requires no 
more than 3 iterations or so. When EM training is 
finished, we extracted the optimal biparses from 
the training data, which then constitute the optimal 
alignment given the grammar. This alignment was 
then output in GIZA++ format. All singletons from 
the SBITG alignment were converted to be null-
alignments in the GIZA++ formatted file. These 
files could then be used instead of GIZA++ in the 
remainder of the training process for the phrase-
based translation system. 

Although the results from the ITG are inter-
preted as two directed alignments, they are identi-
cal, both with each other and the intersection. 
Trying different combination heuristics for these 
results always yields the same results. 

The training process was identical save for the 
fact that the word alignments were produced by 
SBITGs rather than by GIZA++. 

5 Experimental results 

We trained a total of nine systems (three tasks and 
three different alignments), which we evaluated 
with three different measures: BLEU (Papineni et 
al., 2002), NIST (Doddington, 2002), and 
METEOR (Lavie & Agarwal 2007). 

Figure 2 shows a sentence pair as it was aligned 
with the two different models. Figure 2(a) shows 
the GIZA++ alignment in both directions, and the 
intersection between them, whereas Figure 2(b) 
shows the SBITG alignment with its common 
structure. The asymmetric reordering mechanism 
of the IBM models is simply unable to relate the 
two halves to one another. The segment zur 
kenntnis genommen could certainly be said to 
mean note, but as a verb, and not as a noun, which 
is the current usage of the word. This is an inherent 
problem of the asymmetry of the IBM models, 
which is rectified by simultaneous alignment. 

Figure 3 shows another sentence pair. Again, 
Figure 3(a) was aligned with GIZA++ and Figure 
3(b) with the SITG model. This shows a case with 
perhaps even more structured reordering, where a 
notion of constituency is definitely needed to get it 
right. SITG handles constituency, and gets this is-
sue right. The IBM models do not, resulting in the 
error of aligning either to aufgerufen. 

As mentioned before, the GDFA heuristic is ap-
plied after the word alignment process, and it does 
fix some of these problems. Therefore we opted to 
evaluate this, not on alignments, but rather on 
translation quality of phrase based SMT systems 
derived from the alignments. Our empirical results 
confirm that SBITG alignments do indeed lead to 
better translation quality, as shown in Table 2. 

We also tried the intersect combination heuris-
tic, and depending on language pair and evaluation 
metric, the GDFA and intersect heuristics come out 
on top. The ITG approach is, however, consistently 
better than either of the heuristics applied to 
GIZA++ output. 

6 Discussion 

There are of course fundamental differences be-
tween ITG and IBM models. The main difference 
is that IBM models are directed and surface ori-
ented, whereas the ITG model is joint and struc-
tured. The directedness means that the IBM models 
are unable to produce a word alignment that is op-
timal for a sentence pair; they can only produce 
word alignments that are optimal when translating 
from one language into the other. An ITG on the 
other hand is capable of producing the optimal 
alignment that explains both sentences in the pair. 
We see this phenomenon clearly in Figures 1–3. 
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BLEU NIST METEOR 
GIZA++ GIZA++ GIZA++ 

 

GDFA inters. SBITG GDFA inters. SBITG GDFA inters. SBITG 

de-en 20.59 20.69 21.13 5.8668 5.8623 5.9380 0.4969 0.4953 0.5029 
es-en 25.97 26.33 26.63 6.6352 6.6793 6.7407 0.5599 0.5582 0.5612 
fr-en 26.03 26.17 26.63 6.6907 6.7071 6.8151 0.5544 0.5560 0.5635 
 

Table 2: Results. The best result on each task/metric combination is in bold digits. 
(The identical results for SBITG on Spanish–English and French–English are not typos.) 

 
IBM models are also built to allow for fairly 

“whimsical” reorderings, which are not modeled 
very well to begin with. This allows for far too 
many degrees of freedom to fit the model to the 
data. Because natural languages are inherently 
structural, this excess degree of freedom could hurt 
performance. Some restraints are needed. ITGs on 
the other hand only allow for compositionally 
structured reordering, which corresponds better to 
the reorderings between natural languages. There 
are some issues with ITG as well, one of them be-
ing that all permutations are actually not allowed, 
even if structured. This has led to some problems 
when an a prior alignment or structure is forced 
upon a sentence pair, but using unrestricted expec-
tation-maximization means that the sentence pair is 
fitted to the grammar, and what the grammar can-
not express is not applied to the data. Even if ITG 
proves to be too restrictive in the future, the fact 
that it bases reordering on structure, rather than 
unrestricted lexical movement, gives it an edge 
over the IBM models. The benefits of structured 
reordering as opposed to unrestricted are clearly 
visible in Figures 1–3. 

An argument to continue using IBM models is 
that two directed alignments can be intersected and 
heuristically grown to build a joint alignment, thus 
compensating for the flaws in the original models. 
But as we have seen in Figure 3, even the combi-
nation of two models contains errors that should 
have been avoided. This approach is not able to 
smooth over the flaws of the IBM models. 

The results in this paper give credibility to the 
claim that these limitations of the IBM models are 
so serious that they hurt translation quality of sys-
tems built upon them; even after the phrase build-
ing heuristic has been applied. Systems built on 
ITG alignment on the other hand fare better, on all 
three evaluation metrics. 

There is still more to be done. So far we have 
only employed bracketing SITGs, which are not 
able to distinguish one structure form another. The 
structural changes that the SBITG is capable of are 
dictated by the alignment of the leaves in the tree. 
This seems impressive, given the information at 
hand, but is really a logical conclusion of the fact 
that the grammar can leverage different alignment 
probabilities against each other, and as the align-
ment is coupled to the structure of the ITG parse, 
the structure is constrained to the alignment. The 
reverse is also true: the alignment is constrained by 
the structure. This coupling is essential to the train-
ing of SITGs. For a SBITG, there is very little in-
formation in the structure, only the decision to read 
the node as straight or inverted. This is not an in-
herent property of ITGs in general; more informa-
tion can be carried higher up in the tree by labeling 
the nonterminals. There is great hope that adding 
more information to the structuring, even better 
alignments could be gained. 

In this paper we have extracted the word align-
ments from ITG biparses, and inserted them into 
the conventional phrase-based SMT pipeline. It is 
feasible to extract phrases directly from the gram-
mar, as demonstrated by Cherry & Lin (2007). Our 
results suggest that augmenting other portions of 
the phrase-based SMT framework with ITG struc-
tures might also be worth exploring, in particular 
decoding. Recall that in the transduction view of 
transduction grammars (as opposed to generative 
or recognition views), an output translation can be 
determined by parsing an input sentence with a 
transduction grammar (Wu 1996; Wu & Wong 
1998). This kind of translation would also entail 
the notion of structure that we have just witnessed 
helping alignment. Phrase-based SMT currently 
relies on unrestricted phrasal movement, which is a 
lot better than unrestricted lexical movement, but 
could probably use some structure as well. 
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7 Conclusion 

We have shown that learning word alignments 
through a compositionally-structured, joint process 
yields higher phrase-based translation accuracy 
than the conventional heuristic of intersecting con-
ditional models. 

The conventional method with IBM-models suf-
fers from their directionality. The asymmetry 
causes bad alignments. We have instead introduced 
an automatically induced ITG alignment that does 
not suffer from this asymmetry, and is able to ex-
plain the two sentences simultaneously rather than 
one in terms of the other. The IBM-models also 
suffers from a simplified reordering model, which 
relies on moving individual words. The hierarchi-
cal structure of ITGs means that even a BITG has 
enough structural information to outperform the 
IBM models. Previous work shows that these ad-
vantages translate into better alignments as meas-
ured against a manually annotated gold standard 
using alignment error rate (AER). Previous work 
also shows that AER is a poor indicator of whether 
translation quality is increased. We have showed 
that the increase in alignment quality actually 
translates into an increase in translation quality in 
this case, as measured by BLEU, NIST and 
METEOR across three different language pairs. 
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Abstract 

Because of the variations of the languages, the 
coverage of the references is very important to 
the reference based automatic evaluation of 
machine translation systems. We propose a 
method to extend the reference set of the au-
tomatic evaluation only based on multiple 
manual references and their syntactic struc-
tures. In our approach, the syntactic equiva-
lents in the reference sentences are identified 
and hybridized to generate new references. 
The new method need no external knowledge 
and can obtain the equivalents of long sub-
segments of reference sentences. The experi-
mental results show that using the extended 
reference set the popular automatic evaluation 
metrics achieve better correlations with the 
human assessments. 

1 Introduction 

While human evaluation of machine translation 
output remains the most reliable method to assess 
translation quality, it is a costly and time consum-
ing process. The development of automatic ma-
chine translation evaluation metrics enables the 
rapid assessment of system output. By providing 
immediate feedback on the effectiveness of various 
techniques, these metrics have guided machine 
translation research and have facilitated rapid ad-
vances in the state of the art. In addition, automatic 
evaluation metrics are useful in comparing the per-
formance of multiple machine translation systems 

on a given translation task. Since automatic evalua-
tion metrics are meant to serve as a surrogate for 
human judgments, their quality is determined by 
how well they correlate with assessors’ preferences 
and how accurately they predicts human judg-
ments. 

Although current methods for automatically 
evaluating machine translation output do not re-
quire humans to assess individual system output, 
humans are nevertheless needed to generate a 
number of reference translations. The quality of 
machine-generated translations is determined by 
automatically comparing system output with these 
references. All current automatic evaluation met-
rics are based on the various measures of the gen-
eral similarity between the system translation and 
manual references. This kind of method has an ob-
vious drawback: it does not account for combina-
tions of lexical and syntactic differences that might 
occur between a perfectly fluent and accurately-
translated machine output and a human reference 
translation (beyond variations already captured by 
the different reference translations themselves). 
Moreover, the set of human reference translations 
is unlikely to be an exhaustive inventory of “good 
translations” for any given foreign language sen-
tence. Therefore, it would be highly desirable to 
extend the coverage of the references for the simi-
larity based evaluation methods. 

To match the system translation with various 
presentation of the same meaning, many work ha-
ven been proposed to extend the references by 
generating lexical variations. The first strategy fo-
cuses on the extension based on paraphrase identi-
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fication (Lepage and Denoual, 2005; Lassner et al. 
2005; Zhou et al. 2006; Kauchak and Barzilay, 
2006; Owczarzak et al. 2006; Owczarzak et al. 
2007). In this kind of method, the quality of system 
translations can be viewed as the extent to which 
the conveyed meaning matches the semantics of 
the reference translations, independent of sub-
strings they may share. In short, all paraphrases of 
human-generated references should be considered 
“good” translations. The second strategy extends 
the references with the synonymy (Banerjee and 
Lavie, 2005; Lassner et al. 2005). This is an alter-
nation to obtain lexical variations with synonymy 
dictionaries instead of the paraphrase. In this kind 
of method, the reference is matched against to the 
system translation with the pack of the synonymies 
of the reference words instead of the exact match-
ing. 

Both two strategies can successfully capture the 
lexical variations and greatly extend the coverage 
of the references. But they still have two common 
deficiencies. The first is the demand of the external 
knowledge. Paraphrase based method need a mass 
of external corpus to extract paraphrases and syn-
onymy based method need manually constructed 
semantic dictionaries. These demands seriously 
limit the application on various languages for 
which the external knowledge is absent. 

Another deficiency is that the two strategies 
cannot capture the equivalents of long sub-
segments such as a clause. Synonymy based me-
thod can only capture the equivalents of single 
words. Paraphrase based method can capture the 
equivalents of longer units but the length is still 
very narrow. In many cases, some long sub-
segments can be varied with an entirely different 
presentation which cannot be decomposed into the 
variations of words or phrases. 

To address these problems we propose a novel 
strategy to generate variations presentation only 
using existing multiple manual references without 
any external knowledge. We identify the syntactic 
components on different level as the replaceable 
units and determine the syntactic equivalents of the 
components in the corresponding references. Then 
the equivalents of the syntactic components are 
hybridized into new references. 

The rest of the paper is organized as follows. 
Section 2 introduces the concept and identification 
of the syntactic equivalents. Section 3 proposes a 
process to hybridize the syntactic equivalents effi-

ciently. Experimental results are illustrated in sec-
tion 4. We also include some related discussion in 
Section 5. Finally this work is concluded in Sec-
tion 6. 

2 Syntactic Equivalents  

In our approach, we propose a novel method to 
obtain the equivalents of the sub-segments from 
the corresponding references to a single source 
sentence. A sub-segment can be a word, a phrase 
or longer unit such as a clause. As we know, the 
variations of the sentences to the same meaning 
can be distinguished into two categories. The first 
is the structural variations. In this case, presenta-
tions employ the same words but arrange them in 
different structure. The second is lexical variations. 
In this case, presentations have the same structure 
but employ the different words. In practice, one 
reference sentence often has both of the two kinds 
of variations comparing with other corresponding 
reference sentences. 

As the previous works, we also focus on the 
lexical variations. The approach is that the equiva-
lents of the words are not obtained by external 
knowledge. In our strategy, generally speaking, the 
equivalents of a sub-segment S in a reference sen-
tence are identified as the sub-segments which play 
the same syntactic role in the same structure in the 
other corresponding references. The equivalents 
obtained in this way are called syntactic equiva-
lents.  

Suppose R1 and R2 is a corresponding reference 
sentence pair. T1 and T2 are the consecutive syntac-
tic trees of R1 and R2 respectively. We formally 
define a syntactic equivalent pair between R1 and 
R2 with a 4-tuple: 

 
<N1, N2, S1, S2> 

 
where Ni is a non-terminal node in Ti and Si is the 
sub-segment which is covered by Ni. Then, all the 
syntactic equivalent pair R1 and R2 can be recur-
sively identified using following process: 

 
•  The first syntactic equivalent pair <N1, N2, 

S1, S2> is identified where Ni is the root of 
Ti and Si= Ri. 

•  Suppose <N1, N2, S1, S2> is a syntactic 
equivalent pair. {N11, N12, …N1m} and { N21, 
N22, …N2n} are the child nodes sequences of 
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N1 and N2 respectively. If n=m and N1i= N2i 
(i.e. the child nodes sequence of N1 and N2 
are exactly the same), for each node pair N1i 
and N2i a syntactic equivalent pair is identi-
fied as < N1i, N2i, S1i, S2i>. 

 
With this process, all equivalent pairs on differ-

ent syntactic level can be identified by synchro-
nously traveling the two trees from top to bottom. 
The following is an example of the identification 
of the equivalent pairs. Figure 1 gives out a refer-
ence sentence pair and their syntactic trees. The 
nodes which are included in certain equivalent pair 
are surrounded by a rectangle. 

 

 
(a) 

 

 
(b) 

 
Figure 1 An example of the identification of the syn-

tactic equivalent pairs. 
 
  In this example, five equivalent pairs can be 

identified: 
 

•  <S, S, “Machine translation develops con-
stantly”, “MT progresses persistently”> 

•  <NP, NP, “Machine translation”, “MT”> 
•  <VP, VP, “develops constantly”, “progresses 

persistently”> 
•  <VV, VV, “develops”, “progresses”> 
•  <ADV, ADV, “constantly”, “persistently”> 

3 Hybridization of Syntactic Equivalents  

The indentified syntactic equivalents pairs include 
the sub-segments which sharing the same role in 
the same syntactic structure. Because of this, we 

can obtain a variation of a reference sentence by 
switching the two sub-segments of an equivalent 
pair in this sentence. This operation did not change 
the structure of the sentence but only replace a sub-
segment in the structure with its equivalent.  

Consequently, two new references can be gener-
ated by switching the two sub-segments of an 
equivalent pair between two reference sentences. 
Furthermore when we switch the sub-segments of 
all equivalent pairs between the two references, 
multiple new references are generated with various 
combinations of the switches. This operation is 
called the syntactic hybridization of the references 
which can be illustrated by following steps: 

Suppose R={ri}i=1…n is a reference set containing 
n reference sentences to a single source sentence. 
R’ is the new reference set containing the original 
reference sentences and the hybridized reference 
sentences. R’ can be obtained by formula (1): 

 

 

 
where rooti is the root node of the syntactic tree of 
ri. Equ(nt) returns the set of all equivalent of the 
sub-segments covered by the tree node nt. The de-
tailed process of Equ(nt) is: 

 
Equ(nt): 
 

Define set  equ = Φ 
Add Seg(nt) to equ 
If nt is included in an equivalent pair <nt, nt’, s, s’> 

Add p’ to equ 
Define childi=1…m is the m children of nt 
Define hybr = Equ(child1)×Equ(child2)…×
Equ(childm) 
Merge hybr into equ 

Return equ 
 

where Seg(nt) is the sub-segment covered by the 
tree node nt. Operation S1× S2 generates the Carte-
sian product of the sub-segment set S1 and S2, i.e. 
for each arbitrary sub-segment pair s1 and s2 se-
lected from S1 and S respectively, we concatenate 
s1 and s2. Finally, the reduplicate references in R’ 
are removed. 

  For the example in Section 2, eight hybridized 
references can be generated including the original 
two sentences: 

 

39



•  Machine Translation develops constantly 
•  Machine Translation develops persistently 
•  Machine Translation progresses constantly 
•  Machine Translation progresses persistently  
•  MT develops constantly 
•  MT develops persistently 
•  MT progresses constantly 
•  MT progresses persistently 

4 Experiments  

We will show experimental results in this section 
to verify the effectiveness of the extended set of 
hybridized reference sentences. In the experiments, 
multiple translations of the source language sen-
tences are evaluated with several popular auto-
matic evaluation metrics. The evaluation is carried 
out on sentence level using the original reference 
set and the extended reference set respectively. 
Finally, the Pearson’s correlations between the 
human assessments and evaluation scores using 
two reference set are calculated and compared. 

  The multiple translations and human assess-
ments are obtained from the dataset of the MT 
evaluation workshop at ACL05 (LDC2006T04) 
and the dataset from NistMATR08 (LDC2008E43). 
Table 1 & 2 describes the detail of the two datasets. 

The popular automatic evaluation metrics in-
clude BLEU (Papieni et al., 2002), GTM (Me-
lamed et al., 2003), Rouge (Lin and Och, 2004) 
and METEOR (Banerjee and Lavie, 2005). The 
syntactic trees of the reference sentences are ob-
tained with the Stanford statistical parser (Klein 
2003) for LDC2006T04 and Collins parser (Collins 
1999) for LDC2008E43.  

Table 3 & 4 gives out the correlations using two 
reference set on both datasets. The first column is 
the name of the used metrics. The second column 
is the correlations based on the original reference 
set. The third column is the correlations based on 
the extended reference set. In the experiment, the 
maximum length of N-gram in BLEU is 4. The 
exponent of GTM is 2. ROUGE uses skip-bigram 
with a window of nine words. And METEOR is 
run in “exact” mode. 
 
 

Release Year 2006 
Genre Newswire 

Number of segments 919 
Source Language Chinese 

Target Language English 
Number of system transla-

tions 
7 

Number of reference trans-
lations 

4 

Human assessment scores Score 1-5, ade-
quacy & fluency 

Table 1 Description of LDC2006T04 
 

Release Year 2008 
Genre Newswire 

Number of segments 249 
Source Language Arabic 
Target Language English 

Number of system transla-
tions 

8 

Number of reference trans-
lations 

4 

Human assessment scores Score 1-7, ade-
quacy  

Table 2 Description of LDC2008E43 
 

After the hybridization, each source sentence in 
LDC2006T04 has 31 corresponding reference sen-
tences in average and each source sentence in 
LDC2008E43 has 66 corresponding reference sen-
tences in average. The number of the references is 
greatly increased. And as shown in the results, the 
usage of the extended reference set improves the 
correlations with human assessments for all the 
metrics in most cases except the ROUGE on LDC 
2008E43. 

