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Abstract

This paper investigates semi-supervised learn-

ing of Gaussian mixture models using an uni-

fied objective function taking both labeled and

unlabeled data into account. Two methods

are compared in this work – the hybrid dis-

criminative/generative method and the purely

generative method. They differ in the crite-

rion type on labeled data; the hybrid method

uses the class posterior probabilities and the

purely generative method uses the data like-

lihood. We conducted experiments on the

TIMIT database and a standard synthetic data

set from UCI Machine Learning repository.

The results show that the two methods be-

have similarly in various conditions. For both

methods, unlabeled data improve training on

models of higher complexity in which the su-

pervised method performs poorly. In addition,

there is a trend that more unlabeled data re-

sults in more improvement in classification ac-

curacy over the supervised model. We also

provided experimental observations on the rel-

ative weights of labeled and unlabeled parts

of the training objective and suggested a criti-

cal value which could be useful for selecting a

good weighing factor.

1 Introduction

Speech recognition acoustic models can be trained

using untranscribed speech data (Wessel and Ney,

2005; Lamel et al., 2002; L. Wang and Woodland,

2007). Most such experiments begin by boostraping

∗This research is funded by NSF grants 0534106 and

0703624.

an initial acoustic model using a limited amount of

manually transcribed data (normally in a scale from

30 minutes to several hours), and then the initial

model is used to transcribe a relatively large amount

of untranscribed data. Only the transcriptions with

high confidence measures (Wessel and Ney, 2005;

L. Wang and Woodland, 2007) or high agreement

with closed captions (Lamel et al., 2002) are se-

lected to augment the manually transcribed data, and

new acoustic models are trained on the augmented

data set.

The general procedure described above exactly

lies in the context of semi-supervised learning prob-

lems and can be categorized as a self-training algo-

rithm. Self-training is probably the simplest semi-

supervised learning method, but it is also flexible

to be applied to complex classifiers such as speech

recognition systems. This may be the reason why

little work has been done on exploiting other semi-

supervised learning methods in speech recognition.

Though not incorporated to speech recognizers yet,

there has been some work on semi-supervised learn-

ing of Hidden Markov Models (HMM) for sequen-

tial classification. Inoue and Ueda (2003) treated the

unknown class labels of the unlabeled data as hidden

variables and used the expectation-maximization

(EM) algorithm to optimize the joint likelihood of

labeled and unlabeled data. Recently Ji et al. (2009)

applied a homotopy method to select the optimal

weight to balance between the log likelihood of la-

beled and unlabeled data when training HMMs.

Besides generative training of acoustic models,

discriminative training is another popular paradigm

in the area of speech recognition, but only when
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the transcriptions are available. Wang and Wood-

land (2007) used the self-training method to aug-

ment the training set for discriminative training.

Huang and Hasegawa-Johnson (2008) investigated

another use of discriminative information from la-

beled data by replacing the likelihood of labeled data

with the class posterior probability of labeled data in

the semi-supervised training objective for Gaussian

Mixture Models (GMM), resulting in a hybrid dis-

criminative/generative objective function. Their ex-

perimental results in binary phonetic classification

showed significant improvement in classification ac-

curacy when labeled data are scarce. A similar strat-

egy called ”‘multi-conditional learning”’ was pre-

sented in (Druck et al., 2007) applied to Markov

Random Field models for text classification tasks,

with the difference that the likelihood of labeled data

is also included in the objective. The hybrid dis-

criminative/generative objective function can be in-

terpreted as having an extra regularization term, the

likelihood of unlabeled data, in the discriminative

training criterion for labeled data. However, both

methods in (Huang and Hasegawa-Johnson, 2008)

and (Druck et al., 2007) encountered the same issue

about determining the weights for labeled and un-

labeled part in the objective function and chose to

use a development set to select the optimal weight.

This paper provides an experimental analysis on the

effect of the weight.

With the ultimate goal of applying semi-

supervised learning in speech recognition, this pa-

per investigates the learning capability of algorithms

within Gaussian Mixture Models because GMM is

the basic model inside a HMM, therefore 1) the up-

date equations derived for the parameters of GMM

can be conveniently extended to HMM for speech

recognition. 2) GMM can serve as an initial point

to help us understand more details about the semi-

supervised learning process of spectral features.

This paper makes the following contribution:

• it provides an experimental comparison of hy-

brid and purely generative training objectives.

• it studies the impact of model complexity on

learning capability of algorithms.

• it studies the impact of the amount of unlabeled

data on learning capability of algorithms.

• it analyzes the role of the relative weights of

labeled and unlabeled parts of the training ob-

jective.

