
Proceedings of the NAACL HLT Workshop on Semi-supervised Learning for Natural Language Processing, pages 49–57,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

An Analysis of Bootstrapping for the Recognition of Temporal Expressions

Jordi Poveda
TALP Research Center

Technical University of Catalonia (UPC)
Barcelona, Spain

jpoveda@lsi.upc.edu

Mihai Surdeanu
NLP Group

Stanford University
Stanford, CA

mihais@stanford.edu

Jordi Turmo
TALP Research Center

Technical University of Catalonia (UPC)
Barcelona, Spain

turmo@lsi.upc.edu

Abstract

We present a semi-supervised (bootstrapping)
approach to the extraction of time expression
mentions in large unlabelled corpora. Because
the only supervision is in the form of seed
examples, it becomes necessary to resort to
heuristics to rank and filter out spurious pat-
terns and candidate time expressions. The
application of bootstrapping to time expres-
sion recognition is, to the best of our knowl-
edge, novel. In this paper, we describe one
such architecture for bootstrapping Informa-
tion Extraction (IE) patterns —suited to the
extraction of entities, as opposed to events or
relations— and summarize our experimental
findings. These point out to the fact that a
pattern set with a good increase in recall with
respect to the seeds is achievable within our
framework while, on the other side, the de-
crease in precision in successive iterations is
succesfully controlled through the use of rank-
ing and selection heuristics. Experiments are
still underway to achieve the best use of these
heuristics and other parameters of the boot-
strapping algorithm.

1 Introduction
The problem of time expression recognition refers
to the identification in free-format natural language
text of the occurrences of expressions that denote
time. Time-denoting expressions appear in a great
diversity of forms, beyond the most obvious ab-
solute time or date references (e.g. 11pm, Febru-
ary 14th, 2005): time references that anchor on an-
other time (three hours after midnight, two weeks be-
fore Christmas), expressions denoting durations (a

few months), expressions denoting recurring times
(every third month, twice in the hour), context-
dependent times (today, last year), vague references
(somewhere in the middle of June, the near future)
or times that are indicated by an event (the day G.
Bush was reelected). This problem is a subpart of
a task called TERN (Temporal Expression Recog-
nition and Normalization), where temporal expres-
sions are first identified in text and then its intended
temporal meaning is represented in a canonical for-
mat. TERN was first proposed as an independent
task in the 2004 edition of the ACE conferences1.
The most widely used standard for the annotation of
temporal expressions is TIMEX (Ferro et al., 2005).

The most common approach to temporal expres-
sion recognition in the past has been the use of
hand-made grammars to capture the expressions (see
(Wiebe et al., 1998; Filatova and Hovy, 2001; Sa-
quete et al., 2004) for examples), which can then
be easily expanded with additional attributes for the
normalization task, based on computing distance
and direction (past or future) with respect to a ref-
erence time. This approach achieves an F1-measure
of approximately 85% for recognition and normal-
ization. The use of machine learning techniques —
mainly statistical— for this task is a more recent
development, either alongside the traditional hand-
grammar approach to learn to distinguish specific
difficult cases (Mani and Wilson, 2000), or on its
own (Hacioglu et al., 2005). The latter apply SVMs
to the recognition task alone, using the output of sev-
eral human-made taggers as additional features for
the classifier, and report an F1-measure of 87.8%.

1http://www.nist.gov/speech/tests/ace/

49

Bootstrapping techniques have been used for such
diverse NLP problems as: word sense disambigua-
tion (Yarowsky, 1995), named entity classification
(Collins and Singer, 1999), IE pattern acquisition
(Riloff, 1996; Yangarber et al., 2000; Yangarber,
2003; Stevenson and Greenwood, 2005), document
classification (Surdeanu et al., 2006), fact extraction
from the web (Paşca et al., 2006) and hyponymy re-
lation extraction (Kozareva et al., 2008).

(Yarowsky, 1995) used bootstrapping to train de-
cision list classifiers to disambiguate between two
senses of a word, achieving impressive classification
accuracy. (Collins and Singer, 1999) applied boot-
strapping to extract rules for named entity (NE) clas-
sification, seeding the sytem with a few handcrafted
rules. Their main innovation was to split training
in two alternate stages: during one step, only con-
textual rules are sought; during the second step, the
new contextual rules are used to tag further NEs and
these are used to produce new spelling rules.