 
Metric Original Extended 
BLEU 0.3488 0.3564 
GTM 0.3671 0.3681 

ROUGE 0.4252 0.4325 
METEOR 0.4686         0.4723 

Table 3 Pearson’s correlations with human assess-
ments on sentence level on LDC2006T04 

 
Metric Original Extended 
BLEU 0.6092 0.6109 
GTM 0.5434 0.5438 

ROUGE 0.6628 0.6582 
METEOR 0.7053         0.7089 

Table 4 Pearson’s correlations with human assess-
ments on sentence level on LDC2008E43 

 
The following is a real instance in the experi-

ments from LDC2008E43: 
 
Four original references: 
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•  Ten churches burned down in 10 days in 

the American state of Alabama 
•  Burning of ten churches in ten days in the 

American state of Alabama 
•  Ten churches set on fire in ten days in 

American state of Alabama 
•  Torching of ten churches within ten days in 

American state of Alabama 
 
Six additional references: 
 
•  Torching of ten churches in ten days in the 

American state of Alabama 
•  Torching of ten churches within ten days in 

the American state of Alabama 
•  Torching of ten churches in ten days in 

American state of Alabama 
•  Burning of ten churches within ten days in 

American state of Alabama 
•  Burning of ten churches within ten days in 

the American state of Alabama 
•  Burning of ten churches in ten days in 

American state of Alabama 
 
The syntactic structure of the original references: 
 
•  (TOP (S (NPB (CD Ten) (NNS Churches)) 

(VP (VBN Burned) (PP (IN Down) (PP (IN 
in) (NP (NPB (CD 10) (NNS Days)) (PP 
(IN in) (NP (NPB (DT the) (NNP American) 
(NNP State)) (PP (IN of) (NPB (NNP Ala-
bama))))))))))) 

•  (TOP (NP (NPB (NN Burning)) (PP (IN of) 
(NP (NPB (CD Ten) (NNS Churches)) (PP 
(IN in) (NP (NPB (CD Ten) (NNS Days)) 
(PP (IN in) (NP (NPB (DT the) (NNP 
American) (NNP State)) (PP (IN of) (NPB 
(NNP Alabama))))))))))) 

•  (TOP (S (NPB (CD Ten) (NNS Churches)) 
(VP (VB Set) (PP (IN on) (NPB (NN Fire))) 
(PP (IN in) (NP (NPB (CD Ten) (NNS 
Days)) (PP (IN in) (NP (NPB (NNP Ameri-
can) (NNP State)) (PP (IN of) (NPB (NNP 
Alabama)))))))))) 

•  (TOP (NP (NPB (NNP Torching)) (PP (IN 
of) (NP (NPB (CD Ten) (NNS Churches)) 
(PP (IN within) (NP (NPB (CD Ten) (NNS 
Days)) (PP (IN in) (NP (NPB (NNP Ameri-

can) (NNP State)) (PP (IN of) (NPB (NNP 
Alabama))))))))))) 

 
To investigate the distribution of the equivalents 

we also perform several statistics about the count 
and the length of the syntactic nodes. In table 5, we 
list the information about the count of the nodes. 
The first row is the average words count per refer-
ence sentence. The second and third row is the 
count of all tree nodes and equivalent nodes in all 
references respectively. The fourth and fifth row is 
the average count of tree nodes and equivalent 
nodes per reference sentence respectively. 

 
 2006T

04 
2008E4

3 
Average length of  

reference 
31.52 34.43 

Total tree nodes 21123
1 

62569 

Total equivalent nodes 21807 10073 
Average tree nodes 57.46 62.82 

Average equivalent 
nodes 

5.93 10.11 

Table 5 Counts of the tree nodes and equivalent 
nodes in references. 

 
We also investigate the distribution of the length 

(count of covered words) of the nodes. First, we 
count the tree nodes and equivalent nodes whose 
length is from 1 word to 50 words. Then we calcu-
late the pro-portion of equivalent nodes and tree 
nodes for each length. Figure 2 and 3 illustrate the 
distribution of absolute count of the equivalent 
nodes. The X-axis is the length of the nodes and 
the Y-axis is the count. Figure 4 and 5 illustrate the 
distribution of the proportions on two datasets re-
spectively. The X-axis is the length of the nodes 
and the Y-axis is the proportion. 

The investigation reveals four main messages. 
First, the absolute counts of the short equivalents 
are much more than those of long equivalents as 
expected. Second, the proportion of the long 
equivalents is greater than those of short equiva-
lents, this clarify that the reason of large amount of 
short equivalents is the large amount of short tree 
nodes. Third, also from the proportion of view we 
can see that the new method comparably bias to 
the long equivalents. This happens because the 
method adopts a top-down survey of the tree. Forth, 
the multiple references in Arabic-English data 
seem to match each other better than the references 
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in Chinese-English data. Arabic-English references 
have much more equivalents than Chinese-English 
data and bias to long equivalents more significant. 

 

 
Figure 2 Distribution of absolute length of equivalent 

node on LDC2006T04 
 

 
 
Figure 3 Distribution of absolute length of equivalent 

node on LDC2008E43 
 

 
 
Figure 4 Distribution of length proportion of equiva-

lent nodes on LDC2006T04 

 
Figure 5 Distribution of length proportion of equiva-

lent nodes on LDC2008E43 

5 Discussion  

The experimental results verify the positive effect 
of the hybridized reference for the automatic eval-

evaluation in most cases. Though the improvement 
of the correlations is not very significant it is stable 
across the metrics in various styles. 

Compared with the previous works based on pa-
raphrase and synonym the new method has three 
important advantages. The first is that the hybrid-
ized reference can switch the long span sub-
segments beyond the words and phrases.  

The second is that the switch can be per-formed 
in multiple levels, i.e. a sub-segment can not only 
be replaced as a single unit but also can be varied 
by replacing some child sub-segments of it. It’s 
noticeable that the multiple level switches also 
make it possible to present some structural varia-
tions by means of the lexical variations. In hybridi-
zation, we can realize some structural variation 
between syntactic nodes by switch their parent 
node instead of reordering them directly.  

The third advantage is that the new method 
needs no external knowledge which greatly facili-
tates the application. But this advantage also re-
sults in the main deficiency of this approach: the 
hybridization references cannot adopt any novel 
equivalents which are absent in existing references. 
This deficiency can be overcome by introducing 
the paraphrase and synonym into the syntactic hy-
bridization. 

It should be indicated that though the hybridiza-
tion process generate many new references not all 
of the new references are reasonable.  

In table 6 we compare the effect of hybridized 
references and manual references with more details 
on LDC2006T04. In the table, the first column is 
the contents of the references for each source sen-
tence. “Manual” means the manual references and 
the number in front of it indicates how many man-
ual references are provided. “Hybr” means the hy-
bridized references generated from the manual 
references in front of the “+”. The second column 
is the Pearson’s correlations between human as-
sessments and the BLEU scores using the corre-
sponding reference set. Besides the set containing 
4 references the other correlations are the average 
of the correlations based on all possible subset con-
taining certain number of references. For example 
correlation of “2 Manual” is the average of the cor-
relations based on 6 possible subset containing 2 
references. 

 
Reference Set Correlation 

1 Manual 0.2565 
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2 Manual 0.3057 
2 Manual+ Hybr 0.3082 

3 Manual 0.3316 
3 Manual + Hybr 0.3369 

4 Manual 0.3488 
4 Manual+ Hybr 0.3564 

Table 6 Pearson’s correlations based on incremental 
reference set 

 
As shown in the Table 6 hybridized references 

can improve the correlations with human assess-
ments on different sizes of manual references set. 
But it also indicated that though hybridization can 
generate a mass of novel references the new refer-
ences is always not more effective than even one 
additional manual references. This tells us that the 
quality of the hybridized references still need to be 
further refined. 

Another message revealed by the table is that 
with the increase of the number of manual refer-
ences the improvement of correlation made by ad-
ditional manual references is decreasing. However, 
the improvement made by the hybridized is in-
creasing. This happens because the number of hy-
bridized references increases much faster than the 
number of manual references. 

There are still several noticeable deficiencies of 
this work. First, it only works when there are more 
than two existing references. This make it cannot 
be used to extend the single reference in mass bi-
lingual corpus. Second, which is also the most im-
portant one is that this method strongly focuses on 
the precision at the cost of recall. Though we have 
recognized many equivalents for each sentence but 
there are still many equivalents that share different 
context cannot be recognized. This will be our 
main future work. The last deficiency is the bias to 
the long equivalents. This problem is caused by the 
same reason with the second deficiency: this 
method define the equivalent with the same syntac-
tic context. If two sub-nodes do not share the same 
parent it often have different brothers. 

6 Conclusions and Future Work  

In this work we present a novel method to extend 
the coverage of the reference set for the automatic 
evaluation of machine translation. The new method 
decomposes the existing references into sub-
segments according to the syntactic structure. And 
then generate new reference sentences by hybridiz-

ing the equivalents of the segments which play the 
same syntactic role in corresponding references. In 
this way the new method can not only capture the 
equivalents of words and phrases like the other 
methods but also capture the equivalents of long 
sub-segments which are out of the capability of the 
other methods. Another important advantage of the 
new method is the no use of the external knowl-
edge which greatly facilitates the application. 

Experimental results show that with the ex-
tended reference set the state-of-the-arts automatic 
evaluation metrics achieve better correlation with 
the human assessments. 

In the future work, we will relax the restriction 
of the equivalent definition and try to recognize 
more equivalents. We will also introduce the para-
phrase and synonyms into our method to see fur-
ther improvement. Another interesting challenge is 
to hybridize the equivalents in the different order 
and present the structural variations directly. 
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Abstract

Recently, numerous statistical machine trans-
lation models which can utilize various kinds
of translation rules are proposed. In these
models, not only the conventional syntactic
rules but also the non-syntactic rules can be
applied. Even the pure phrase rules are in-
cludes in some of these models. Although the
better performances are reported over the con-
ventional phrase model and syntax model, the
mixture of diversified rules still leaves much
room for study. In this paper, we present a
refined rule classification system. Based on
this classification system, the rules are classi-
fied according to different standards, such as
lexicalization level and generalization. Espe-
cially, we refresh the concepts of the structure
reordering rules and the discontiguous phrase
rules. This novel classification system may
supports the SMT research community with
some helpful references.

1 Introduction

Phrase-based statistical machine translation mod-
els (Marcu and Wong, 2002; Koehn et al., 2003; Och
and Ney, 2004; Koehn, 2004; Koehn et al., 2007)
have achieved significant improvements in trans-
lation accuracy over the original IBM word-based
model. However, there are still many limitations in
phrase based models. The most frequently pointed
limitation is its inefficacy to modeling the struc-
ture reordering and the discontiguous correspond-
ing. To overcome these limitations, many syntax-
based SMT models have been proposed (Wu, 1997;
Chiang, 2007; Ding et al., 2005; Eisner, 2003; Quirk

et al., 2005; Liu et al., 2007; Zhang et al., 2007;
Zhang et al., 2008a; Zhang et al., 2008b; Gildea,
2003; Galley et al., 2004; Marcu et al., 2006; Bod,
2007). The basic motivation behind syntax-based
model is that the syntax information has the poten-
tial to model the structure reordering and discontigu-
ous corresponding by the intrinsic structural gener-
alization ability. Although remarkable progresses
have been reported, the strict syntactic constraint
(the both sides of the rules should strictly be a sub-
tree of the whole syntax parse) greatly hinders the
utilization of the non-syntactic translation equiva-
lents. To alleviate this constraint, a few works have
attempted to make full use of the non-syntactic rules
by extending their syntax-based models to more
general frameworks. For example, forest-to-string
transformation rules have been integrated into the
tree-to-string translation framework by (Liu et al.,
2006; Liu et al., 2007). Zhang et al. (2008a) made
it possible to utilize the non-syntactic rules and even
the phrases which are used in phrase based model
by advancing a general tree sequence to tree se-
quence framework based on the tree-to-tree model
presented in (Zhang et al., 2007). In these mod-
els, various kinds of rules can be employed. For
example, as shown in Figure 1 and Figure 2, Fig-
ure 1 shows a Chinese-to-English sentence pair with
syntax parses on both sides and the word alignments
(dotted lines). Figure 2 lists some of the rules which
can be extracted from the sentence pair in Figure 1
by the system used in (Zhang et al., 2008a). These
rules includes not only conventional syntax rules but
also the tree sequence rules (the multi-headed syn-
tax rules ). Even the phrase rules are adopted by
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the system. Although the better performances are
reported over the conventional phrase-based model
and syntax-based model, the mixture of diversified
rules still leaves much room for study. Given such a
hybrid rule set, we must want to know what kinds of
rules can make more important contributions to the
overall system performance and what kinds of rules
are redundant compared with the others. From en-
gineering point of view, the developers may concern
about which kinds of rules should be preferred and
which kinds of rules could be discard without too
much decline in translation quality. However, one of
the precondition for the investigations of these issues
is what are the “rule categories”? In other words,
some comprehensive rule classifications are neces-
sary to make the rule analyses feasible. The motiva-
tion of this paper is to present such a rule classifica-
tion.

2 Related Works

A few researches have made some exploratory in-
vestigations towards the effects of different rules by
classifying the translation rules into different sub-
categories (Liu et al., 2007; Zhang et al., 2008a;
DeNeefe et al., 2007). Liu et al. (2007) differenti-
ated the rules in their tree-to-string model which in-
tegrated with forest1-to-string into fully lexicalized
rules, non-lexicalized rules and partial lexicalized
rules according to the lexicalization levels. As an
extension, Zhang et al. (2008a) proposed two more
categories: Structure Reordering Rules (SRR) and
Discontiguous Phrase Rules (DPR). The SRR stands
for the rules which have at least two non-terminal
leaf nodes with inverted order in the source and tar-
get side. And DPR refers to the rules having at
least one non-terminal leaf node between two termi-
nal leaf nodes. (DeNeefe et al., 2007) made an illu-
minating breakdown of the different kinds of rules.
Firstly, they classify all the GHKM2 rules (Galley et
al., 2004; Galley et al., 2006) into two categories:
lexical rules and non-lexical rules. The former are
the rules whose source side has no source words.
In other words, a non-lexical rule is a purely ab-

1A “forest” means a sub-tree sequence derived from a given
parse tree

2One reviewer asked about the acronym GHKM. We guess
it is an acronym for the authors of (Galley et al., 2004): Michel
Galley, Mark Hopkins, Kevin Knight and Daniel Marcu.

把 给 我钢笔

Figure 1: A syntax tree pair example. Dotted lines stands
for the word alignments.

stract rule. The latter is the complementary set of
the former. And then lexical rules are classified fur-
ther into phrasal rules and non-phrasal rules. The
phrasal rules refer to the rules whose source side
and the yield of the target side contain exactly one
contiguous phrase each. And the one or more non-
terminals can be placed on either side of the phrase.
In other words, each phrasal rule can be simulated
by the conjunction of two more phrase rules. (De-
Neefe et al., 2007) classifies non-phrasal rules fur-
ther into structural rules, re-ordering rules, and non-
contiguous phrase rules. However, these categories
are not explicitly defined in (DeNeefe et al., 2007)
since out of its focus. Our proposed rule classifica-
tion is inspired by these works.

3 Rules Classifications

Currently, there have been several classifications
in SMT research community. Generally, the rules
can be classified into two main groups according to
whether syntax information is involved: bilingual
phrases (Phrase) and syntax rules (Syntax). Fur-
ther, the syntax rules can be divided into three cat-
egories according to the lexicalization levels (Liu et
al., 2007; Zhang et al., 2008a):

1) Fully lexicalized (FLex): all leaf nodes in both
the source and target sides are lexicons (termi-
nals)

2) Unlexicalized (ULex): all leaf nodes in both the
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给
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给钢笔

把 给

Figure 2: Some rules can be extracted by the system used in (Zhang et al., 2008a) from the sentence pair in Figure 1.

source and target sides are non-lexicons (non-
terminals)

3) Partially lexicalized (PLex): otherwise.

In Figure 2, R1-R3 are FLex rules, and R5-R8 are
PLex rules.

Following (Zhang et al., 2008b), a syntax rule r
can be formalized into a tuple

< ξs, ξt, AT , ANT >

, where ξs and ξt are tree sequences of source side
and target side respectively, AT is a many-to-many
correspondence set which includes the alignments
between the terminal leaf nodes from source and tar-
get side, and ANT is a one-to-one correspondence
set which includes the synchronizing relations be-
tween the non-terminal leaf nodes from source and
target side.

Then, the syntax rules can also fall into two cat-
egories according to whether equipping with gen-
eralization capability (Chiang, 2007; Zhang et al.,
2008a):

1) Initial rules (Initial): all leaf nodes of this rule are
terminals.

2) Abstract rules (Abstract): otherwise, i.e. at least
one leaf node is a non-terminal.

A non-terminal leaf node in a rule is named an ab-
stract node since it has the generalization capabil-
ity. Comparing these two classifications for syntax
rules, we can find that a FLex rule is a initial rule
when ULex rules and PLex rules belong to abstract
rules.

These classifications are clear and easy for un-
derstanding. However, we argue that they need
further refinement for in-depth study. Specially,
more refined differentiations are needed for the ab-
stract rules (ULex rules and PLex rules) since they
play important roles for the characteristic capabil-
ities which are deemed to be the advantages over
the phrase-based model. For instance, the potentials
to model the structure reordering and the discon-
tiguous correspondence. The Structure Reordering
Rules (SRR) and Discontiguous Phrase Rules (DPR)
mentioned by (Zhang et al., 2008a) can be regarded
as more in-depth classification of the syntax rules.
In (Zhang et al., 2008a), they are described as fol-
lows:
Definition 1: The Structure Reordering Rule
(SRR) refers to the structure reordering rule that has
at least two non-terminal leaf nodes with inverted
order in the source and target side.
Definition 2: The Discontiguous Phrase Rule
(DPR) refers to the rule having at least one non-
terminal leaf node between two lexicalized leaf
nodes.
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Based on these descriptions, R7, R8 in Figure 2
belong to the category of SRR and R6, R7 fall into
the category of DPR. Although these two definitions
are easy implemented in practice, we argue that the
definition of SRR is not complete. The reordering
rules involving the reordering between content word
terminals and non-terminal (such as R5 in Figure
2) also can model the useful structure reorderings.
Moreover, it is not uncommon that a rule demon-
strates the reorderings between two non-terminals
as well as the reorderings between one non-terminal
and one content word terminal. The reason for our
emphasis of content word terminal is that the re-
orderings between the non-terminals and function
word are less meaningful.