2 Algorithm

Suppose a labeled set XL = (x1, . . . , xn, . . . , xNL
)

has NL data points and xn ∈ Rd. YL =

(y1, . . . , yn, . . . , yNL
) are the corresponding class

labels, where yn ∈ {1, 2, . . . , Y } and Y is the num-

ber of classes. In addition, we also have an unla-

beled set XU = (x1, . . . , xn, . . . , xNU
) without cor-

responding class labels. Each class is assigned a

Gaussian Mixture model, and all models are trained

given XL and XU . This section first presents the

hybrid discriminative/generative objective function

for training and then the purely generative objective

function. The parameter update equations are also

derived here.

2.1 Hybrid Objective Function

The hybrid discriminative/generative objective func-

tion combines the discriminative criterion for la-

beled data and the generative criterion for unlabeled

data:

F (λ) = log P (YL|XL;λ) + α log P (XU ;λ), (1)

and we chose the parameters so that (1) is maxi-

mized:

λ̂ = arg max
λ
F (λ) . (2)

The first component considers the log posterior

class probability of the labeled set whereas the sec-

ond component considers the log likelihood of the

unlabeled set weighted by α. In ASR community,

model training based the first component is usually

referred to as Maximum Mutual Information Esti-

mation (MMIE) and the second component Maxi-

mum Likelihood Estimation (MLE), therefore in this

paper we use a brief notation for (1) just for conve-

nience:

F (λ) = F (DL)
MMI (λ) + αF (DU )

ML (λ) . (3)

The two components are different in scale. First,

the size of the labeled set is usually smaller than

the size of the unlabeled set in the scenario of semi-

supervised learning, so the sums over the data sets

involve different numbers of terms; Second, the
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scales of the posterior probability and the likeli-

hood are essentially different, so are their gradients.

While the weight α balances the impacts of two

components on the training process, it may also im-

plicitly normalize the scales of the two components.

In section (3.2) we will discuss and provide a further

experimental analysis.

In this paper, the models to be trained are Gaus-

sian mixture models of continuous spectral feature

vectors for phonetic classes, which can be further

extended to Hidden Markov Models with extra pa-

rameters such as transition probabilities.

The maximization of (1) follows the techniques

in (Povey, 2003), which uses auxiliary functions for

objective maximization; In each iteration, a strong

or weak sense auxiliary function is maximized, such

that if the auxiliary function converges after itera-

tions, the objective function will be at a local maxi-

mum as well.

The objective function (1) can be rewritten as

F (λ) = log P (XL|YL;λ)− log P (XL;λ)
+ α log P (XU ;λ),

(4)

where the term log P (YL;λ) is removed because it

is independent of acoustic model parameters.

The auxiliary function at the current parameter

λold for (4) is

G(λ, λ(old)) =Gnum(λ, λ(old))− Gden(λ, λ(old))

+αGden(λ, λ(old);DU ) + Gsm(λ, λ(old)),
(5)

where the first three terms are strong-sense auxiliary

functions for the conditional likelihood (referred to

as the numerator(num) model because it appears in

the numerator when computing the class posterior

probability) log P (XL|YL;λ) and the marginal like-

lihoods (referred to as the denominator(den) model

likewise) log P (XL;λ) and α log P (XU ;λ) respec-
tively. The last term is a smoothing function that

doesn’t affect the local differential but ensures that

the sum of the first three term is at least a convex

weak-sense auxiliary function for good convergence

in optimization.

Maximization of (5) leads to the update equations

for the class j and mixture m given as follows:

µ̂jm =
1

γjm

(
xxxnum

jm, − xxxden
jm + αxxxden

jm(DU ) + Djmµjm

)

(6)

σ̂2
jm =

1
γjm

(
sssnumjm − sssdenjm + αsssdenjm(DU )

+Djm

(
σ2

jm + µ2
jm

))
− µ̂2

jm,

(7)

where for clarity the following substitution is used:

γjm = γnum
jm − γden

jm + αγden
jm(DU ) + Djm (8)

and γjm is the sum of the posterior probabilities of

occupation of mixture component m of class j over

the dataset:

γnum
jm (X) =

∑

xi∈X,yi=j

p (m|xi, yi = j)

γden
jm(X) =

∑

xi∈X

p (m|xi)
(9)

and xxxjm and sssjm are respectively the weighted

sum of xi and x2
i over the whole dataset with the

weight p (m|xi, yi = j) or p (m|xi), depending on

whether the superscript is the numerator or denomi-

nator model. Djm is a constant set to be the greater

of twice the smallest value that guarantees positive

variances or γden
jm (Povey, 2003). The re-estimation

formula for mixture weights is also derived from the

Extended Baum-Welch algorithm:

ĉjm =
cjm

{
∂F

∂cjm
+ C

}

∑
m′ cjm′

{
∂F

∂cjm
+ C

} , (10)

where the derivative was approximated (Merialdo,

1988) in the following form for practical robustness

for small-valued parameters :

∂FMMI

∂cjm
≈

γnum
jm∑

m′ γnum
jm′

−
γden

jm∑
m′ γden

jm′
. (11)

Under our hybrid framework, there is an extra term

γden
jm(DU )/

∑
m′ γden

jm′(DU ) that should exist in (11),

but in practice we found that adding this term to the

approximation is not better than the original form.

Therefore, we keep using MMI-only update for mix-

ture weights. The constant C is chosen such that all

parameter derivatives are positive.
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2.2 Purely Generative Objective

In this paper we compare the hybrid objective with

the purely generative one:

F (λ) = log P (XL|YL;λ) + α log P (XU ;λ),
(12)

where the two components are total log likelihood of

labeled and unlabeled data respectively. (12) doesn’t

suffer from the problem of combining two heteroge-

neous probabilistic items, and the weight α being

equal to one means that the objective is a joint data

likelihood of labeled and unlabeled set with the as-

sumption that the two sets are independent. How-

ever, DL or DU might just be a sampled set of the

population and might not reflect the true proportion,

so we keep α to allow a flexible combination of two

criteria. On top of that, we need to adjust the relative

weights of the two components in practical experi-

ments.

The parameter update equation is a reduced form

of the equations in Section (2.1):

µ̂jm =
xxxnum

jm, + αxxxden
jm(DU )

γnum
jm + αγden

jm(DU )
(13)

σ̂2
jm =

sssnumjm + αsssdenjm(DU )

γnum
jm + αγden

jm(DU )
− µ̂2

jm (14)

3 Results and Discussion

The purpose of designing the learning algorithms

is for classification/recognition of speech sounds,

so we conducted phonetic classification experiments

using the TIMIT database (Garofolo et al., 1993).

We would like to investigate the relation of learning

capability of semi-supervised algorithms to other

factors and generalize our observations to other data

sets. Therefore, we used another synthetic dataset

Waveform for the evaluation of semi-supervised

learning algorithms for Gaussian Mixture model.

TIMIT: We used the same 48 phone classes and

further grouped into 39 classes according to (Lee

and Hon, 1989) as our final set of phone classes to

model. We extracted 50 speakers out of the NIST

complete test set to form the development set. All

of our experimental analyses were on the develop-

ment set. We used segmental features (Halberstadt,

1998) in the phonetic classification task. For each

phone occurrence, a fixed-length vector was calcu-

lated from the frame-based spectral features (12 PLP

coefficients plus energy) with a 5 ms frame rate and

a 25 ms Hamming window. More specifically, we

divided the frames for each phone into three regions

with 3-4-3 proportion and calculated the PLP av-

erage over each region. Three averages plus the

log duration of that phone gave a 40-dimensional

(13× 3 + 1) measurement vector.

Waveform: We used the second versions of

the Waveform dataset available at the UCI reposi-

tory (Asuncion and Newman, 2007). There are three

classes of data. Each token is described by 40 real

attributes, and the class distribution is even.

Forwaveform, because the class labels are equally

distributed, we simply assigned equal number of

mixtures for each class. For TIMIT, the phone

classes are unevenly distributed, so we assigned

variable number of Gaussian mixtures for each class

by controlling the averaged data counts per mixture.

For all experiments, the initial model is an MLE

model trained with labeled data only.

To construct a mixed labeled/unlabeled data set,

the original training set were randomly divided into

the labeled and unlabeled sets with desired ratio, and

the class labels in the unlabeled set are assumed to be

unknown. To avoid that the classifier performance

may vary with particular portions of data, we ran five

folds for every experiment, each fold corresponding

to different division of training data into labeled and

unlabeled set, and took the averaged performance.

3.1 Model Complexity

This section analyzes the learning capability of

semi-supervised learning algorithms for different

model complexities, that is, the number of mix-

tures for Gaussian mixture model. In this experi-

ment, the sizes of labeled and unlabeled set are fixed

(|DL| : |DU | = 1 : 10 and the averaged token

counts per class is around 140 for both data sets),

as we varied the total number of mixtures and eval-

uated the updated model by its classification accu-

racy. For waveform, number of mixtures was set

from 2 to 7; for TIMIT, because the number of mix-

tures per class is determined by the averaged data

counts per mixture c, we set c to 25, 20 and 15 as

the higher c gives less number of mixtures in total.