Bootstrapping approaches are employed in
(Riloff, 1996), (Yangarber et al., 2000), (Yangarber,
2003), and (Stevenson and Greenwood, 2005)
in order to find IE patterns for domain-specific
event extraction. (Paşca et al., 2006) employ a
bootstrapping process to extract general facts from
the Web, viewed as two-term relationships (e.g
[Donald Knuth, 1938] could be an instance of
a “born in year” relationship). (Surdeanu et al.,
2006) used bootstrapping co-trained with an EM
classifier in order to perform topic classification
of documents based on the presence of certain
learned syntactic-semantic patterns. In (Kozareva
et al., 2008), bootstrapping is applied to finding
new members of certain class of objects (i.e. an
“is-a” relationship), by providing a member of the
required class as seed and using a “such as” type of
textual pattern to locate new instances.

The recognition of temporal expressions is cru-
cial for many applications in NLP, among them: IE,
Question Answering (QA) and Automatic Summa-
rization (for the temporal ordering of events). Work
on slightly supervised approaches such as bootstrap-
ping is justified by the large availability of unla-
belled corpora, as opposed to tagged ones, from
which to learn models for recognition.

2 Architecture
Figure 1 illustrates the building blocks of the algo-
rithm and their interactions, along with input and
output data.

The inputs to the bootstrapping algorithm are the
unlabelled training corpus and a file of seed ex-
amples. The unlabelled corpus is a large collec-
tion of documents which has been tokenized, POS
tagged, lemmatized, and syntactically analyzed for
basic syntactic constituents (shallow parsing) and
headwords. The second input is a set of seed exam-
ples, consisting of a series of token sequences which
we assume to be correct time expressions. The seeds
are supplied without additional features, and without
context information.

Our bootstrapping algorithm works with two al-
ternative views of the same target data (time expres-
sions), that is: patterns and examples (i.e. an in-
stance of a pattern in the corpus). A pattern is a gen-
eralized representation that can match any sequence
of tokens meeting the conditions expressed in the
pattern (these can be morphological, semantic, syn-
tactic and contextual). An example is an actual can-
didate occurrence of a time expression. Patterns are
generated from examples found in the corpus and,
in its turn, new examples are found by searching
for matches of new patterns. Both patterns and ex-
amples may carry contextual information, that is, a
window of tokens left and right of the candidate time
expression.

Output examples and output patterns are the out-
puts of the bootstrapping process. Both the set of
output examples and the set of output patterns are
increased with each new iteration, by adding the new
candidate examples (respectively, patterns) that have
been “accepted” during the last iteration (i.e. those
that have passed the ranking and selection step).

Initially, a single pass through the corpus is per-
formed in order to find occurrences of the seeds in
the text. Thus, we bootstrap an initial set of exam-
ples. From then on, the bootstrapping process con-
sists of a succession of iterations with the following
steps:

1. Ranking and selection of examples: Each ex-
ample produced during any of the previous it-
erations, 0 to i − 1, is assigned a score (rank-
ing). The top n examples are selected to grow
the set of output examples (selection) and will

50

Figure 1: Block diagram of bootstrapping algorithm

be used for the next step. The details are given
in Section 4.2.

2. Generation of candidate patterns: Candidate
patterns for the current iteration are generated
from the selected examples of the previous step
(discussed in Section 3).

3. Ranking and selection of candidate patterns:
Each pattern from the current iteration is as-
signed a score and the top m patterns are se-
lected to grow the set of output patterns and to
be used in the next step (discussed in Section
4.1). This step also involves a process of analy-
sis of subsumptions, performed simultaneously
with selection, in which the set of selected pat-
terns is examined and those that are subsumed
by other patterns are discarded.

4. Search for instances of the selected patterns:
The training corpus is traversed, in order to
search for instances (matches) of the selected
patterns, which, together with the accepted ex-
amples from all previous iterations, will form
the set of candidate examples for iteration i+1.

Also, in order to relax the matching of pat-
terns to corpus tokens and of token forms among
themselves, the matching of token forms is case-
insensitive, and all the digits in a token are gen-
eralized to a generic digit marker (for instance,
“12-23-2006” is internally rewritten as “@@-@@-
@@@@”).

Even though our architecture is built on a tradi-
tional boostrapping approach, there are several ele-
ments that are novel, at least in the context of tem-
poral expression recognition: a) our pattern repre-
sentation incorporates full syntax and distributional

semantics in a unified model (see Section 3); b) our
pattern ranking/selection approach includes a sub-
sumption model to limit redundancy; c) the formu-
lae in our example ranking/selection approach are
designed to work with variable-length expressions
that incorporate a context.