One of the theoretical problems with phrase based
SMT models is that they can not effectively model
the discontiguous translations and numerous at-
tempts have been made on this issue (Simard et al.,
2005; Quirk and Menezes, 2006; Wellington et al.,
2006; Bod, 2007; Zhang et al., 2007). What seems
to be lacking, however, is a explicit definition to the
discontiguous translation. The definition of DPR
in (Zhang et al., 2008a) is explicit but somewhat
rough and not very accurate. For example, in Fig-
ure 3(a), non-terminal node pair ([0,‘爱’], [0,‘love’]
) is surrounded by lexical terminals. According to
Definition 2, it is a DPR. However, obviously it is
not a discontiguous phrase actually. This rule can be
simulated by conjunctions of three phrases (‘我’, ‘I’;
‘爱’, ‘love’; ‘你’,‘you’). In contrast, the translation
rule in Figure 3(b) is an actual discontiguous phrase
rule. The English correspondences of the Chinese
word ‘关’ is dispersed in the English side in which
the correspondence of Chinese word ‘灯’ is inserted.
This rule can not be simulated by any conjunctions
of the sub phrases. It must be noted that the dis-
contiguous phrase (‘关’-“switch . . . off”) can not
be abstracted under the existing synchronous gram-
mar frameworks. The fundamental reason is that
the corresponding parts should be abstracted in the
same time and lexicalized in the same time. In other
words, the discontiguous phrase can not be modeled
by the permutation between non-terminals (abstract
nodes). Another point to notice is that our focus in
this paper is the ability demonstrated by the abstract
rules. Thus, we do not pay much attentions to the re-
orderings and discontiguous phrases involved in the

我 你爱 关 灯

Figure 3: Examples for demonstrating the actual discon-
tiguous phrase. (a) is a negative example for the definition
of DPR in (Zhang et al., 2008a), (b) is a actual discon-
tiguous phrase rule.

2

Figure 4: The rule classifications used in this paper. (a)
shows that the rules can be divided into phrase rules and
syntax rules according to whether a rule includes the syn-
tactic information. (b) illustrates that the syntax rules can
be classified into three kinds according to the lexicaliza-
tion level. (c) shows that the abstract rules can be classi-
fied into more refined sub-categories.

phrase rules (e.g. “关 灯”-“switch the light off”)
since they lack the generalization capability. There-
fore, the discontiguous phrase is limited to the rela-
tion between non-terminals and terminals.

On the basis of the above analyses, we present
a novel classification system for the abstract rules
based on the crossings between the leaf node
alignment links. Given an abstract rule r =<
ξs, ξt, AT , ANT >, it is

1) a Structure Reordering Rule (SRR), if ∃ a link
l ∈ ANT is crossed with a link l′ ∈ {AT ∩ANT }
a) a SRR NT2 rule, if the link l′ ∈ ANT

b) a SRR NT-T rule, if the link l′ ∈ AT

2) not a Structure Reordering Rule (N-SRR), other-
wise.
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’

Figure 5: The patterns to show the characteristics of dis-
contiguous phrase rules.

Note that the intersection of SRR NT2 and SRR NT-
T is not necessary an empty set, i.e. a rule can be
both SRR NT2 and SRR NT-T rule.

The basic characteristic of the discontiguous
translation is that the correspondence of one non-
terminal NT is inserted among the correspondences
of one phrase X . Figure 5 (a) illustrates this sit-
uation. However, this characteristic can not sup-
port necessary and sufficient condition. For exam-
ple, if the phrase X can be divided like Figure 5
(b), then the rule in Figure 5 (a) is actually a re-
ordering rule rather than a discontiguous phrase rule.
For sufficient condition, we constrain that the phrase
X = wi . . . wj need to satisfy the requirement: wi

should be connected with wj through word align-
ment links (A word is connected with itself). In Fig-
ure 5(c), f1 is connected with f2 when NT ′ is in-
serted between e1 and e2. Thus, the rule in Figure
5(c) is a discontiguous phrase rule.
Definition 3: Given an abstract rule r =<
ξs, ξt, AT , ANT >, it is a Discontiguous Phrase iff
∃ two links lt1, lt2 fromAT and a link lnt fromANT ,
satisfy: lt1, lt2 are emitted from the same word and
lt1 is crossed with lnt when lt2 is not crossed with
lnt.

Through Definition 3, we know that the DPR is a
sub-set of the SRR NT-T.

4 Conclusions and Future Works

In this paper, we present a refined rule classifica-
tion system. Based on this classification system, the

rules are classified according to different standards,
such as lexicalization level and generalization. Es-
pecially, we refresh the concepts of the structure re-
ordering rules and the discontiguous phrase rules.
This novel classification system may supports the
SMT research community with some helpful refer-
ences.

In the future works, aiming to analyze the rule
contributions and the redundances issues using the
presented rule classification based on some real
translation systems, we plan to implement some syn-
chronous grammar based syntax translation models
such as the one presented in (Liu et al., 2007) or
in (Zhang et al., 2008a). Taking such a system as
the experimental platform, we can perform compre-
hensive statistics about distributions of different rule
categories. What is more important, the contribu-
tion of each rule category can be evaluated seriatim.
Furthermore, which kinds of rules are preferentially
applied in the 1-best decoding can be studied. All
these investigations could reveal very useful infor-
mation for the optimization of rule extraction and the
improvement of the computational models for syn-
chronous grammar based machine translation.
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Abstract

The prevalence in Chinese of grammatical
structures that translate into English in dif-
ferent word orders is an important cause of
translation difficulty. While previous work has
used phrase-structure parses to deal with such
ordering problems, we introduce a richer set of
Chinese grammatical relations that describes
more semantically abstract relations between
words. Using these Chinese grammatical re-
lations, we improve a phrase orientation clas-
sifier (introduced by Zens and Ney (2006))
that decides the ordering of two phrases when
translated into English by adding path fea-
tures designed over the Chinese typed depen-
dencies. We then apply the log probabil-
ity of the phrase orientation classifier as an
extra feature in a phrase-based MT system,
and get significant BLEU point gains on three
test sets: MT02 (+0.59), MT03 (+1.00) and
MT05 (+0.77). Our Chinese grammatical re-
lations are also likely to be useful for other
NLP tasks.

1 Introduction

Structural differences between Chinese and English
are a major factor in the difficulty of machine trans-
lation from Chinese to English. The wide variety
of such Chinese-English differences include the or-
dering of head nouns and relative clauses, and the
ordering of prepositional phrases and the heads they
modify. Previous studies have shown that using syn-
tactic structures from the source side can help MT
performance on these constructions. Most of the
previous syntactic MT work has used phrase struc-
ture parses in various ways, either by doing syntax-
directed translation to directly translate parse trees
into strings in the target language (Huang et al.,
2006), or by using source-side parses to preprocess
the source sentences (Wang et al., 2007).

One intuition for using syntax is to capture dif-
ferent Chinese structures that might have the same

(a) 
(ROOT

  (IP 

    (LCP 

      (QP (CD )

        (CLP (M )))

      (LC ))

    (PU )

    (NP 

      (DP (DT ))

      (NP (NN )))

    (VP 

      (ADVP (AD ))

      (VP (VV )

        (NP 

          (NP 

            (ADJP (JJ ))

            (NP (NN )))

          (NP (NN )))

        (QP (CD )

          (CLP (M )))))

    (PU )))

(b) 
(ROOT

  (IP 

    (NP 

      (DP (DT ))

      (NP (NN )))

    (VP 

      (LCP 

        (QP (CD )

          (CLP (M )))

        (LC ))

      (ADVP (AD ))

      (VP (VV )

        (NP 

          (NP 

            (ADJP (JJ ))

            (NP (NN )))

          (NP (NN )))

        (QP (CD )

          (CLP (M )))))

    (PU )))

 (three) 

 (year) 

 (over; in)  (city)

(complete)

(collectively) (invest) (yuan)

 (these)

(asset)

(fixed)

(12 billion)

loc nsubj advmod dobj range

lobj det nn

nummod
amod

nummod

Figure 1: Sentences (a) and (b) have the same mean-
ing, but different phrase structure parses. Both sentences,
however, have the same typed dependencies shown at the
bottom of the figure.

meaning and hence the same translation in English.
But it turns out that phrase structure (and linear or-
der) are not sufficient to capture this meaning rela-
tion. Two sentences with the same meaning can have
different phrase structures and linear orders. In the
example in Figure 1, sentences (a) and (b) have the
same meaning, but different linear orders and dif-
ferent phrase structure parses. The translation of
sentence (a) is: “In the past three years these mu-
nicipalities have collectively put together investment
in fixed assets in the amount of 12 billion yuan.” In
sentence (b), “in the past three years” has moved its
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position. The temporal adverbial “®#u” (in the
past three years) has different linear positions in the
sentences. The phrase structures are different too: in
(a) the LCP is immediately under IP while in (b) it
is under VP.

We propose to use typed dependency parses in-
stead of phrase structure parses. Typed dependency
parses give information about grammatical relations
between words, instead of constituency informa-
tion. They capture syntactic relations, such as nsubj
(nominal subject) and dobj (direct object) , but also
encode semantic information such as in the loc (lo-
calizer) relation. For the example in Figure 1, if we
look at the sentence structure from the typed depen-
dency parse (bottom of Figure 1), “®#u” is con-
nected to the main verb qÄ (finish) by a loc (lo-
calizer) relation, and the structure is the same for
sentences (a) and (b). This suggests that this kind
of semantic and syntactic representation could have
more benefit than phrase structure parses.

Our Chinese typed dependencies are automati-
cally extracted from phrase structure parses. In En-
glish, this kind of typed dependencies has been in-
troduced by de Marneffe and Manning (2008) and
de Marneffe et al. (2006). Using typed dependen-
cies, it is easier to read out relations between words,
and thus the typed dependencies have been used in
meaning extraction tasks.

We design features over the Chinese typed depen-
dencies and use them in a phrase-based MT sys-
tem when deciding whether one chunk of Chinese
words (MT system statistical phrase) should appear
before or after another. To achieve this, we train a
discriminative phrase orientation classifier follow-
ing the work by Zens and Ney (2006), and we use
the grammatical relations between words as extra
features to build the classifier. We then apply the
phrase orientation classifier as a feature in a phrase-
based MT system to help reordering.

2 Discriminative Reordering Model

Basic reordering models in phrase-based systems
use linear distance as the cost for phrase move-
ments (Koehn et al., 2003). The disadvantage of
these models is their insensitivity to the content of
the words or phrases. More recent work (Tillman,
2004; Och et al., 2004; Koehn et al., 2007) has in-

troduced lexicalized reordering models which esti-
mate reordering probabilities conditioned on the ac-
tual phrases. Lexicalized reordering models have
brought significant gains over the baseline reorder-
ing models, but one concern is that data sparseness
can make estimation less reliable. Zens and Ney
(2006) proposed a discriminatively trained phrase
orientation model and evaluated its performance as a
classifier and when plugged into a phrase-based MT
system. Their framework allows us to easily add in
extra features. Therefore we use it as a testbed to see
if we can effectively use features from Chinese typed
dependency structures to help reordering in MT.

2.1 Phrase Orientation Classifier
We build up the target language (English) translation
from left to right. The phrase orientation classifier
predicts the start position of the next phrase in the
source sentence. In our work, we use the simplest
class definition where we group the start positions
into two classes: one class for a position to the left of
the previous phrase (reversed) and one for a position
to the right (ordered).

Let c j, j′ be the class denoting the movement from
source position j to source position j′ of the next
phrase. The definition is:

c j, j′ =
{

reversed if j′ < j
ordered if j′ > j

The phrase orientation classifier model is in the log-
linear form:

pλ N
1
(c j, j′ | f J

1 ,e
I
1, i, j)

=
exp

(
∑N

n=1 λnhn( f J
1 ,e

I
1, i, j,c j, j′)

)

∑c′ exp
(

∑N
n=1 λnhn( f J

1 ,e
I
1, i, j,c′)

)

i is the target position of the current phrase, and f J
1

and eI
1 denote the source and target sentences respec-

tively. c′ represents possible categories of c j, j′ .
We can train this log-linear model on lots of la-

beled examples extracted from all of the aligned MT
training data. Figure 2 is an example of an aligned
sentence pair and the labeled examples that can be
extracted from it. Also, different from conventional
MERT training, we can have a large number of bi-
nary features for the discriminative phrase orienta-
tion classifier. The experimental setting will be de-
scribed in Section 4.1.
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(21) </s>

(20) .

(19) world

(18) outside

(17) the

(16) to

(15) up

(14) opening

(13) of

(12) policy

(11) 's

(10) China

(9) from

(8) arising

(7) star

(6) bright

(5) a

(4) become

(3) already

(2) has

(1) Beihai

(0) <s>

(15)

</s>

(14)(13)(12)(11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)(0)

<s>

ordered151420

ordered14618

ordered6516

reversed5715

reversed7810

reversed8109

ordered1098

reversed9137

ordered13126

ordered12115

ordered1134

ordered323

ordered211

ordered100

classj'ji

i
j

Figure 2: An illustration of an alignment grid between a Chinese sentence and its English translation along with the
labeled examples for the phrase orientation classifier. Note that the alignment grid in this example is automatically
generated.

The basic feature functions are similar to what
Zens and Ney (2006) used in their MT experiments.
The basic binary features are source words within a
window of size 3 (d ∈ −1,0,1) around the current
source position j, and target words within a window
of size 3 around the current target position i. In the
classifier experiments in Zens and Ney (2006) they
also use word classes to introduce generalization ca-
pabilities. In the MT setting it’s harder to incorpo-
rate the part-of-speech information on the target lan-
guage. Zens and Ney (2006) also exclude word class
information in the MT experiments. In our work
we will simply use the word features as basic fea-
tures for the classification experiments as well. As
a concrete example, we look at the labeled example
(i = 4, j = 3, j′ = 11) in Figure 2. We include the
word features in a window of size 3 around j and i

as in Zens and Ney (2006), we also include words
around j′ as features. So we will have nine word
features for (i = 4, j = 3, j′ = 11):

Src−1:. Src0:Ä� Src1:¥)
Src2−1:{ Src20:� Src21:(
Tgt−1:already Tgt0:become Tgt1:a

2.2 Path Features Using Typed Dependencies
Assuming we have parsed the Chinese sentence that
we want to translate and have extracted the gram-
matical relations in the sentence, we design features
using the grammatical relations. We use the path be-
tween the two words annotated by the grammatical
relations. Using this feature helps the model learn
about what the relation is between the two chunks
of Chinese words. The feature is defined as follows:
for two words at positions p and q in the Chinese
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Shared relations Chinese English
nn 15.48% 6.81%

punct 12.71% 9.64%
nsubj 6.87% 4.46%
rcmod 2.74% 0.44%
dobj 6.09% 3.89%

advmod 4.93% 2.73%
conj 6.34% 4.50%

num/nummod 3.36% 1.65%
attr 0.62% 0.01%

tmod 0.79% 0.25%
ccomp 1.30% 0.84%
xsubj 0.22% 0.34%
cop 0.07% 0.85%
cc 2.06% 3.73%

amod 3.14% 7.83%
prep 3.66% 10.73%
det 1.30% 8.57%

pobj 2.82% 10.49%

Table 1: The percentage of typed dependencies in files
1–325 in Chinese (CTB6) and English (English-Chinese
Translation Treebank)

sentence (p < q), we find the shortest path in the
typed dependency parse from p to q, concatenate all
the relations on the path and use that as a feature.

A concrete example is the sentences in Figure 3,
where the alignment grid and labeled examples are
shown in Figure 2. The glosses of the Chinese words
in the sentence are in Figure 3, and the English trans-
lation is “Beihai has already become a bright star
arising from China’s policy of opening up to the out-
side world.” which is also listed in Figure 2.

For the labeled example (i = 4, j = 3, j′ = 11),
we look at the typed dependency parse to find the
path feature between Ä� and �. The relevant
dependencies are: dobj(Ä�, Òh), clf (Òh, ()
and nummod((, �). Therefore the path feature is
PATH:dobjR-clfR-nummodR. We also use the direc-
tionality: we add an R to the dependency name if it’s
going against the direction of the arrow.

3 Chinese Grammatical Relations

Our Chinese grammatical relations are designed to
be very similar to the Stanford English typed depen-
dencies (de Marneffe and Manning, 2008; de Marn-
effe et al., 2006).

3.1 Description
There are 45 named grammatical relations, and a de-
fault 46th relation dep (dependent). If a dependency

matches no patterns, it will have the most generic
relation dep. The descriptions of the 45 grammat-
ical relations are listed in Table 2 ordered by their
frequencies in files 1–325 of CTB6 (LDC2007T36).
The total number of dependencies is 85748, and
other than the ones that fall into the 45 grammatical
relations, there are also 7470 dependencies (8.71%
of all dependencies) that do not match any patterns,
and therefore keep the generic name dep.

3.2 Chinese Specific Structures

Although we designed the typed dependencies to
show structures that exist both in Chinese and En-
glish, there are many other syntactic structures that
only exist in Chinese. The typed dependencies we
designed also cover those Chinese specific struc-
tures. For example, the usage of “{” (DE) is one
thing that could lead to different English transla-
tions. In the Chinese typed dependencies, there
are relations such as cpm (DE as complementizer)
or assm (DE as associative marker) that are used
to mark these different structures. The Chinese-
specific “²” (BA) construction also has a relation
ba dedicated to it.

The typed dependencies annotate these Chinese
specific relations, but do not directly provide a map-
ping onto how they are translated into English. It
becomes more obvious how those structures affect
the ordering when Chinese sentences are translated
into English when we apply the typed dependencies
as features in the phrase orientation classifier. This
will be further discussed in Section 4.4.

3.3 Comparison with English

To compare the distribution of Chinese typed de-
pendencies with English, we extracted the English
typed dependencies from the translation of files 1–
325 in the English Chinese Translation Treebank
1.0 (LDC2007T02), which correspond to files 1–325
in CTB6. The English typed dependencies are ex-
tracted using the Stanford Parser.

There are 116,799 total English dependencies,
and 85,748 Chinese ones. On the corpus we use,
there are 45 distinct dependency types (not includ-
ing dep) in Chinese, and 50 in English. The cov-
erage of named relations is 91.29% in Chinese and
90.48% in English; the remainder are the unnamed
relation dep. We looked at the 18 shared relations
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nsubj nsubj
pobj lccomp loc rcmod

dobj

clfnummod
advmod

Beihai already become China to outside open during rising (DE) one measure

word

bright

star

.

prep cpm

punct

Figure 3: A Chinese example sentence labeled with typed dependencies

between Chinese and English in Table 1. Chinese
has more nn, punct, nsubj, rcmod, dobj, advmod,
conj, nummod, attr, tmod, and ccomp while English
uses more pobj, det, prep, amod, cc, cop, and xsubj,
due mainly to grammatical differences between Chi-
nese and English. For example, some determiners
in English (e.g., “the” in (1b)) are not mandatory in
Chinese:

(1a)�ñ=/import and export��/total value
(1b) The total value of imports and exports

In another difference, English uses adjectives
(amod) to modify a noun (“financial” in (2b)) where
Chinese can use noun compounds (“��/finance”
in (2a)).

(2a)Üu/Tibet��/finance��/system�À/reform
(2b) the reform in Tibet ’s financial system

We also noticed some larger differences between
the English and Chinese typed dependency distribu-
tions. We looked at specific examples and provide
the following explanations.

prep and pobj English has much more uses of prep
and pobj. We examined the data and found three
major reasons:

1. Chinese uses both prepositions and postposi-
tions while English only has prepositions. “Af-
ter” is used as a postposition in Chinese exam-
ple (3a), but a preposition in English (3b):
(3a)ÊÔ/1997�À/after
(3b) after 1997

2. Chinese uses noun phrases in some cases where
English uses prepositions. For example, “�
-” (period, or during) is used as a noun phrase
in (4a), but it’s a preposition in English.
(4a)ÊÔ/1997t/toÊ¬/1998�- /period
(4b) during 1997-1998

3. Chinese can use noun phrase modification in
situations where English uses prepositions. In
example (5a), Chinese does not use any prepo-
sitions between “apple company” and “new
product”, but English requires use of either
“of” or “from”.
(5a)°*Ú�/apple companyc�¬/new product
(5b) the new product of (or from) Apple
The Chinese DE constructions are also often
translated into prepositions in English.

cc and punct The Chinese sentences contain more
punctuation (punct) while the English translation
has more conjunctions (cc), because English uses
conjunctions to link clauses (“and” in (6b)) while
Chinese tends to use only punctuation (“,” in (6a)).