Figure 3.1 plots the averaged classification accura-
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Figure 1: Mean classification accuracies vs. α for different model complexity. The accuracies for the initial MLE

models are indicated in the parentheses. (a) waveform: training with the hybrid objective. (b) waveform: purely

generative objective. (c) TIMIT: training with the hybrid objective. (d) TIMIT: purely generative objective.
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cies of the updated model versus the value of α with

different model complexities. The ranges of α are

different for waveform and TIMIT because the value

of α for each dataset has different scales.

First of all, the hybrid method and purely gen-

erative method have very similar behaviors in both

waveform and TIMIT; the differences between the

two methods are insignificant regardless of α. The

hybrid method with α = 0 means supervised MMI-

training with labeled data only, and the purely gener-

ative method with α = 0 means extra several rounds

of supervised MLE-training if the convergence cri-

terion is not achieved. With the small amount of la-

beled data, most of hybrid curves start slightly lower

than the purely generative ones at α = 0, but in-
crease to as high as the purely generative ones as α
increases.

For waveform, the accuracies increase with α in-

creases for all cases except for the 2-mixture model.

Table 1 summarizes the numbers from Figure 3.1.

Except for the 2-mixture case, the improvement over

the supervised model (α = 0) is positively corre-

lated to the model complexity, as the largest im-

provements occur at the 5-mixture and 6-mixture

model for the hybrid and purely generative method

respectively. However, the highest complexity does

not necessarily gives the best classification accu-

racy; the 3-mixture model achieves the best accu-

racy among all models after semi-supervised learn-

ing whereas the 2-mixture model is the best model

for supervised learning using labeled data only.

Experiments on TIMIT show a similar behavior1 ;

as shown in both Figure 3.1 and Table 2, the im-

provement over the supervised model (α = 0) is
also positively correlated to the model complexity,

1Note that our baseline performance (the initial MLEmodel)

is much worse than benchmark because only 10% of the train-

ing data were used. We justified our baseline model by using

the whole training data and a similar accuracy ( 74%) to other

work (e.g. (Sha and Saul, 2007)) was obtained.
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Table 1: The accuracies(%) of the initial MLEmodel, the supervised model (α = 0), the best accuracies with unlabeled
data and the absolute improvements (∆) over α = 0 for different model complexities for waveform. The bolded

number is the highest value along the same column.

Hybrid Purely generative

#. mix init. acc. α = 0 best acc. ∆ α = 0 best acc. ∆
2 83.02 81.73 83.74 2.01 82.96 83.14 0.18

3 82.08 81.66 84.69 3.03 82.18 84.58 2.40

4 81.56 80.53 83.93 3.40 81.34 84.13 2.79

5 80.18 80.14 83.82 3.68 80.16 83.84 3.68

6 79.61 79.40 83.19 3.79 79.71 83.31 3.60

Table 2: The accuracies(%) of the initial MLEmodel, the supervised model (α = 0), the best accuracies with unlabeled
data and the absolute improvements (∆) over α = 0 for different model complexities for TIMIT. The bolded number

is the highest value along the same column.

Hybrid Purely generative

c init. acc. α = 0 best acc. ∆ α = 0 best acc. ∆
25 55.34 55.47 56.58 1.11 55.32 56.7 1.38

20 55.36 55.67 56.72 1.05 55.2 56.25 1.05

15 54.72 53.71 55.39 1.68 53.7 56.09 2.39

as the most improvements occur at c = 25 for both

hybrid and purely generative methods. The semi-

supervised model consistently improves over the su-

pervised model. To summarize, unlabeled data im-

prove training on models of higher complexity, and

sometimes it helps achieve the best performance

with a more complex model.

3.2 Size of Unlabeled Data

In Figure 2, we fixed the size of the labeled set (4%
of the training set) and plotted the averaged classi-

fication accuracies for learning with different sizes

of unlabeled data. First of all, the hybrid method

and purely generative method still behave similarly

in both waveform and TIMIT. For both datasets, the

figures clearly illustrate that more unlabeled data

contributes more improvement over the supervised

model regardless of the value of α. Generally, a data
distribution can be expected more precisely with a

larger sample size from the data pool, therefore we

expect the more unlabeled data the more precise in-

formation about the population, which improves the

learning capability.

3.3 Discussion of α

During training, the weighted sum ofFMMI andFML

in equation (15) increases with iterations, however

FMMI and FML are not guaranteed to increase indi-

vidually. Figure 3 illustrates how α affects the re-

spective change of the two components for a partic-

ular setting for waveform. When α = 0, the ob-

jective function does not take unlabeled data into

account, so FMMI increases while FML decreases.