(6a) YJ/theseÂ=/cityöÌ/social²�/economic
�0/development·¤/rapidÇ�0/local
²�/economic"Å/strengthÒ�/clearly
��/enhance

(6b) In these municipalities the social and economic de-
velopment has been rapid, and the local economic
strength has clearly been enhanced

rcmod and ccomp There are more rcmod and
ccomp in the Chinese sentences and less in the En-
glish translation, because of the following reasons:

1. Some English adjectives act as verbs in Chi-
nese. For example, c (new) is an adjectival
predicate in Chinese and the relation between
c (new) and �Ý (system) is rcmod. But
“new” is an adjective in English and the En-
glish relation between “new” and “system” is
amod. This difference contributes to more rc-
mod in Chinese.
(7a)c/new{/(DE)X=/verify and write off
(7b) a new sales verification system

2. Chinese has two special verbs (VC): 4 (SHI)
and � (WEI) which English doesn’t use. For
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abbreviation short description Chinese example typed dependency counts percentage
nn noun compound modifier qÖ¥e nn(¥e,qÖ) 13278 15.48%

punct punctuation 0�:�,ÒÇ punct(,Ò,Ç) 10896 12.71%
nsubj nominal subject ���
 nsubj(�
,��) 5893 6.87%
conj conjunct (links two conjuncts) ÷÷ZÆaî conj(Æaî,÷÷) 5438 6.34%
dobj direct object ËÀÅYêÔ��G©G dobj(ÅY,©G) 5221 6.09%

advmod adverbial modifier \ ��Þ©G advmod(�Þ,�) 4231 4.93%
prep prepositional modifier ó"B¥ÅZqÕ prep(qÕ,ó) 3138 3.66%

nummod number modifier Ô��G©G nummod(G,Ô��) 2885 3.36%
amod adjectival modifier J-�ÓÇ amod(ÓÇ,J-�) 2691 3.14%
pobj prepositional object Êâ���½ pobj(Êâ,�½) 2417 2.82%

rcmod relative clause modifier X�±t,{<Y rcmod(<Y,±t) 2348 2.74%
cpm complementizer 
�ËÀ{²�ÙÄ cpm(
�,{) 2013 2.35%

assm associative marker è�{Û¬ assm(è�,{) 1969 2.30%
assmod associative modifier è�{Û¬ assmod(Û¬,è�) 1941 2.26%

cc coordinating conjunction ÷÷ZÆaî cc(Æaî,Z) 1763 2.06%
clf classifier modifier Ô��G©G clf(©G,G) 1558 1.82%

ccomp clausal complement Uqû½�Rzf~µÿ ccomp(û½,Rz) 1113 1.30%
det determiner YJ²�ÙÄ det(ÙÄ,YJ) 1113 1.30%

lobj localizer object £#u lobj(u,£#) 1010 1.18%
range dative object that is a quantifier phrase Äb �¬�7õÃ range(Äb,Ã) 891 1.04%

asp aspect marker �¾ê*~ asp(�¾,ê) 857 1.00%
tmod temporal modifier 1�X�±t, tmod(±t,1�) 679 0.79%

plmod localizer modifier of a preposition óY¡yHÞ plmod(ó,Þ) 630 0.73%
attr attributive �4���º7�Ã attr(�,�Ã) 534 0.62%

mmod modal verb modifier ¼C�ztâF mmod(zt,�) 497 0.58%
loc localizer 3ÊÄ1Þ loc(3,1Þ) 428 0.50%
top topic OÓ4Ì�ÙÄ top(4,OÓ) 380 0.44%

pccomp clausal complement of a preposition â��\ �ë pccomp(â,�ë) 374 0.44%
etc etc modifier )��©s��­ etc(©s,�) 295 0.34%

lccomp clausal complement of a localizer ¥)éi
8¥�å{Òh lccomp(¥,
8) 207 0.24%
ordmod ordinal number modifier �ÔÇåè ordmod(Ç,�Ô) 199 0.23%

xsubj controlling subject Uqû½�Rzf~µÿ xsubj(Rz,Uq) 192 0.22%
neg negative modifier 1�X�±t, neg(±t,X) 186 0.22%

rcomp resultative complement ÏÄÄÕ rcomp(ÏÄ,ÄÕ) 176 0.21%
comod coordinated verb compound modifier ÅY"q comod(ÅY,"q) 150 0.17%
vmod verb modifier Ùó|ÑiÛè�0Á{*~ vmod(0Á,|Ñ) 133 0.16%

prtmod particles such asÄ,1,u,
 ó���ÄRz{ÄÒ prtmod(Rz,Ä) 124 0.14%
ba “ba” construction ²Õ?ÅÝ5=� ba(Ý5,²) 95 0.11%

dvpm manner DE(�) modifier �H�3��� dvpm(�H,�) 73 0.09%
dvpmod a “XP+DEV(�)” phrase that modifies VP �H�3��� dvpmod(3�,�H) 69 0.08%
prnmod parenthetical modifier ¬ÊÏ-Ã 1990 – 1995Ä prnmod(Ï-, 1995) 67 0.08%

cop copular Æ4�É��{²� cop(�É��,4) 59 0.07%
pass passive marker ú�½�°�b�� pass(�½,ú) 53 0.06%

nsubjpass nominal passive subject 1úÁ*�SÓ�{�	£ nsubjpass(Á*,1) 14 0.02%

Table 2: Chinese grammatical relations and examples. The counts are from files 1–325 in CTB6.

example, there is an additional relation, ccomp,
between the verb4/(SHI) and\�/reduce in
(8a). The relation is not necessary in English,
since4/SHI is not translated.
(8a) �/second4/(SHI)�ÊÊ�#/1996

¥)/ChinaLlÝ/substantially
\�/reduce�{/tariff

(8b) Second, China reduced tax substantially in
1996.

conj There are more conj in Chinese than in En-
glish for three major reasons. First, sometimes one
complete Chinese sentence is translated into sev-
eral English sentences. Our conj is defined for two

grammatical roles occurring in the same sentence,
and therefore, when a sentence breaks into multiple
ones, the original relation does not apply. Second,
we define the two grammatical roles linked by the
conj relation to be in the same word class. However,
words which are in the same word class in Chinese
may not be in the same word class in English. For
example, adjective predicates act as verbs in Chi-
nese, but as adjectives in English. Third, certain con-
structions with two verbs are described differently
between the two languages: verb pairs are described
as coordinations in a serial verb construction in Chi-
nese, but as the second verb being the complement

56



of the first verb in English.

4 Experimental Results

4.1 Experimental Setting

We use various Chinese-English parallel corpora1

for both training the phrase orientation classifier, and
for extracting statistical phrases for the phrase-based
MT system. The parallel data contains 1,560,071
sentence pairs from various parallel corpora. There
are 12,259,997 words on the English side. Chi-
nese word segmentation is done by the Stanford Chi-
nese segmenter (Chang et al., 2008). After segmen-
tation, there are 11,061,792 words on the Chinese
side. The alignment is done by the Berkeley word
aligner (Liang et al., 2006) and then we symmetrized
the word alignment using the grow-diag heuristic.

For the phrase orientation classifier experiments,
we extracted labeled examples using the parallel
data and the alignment as in Figure 2. We extracted
9,194,193 total valid examples: 86.09% of them are
ordered and the other 13.91% are reversed. To eval-
uate the classifier performance, we split these exam-
ples into training, dev and test set (8 : 1 : 1). The
phrase orientation classifier used in MT experiments
is trained with all of the available labeled examples.

Our MT experiments use a re-implementation of
Moses (Koehn et al., 2003) called Phrasal, which
provides an easier API for adding features. We
use a 5-gram language model trained on the Xin-
hua and AFP sections of the Gigaword corpus
(LDC2007T40) and also the English side of all the
LDC parallel data permissible under the NIST08
rules. Documents of Gigaword released during the
epochs of MT02, MT03, MT05, and MT06 were
removed. For features in MT experiments, we in-
corporate Moses’ standard eight features as well as
the lexicalized reordering features. To have a more
comparable setting with (Zens and Ney, 2006), we
also have a baseline experiment with only the stan-
dard eight features. Parameter tuning is done with
Minimum Error Rate Training (MERT) (Och, 2003).
The tuning set for MERT is the NIST MT06 data
set, which includes 1664 sentences. We evaluate the
result with MT02 (878 sentences), MT03 (919 sen-

1LDC2002E18, LDC2003E07, LDC2003E14,
LDC2005E83, LDC2005T06, LDC2006E26, LDC2006E85,
LDC2002L27 and LDC2005T34.

tences), and MT05 (1082 sentences).

4.2 Phrase Orientation Classifier

Feature Sets #features Train. Acc. Train. Dev Dev
Acc. (%) Macro-F Acc. (%) Macro-F

Majority class - 86.09 - 86.09 -
Src 1483696 89.02 71.33 88.14 69.03
Src+Tgt 2976108 92.47 82.52 91.29 79.80
Src+Src2+Tgt 4440492 95.03 88.76 93.64 85.58
Src+Src2+Tgt+PATH 4691887 96.01 91.15 94.27 87.22

Table 3: Feature engineering of the phrase orientation
classifier. Accuracy is defined as (#correctly labeled ex-
amples) divided by (#all examples). The macro-F is an
average of the accuracies of the two classes.

The basic source word features described in Sec-
tion 2 are referred to as Src, and the target word
features as Tgt. The feature set that Zens and Ney
(2006) used in their MT experiments is Src+Tgt. In
addition to that, we also experimented with source
word features Src2 which are similar to Src, but take
a window of 3 around j′ instead of j. In Table 3
we can see that adding the Src2 features increased
the total number of features by almost 50%, but also
improved the performance. The PATH features add
fewer total number of features than the lexical fea-
tures, but still provide a 10% error reduction and
1.63 on the macro-F1 on the dev set. We use the best
feature sets from the feature engineering in Table 3
and test it on the test set. We get 94.28% accuracy
and 87.17 macro-F1. The overall improvement of
accuracy over the baseline is 8.19 absolute points.

4.3 MT Experiments
In the MT setting, we use the log probability from
the phrase orientation classifier as an extra feature.
The weight of this discriminative reordering feature
is also tuned by MERT, along with other Moses
features. In order to understand how much the
PATH features add value to the MT experiments, we
trained two phrase orientation classifiers with differ-
ent features: one with the Src+Src2+Tgt feature set,
and the other one with Src+Src2+Tgt+PATH. The re-
sults are listed in Table 4. We compared to two
different baselines: one is Moses8Features which
has a distance-based reordering model, the other is
Baseline which also includes lexicalized reorder-
ing features. From the table we can see that using
the discriminative reordering model with PATH fea-
tures gives significant improvement over both base-
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Setting #MERT features MT06(tune) MT02 MT03 MT05
Moses8Features 8 31.49 31.63 31.26 30.26
Moses8Features+DiscrimRereorderNoPATH 9 31.76(+0.27) 31.86(+0.23) 32.09(+0.83) 31.14(+0.88)
Moses8Features+DiscrimRereorderWithPATH 9 32.34(+0.85) 32.59(+0.96) 32.70(+1.44) 31.84(+1.58)
Baseline (Moses with lexicalized reordering) 16 32.55 32.56 32.65 31.89
Baseline+DiscrimRereorderNoPATH 17 32.73(+0.18) 32.58(+0.02) 32.99(+0.34) 31.80(−0.09)
Baseline+DiscrimRereorderWithPATH 17 32.97(+0.42) 33.15(+0.59) 33.65(+1.00) 32.66(+0.77)

Table 4: MT experiments of different settings on various NIST MT evaluation datasets. All differences marked in bold
are significant at the level of 0.05 with the approximate randomization test in (Riezler and Maxwell, 2005).

det

every level product

nn

products of all level

whole city this year industry total output value

det nn

gross industrial output value of the whole city this year

Figure 4: Two examples for the feature PATH:det-nn and
how the reordering occurs.

lines. If we use the discriminative reordering model
without PATH features and only with word features,
we still get improvement over the Moses8Features
baseline, but the MT performance is not signifi-
cantly different from Baseline which uses lexical-
ized reordering features. From Table 4 we see that
using the Src+Src2+Tgt+PATH features significantly
outperforms both baselines. Also, if we compare be-
tween Src+Src2+Tgt and Src+Src2+Tgt+PATH, the
differences are also statistically significant, which
shows the effectiveness of the path features.

4.4 Analysis: Highly-weighted Features in the
Phrase Orientation Model

There are a lot of features in the log-linear phrase
orientation model. We looked at some highly-
weighted PATH features to understand what kind
of grammatical constructions were informative for
phrase orientation. We found that many path fea-
tures corresponded to our intuitions. For example,
the feature PATH:prep-dobjR has a high weight for
being reversed. This feature informs the model that
in Chinese a PP usually appears before VP, but in
English they should be reversed. Other features
with high weights include features related to the
DE construction that is more likely to translate to

a relative clause, such as PATH:advmod-rcmod and
PATH:rcmod. They also indicate the phrases are
more likely to be chosen in reversed order. Another
frequent pattern that has not been emphasized in the
previous literature is PATH:det-nn, meaning that a
[DT NP1NP2] in Chinese is translated into English
as [NP2 DT NP1]. Examples with this feature are
in Figure 4. We can see that the important features
decided by the phrase orientation model are also im-
portant from a linguistic perspective.

5 Conclusion

We introduced a set of Chinese typed dependencies
that gives information about grammatical relations
between words, and which may be useful in other
NLP applications as well as MT. We used the typed
dependencies to build path features and used them to
improve a phrase orientation classifier. The path fea-
tures gave a 10% error reduction on the accuracy of
the classifier and 1.63 points on the macro-F1 score.
We applied the log probability as an additional fea-
ture in a phrase-based MT system, which improved
the BLEU score of the three test sets significantly
(0.59 on MT02, 1.00 on MT03 and 0.77 on MT05).
This shows that typed dependencies on the source
side are informative for the reordering component in
a phrase-based system. Whether typed dependen-
cies can lead to improvements in other syntax-based
MT systems remains a question for future research.
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Abstract

The alignment problem for synchronous
grammars in its unrestricted form, i.e. whether
for a grammar and a string pair the grammar
induces an alignment of the two strings, re-
duces to the universal recognition problem,
but restrictions may be imposed on the align-
ment sought, e.g. alignments may be1 : 1,
island-free or sure-possible sorted. The com-
plexities of 15 restricted alignment problems
in two very different synchronous grammar
formalisms of syntax-based machine transla-
tion, inversion transduction grammars (ITGs)
(Wu, 1997) and a restricted form of range
concatenation grammars ((2,2)-BRCGs) (Sø-
gaard, 2008), are investigated. The universal
recognition problems, and therefore also the
unrestricted alignment problems, of both for-
malisms can be solved in timeO(n6|G|). The
complexities of the restricted alignment prob-
lems differ significantly, however.

1 Introduction

The synchronous grammar formalisms used in
syntax-based machine translation typically induce
alignments by aligning all words that are recog-
nized simultaneously (Wu, 1997; Zhang and Gildea,

∗This work was done while the first author was a Senior
Researcher at the Dpt. of Linguistics, University of Potsdam,
supported by the German Research Foundation in the Emmy
Noether projectPtolemaioson grammar learning from paral-
lel corpora; and while he was a Postdoctoral Researcher at the
ISV Computational Linguistics Group, Copenhagen Business
School, supported by the Danish Research Foundation in the
projectEfficient syntax- and semantics-based machine transla-
tion.

2004). On a par with weak and strong generative ca-
pacity, it is thus possible to talk about the alignment
capacity of those formalisms. In this paper, two syn-
chronous grammar formalisms are discussed, inver-
sion transduction grammars (ITGs) (Wu, 1997) and
two-variable binary bottom-up non-erasing range
concatenation grammars ((2,2)-BRCGs) (Søgaard,
2008). It is known that ITGs do not induce the class
of inside-out alignments discussed in Wu (1997).
Another class that ITGs do not induce is that of
alignments with discontinuous translation units (Sø-
gaard, 2008). Søgaard (2008), on the other hand,
shows that the alignments induced by (2,2)-BRCGs
are closed under union, i.e. (2,2)-BRCGs induce all
possible alignments.

The universal recognition problems of both ITGs
and (2,2)-BRCGs can be solved in timeO(n6|G|).
This may come as a surprise, as ITGs restrict the
alignment search space considerably, while (2,2)-
BRCGs do not. In the context of the NP-hardness of
decoding in statistical machine translation (Knight,
1999; Udupa and Maji, 2006), it is natural to ask
why the universal recognition problem of (2,2)-
BRCGs isn’t NP-hard? How can (2,2)-BRCGs in-
duce all possible alignments and still avoid NP-
hardness? This paper bridges the gap between
these results and shows that when alignments are
restricted to be1 : 1, island-free or sure-possible
sorted (see below), or all combinations thereof,
the alignment problem of (2,2)-BRCGsis NP-hard.
(2,2)-BRCGs in a sense avoid NP-hardness by giv-
ing up control over global properties of alignments,
e.g. any pair of words may be aligned multiple times
in a derivation.
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The alignment structures induced by synchronous
grammars in syntax-based machine translation have
the following property: If an alignment structure in-
cludes alignmentsv|v′, v|w′ andw|w′, it also in-
cludes the alignmentw|v′, wherew,w′, v, v′ are
word instances.1 This follows from the fact that
only words that are recognized simultanously, are
aligned. Otherwise alignment structures are just a
binary symmetric relation on two strings, a source
and a target string, such that two words in the source,
resp. target string, cannot be aligned. Maximally
connected subgraphs (ignoring precedence edges)
are called translation units.

The alignment problem can be formulated this
way (with s, s′ source and target sentence, resp.):

INSTANCE: G, 〈s, s′〉.
QUESTION: DoesG induce an alignment

on 〈s, s′〉?
The alignment problem in its unrestricted form

reduces to the universal recognition problem (Bar-
ton et al., 1987), i.e. whether for a grammarG and
a string pair〈s, s′〉 it holds that〈s, s′〉 ∈ L(G)?
Of course the alignment may in this case be empty
or partial. Both ITGs and (2,2)-BRCGs permit un-
aligned nodes.

This paper investigates the complexity of re-
stricted versions of the alignment problem for ITGs
and (2,2)-BRCGs. A simple example, which can
be solved in linear time for both formalisms, is the
alignment problem wrt. alignments that consist of a
single translation unit including all source and target
words. It may be formulated this way:

INSTANCE: G, 〈s, s′〉.
QUESTION: DoesG induce an alignment that

consists of a single translation unit
with no unaligned words on〈s, s′〉?

This can be solved for ITGs by checking if there
is a production rule that introduces all the words in
the right order such that:2

1w|w′ is our short hand notation for saying thatw, a word
in the source string, andw′, a word in the target string, have
been aligned. In the formal definition of alignments below, it is
said thatw ∈ Vs (w is a word in the source string),w′ ∈ Vt

(w′ is a word in the target string) and(w, w′) ∈ A, i.e. w is
aligned tow′, and vice versa. Alignments are bidirectional in
what follows.

2In fact in normal form ITGs, we can simply check if there

• The LHS nonterminal symbol (possibly suf-
fixed by the empty stringǫ) can be derived from
the start symbol.

• The empty stringǫ can be derived from all RHS
nonterminal symbols.

The only difference for (2,2)-BRCGs is that pro-
duction rules are typically referred to as clauses in
the range concatenation grammar literature.

This paper considers some more complex exam-
ples; namely, the alignment problems wrt.1 : 1-
alignments, (source-side and/or target-side) island-
free alignments and sure-possible sorted alignments.
The formal definitions of the three properties are as
follows:

Definition 1.1. An alignment structure for a string
pair 〈w1 . . . wn, v1 . . . vm〉 is a graphD = 〈V,E〉
whereV = Vs : {w1, . . . , wn} ∪ Vt : {v1, . . . , vm}
andE = Es : {wi ≺ wj | i < j} ∪ Et : {vi ≺ vj |
i < j} ∪ A whereA ⊆ Vs × Vt. If (wi, vj) ∈ A,
also writtenwi|vj , wi is said to be aligned tovj,
and vice versa. An alignment structure is said to
bewellformediff for all wi, wj , vi′ , vj′ it holds that
if wi|vi′ , wi|vj′ andwj|vi′ are aligned then so are
wj |vj′ . An alignment structure is said to be1 : 1 iff
no word occurs in two distinct tuples inA. An align-
ment structure is said to beisland-freeiff all words
in V occur in some tuple inA; it is said to be source-
side, resp. target-side, island-free if all words inVs,
resp.Vt, occur in some tuple inA. The set of align-
ments is divided into sure and possible alignments,
i.e.A = S ∪ P (in most casesP = ∅). An align-
ment structure is said to besure-possible sortediff if
it holds that(wi, vj′) ∈ S then for allwj , vi′ neither
(wi, vi′) ∈ P nor (wj , vj′) ∈ P holds; similarly, if
it holds that(wi, vj′) ∈ P then for allwj , vi′ neither
(wi, vi′) ∈ S nor (wj , vj′) ∈ S holds.

The precedence relations inE are not important
for any of our definitions, but are important for
meaningful interpretation of alignment structures.
Note that synchronous grammars are guaranteed to
induce wellformed alignment structures. Some brief
motivation for the properties singled out:

is a production rule with the start symbol in the LHS that in-
troduces all the words in the right order, since all production
rules with nonterminal symbols in the RHS are branching and
contain no terminal symbols.
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Result 1 : 1 IF(s) IF(t) SP ITGs (2,2)-BRCGs
(1) X O(n6|G|) NP-complete
(2) X O(n6|G|) NP-complete
(3) X O(n6|G|) NP-complete
(4) X O(n6|G|) NP-complete
(5) X X O(n6|G|) NP-complete
(6) X X O(n6|G|) NP-complete
(7) X X O(n6|G|) NP-complete
(8) X X O(n6|G|) NP-complete
(9) X X O(n6|G|) NP-complete
(10) X X O(n6|G|) NP-complete
(11) X X X O(n6|G|) NP-complete
(12) X X X O(n6|G|) NP-complete
(13) X X X O(n6|G|) NP-complete
(14) X X X O(n6|G|) NP-complete
(15) X X X X O(n6|G|) NP-complete

Figure 1: The complexity of restricted alignment problems for ITGs and (2,2)-BRCGs.

• 1 : 1-alignments have been argued to be ad-
equate by Melamed (1999) and elsewhere, and
it may therefore be useful to know if a grammar
extracted from a parallel corpus produces1 : 1-
alignments for a finite set of sentence pairs.

• Island-free alignments are interesting to the ex-
tent that unaligned nodes increase the chance of
translation errors. An island threshold may for
instance be used to rule out risky translations.

• The notion of sure-possible sorted alignments
is more unusual, but can, for instance, be used
to check if the use of possible alignments is
consistently triggered by words that are hard to
align.

The results for all cross-classifications of the
four properties –1 : 1, source-side island-free
(IF(s)), target-side island-free (IF(t)) and sure-
possible sorted (SP) – are presented in the table in
Figure 1.3 Note that all (24 − 1 = 15) combina-
tions of the four properties lead to NP-hard align-
ment problems for (2,2)-BRCGs. Consequently,

3One of our reviewers remarks that the Figure 1 is ’artifi-
cially blown up’, since all combinations have the same com-
plexity. It cannot really be left out, however. The numbers in
the figure’s left-most column serves as a reference in the proofs
below. Since the 15 results derive from only four proofs, it is
convenient to have a short-hand notation for the decision prob-
lems.

while the unrestricted alignment problem for (2,2)-
BRCGs can be solved inO(n6|G|), the alignment
problem turns NP-hard as soon as restrictions are put
on the alignments sought. So the extra expressivity
of (2,2)-BRCGs in a way comes at the expense of
control over the kind of alignments obtained.

On the structure of the paper: Sect. 2 and 3 briefly
introduce, resp., ITGs and (2,2)-BRCGs. Sect. 4
presents three NP-hardness proofs from which the
15 results in Figure 1 can be derived. The three
proofs are based on reconstructions of the Hamilton
circuit problem, the 3SAT problem and the vertex
cover problem (Garey and Johnson, 1979).

2 Inversion transduction grammars

Inversion transduction grammars (ITGs) (Wu, 1997)
are a notational variant of binary syntax-directed
translation schemas (Aho and Ullman, 1972) and are
usually presented with a normal form:

A → [BC]
A → 〈BC〉
A → e | f
A → e | ǫ
A → ǫ | f

where A,B,C ∈ N and e, f ∈ T . The
first production rule, intuitively, says that the sub-
tree [[]B []C ]A in the source language translates into

62



a subtree[[]B []C ]A, whereas the second produc-
tion rule inverts the order in the target language,
i.e. [[]C []B ]A. The universal recognition problem of
ITGs can be solved in timeO(n6|G|) by a CYK-
style parsing algorithm with two charts.

Figure 1 tells us that all the restricted alignment
problems listed can be solved in timeO(n6|G|).
The explanation is simple. It can be read off from
the syntactic form of the production rules in ITGs
whether they introduce1 : 1-alignments, island-free
alignments or sure-possible sorted alignments. Note
that normal form ITGs only induce1 : 1-alignments.

Consider, for example, the following grammar,
not in normal form for brevity:

(1) S → 〈ASB〉 | 〈AB〉
(2) A → a | a
(3) A → a | ǫ
(4) B → b | b

Note that this grammar recognizes the transla-
tion {〈anbn, bnam | n ≥ m}. To check if for a
string pair 〈w1 . . . wn, v1 . . . vm〉 this grammar in-
duces an island-free alignment, simply remove pro-
duction rule (3). It holds that only strings in the sub-
language{〈anbn, bnan | n ≥ 1} induce island-free
alignments. Similarly, to check if the grammar in-
duces source-side island-free alignments for string
pairs, no production rules will have to be removed.

3 Two-variable binary bottom-up
non-erasing range concatenation
grammars

(2,2)-BRCGs arepositive RCGs (Boullier, 1998)
with binary start predicate names, i.e.ρ(S) = 2. In
RCG, predicates can be negated (for complementa-
tion), and the start predicate name is typically unary.
The definition is changed only for aesthetic rea-
sons; a positive RCG with a binary start predicate
nameS is turned into a positive RCG with a unary
start predicate nameS′ simply by adding a clause
S′(X1X2) → S(X1,X2).

A positive RCG is a 5-tupleG = 〈N,T, V, P, S〉.
N is a finite set of predicate names with an arity
functionρ: N → N, T andV are finite sets of, resp.,
terminal and variables.P is a finite set of clauses of
the formψ0 → ψ1 . . . ψm, where each of theψi, 0 ≤
i ≤ m, is a predicate of the formA(α1, . . . , αρ(A)).

Eachαj ∈ (T ∪V )∗, 1 ≤ j ≤ ρ(A), is an argument.
S ∈ N is the start predicate name withρ(S) = 2.

Note that the order of RHS predicates in a clause
is of no importance. Three subclasses of RCGs are
introduced for further reference: An RCGG =
〈N,T, V, P, S〉 is simpleiff for all c ∈ P , it holds
that no variableX occurs more than once in the
LHS of c, and ifX occurs in the LHS then it oc-
curs exactly once in the RHS, and each argument
in the RHS ofc contains exactly one variable. An
RCGG = 〈N,T, V, P, S〉 is ak-RCGiff for all A ∈
N, ρ(A) ≤ k. Finally, an RCGG = 〈N,T, V, P, S〉
is said to bebottom-up non-erasingiff for all c ∈ P
all variables that occur in the RHS ofc also occur in
its LHS.

A positive RCG is a (2,2)-BRCG iff it is a 2-RCG,
if an argument of the LHS predicate contains at most
two variables, and if it is bottom-up non-erasing.

The language of a (2,2)-BRCG is based
on the notion of range. For a string pair
〈w1 . . . wn, vn+2 . . . vn+1+m〉 a range is a pair
of indices 〈i, j〉 with 0 ≤ i ≤ j ≤ n or
n < i ≤ j ≤ n + 1 + m, i.e. a string span,
which denotes a substringwi+1 . . . wj in the source
string or a substringvi+1 . . . vj in the target string.
Only consequtive ranges can be concatenated into
new ranges. Terminals, variables and arguments
in a clause are bound to ranges by a substitution
mechanism. Aninstantiatedclause is a clause in
which variables and arguments are consistently
replaced by ranges; its components areinstantiated
predicates. For exampleA(〈g . . . h〉, 〈i . . . j〉) →
B(〈g . . . h〉, 〈i + 1 . . . j − 1〉) is an instantiation
of the clauseA(X1, aY1b) → B(X1, Y1) if the
target string is such thatvi+1 = a and vj = b.
A derive relation =⇒ is defined on strings of
instantiated predicates. If an instantiated predicate
is the LHS of some instantiated clause, it can be
replaced by the RHS of that instantiated clause. The
language of a (2,2)-BRCGG = 〈N,T, V, P, S〉 is
the setL(G) = {〈w1 . . . wn, vn+2 . . . vn+1+m〉 |
S(〈0, n〉, 〈n + 1, n + 1 + m〉) ∗=⇒ ǫ}, i.e. an
input string pair 〈w1 . . . wn, vn+2 . . . vn+1+m〉 is
recognized iff the empty string can be derived from
S(〈0, n〉, 〈n + 1, n + 1 +m〉).

It is not difficult to see that ITGs are also (2,2)-
BRCGs. The left column is ITG production rules;
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the right column their translations in simple (2,2)-
BRCGs.

A→ [BC] A(X1X2, Y1Y2) → B(X1, Y1)C(X2, Y2)
A→ 〈BC〉 A(X1X2, Y1Y2) → B(X1, Y2)C(X2, Y1)
A→ e | f A(e, f) → ǫ
A→ e | ǫ A(e, ǫ) → ǫ
A→ ǫ | f A(ǫ, f) → ǫ

Consequently, (2,2)-BRCGs recognize all trans-
lations recognized by ITGs. In fact the inclusion is
strict, as shown in Søgaard (2008). The universal
recognition problem of (2,2)-BRCGs can be solved
in time O(n6|G|) by the CYK-style parsing algo-
rithm presented in Søgaard (2008).

Example 3.1. Consider the (2,2)-BRCGG =
〈{Ss, S0, S

′
0, S1, S

′
1, A,B,C,D}, {a, b, c, d}, {X1 ,

X2, Y1, Y2}, P, Ss〉 with P the following set of
clauses:

(1) Ss(X1, Y1) → S0(X1, Y1)S′0(X1, Y1)
(2) S0(X1X2, Y1) → S1(X1, Y1)D(X2)
(3) S1(aX1c, abY1) → S1(X1, Y1)
(4) S1(X1, Y1Y2) → B(X1)C(Y1)D(Y2)
(5) S′0(X1X2, Y1) → S′1(X2, Y1)A(X1)
(6) S′1(bX1d, Y1cd) → S′1(X1, Y1)
(7) S′1(X1, Y1Y2) → C(X1)A(Y1)B(Y2)
(8) A(aX1) → A(X1)
(9) A(ǫ) → ǫ
(10) B(bX1) → B(X1)
(11) B(ǫ) → ǫ
(12) C(cX1) → C(X1)
(13) C(ǫ) → ǫ
(14) D(dX1) → D(X1)
(15) D(ǫ) → ǫ

The string pair〈abbcdd, abcdcd〉 is derived:

Ss(〈0, 6〉, 〈0, 6〉)
=⇒ S0(〈0, 6〉, 〈0, 6〉)S′0(〈0, 6〉, 〈0, 6〉) (1)
=⇒ S1(〈0, 4〉, 〈0, 6〉)D(〈4, 6〉) (2)

S′0(〈0, 6〉, 〈0, 6〉)
=⇒ S1(〈0, 4〉, 〈0, 6〉)S′0(〈0, 6〉, 〈0, 6〉) (14–15)
=⇒ S1(〈1, 3〉, 〈2, 6〉)S′0(〈0, 6〉, 〈0, 6〉) (3)
=⇒ B(〈1, 3〉)C(〈2, 4〉)D(〈4, 6〉) (4)

S′0(〈0, 6〉, 〈0, 6〉)
=⇒ S′0(〈0, 6〉, 〈0, 6〉) (10–15)
=⇒ S′1(〈1, 6〉, 〈0, 6〉)A(〈0, 1〉) (5)
=⇒ S′1(〈1, 6〉, 〈0, 6〉) (8–9)
=⇒ S′1(〈2, 5〉, 〈0, 4〉) (6)
=⇒ S′1(〈3, 4〉, 〈0, 2〉) (6)
=⇒ C(〈3, 4〉)A(〈0, 1〉)B(〈1, 2〉) (7)
=⇒ ǫ (8–13)

Note thatL(G) = {〈anbmcndm, (ab)n(cd)m〉 |
m,n ≥ 0}.

4 Results

4.1 Checking island-freeness and sure-possible
sortedness

One possible way to check for island-freeness and
sure-possible sortedness in the context of (2,2)-
BRCGs is to augment the CYK-style algorithm with
feature structures (Boolean vectors); all there is
needed, e.g. to check sure-possible sortedness, is to
pair up the nonterminals inserted in the cells of the
chart with a flat feature structure of the form:




SURE1 val1
...

SUREn valn




wheren is the length of the source, resp. tar-
get, string in the source, resp. target, chart, and
1 ≤ i ≤ n : val i ∈ {+,−}. When a clause ap-
plies that induces a sure alignment between a word
wi and some word in the target, resp. source, string,
the attributeSUREi is assigned the value +; if a pos-
sible alignment is induced betweenwi and another
word, the attribute is assigned the value -. This can
all be done in constant time. A copying clause now
checks if the appropriate nonterminals have been in-
serted in the cells in question, but also that the as-
sociated feature structures unify. This can be done
in linear time. Feature structures can be used the
same way to record what words have been aligned to
check island-freeness. Unfortunately, this technique
does not guarantee polynomial runtime. Note that
there can be2n many distinct feature structures for
each nonterminal symbol in a chart. Consequently,
whereas the size of a cell in the standard CYK algo-
rithm is bounded by|N |, and in synchronous parsing
by |N |× (2n− 1),4 the cells are now of exponential
size in the worst case.

The following three sections provide three NP-
hardness proofs: The first shows that the alignment

4The indices used to check that two nonterminals are derived
simultaneously (Søgaard, 2008) mean that it may be necessary
within a cell in the source, resp. target, chart to keep trackof
multiple tuples with the same nonterminals. In the worst case,
there is a nonterminal for each span in the target, resp. source,
chart, i.e.2n− 1 many.
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problem wrt.1 : 1-alignments is NP-hard for (2,2)-
BRCGs and goes by reduction of the Hamilton cir-
cuit problem for directed connected graphs. The sec-
ond shows that the alignment problem wrt. source-
or target-side island-free and sure-possible sorted
alignments is NP-hard for (2,2)-BRCGs and goes
by 3SAT reduction. The third proof is more general
and goes by reduction of the vertex cover problem.
All three formal decision problems are discussed in
detail in Garey and Johnson (1979). All 15 results
in Figure 1 are derived from modifications of these
proofs.

4.2 NP-hardness of the1 : 1 restriction for
(2,2)-BRCGs

Theorem 4.1. The alignment problem wrt.1 : 1-
alignments is NP-hard for (2,2)-BRCGs.

Proof. An instance of the Hamilton circuit problem
for directed connected graphs is simply a directed
connected graphG = 〈V,E〉 and the problem is
whether there is a path that visits each vertex exactly
once and returns to its starting point? Consider, for
instance, the directed connected graph:

1 2

3

4 5

It is easy to see that there is no path in this case
that visits each vertex exactly once and returns to its
starting point. The intuition behind our reconstruc-
tion of the Hamilton circuit problem for directed
connected graphs is to check this via alignments be-
tween a sequence of all the vertices in the graph and
itself. The grammar permits an alignment between
two wordsw|v if there is a directed edge between the
corresponding nodes in the graph, e.g.(w, v) ∈ E.
The alignment structures below depict the possible
alignments induced by the grammar obtained by the
translation described below for our example graph:

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Since no alignment above is1 : 1, there is no
solution to the corresponding circuit problem. The
translation goes as follows:

• Add a rule S(X1, Y1) → {Svi(X1, Y1) |
∀vi.∃vj.(vi, vj) ∈ E}.

• For each edge (vi, vj) ∈ E add
a rule Svi(X1viX2, Y1vjY2) →
⊤(X1)⊤(X2)⊤(X3)⊤(X4).5

• For all vi ∈ V add a rule⊤(viX1) → ⊤(X1).

• Add a rule⊤(ǫ) → ǫ.

The grammar ensures source-side island-freeness,
and therefore if there exists a1 : 1-alignment of any
linearization ofV and itself, by connectivity of the
input graph, there is a solution to the Hamilton cir-
cuit problem for directed connected graphs.

4.3 NP-hardness of island-freeness and
sure-possible sortedness for (2,2)-BRCGs

Theorem 4.2. The alignment problem wrt. target-
side island-free and sure-possible sorted alignments
is NP-hard for (2,2)-BRCGs.

Proof. An instance of the 3SAT problem is a propo-
sitional logic formulaφ that is a conjunction of
clauses of three literals connected by disjunctions,
and the problem whether this formula is satisfiable,
i.e. has a model? Sayφ = p∨q∨r∧p̄∨q̄∨r̄. For our
reconstruction, we use the propositional variables
in φ as source string, andφ itself with ∧’s omitted
and conjuncts as words as the target string. One of
the representations of a solution constructed by the
translation described below is the following align-
ment structure:

p q r

p ∨ q ∨ r p̄ ∨ q̄ ∨ r̄
Solid lines are sure alignments; dotted lines are

possible alignments. The intuition is to use sure
alignments to encode true assignments, and possi-
ble alignments as false assignments. The alignment

5⊤ is an arbitrary predicate name chosen to reflect the fact
that all possible substrings over the vocabulary are recognized
by the⊤ predicates.
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above thus corresponds to the model{p, r̄}, which
clearly satisfiesφ.

For the translation, assume that each 3SAT in-
stance, over a set of propositional variablesPROP,
consists of a set of clausesc1 . . . cm that are sets of
literals of size 3. For any literallj , if lj = p̄j then
pos(lj) = pj and lit(lj) = −; and if lj = pj then
pos(lj) = pj and lit(lj) = +. If lj is a literal in
ci, we write lj ∈ ci. First add the following four
clauses:

Ss(X1, Y1) → Ss(X1, Y1) | Sp(X1, Y1)
Sp(X1, Y1) → Ss(X1, Y1) | Sp(X1, Y1)

• If lj ∈ ci and lit(lj) = −, add
Sp(X1pos(lj)X2, Y1ciY2) → ⊤(X1)⊤(X2)
⊤(Y1)⊤(Y2) .