FML starts to increase for nonzero α; α = 0.01
corresponds to the case where both objectives in-

creases. As α keeps growing, FMMI starts to de-

crease whereas FML keeps rising. In this partic-

ular example, α = 0.05 is the critical value at

which FMMI changes from increasing to decreas-

ing. According to our observation, the value of α
depends on the dataset and the relative size of la-

beled/unlabeled data. Table 3 shows the critical val-

ues for waveform and TIMIT for different sizes of

labeled data (5, 10, 15, 20% of the training set) with

a fixed set of unlabeled data (80%.) The numbers are

very different across the datasets, but there is a con-

sistent pattern within the dataset–the critical value

increases as the size of labeled set increases. One

possible explanation is that α contains an normal-
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Figure 2: Mean classification accuracies vs. α for different amounts of unlabeled data (the percentage in the training

set). The averaged accuracy for the initial MLE model is 81.66% for waveform and 59.41% for TIMIT. (a) waveform:

training with the hybrid objective. (b) waveform: purely generative objective. (c) TIMIT: training with the hybrid

objective. (d) TIMIT: purely generative objective.
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ization factor with respect to the relative size of la-

beled/unlabeled set. The objective function in (15)

can be rewritten in terms of the normalized objective

with respect to the data size:

F (λ) = |DL|F (DL)
MMI (λ)+α|DU |F (DU )

ML (λ) . (15)

where F (X)
means the averaged value over the data

set X. When the labeled set size increases, α may

have to scale up accordingly such that the relative

change of the two averaged component remains in

the same scale.

Although α controls the dominance of the crite-

rion on labeled data or on unlabeled data, the fact

that which dominates the objective or the critical

value does not necessary indicate the best α. How-
ever, we observed that the best α is usually close to

or larger than the critical value, but the exact value

varies with different data. At this point, it might still

be easier to find the best weight using a small de-

velopment set. But this observation also provides a

guide about the reasonable range to search the best

α – searching starting from the critical value and it

should reach the optimal value soon according to the

plots in Figure 3.1.

Table 3: The critical values for waveform and TIMIT

for different sizes of labeled data (percentage of training

data) with a fixed set of unlabeled data (80 %.)

Size of labeled data waveform TIMIT

5% 0.09-0.11 0.03-0.04

10% 0.12-0.14 0.07-0.08

15% 0.5-0.6 0.08-0.09

20% 1-1.5 0.11-0.12
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Figure 3: Accuracy (left), FMMI (center), and FML (right) at different values of alpha.
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3.4 Hybrid Criterion vs. Purely Generative

Criterion

From the previous experiments, we found that the

hybrid criterion and purely generative criterion al-

most match each other in performance and are able

to learn models of the same complexity. This implies

that the criterion on labeled data has less impact on

the overall training direction than unlabeled data. In

Section 3.2, we mentioned that the best α is usually

larger than or close to the critical value around which

the unlabeled data likelihood tends to dominate the

training objective. This again suggests that labeled

data contribute less to the training objective function

compared to unlabeled data, and the criterion on la-

beled data doesn’t matter as much as the criterion on

unlabeled data. It is possible that most of the con-

tributions from labeled data have already been used

for training an initial MLE model, therefore little in-

formation could be extracted in the further training

process.

4 Conclusion

Regardless of the dataset and the training objective

type on labeled data, there are some general prop-

erties about the semi-supervised learning algorithms

studied in this work. First, while limited amount of

labeled data can at most train models of lower com-

plexity well, the addition of unlabeled data makes

the updated models of higher complexity much im-

proved and sometimes perform better than less com-

plex models. Second, the amount of unlabeled data

in our semi-supervised framework generally follows

‘the-more-the-better’ principle; there is a trend that

more unlabeled data results in more improvement in

classification accuracy over the supervised model.

We also found that the objective type on labeled

data has little impact on the updated model, in the

sense that hybrid and purely generative objectives

behave similarly in learning capability. The obser-

vation that the best α occurs after the MMI criterion

begins to decrease supports the fact that the criterion

on labeled data contributes less than the criterion on

unlabeled data. This observation is also helpful in

determining the search range for the best α on the

development set by locating the critical value of the

objective as a start point to perform search.

The unified training objective method has a nice

convergence property which self-training methods

can not guarantee. The next step is to extend the

similar framework to speech recognition task where

HMMs are trained and phone boundaries are seg-

mented. It would be interesting to compare it with

self-training methods in different aspects (e.g. per-

formance, reliability, stability and computational ef-

ficiency).
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