• If lj ∈ ci and lit(lj) = +, add
Ss(X1pos(lj)X2, Y1ciY2) → ⊤(X1)⊤(X2)
⊤(Y1)⊤(Y2) .

• For allpj, add⊤(pjX1) → ⊤(X1).

• For all ci, add⊤(ciX1) → ⊤(X1).

• Add a rule⊤(ǫ) → ǫ.

It is easy to see that the first rule adds at most
7m clauses, which for the largest non-redundant
formulas equals7((2|PROP|)3). The second rule
adds at most2|PROP| clauses; and the third at most
m ≤ (2|PROP|)3 clauses. It is also easy to see that
the grammar induces a target-side island-free, sure-
possible sorted alignment if and only if the 3SAT in-
stance is satisfiable. Note that the grammar does not
guarantee that all induced alignments are target-side
island-free. Nothing, in other words, corresponds
to conjunctions in our reconstruction. This is not
necessary as long as there is at least one target-side
island-free alignment that is induced.

Note that the proof also applies in the case where
it is the source side that is required to be island-free.
All needed is to make the source string the target
string, and vice versa. Note also that the proof can
be modified for the case where both sides are island-
free: Just add a dummy symbol to the clause side
and allow (or force) all propositional variables to
be aligned to this dummy symbol. Consequently, if

there is a target-side (clause-side) island-free align-
ment there is also an island-free alignment. Re-
versely, if there is an island-free alignment there is
also a target-side island-free alignment of the string
pair in question.

Note also that a more general proof can be ob-
tained by introducing a clause, similar to the clause
introduced in the first bullet point of the Hamil-
ton circuit reduction in the proof of Theorem 4.1:
S(X1, Y1) → {Sci(X1, Y1) | 1 ≤ i ≤ m}. The
four rules used to change between sure and pos-
sible alignments then of course need to be copied
out for all Sci predicates, and the LHS predicates,
except⊤, of the other clauses must be properly
subscripted. Now the grammar enforces target-
side island-freeness, and sure-possible sortedness is
the only restriction needed on alignments. Conse-
quently, this reduction proves (4) that the alignment
problem wrt. sure-possible sortedness is NP-hard for
(2,2)-BRCGs.

4.4 NP-hardness of island-freeness for
(2,2)-BRCGs

Theorem 4.3. The alignment problem wrt. island-
free alignments is NP-hard for (2,2)-BRCGs.

Proof. An instance of the vertex problem is a graph
D = 〈V,E〉 and an integerk, and the prob-
lem whether there exists a vertex cover ofD of
size k? Say D = 〈V = {a, b, c, d}, E =
{(a, c), (b, c), (b, d), (c, d)}〉 andk = 2. The trans-
lation described below constructs a sentence pair

〈ρ1ρ2ρ3ρ4uuδδδδ, aaaabbbbccccdddd〉
for this instance, and a (2,2)-BRCG with the

clauses in Figure 2. Note that there are four kinds
of clauses:

• A clause with anS predicate in the LHS. In
general, there will be one such clause in the
grammar constructed for any instance of the
vertex cover problem.

• 8 clauses withρi predicates in the LHS. In gen-
eral, there will be2|E| many clauses of this
form in the grammars.

• 8 clauses withU i predicates in the LHS. In gen-
eral, there will be|V |× (|V |−k) many clauses
of this form in the grammars.
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• 16 clauses withδ1 predicates in the LHS. In
general, there will be(|E| × |V | − |E| − |E| ×
(|V | − k)) × |V | many clauses of this form in
the grammars.

For an instance〈D = 〈V,E〉, k〉, the translation
function in general constructs the following clauses:

S(X1, Y1) → {ρi(X1, Y1) | 1 ≤ i ≤ |E|}∪
{U |V |−k(X1, Y1)}∪
{δ|E|×|V |−|E|−|E|×(|V |−k)(X1, Y1)}

and for all1 ≤ i ≤ |E| iff ei ∈ E = (e, e′):

ρi(X1ρiX2, Y1eY2) → ⊤(X1)⊤(X2)⊤(Y1)⊤(Y2)
ρi(X1ρiX2, Y1e

′Y2) → ⊤(X1)⊤(X2)⊤(Y1)⊤(Y2)

For all2 ≤ i ≤ |V | − k and for allv ∈ V :

U i(X1UX2, Y1v . . . vY2) → U i−1(X1, Y1)
⊤(X2)⊤(Y2)

where|v . . . v| = |E|. For the caseU1, add the
clauses for allv ∈ V :

U1(X1UX2, Y1v . . . vY2) → ⊤(X1)⊤(Y1)
⊤(X2)⊤(Y2)

The string pair is constructed this way:

〈ρ1 . . . ρ|E|U1 . . . U|V |−k

δ1 . . . δ|E|×|V |−|E|−|E|×(|V |−k), σ〉
Finally, for all wordsw in this string pair, add:

⊤(wX1) → ⊤(X1)

Since this translation is obviously polynomial, it
follows that the alignment problem wrt. island-free
alignments for (2,2)-BRCGs is NP-hard.

Note that the proof also applies if only the source,
resp. target, side is required to be island-free, since
the grammar restricts the alignments in a way such
that if one side is island-free then so is the other side.
This gives us results (2) and (3).

It is not difficult to see either that it is possible
to convert the grammar into a grammar that induces
1 : 1-alignments. This gives us results (5), (8) and
(11). Of course by the observation that all the gram-
mars only use sure alignments, it follows that the
alignment problems in (7), (9–10) and (12–15) are
also NP-hard.

5 Conclusion

The universal recognition problems of both ITGs
and (2,2)-BRCGs can be solved in timeO(n6|G|).
This may come as a surprise, as ITGs restrict the
alignment space considerably, while (2,2)-BRCGs
induce all possible alignments. In the context of
the NP-hardness of decoding in statistical machine
translation (Knight, 1999; Udupa and Maji, 2006),
it is natural to ask why the universal recognition
problem of (2,2)-BRCGs isn’t NP-hard? This pa-
per bridges the gap between these results and shows
that when alignments are restricted to be1 : 1,
island-free or sure-possible sorted, or all combi-
nations thereof, the alignment problem of (2,2)-
BRCGs is NP-hard. Consequently, while the un-
restricted alignment problem for (2,2)-BRCGs can
be solved inO(n6|G|), the alignment problem turns
NP-hard as soon as restrictions are put on the align-
ments sought. So the extra expressivity in a way
comes at the expense of control over the kind of
alignments obtained. Note also that an alignment
of two words may be enforced multiple times in a
(2,2)-BRCGs parse, since two derivation trees that
share leaves on both sides can align the same two
words.

Our results are not intended to be qualifications of
the usefulness of (2,2)-BRCGs (Søgaard, 2008), but
rather they are attempts to bridge a gap in our under-
standing of the synchronous grammar formalisms at
hand to us in syntax-based machine translation.
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S(X1, Y1) → ρ1(X1, Y1)ρ2(X1, Y1)
ρ3(X1, Y1)ρ4(X1, Y1)
U2(X1, Y1)δ4(X1, Y1)

ρ1(X1ρ1X2, Y1aY2) → ⊤(X1)⊤(X2)⊤(Y1)⊤(Y2)
ρ1(X1ρ1X2, Y1cY2) → ⊤(X1)⊤(X2)⊤(Y1)⊤(Y2)

. . .
U2(X1UX2, aaaaY1) → U1(X1, Y1)⊤(X2)
U1(X1UX2, Y1bbbbY2) → ⊤(X1)⊤(Y1)⊤(X2)⊤(Y2)
U2(X1UX2, Y1bbbbY2) → U1(X1, Y1)⊤(X2)⊤(Y2)

. . .
δ4(X1δX2, Y1aY2) → δ3(X1, Y1)⊤(X2)⊤(Y2)
δ4(X1δX2, Y1bY2) → δ3(X1, Y1)⊤(X2)⊤(Y2)

. . .

Figure 2: A (2,2)-BRCG for the instance of the vertex cover problem〈〈{a, b, c, d}, {(a, c), (b, c), (b, d), (c, d)}〉, 2〉.

References

Alfred Aho and Jeffrey Ullman. 1972. The theory
of parsing, translation and compiling. Prentice-Hall,
London, England.

Edward Barton, Robert Berwick, and Erik Ristad. 1987.
Computational complexity and natural language. MIT
Press, Cambridge, Massachusetts.

Pierre Boullier. 1998. Proposal for a natural language
processing syntactic backbone. Technical report, IN-
RIA, Le Chesnay, France.

Michael Garey and David Johnson. 1979.Computers
and intractability. W. H. Freeman & Co., New York,
New York.

Kevin Knight. 1999. Decoding complexity in word-
replacement translation models.Computational Lin-
guistics, 25(4):607–615.

Dan Melamed. 1999. Bitext maps and alignment
via pattern recognition. Computational Linguistics,
25(1):107–130.

Anders Søgaard. 2008. Range concatenation gram-
mars for translation. InProceedings of the 22nd
International Conference on Computational Linguis-
tics, Companion Volume, pages 103–106, Manchester,
England.

Raghavendra Udupa and Hemanta Maji. 2006. Compu-
tational complexity of statistical machine translation.
In Proceedings of the 11th Conference of the European
Chapter of the Association for Computational Linguis-
tics, pages 25–32, Trento, Italy.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–403.

Hao Zhang and Daniel Gildea. 2004. Syntax-based
alignment: supervised or unsupervised? InProceed-

ings of the 20th International Conference on Compu-
tational Linguistics, pages 418–424, Geneva, Switzer-
land.

68



Proceedings of SSST-3, Third Workshop on Syntax and Structure in Statistical Translation, pages 69–77,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Reordering Model Using Syntactic Information of a Source Tree for
Statistical Machine Translation

Kei Hashimoto∗1, Hirohumi Yamamoto∗2∗3, Hideo Okuma∗2∗4,
Eiichiro Sumita∗2∗4, and Keiichi Tokuda∗1∗2

∗1Nagoya Institute of Technology Department of Computer Science and Engineering
/ Gokiso-cho Syouwa-ku Nagoya-city Aichi Japan

∗2National Institute of Information and Communications Technology
∗3Kinki University School of Science and Engineering Department of Informaiton

∗4ATR Spoken Language Communication Research Labs.

Abstract

This paper presents a reordering model us-
ing syntactic information of a source tree for
phrase-based statistical machine translation.
The proposed model is an extension of IST-
ITG (imposing source tree on inversion trans-
duction grammar) constraints. In the pro-
posed method, the target-side word order is
obtained by rotating nodes of the source-side
parse-tree. We modeled the node rotation,
monotone or swap, using word alignments
based on a training parallel corpus and source-
side parse-trees. The model efficiently sup-
presses erroneous target word orderings, espe-
cially global orderings. Furthermore, the pro-
posed method conducts a probabilistic evalu-
ation of target word reorderings. In English-
to-Japanese and English-to-Chinese transla-
tion experiments, the proposed method re-
sulted in a 0.49-point improvement (29.31 to
29.80) and a 0.33-point improvement (18.60
to 18.93) in word BLEU-4 compared with
IST-ITG constraints, respectively. This indi-
cates the validity of the proposed reordering
model.

1 Introduction

Statistical machine translation has been wiedely ap-
plied in many state-of-the-art translation systems. A
popular statistical machine translation paradigms is
the phrase-based model (Koehn et al., 2003; Och
and Ney, 2004). In phrase-based statistical ma-
chine translation, errors in word reordering, espe-
cially global reordering, are one of the most se-
rious problems. To resolve this problem, many

word-reordering constraint techniques have been
proposed. These techniques are categorized into
two types. The first type is linguistically syntax-
based. In this approach, tree structures for the source
(Quirk et al., 2005; Huang et al., 2006), target (Ya-
mada and Knight, 2000; Marcu et al., 2006), or both
(Melamed, 2004) are used for model training. The
second type is formal constraints on word permuta-
tions. IBM constraints (Berger et al., 1996), the lex-
ical word reordering model (Tillmann, 2004), and
inversion transduction grammar (ITG) constraints
(Wu, 1995; Wu, 1997) belong to this type of ap-
proach. For ITG constraints, the target-side word
order is obtained by rotating nodes of the source-
side binary tree. In these node rotations, the source
binary tree instance is not considered. Imposing
a source tree on ITG (IST-ITG) constraints (Ya-
mamoto et al., 2008) is an extension of ITG con-
straints and a hybrid of the first and second type of
approach. IST-ITG constraints directly introduce a
source sentence tree structure. Therefore, IST-ITG
can obtain stronger constraints for word reordering
than the original ITG constraints. For example, IST-
ITG constraints allows only eight word orderings for
a four-word sentence, even though twenty-two word
orderings are possible with respect to the original
ITG constraints. Although IST-ITG constraints ef-
ficiently suppress erroneous target word orderings,
the method cannot assign the probability to the tar-
get word orderings.

This paper presents a reordering model using syn-
tactic information of a source tree for phrase-based
statistical machine translation. The proposed re-
ordering model is an extension of IST-ITG con-
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straints. In the proposed method, the target-side
word order is obtained by rotating nodes of a source-
side parse-tree in a similar fashion to IST-ITG con-
straints. We modeled the rotating positions, mono-
tone or swap, from word alignments of a training
parallel corpus and source-side parse-trees. The pro-
posed method conducts a probabilistic evaluation of
target word orderings using syntactic information of
the source tree.

The rest of this paper is organized as follows.
Section 2 describes the previous approach to re-
solving erroneous word reordering. In Section 3,
the reordering model using syntactic information of
a source tree is presented. Section 4 shows ex-
perimental results. Finally, Section 5 presnts the
summary and some concluding remarks and future
works.

2 Previous Works

First, we introduce two previous studies on related
word reordering constraints, ITG and IST-ITG con-
straints.

2.1 ITG Constraints

In one-to-one word-alignment, the source word fi

is translated into the target word ei. The source
sentence [f1, f2, · · · , fN ] is translated into the tar-
get sentence which is the reordered target word se-
quence [e1, e2, · · · , eN ]. The number of reorderings
is N !. When ITG constraints are introduced, this
combination N ! can be reduced in accordance with
the following constraints.

• All possible binary tree structures are generated
from the source word sequence.

• The target sentence is obtained by rotating any
node of the binary trees.

When N = 4, the ITG constraints can reduce
the number of combinations from 4! = 24 to
22 by rejecting the combinations [e3, e1, e4, e2]
and [e2, e4, e1, e3]. For a four-word sentence, the
search space is reduced to 92% (22/24), but for
a 10-word sentence, the search space is only 6%
(206,098/3,628,800) of the original full space.

2.2 IST-ITG Constraints
In ITG constraints, the source-side binary tree in-
stance is not considered. Therefore, if a source sen-
tence tree structure is utilized, stronger constraints
than the original ITG constraints can be created.
IST-ITG constraints directly introduce a source sen-
tence tree structure. The target sentence is obtained
with the following constraints.

• A source sentence tree structure is generated
from the source sentence.

• The target sentence is obtained by rotating any
node of the source sentence tree structure.

By parsing the source sentence, the parse-tree is
obtained. After parsing the source sentence, a
bracketed sentence is obtained by removing the
node syntactic labels; this bracketed sentence can
then be converted into a tree structure. For example,
the parse-tree “(S1 (S (NP (DT This)) (VP (AUX
is) (NP (DT a) (NN pen)))))” is obtained from the
source sentence “This is a pen,” which consists of
four words. By removing the node syntactic labels,
the bracketed sentence “((This) ((is) ((a) (pen))))”
is obtained. Such a bracketed sentence can be used
to produce constraints. If IST-ITG constraints is
applied, the number of word orderings in N = 4
is reduced to 8, down from 22 with ITG cn-
straints. For example, for the source-side bracketed
tree “((f1f2) (f3f4)),” the eight target sequences
[e1, e2, e3, e4], [e2, e1, e3, e4], [e1, e2, e4, e3],
[e2, e1, e4, e3], [e3, e4, e1, e2], [e3, e4, e2, e1],
[e4, e3, e1, e2], and [e4, e3, e2, e1] are accepted. For
the source-side bracketed tree “(((f1f2) f3) f4),”
the eight sequences [e1, e2, e3, e4], [e2, e1, e3, e4],
[e3, e1, e2, e4], [e3, e2, e1, e4], [e4, e1, e2, e3],
[e4, e2, e1, e3], [e4, e3, e1, e2], and [e4, e3, e2, e1] are
accepted. When the source sentence tree structure
is a binary tree, the number of word orderings is
reduced to 2N−1. The parsing results sometimes do
not produce binary trees. In this case, some subtrees
have more than two child nodes. For a non-binary
subtree, any reordering of child nodes is allowed. If
a subtree has three child nodes, six reorderings of
the nodes are accepted.

In phrase-based statistical machine translation, a
source “phrase” is translated into a target “phrase”.
However, with IST-ITG constraints, “word” must be
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used for the constraint unit since the parse unit is a
“word”. To absorb different units between transla-
tion models and IST-ITG constraints, a new limita-
tion for word reordering is applied.

• Word ordering that destroys a phrase is not al-
lowed.

When this limitation is applied, the translated word
ordering is obtained from the bracketed source sen-
tence tree by reordering the nodes in the tree, which
is the same as for one-to-one word-alignment.

3 Reordering Model Using Syntactic
Information of the Source Tree

In this section, we present a new reordering model
using syntactic information of a source-side parse-
tree.

3.1 Abstract of Proposed Method

The IST-ITG constraints method efficiently sup-
presses erroneous target word orderings. However,
IST-ITG constraints cannot evaluate the accuracy of
the target word orderings; i.e., IST-ITG constraints
assign an equal probability to all target word order-
ings. This paper proposes a reordering model us-
ing syntactic information of the source tree as an
extension of IST-ITG constraints. The proposed re-
ordering model conducts a probabilistic evaluation
of target word orderings using syntactic information
of the source-side parse-tree.

In the proposed method, the target-side word or-
der is obtained by rotating nodes of the source-
side parse-tree in a similar fashion to IST-ITG con-
straints. Reordering probabilities are assigned to
each subtree of source-side parse-tree S by reorder-
ing the positions into two types: monotone and
swap. If the subtree has more than two child nodes,
the number of child node order is more than two.
However, we assume the child node order other than
monotone to be swap. The source-side parse-tree
S consists of subtrees {s1, s2, · · · , sK}, where K
is the number of subtrees included in the source-
side parse-tree. The subtree sk is which is repre-
sented by the parent node’s syntactic label and the
order, from sentence head to sentence tail, of the
child node’s syntactic labels. For example, Fig-
ure 1 shows a source-side parse-tree for a four-word

Source-side parse-tree

Source sentence

S

NP VP

NPAUX

DT NN

Figure 1: Example of a source-side parse-tree fo a four-
word source sentence consisting of three subtrees.

source sentence consisting of three subtrees. In Fig-
ure 1, the subtrees s1, s2, and s3 are represented by
S+NP+VP, VP+AUX+NP, and NP+DT+NN, re-
spectively. Each subtree has a probability P (t | sk),
where t is monotone (m) or swap (s). The proba-
bility of the target word reordering is calculated as
follows.

Pr =
K∏

k=1

P (t | sk) (1)

Each target candidate is assigned the different re-
ordering probability by Equation (1). Since the pro-
posed reordering model uses the syntactic labels,
which is not considered in IST-ITG constraints, the
different parse-tree assigns the different reordering
probability. The proposed model is effective for
global word reordering, because reordering proba-
bilities are also assigned to higher-level subtrees of
the source-side parse-tree.

3.2 Training of the Proposed Model
We modeled monotone or swap node rotating auto-
matically from word alignments of a training paral-
lel corpus and source-side parse-trees. The training
algorithm for the proposed reordering model is as
follows.

1. The training process begins with a word-
aligned corpus. We obtained the word align-
ments using Koehn et al.’s method (2003),
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32

2,34

2,3,41

Figure 2: Example of a source-side parse-tree with word
alignments using the training algorithm of the proposed
model.

which is based on Och and Ney’s work (2004).
This involves running GIZA++ (Och and Ney,
2003) on the corpus in both directions, and ap-
plying refinement rules (the variant they desig-
nate is “final-and”) to obtain a single many-to-
many word alignment for each sentence.

2. Source-side parse-trees are created using a
source language phrase structure parser, which
annotates each node with a syntactic label. A
source-side parse-tree consists of several sub-
trees with syntactic labels. For example, the
parse-tree “(S1 (S (NP (DT This)) (VP (AUX
is) (NP (DT a) (NN pen)))))” is obtained from
the source sentence “This is a pen” which con-
sists of four words.

3. Word alignments and source-side parse-trees
are combined. Leaf nodes are assigned target
word positions obtained from word alignments.
Via the bottom-up process, target word posi-
tions are assigned to all nodes. For example,
in Figure 2, the left-side (sentence head) child
node of subtree s2 is assigned the target word
position “4,” and the right-side (sentence tail)
child node is assigned the target word positions
“2” and “3,” which are assigned to the child
nodes of subtree s3.

4. The monotone and swap reordering positions
are checked and counted for each subtree. By

Subtree type Monotone probability
S+PP+,+NP+VP+. 0.764

PP+IN+NP 0.816
NP+DT+NN+NN 0.664

VP+AUX+VP 0.864
VP+VBN+PP 0.837
NP+NP+PP 0.805

NP+DT+JJ+NN 0.653
NP+DT+JJ+VBP+NN 0.412
NP+DT+NN+CC+VB 0.357

Table 1: Example of proposed reordering models.

comparing the target word positions, which are
assigned in the above step, the reordering posi-
tion is determined. If the target word position
of the left-side child node is smaller than one of
the right-side child node, the reordering posi-
tion determined as monotone. For example, in
Figure 2, the subtrees s1, s2 and s3 are mono-
tone, swap, and monotone, respectively.

5. The reordering probability of the subtree can
be directly estimated by counting the reorder-
ing positions in the training data.

P (t | s) =
ct(s)∑
t ct(s)

(2)

where ct(s) is the count of reordering positon t
included all training samples for the subtree s.

The parsing results sometimes do not produce bi-
nary trees. For a non-binary subtree, any reorder-
ing of child nodes is allowed. However, the pro-
posed reordering model assumes that reordering po-
sitions are only two, monotone and swap. That
is, the reordering position which the order of child
nodes do not change is monotone, and the other po-
sitions are swap. Therefore, the probability of swap
P (s | sk) is derived from the probability of mono-
tone P (m | sk) as follows.

P (s | sk) = 1.0 − P (m | sk) (3)

Table 1 shows the example of proposed reordering
models.

If a subtree is represented by a binary-tree, there
are L3 possible subtrees, where L is the number of
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Figure 3: Example of a target word order which is not
derived from rotating the nodes of source-side parse trees.

syntactic labels. However, in the possible subtrees,
there are subtrees observed only a few times in train-
ing sentences, especially when the subtree consists
of more than three child nodes. Although a large
number of subtree models can capture variations in
the training samples, too many models lead to the
over-fitting problem. Therefore, subtrees where the
number of training samples is less than a heuristic
threshold and unseen subtrees are clustered to deal
with the data sparseness problem for robust model
estimations.

After creating word alignments of a training par-
allel corpus, there are target word orders which are
not derived from rotating nodes of source-side parse-
trees. Figure 3 shows a sample which is not derived
from rotating nodes. Some are due to linguistic rea-
sons, structual differences such as negation (French
“ne...pas” and English “not”), adverb, modal and so
on. Others are due to non-linguistic reasons, er-
rors of automatic word alignments, syntactic anal-
ysis, or human translation (Fox, 2002). The pro-
posed method discards such problematic cases. In
Figure 3, the subtree s1 is then removed from train-
ing samples, and the subtrees s2 and s3 are used as
training samples.

3.3 Decoding Using the Proposed Reordering
Model

In this section, we describe a one-pass phrase-based
decoding algorithm that uses the proposed reorder-
ing model in the decoder. The translation target sen-
tence is sequentially generated from left (sentence

Figure 4: Example of a target candidate including a
phrase.

head) to right (sentence tail), and all reordering is
conducted on the source side. To introduce the pro-
posed reordering model into the decoder, the target
candidate must be checked for whether the reorder-
ing position of a subtree is either monotone or swap
whenever a new phrase is selected to extend a target
candidate. The checking algorithm is as follows.

1. For old translation candidates, the subtree s,
which includes both translated and untranslated
words, and its untranslated part u are calcu-
lated.

2. When a new target phrase ē is generated, the
source phrase f̄ and the untranslated part u cal-
culated in the above step are compared. If the
source phrase f̄ does not include the untrans-
lated part u and is not included u, the new can-
didate is rejected.

3. In the accepted candidate, the reordering po-
sitions for all subtrees included the source side
parse-tree are checked by comparing the source
phrase f̄ with the source phrase sequence used
before.

Subtrees checked reordering positions are assigned a
probability–monotone or swap–by the proposed re-
ordering model, and the target word order is evalu-
ated by Equation (1).

Phrase-based statistical machine translation uses
a “phrase” as the translation unit. However, the pro-
posed reordering model needs a “word” order. Be-
cause “word” alignments form the source phrase to
target phrase are not clear, we cannot determine the
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Figure 5: Example of a non-binary subtree including a
phrase.

reordering position of subtree included in a phrase.
Therefore, in the decoding process using the pro-
posed reordering model, we define that higher prob-
ability, monotone or swap, are assigned to subtrees
included in a source phrase. For example, in Fig-
ure 4, the source sentence [[f1, f2], f3, f4] is trans-
lated into the target sentence [[e1, e2], e4, e3], where
[f1, f2] and [e1, e2] are used as phrases. Then, the
source phrase [f1, f2] includes the subtree s2. If the
monotone probabilities of subtrees s1, s2, and s3 are
0.8, 0.4 and 0.7, the proposed reordering probabil-
ity is 0.8 × 0.6 × 0.3 = 0.144. If a source phrase
is [f1, f2, f3, f4] and a source-side parse-tree has the
same tree structure used in Figure 4, the subtrees s1,
s2, and s3 are assigned higher reordering probabili-
ties. If the source phrase [f1, f2, f3, f4] used in Fig-
ure 4, the subtrees s1, s2, and s3 are assigned higher
reordering probabilities.

Non-binary subtrees are often observed in the
source-side parse-tree. When a source phrase f̄ is
included in a non-binary subtree and does not in-
clude a non-binary subtree, we cannot determine the
reordering position. For example, the reordering po-
sition of subtree s2 in Figure 5, which includes the
phrase [f3, f4], can not be determined. In this case,
we define that such subtrees are also to be assigned
a higher probability.

4 Experiments

To evaluate the proposed model, we conducted two
experiments: English-to-Japanese and English-to-
Chinese translation.

English Japanese
Train Sentences 1.0M

Words 24.6M 24.6M
Dev Sentences 2.0K

Words 50.1K 58.7K
Test Sentences 2.0K

Words 49.5K 58.0K

Table 2: Statistics of training, development and test cor-
pus for E-J translation.

4.1 English-to-Japanese Paper Abstract
Translation Experiments

The first experiment was the English-to-Japanese
(E-J) translation. Table 2 shows the training, de-
velopment and test corpus statistics. JST Japanese-
English paper abstract corpus consists of 1.0M
parallel sentences were used for model training.
This corpus was constructed from 2.0M Japanese-
English paper abstract corpus belongs to JST by
NICT using the method of Uchiyama and Isahara
(2007). For phrase-based translation model training,
we used the GIZA++ toolkit (Och and Ney, 2003),
and 1.0M bilingual sentences. For language model
training, we used the SRI language model toolkit
(Stolcke, 2002), and 1.0M sentences for the trans-
lation model training. The language model type was
word 5-gram smoothed by Kneser-Ney discounting
(Kneser and Ney, 1995). To tune the decoder pa-
rameters, we conducted minimum error rate training
(Och, 2003) with respect to the word BLEU score
(Papineni et al., 2002) using 2.0K development sen-
tence pairs. The test set with 2.0K sentences is used.
In the evaluation and development sets, a single ref-
erence was used. For the creation of English sen-
tence parse trees and segmentation of the English,
we used the Charniak parser (Charniak, 2000). We
used Chasen for segmentation of the Japanese sen-
tences. For decoding, we used an in-house decoder
that is a close relative of the Moses decoder. The
performance of this decoder was configured to be
the same as Moses. Other conditions were the same
as the default conditions of the Moses decoder.

In this experiment, the following three methods
were compared.

• Baseline : The IBM constraints and the lexi-
cal reordering model were used for target word
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Baseline IST-ITG Proposed
BLEU 27.87 29.31 29.80

Table 3: BLEU score results for E-J translation. (1-
reference)

reordering.

• IST-ITG : The IST-ITG constraints, the IBM
constraints, and the lexical reordering model
were used for target word reordering.

• Proposed : The proposed reordering model,
the IBM constraints, and the lexical reordering
model were used for target word reordering.

During minimum error training, each method used
each reordering model and reordering constraint.

The proposed reordering model are trained from
1.0M bilingual sentences for the translation model
training. The amount of available training samples
represented by subtrees was 9.8M. In the available
training samples, there were 54K subtree types. The
heuristic threshold was 10, and subtrees with train-
ing samples of less than 10 were clustered. The pro-
posed reordering model consisted of 5,960 subtrees
types and one clustered model “other”. The models
not including “other” covered 99.29% of all training
samples.

The BLEU scores are presented in Table 3.
In comparing “Baseline” method with “IST-ITG”
method, the improvement in BLEU was a 1.44-
point. Furthermore, in comparing “IST-ITG”
method with “Proposed” method, the improvement
in BLEU was a 0.49-point. Both the IST-ITG con-
straints and the proposed reordering model fixed the
phrase position for the global reorderings. How-
ever, the proposed method can conduct a probabilis-
tic evaluation of target word reorderings which the
IST-ITG constraints cannot. Therefore, “Proposed”
method resulted in a better BLEU.

4.2 NIST MT08 English-to-Chinese
Translation Experiments

Next, we conducted English-to-Chinese (E-C) news-
paper translation experiments for different lan-
guage pairs. The NIST MT08 evaluation campaign
English-to-Chinese translation track was used for
the training and evaluation corpora. Table 4 shows

English Chinese
Train Sentences 4.6M

Words 79.6M 73.4M
Dev Sentences 1.6K

Words 46.4K 39.0K
Test Sentences 1.9K

Words 45.7K 47.0K (Ave.)

Table 4: Statistics of training, development and test cor-
pus for E-C translation.

Baseline IST-ITG Proposed
BLEU 17.54 18.60 18.93

Table 5: BLEU score results for E-C translation. (4-
reference)

the training, development and test corpus statistics.
For the translation model training, we used 4.6M
bilingual sentences. For the language model train-
ing, we used 4.6M sentences which are used for
the translation model training. The language model
type was word 3-gram smoothed by Kneser-Ney
discounting. A development set with 1.6K sen-
tences was used as evaluation data in the Chinese-to-
English translation track for the NIST MT07 eval-
uation campaign. A single reference was used in
the development set. The evaluation set with 1.9K
sentences is the same as the MT08 evaluation data,
with 4 references. In this experiment, the compared
methods were the same as in the E-J experiment.

The proposed reordering model are trained from
4.6M bilingual sentences for the translation model
training. The amount of available training samples
represented by subtrees was 39.6M. In the available
training samples, there were 193K subtree types.
As in the E-J experiments, the heuristic threshold
was 10. The proposed reordering model consisted
of 18,955 subtree types and one clustered model
“other.” The models not including “other” covered
99.45% of all training samples.

The BLEU scores are presented in Table 5.
In comparing “Baseline” method with “IST-ITG”
method, the improvement in BLEU was a 1.06-
point. In comparing “IST-ITG” method with “Pro-
posed” method, the improvement in BLEU was a
0.33-point. As in the E-J experiments, “Proposed”
method performed the highest BLEU. We demon-

75



strated that the proposed method is effective for mul-
tiple language pairs. However, the improvement
of BLEU score in E-C translation is smaller than
the improvement in E-J translation, because English
and Chinese are similar sentence structures, such as
SVO-languages (Japanese is SOV-language). When
the sentence structures are different, the proposed re-
ordering model is effective.

5 Conclusion

This paper proposed a new word reordering model
using syntactic information of a source tree for
phrase-based statistical machine translation. The
proposed model is an extension of the IST-ITG con-
straints. In both IST-ITG constraints and the pro-
posed method, the target-side word order is obtained
by rotating nodes of the source-side tree structure.
Both the IST-ITG constraints and the proposed re-
ordering model fix the phrase position for the global
reorderings. However, the proposed method can
conduct a probabilistic evaluation of target word re-
orderings which the IST-ITG constraints cannot. In
E-J and E-C translation experiments, the proposed
method resulted in a 0.49-point improvement (29.31
to 29.80) and a 0.33-point improvement (18.60 to
18.93) in word BLEU-4 compared with IST-ITG
constraints, respectively. This indicates the validity
of the proposed reordering model.

Future work will focus on a reduction of com-
putational cost of decoding including the proposed
reordering model, and a simultaneous training of
translation and reordering models. Moreover, we
will deal with difference between source and target
in multi level like in Gally et al. (2004).

The improvement could clearly be seen from vi-
sual inspection of the output, a few examples of
which are presented in the following Appendix.

A Samples from the English-to-Japanese
Translation

A.1 Sentence 1
Source: Aggravation was obvious from the latter
half of March to the end of April, and he contracted
the disease in February to the beginning of May.
Baseline: ４月末に３月後半から５月上旬に２月
に疾患を発症し，著明な増悪した。
Reference: ３月後半から４月末に増悪が著明で，

２～５月上旬に発症した。
Proposed: ３月後半から４月末に著明な増悪し，
５月上旬に２月に疾患を発症した。

A.2 Sentence 2
Source: The value of TF, on the other hand, was
higher in the reverse order, indicating that high ox-
idation rate causes severe defects on the surface of
Ni crystallites.
Baseline: 一方，重症の表面上の欠陥の原因とな
ることを示し，逆順に高かったが，ＴＦの値は高
い酸化速度はＮｉの微結晶た。
Reference: 一方，ＴＦの値は逆の順序で高く，酸
化速度が高いことはＮｉ結晶の表面欠陥の原因に
なることを示した。
Proposed: 一方，ＴＦの値は逆の順序で高かった
ことを示し，高い酸化速度は，Ｎｉの微結晶表面
に重篤な欠陥の原因となる。

A.3 Sentence 3
Source: After diagnosing the pleural effusion and
ascites, vein catheter was left in place under the echo
guide, and after removing the pleural effusion and
ascites, OK-432 was administered locally.
Baseline: 診断後，胸水，腹水，胸水・腹水を除去
した後，エコーガイド下で，静脈カテーテルを左
に代わってＯＫ‐４３２を投与した。
Reference: 胸水・腹水の診断を行った後にエコー
ガイド下に静脈カテーテルを留置し，胸水・腹水
を除去し，ＯＫ‐４３２を局所投与した。
Proposed: 胸水・腹水の診断後，静脈カテーテル
を残したエコーガイド下で代わりに，胸水・腹水
を除去した後，ＯＫ‐４３２，局所的に投与した。

A.4 Sentence 4
Source: From result of the consideration, it was
pointed that radiation from the loop elements was
weak.
Baseline: 考察の結果からことを指摘し，ループ
素子からの放射は弱かった。
Reference: 考察結果より，ループ素子からの放射
が弱いことを指摘する。
Proposed: 考察の結果から，ループ素子からの放
射は弱いことを示した。
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Abstract

In this paper, we start with the existing idea of
taking reordering rules automatically derived
from syntactic representations, and applying
them in a preprocessing step before translation
to make the source sentence structurally more
like the target; and we propose a new approach
to hierarchically extracting these rules. We
evaluate this, combined with a lattice-based
decoding, and show improvements over state-
of-the-art distortion models.

1 Introduction

One of the big challenges for the MT community is
the problem of placing translated words in a natural
order. This issue originates from the fact that dif-
ferent languages are characterized by different word
order requirements. The problem is especially im-
portant if the distance between words which should
be reordered is high (global reordering); in this case
the reordering decision is very difficult to take based
on statistical information due to dramatic expansion
of the search space with the increase in number of
words involved in the search process.

Classically, statistical machine translation (SMT)
systems do not incorporate any linguistic analysis
and work at the surface level of word forms. How-
ever, more recently MT systems are moving towards
including additional linguistic and syntactic infor-
mative sources (for example, source- and/or target-
side syntax) into word reordering process. In this pa-
per we propose using a syntactic reordering system
operating with fully, partially and non- lexicalized
reordering patterns, which are applied on the step

prior to translation; the novel idea in this paper is in
the derivation of these rules in a hierarchical manner,
inspired by Imamura et al (2005). Furthermore, we
propose generating a word lattice from the bilingual
corpus with the reordered source side, extending the
search space on the decoding step. A thorough study
of the combination of syntactical and word lattice re-
ordering approaches is another novelty of the paper.

2 Related work

Many reordering algorithms have appeared over the
past few years. Word class-based reordering was a
part of Och’s Alignment Template system (Och et
al., 2004); the main criticism of this approach is that
it shows bad performance for the pair of languages
with very distinct word order. The state-of-the-art
SMT system Moses implements a distance-based re-
ordering model (Koehn et al., 2003) and a distor-
tion model, operating with rewrite patterns extracted
from a phrase alignment table (Tillman, 2004).

Many SMT models implement the brute force ap-
proach, introducing several constrains for the re-
ordering search as described in Kanthak et al. (2005)
and Crego et al. (2005). The main criticism of such
systems is that the constraints are not lexicalized.
Recently there has been interest in SMT exploiting
non-monotonic decoding which allow for extension
of the search space and linguistic information in-
volvement. The variety of such models includes a
constrained distance-based reordering (Costa-jussà
et al., 2006); and a constrained version of distortion
model where the reordering search problem is tack-
led through a set of linguistically motivated rules
used during decoding (Crego and Mariño, 2007).
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A quite popular class of reordering algorithms is
a monotonization of the source part of the parallel
corpus prior to translation. The first work on this
approach is described in Nießen and Ney (2004),
where morpho-syntactic information was used to ac-
count for the reorderings needed. A representative
set of similar systems includes: a set of hand-crafted
reordering patterns for German-to-English (Collins
et al., 2005) and Chinese-English (Wang et al.,
2007) translations, emphasizing the distinction be-
tween German/Chinese and English clause struc-
ture; and statistical machine reordering (SMR) tech-
nique where a monotonization of the source words
sequence is performed by translating them into the
reordered one using well established SMT mecha-
nism (Costa-jussà and Fonollosa, 2006). Coupling
of SMR algorithm and the search space extension
via generating a set of weighted reordering hypothe-
ses has demonstrated a significant improvement, as
shown in Costa-jussà and Fonollosa (2008).

The technique proposed in this study is most
similar to the one proposed for French-to-English
translation task in Xia and McCord (2004), where
the authors present a hybrid system for French-
English translation based on the principle of auto-
matic rewrite patterns extraction using a parse tree
and phrase alignments. We propose using a word
distortion model not only to monotonize the source
part of the corpus (using a different approach to
rewrite rule organization from Xia and McCord), but
also to extend the search space during decoding.

3 Baseline phrase-based SMT systems

The reference system which was used as a transla-
tion mechanism is the state-of-the-art Moses-based
SMT (Koehn et al., 2007). The training and weights
tuning procedures can be found on the Moses web
page1.

Classical phrase-based translation is considered
as a three step algorithm: (1) the source sequence
of words is segmented into phrases, (2) each phrase
is translated into the target language using a transla-
tion table, (3) the target phrases are reordered to fit
the target language. The probabilities of the phrases
are estimated by relative frequencies of their appear-
ance in the training corpus.

1http://www.statmt.org/moses/

In baseline experiments we used a phrase depen-
dent lexicalized reordering model, as proposed in
Tillmann (2004). According to this model, mono-
tonic or reordered local orientations enriched with
probabilities are learned from training data. During
decoding, translation is viewed as a monotone block
sequence generation process with the possibility to
swap a pair of neighbor blocks.

4 Syntax-based reordering coupled with
word graph

Our syntax-based reordering system requires access
to source and target language parse trees and word
alignments intersections.

4.1 Notation
Syntax-based reordering (SBR) operates with source
and target parse trees that represent the syntactic
structure of a string in source and target languages
according to a Context-Free Grammar (CFG).

We call this representation "CFG form". We
formally define a CFG in the usual way as G =
〈N,T,R, S〉, where N is a set of nonterminal sym-
bols (corresponding to source-side phrase and part-
of-speech tags); T is a set of source-side terminals
(the lexicon), R is a set of production rules of the
form η → γ, with η ∈ N and γ, which is a sequence
of terminal and nonterminal symbols; and S ∈ N is
the distinguished symbol.

The reordering rules then have the form

η0@0 . . . ηk@k →
ηd0@d0 . . . ηdk

@dk|Lexicon|p1 (1)

where ηi ∈ N for all 0 ≤ i ≤ k; (do . . . dk) is
a permutation of (0 . . . k); Lexicon comes from the
source-side set of words for each ηi; and p1 is a prob-
ability associated with the rule. Figure 1 gives two
examples of the rule format.

4.2 Rules extraction
Concept. Inspired by the ideas presented in Imamura
et al. (2005), where monolingual correspondences of
syntactic nodes are used during decoding, we extract
a set of bilingual patterns allowing for reordering as
described below:
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(1) align the monotone bilingual corpus with
GIZA++ (Och and Ney, 2003) and find
the intersection of direct and inverse word
alignments, resulting in the construction
of the projection matrix P (see below));

(2) parse the source and the target parts of the
parallel corpus;

(3) extract reordering patterns from the par-
allel non-isomorphic CFG-trees based on
the word alignment intersection.

Step 2 is straightforward; we explain aspects of
Steps 1 and 3 in more detail below. Figures 1 and 2
show an example of the extraction of two lexicalized
rules for a parallel Arabic-English sentence:

Arabic:
English:

h*A
this

hW
is

fndq
your

+k
hotel

We use this below in our explanations.

Figure 2: Example of subtree transfer and reordering
rules extraction.

Projection matrix. Bilingual content can be rep-
resented in the form of words or sequences of words
depending on the syntactic role of the corresponding
grammatical element (constituent or POS).

Given two parse trees and a word alignment in-
tersection, a projection matrix P is defined as an
M ×N matrix such that M is the number of words
in the target phrase; N is the number of words in
the source phrase; and a cell (i, j) has a value based
on the alignment intersection — this value is zero
if word i and word j do not align, and is a unique
non-zero link number if they do.

For the trees in Figure 2,

P =




1 0 0 0
0 2 0 0
0 0 0 3
0 0 4 0




Unary chains. Given an unary chain of the form
X → Y , rules are extracted for each level in this
chain. For example given a rule

NP@0ADV P@1 → ADV P@1NP@0

and a unary chain "ADV P → AD", a following
equivalent rule will be generated

NP@0AD@1 → AD@1NP@0.

The role of target-side parse tree. Although re-
ordering is performed on the source side only, the
target-side tree is of great importance: the reorder-
ing rules can be only extracted if the words covered
by the rule are entirely covered by both a node in
the source and in the target trees. It allows the more
accurate determination of the covering and limits of
the extracted rules.

4.3 Rules organization
Once the list of fully lexicalized reordering patterns
is extracted, all the rules are progressively processed
reducing the amount of lexical information. These
initial rules are iteratively expanded such that each
element of the pattern is generalized until all the lex-
ical elements of the rule are represented in the form
of fully unlexicalized categories. Hence, from each

NN@0 NP@1 → NP@1 NN@0 | NN@0 << fndq >> NP@1 << +k >> | p
NN@0 NNP@1 → NNP@1 NN@0 | NN@0 << fndq >> NNP@1 << +k >> | p′

Figure 1: Directly extracted rules.
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initial pattern with N lexical elements, 2N − 2 par-
tially lexicalized rules and 1 general rule are gener-
ated. An example of the process of delexicalization
can be found in Figure 3.

Thus, finally three types of rules are available: (1)
fully lexicalized (initial) rules, (2) partially lexical-
ized rules and (3) unlexicalized (general) rules.

On the next step, the sets are processed separately:
patterns are pruned and ambiguous rules are re-
moved. All the rules from the fully lexicalized, par-
tially lexicalized and general sets that appear fewer
than k times are directly discarded (k is a shorthand
for kful, kpart and kgener). The probability of a
pattern is estimated based on relative frequency of
their appearance in the training corpus. Only one
the most probable rule is stored. Fully lexicalized
rules are not pruned (kful = 0); partially lexicalized
rules that have been seen only once were discarded
(kpart = 1); the thresholds kgener was set to 3: it
limits the number of general patterns capturing rare
grammatical exceptions which can be easily found
in any language.

Only the one-best reordering is used in other
stages of the algorithm, so the rule output function-
ing as an input to the next rule can lead to situa-
tions reverting the change of word order that the
previously applied rule made. Therefore, the rules
that can be ambiguous when applied sequentially
during decoding are pruned according to the higher
probability principle. For example, for the pair of
patterns with the same lexicon (which is empty for
a general rule leading to a recurring contradiction
NP@0 VP@1 → VP@1 NP@0 p1, VP@0 NP@1
→ NP@1 VP@0 p2 ), the less probable rule is re-
moved.

Finally, there are three resulting parameter tables
analogous to the "r-table" as stated in (Yamada and
Knight, 2001), consisting of POS- and constituent-
based patterns allowing for reordering and mono-

tone distortion (examples can be found in Table 5).

4.4 Source-side monotonization
Rule application is performed as a bottom-up parse
tree traversal following two principles:

(1) the longest possible rule is applied, i.e. among
a set of nested rules, the rule with a longest left-side
covering is selected. For example, in the case of the
appearance of an NN JJ RB sequence and presence
of the two reordering rules

NN@0 JJ@1 → ... and

NN@0 JJ@1 RB@2 → ...

the latter pattern will be applied.
(2) the rule containing the maximum lexical infor-

mation is applied, i.e. in case there is more than one
alternative pattern from different groups, the lexical-
ized rules have preference over the partially lexical-
ized, and partially lexicalized over general ones.

Figure 4: Reordered source-side parse tree.

Once the reordering of the training corpus is
ready, it is realigned and new more monotonic align-
ment is passed to the SMT system. In theory, the
word links from the original alignment can be used,
however, due to our experience, running GIZA++
again results in a better word alignment since it is
easier to learn on the modified training example.

Example of correct local reordering done with the
SBR model can be found in Figure 4.

Initial rule: NN@0 NP@1 → NP@1 NN@0 | NN@0 << fndq >> NP@1 << +k >> | p1

Part. lexic. rules: NN@0 NP@1 → NP@1 NN@0 | NN@0 << fndq >> NP@1 << - >> | p2

NN@0 NP@1 → NP@1 NN@0 | NN@0 << - >> NP@1 << +k >> | p3

General rule: NN@0 NP@1 → NP@1 NN@0 | p4

Figure 3: Example of a lexical rule expansion.
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4.5 Coupling with decoding
In order to improve reordering power of the transla-
tion system, we implemented an additional reorder-
ing as described in Crego and Mariño (2006).

Multiple word segmentations is encoded in a lat-
tice, which is then passed to the input of the de-
coder, containing reordering alternatives consistent
with the previously extracted rules. The decoder
takes the n-best reordering of a source sentence
coded in the form of a word lattice. This approach
is in line with recent research tendencies in SMT, as
described for example in (Hildebrand et al., 2008;
Xu et al., 2005). Originally, word lattice algorithms
do not involve syntax into reordering process, there-

fore their reordering power is limited at representing
long-distance reordering. Our approach is designed
in the spirit of hybrid MT, integrating syntax trans-
fer approach and statistical word lattice methods to
achieve better MT performance on the basis of the
standard state-of-the-art models.

During training a set of word permutation patterns
is automatically learned following given word-to-
word alignment. Since the original and monotonized
(reordered) alignments may vary, different sets of
reordering patterns are generated. Note that no in-
formation about the syntax of the sentence is used:
the reordering permutations are motivated by the
crossed links found in the word alignment and, con-

S 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 L

> n

+ h

+ h

> n

m T E m m T E m

* w

E r y q

> n

* w

E r y q

t A r y x

m T E m

E r y q

* w

E r y q

t A r y x

* w

* w

E r y q

m T E m

t A r y x

E r y q

* w

S 1 2 3 4 5 6 7 8 9

> n

+ h

+ h

> n

m T E m m T E m

> n

* w

t A r y x

* w

m T E m

t A r y x

1 0 L

E r y q

m T E m

E r y q

t A r y x

> n  + h  m T E m  * w  t A r y x  E r y q  W o r d  l a t t i c e ,  p l a i n  t e x t :

W o r d  l a t t i c e ,  r e o r d e r e d  t e x t : > n  + h  m T E m  * w  E r y q  t A r y x  ( c )

( b )
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> n  + h  m T E m  * w  t A r y x   E r y qM o n o t o n i c  s e a r c h ,  p l a i n  t e x t :( a )

Figure 5: Comparative example of a monotone search (a), word lattice for a plain (b) and reordered (c) source
sentences.
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sequently, the generalization power of this frame-
work is limited to local permutations.

On the step prior to decoding, the system gen-
erates word reordering graph for every source sen-
tence, expressed in the form of a word lattice. The
decoder processes word lattice instead of only one
input hypothesis, extending the monotonic search
graph with alternative paths.

Original sentence in Arabic, the English gloss and
reference translation are:

Ar.:
Gl.:

>n +h
this

mTEm
restaurant

*w
has

Eryq
history

tAryx
illustrious

Ref: ’this restaurant has an illustrious history’

The monotonic search graph (a) is extended with
a word lattice for the monotonic train set (b) and re-
ordered train sets (c). Figure 5 shows an example
of the input word graph expressed in the form of a
word lattice. Lattice (c) differ from the graph (b) in
number of edges and provides more input options to
the decoder. The decision about final translation is
taken during decoding considering all the possible
paths, provided by the word lattice.

5 Experiments and results

5.1 Data
The experiments were performed on two Arabic-
English corpora: the BTEC’08 corpus from the
tourist domain and the 50K first-lines extraction
from the corpus that was provided to the NIST’08
evaluation campaign and belongs to the news do-
main (NIST50K). The corpora differ mainly in the
average sentence length (ASL), which is the key cor-
pus characteristic in global reordering studies.

A training set statistics can be found in Table 1.

BTEC NIST50K
Ar En Ar En

Sentences 24.9 K 24.9 K 50 K 50 K
Words 225 K 210 K 1.2 M 1.35 M
ASL 9.05 8.46 24.61 26.92
Voc 11.4 K 7.6 K 55.3 36.3

Table 1: Basic statistics of the BTEC training corpus.

The BTEC development dataset consists of 489
sentences and 3.8 K running words, with 6 human-
made reference translations per sentence; the dataset

used to test the translation quality has 500 sentences,
4.1 K words and is also provided with 6 reference
translations.

The NIST50K development set consists of 1353
sentences and 43 K words; the test data contains
1056 sentences and 33 K running words. Both
datasets have 4 reference translations per sentence.

5.2 Arabic data preprocessing
We took a similar approach to that shown in Habash
and Sadat (2006), using the MADA+TOKAN sys-
tem for disambiguation and tokenization. For dis-
ambiguation only diacritic unigram statistics were
employed. For tokenization we used the D3 scheme
with -TAGBIES option. The scheme splits the fol-
lowing set of clitics: w+, f+, b+, k+, l+, Al+ and
pronominal clitics. The -TAGBIES option produces
Bies POS tags on all taggable tokens.

5.3 Experimental setup
We used the Stanford Parser (Klein and Man-
ning, 2003) for both languages, Penn English Tree-
bank (Marcus et al., 1993) and Penn Arabic Tree-
bank set (Kulick et al., 2006). The English Treebank
is provided with 48 POS and 14 syntactic tags, the
Arabic Treebank has 26 POS and 23 syntactic cate-
gories.

As mentioned above, specific rules are not pruned
away due to a limited amount of training material we
set the thresholds kpart and kgener to relatively low
values, 1 and 3, respectively.

Evaluation conditions were case-insensitive and
with punctuation marks considered. The target-
side 4-gram language model was estimated using
the SRILM toolkit (Stolcke, 2002) and modified
Kneser-Ney discounting with interpolation. The
highest BLEU score (Papineni et al., 2002) was cho-
sen as the optimization criterion. Apart from BLEU,
a standard automatic measure METEOR (Banerjee
and Lavie, 2005) was used for evaluation.

5.4 Results

The scores considered are: BLEU scores obtained
for the development set as the final point of the
MERT procedure (Dev), and BLEU and METEOR
scores obtained on test dataset (Test).

We present BTEC results (Tables 2), character-
ized by relatively short sentence length, and the re-
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sults obtained on the NIST corpus (Tables 3) with
much longer sentences and much need of global re-
ordering.

Dev Test
BLEU BLEU METEOR

Plain 48.31 45.02 65.98
BL 48.46 47.10 68.10

SBR 48.75 47.52 67.33
SBR+lattice 48.90 48.78 68.85

Table 2: Summary of BTEC experimental results.

Dev Test
BLEU BLEU METEOR

Plain 41.83 43.80 62.03
BL 42.68 43.52 62.17

SBR 42.71 44.01 63.29
SBR+lattice 43.05 44.89 63.30

Table 3: Summary of NIST50K experimental results.

Four SMT systems are contrasted: BL refers to
the Moses baseline system: the training data is not
reordered, lexicalized reordering model (Tillman,
2004) is applied; SBR refers to the monotonic sys-
tem configuration with reordered (SBR) source part;
SBR+lattice is the run with reordered source part, on
the translation step the input is represented as a word
lattice.

We also compare the proposed approach with a
monotonic system configuration (Plain). It shows
the effect of source-reordering and lattice input, also
decoded monotonically.

Automatic scores obtained on the test dataset
evolve similarly when the SBR and word lattice rep-
resentation applied to BTEC and NIST50K tasks.
The combined method coupling two reordering

techniques was more effective than the techniques
applied independently and shows an improvement
in terms of BLEU for both corpora. The METEOR
score is only slightly better for the SBR configura-
tions in case of BTEC task; in the case of NIST50K
the METEOR improvement is more evident. The
general trend is that automatic scores evaluated on
the test set increase with the reordering model com-
plexity.

Application of the SBR algorithm only (without
a word lattice decoding) does not allow achieving
statistical significance threshold for a 95% confi-
dence interval and 1000 resamples (Koehn, 2004)
for either of considered corpora. However, the
SBR+lattice system configuration outperforms the
BL by about 1.7 BLEU points (3.5%) for BTEC task
and about 1.4 BLEU point (3.1%) for NIST task.
These differences is statistically significant.

Figure 6 demonstrates how two reordering tech-
niques interact within a sentence with a need for
both global and local word permutations.

5.5 Syntax-based rewrite rules
As mentioned above, the SBR operates with three
groups of reordering rules, which are the product
of complete or partial delexicalization of the origi-
nally extracted patterns. The groups are processed
and pruned independently. Basic rules statistics for
both translation tasks can be found in Table 4.

The major part of reordering rules consists of
two or three elements (for BTEC task there are
no patterns including more than three nodes). For
NIST50K there are a few rules with higher size in
words of the move (up to 8). In addition, there are
some long lexicalized rules (7-8), generating a high
number of partially lexicalized patterns.

Table 5 shows the most frequent reordering rules
with non-monotonic right part from each group.

Ar. plain.:
En. gloss:

AElnt
announced

Ajhzp
press

AlAElAm
release

l
by

bEvp
mission

AlAmm AlmtHdp
nations united

fy
in

syrAlywn
sierra leone

An
that

...

...
En. ref.: ’a press release by the united nations mission to sierra leone announced that ...’

Ar. reord.: Ajhzp AlAElAm l bEvp AlmtHdp AlAmm fy syrAlywn AElnt An ...

Figure 6: Example of SBR application (highlited bold) and local reordering error corrected with word lattice reorder-
ing (underlined).
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6 Conclusions

In this study we have shown how the translation
quality can be improved, coupling (1) SBR al-
gorithm and (2) word alignment-based reordering
framework applied during decoding. The system
automatically learns a set of syntactic reordering
patterns that exploit systematic differences between
word order of source and target languages.

Translation accuracy is clearly higher when al-
lowing for SBR coupled with word lattice input rep-
resentation than standard Moses SMT with existing
(lexicalized) reordering models within the decoder
and one input hypothesis condition. We have also
compared the reordering model a monotonic system.

The method was tested translating from Arabic to
English. Two corpora and tasks were considered:
the BTEC task with much need of local reordering
and the NIST50K task requiring long-distance per-
mutations caused by longer sentences.

The reordering approach can be expanded for any
other pair of languages with available parse tools.
We also expect that the method scale to a large train-
ing set, and that the improvement will still be kept,
however, we plan to confirm this assumption exper-
imentally in the near future.
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Group # of rules Voc 2-element 3-element 4-element [5-8]-element

BTEC experiments

Specific rules 703 413 406 7 0 0
Partially lexicalized rules 1,306 432 382 50 0 0

General rules 259 5 259 0 0 0

NIST50K experiments

Specific rules 517 399 193 109 72 25
Partially lexicalized rules 17,897 14,263 374 638 1,010 12,241

General rules 489 372 180 90 72 30

Table 4: Basic reordering rules statistics.

Specific rules

NN@0 NP@1 -> NP@1 NN@0 | NN@0 « Asm » NP@1 « +y » | 0.0270
DTNN@0 DTJJ@1 -> DTJJ@1 DTNN@0 | DTNN@0 « AlAmm »DTJJ@1 « AlmtHdp » | 0.0515

Partially lexicalized rules

DTNN@0 DTJJ@1 -> DTJJ@1 DTNN@0 | DTNN@0 « NON »DTJJ@1 « AlmtHdp » | 0.0017
NN@0 NNP@1 -> NNP@1 NN@0 | NN@0 « NON »NNP@1 « $rm » | 0.0017

General rules

PP@0 NP@1 -> PP@0 NP@1 | 0.0432
NN@0 DTNN@1 DTJJ@2 -> NN@0 DTJJ@2 DTNN@1 |0.0259

Table 5: Examples of Arabic-to-English reordering rules.
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