3 Pattern representation
Patterns capture both the sequence of tokens that
integrate a potential time expression (i.e. a time
expression mention), and information from the left
and right context where it occurs (up to a bounded
length). Let us call prefix the part of the pattern that
represents the left context, infix the part that repre-
sents a potential time expression mention and postfix
the part that represents the right context.

The EBNF grammar that encodes our pattern rep-
resentation is given in Figure 2. Patterns are com-
posed of multiple pattern elements (PEs). A pattern
element is the minimal unit that is matched against
the tokens in the text, and a single pattern element
can match to one or several tokens, depending on
the pattern element type. A pattern is considered to
match a sequence of tokens in the text when: first,
all the PEs from the infix are matched (this gives the
potential time expression mention) and, second, all
the PEs from the prefix and the postfix are matched
(this gives the left and right context information for
the new candidate example, respectively). There-
fore, patterns with a larger context window are more
restrictive, because all of the PEs in the prefix and
the postfix have to be matched (on top of the infix)
for the pattern to yield a match.

We distinguish among token-level generalizations

51

pattern ::= prefix SEP infix SEP postfix SEP
(modifiers)*

prefix ::= (pattern-elem)*
infix ::= (pattern-elem)+
postfix ::= (pattern-elem)*
pattern-elem ::= FORM "(" token-form ")" |

SEMCLASS "(" token-form ")" |
POS "(" pos-tag ")" | LEMMA "(" lemma-form ")" |
SYN "(" syn-type "," head ")" |
SYN-SEM "(" syn-type "," head ")"

modifiers ::= COMPLETE-PHRASE

Figure 2: The EBNF Grammar for Patterns

(i.e. PEs) and chunk-level generalizations. The for-
mer have been generated from the features of a sin-
gle token and will match to a single token in the text.
The latter have been generated from and match to a
sequence of tokens in the text (e.g. a basic syntactic
chunk). Patterns are built from the following types
of PEs (which can be seen in the grammar from Fig-
ure 2):

1. Token form PEs: The more restrictive, only
match a given token form.

2. Semantic class PEs: Match tokens (sometimes
multiwords) that belong to a given semantic
similarity class. This concept is defined below.

3. POS tag PEs: Match tokens with a given POS.
4. Lemma PEs: Match tokens with a given

lemma.
5. Syntactic chunk PEs: Match a sequence of to-

kens that is a syntactic chunk of a given type
(e.g. NP) and whose headword has the same
lemma as indicated.

6. Generalized syntactic PEs: Same as the previ-
ous, but the lemma of the headword may be any
in a given semantic similarity class.

The semantic similarity class of a word is defined
as the word itself plus a group of other semanti-
cally similar words. For computing these, we em-
ploy Lin’s corpus of pairwise distributional similari-
ties among words (nouns, verbs and adjectives) (Lin,
1998), filtered to include only those words whose
similarity value is above both an absolute (highest
n) and relative (to the highest similarity value in the
class) threshold. Even after filtering, Lin’s similari-
ties can be “noisy”, since the corpus has been con-
structed relying on purely statistical means. There-
fore, we are employing in addition a set of manu-
ally defined semantic classes (hardcoded lists) sen-
sitive to our domain of temporal expressions, such
that these lists “override” the Lin’s similarity cor-
pus whenever the semantic class of a word present

in them is involved. The manually defined semantic
classes include: the written form of cardinals; ordi-
nals; days of the week (plus today, tomorrow and
yesterday); months of the year; date trigger words
(e.g. day, week); time trigger words (e.g. hour, sec-
ond); frequency adverbs (e.g. hourly, monthly); date
adjectives (e.g. two- day, @@-week-long); and time
adjectives (e.g. three-hour, @@-minute-long).

We use a dynamic window for the amount of con-
text that is encoded into a pattern, that is, we gen-
erate all the possible patterns with the same infix,
and anything between 0 and the specified length of
the context window PEs in the prefix and the postfix,
and let the selection step decide which variations get
accepted into the next iteration.

The modifiers field in the pattern representa-
tion has been devised as an extension mecha-
nism. Currently the only implemented mod-
ifier is COMPLETE-PHRASE, which when at-
tached to a pattern, “rounds” the instance (i.e.
candidate time expression) captured by its infix
to include the closest complete basic syntactic
chunk (e.g. “LEMMA(end) LEMMA(of) SEM-
CLASS(January)” would match “the end of De-
cember 2009” instead of only “end of December”
against the text “. . . By the end of December 2009,
. . . ”). This modifier was implemented in view of the
fact that most temporal expressions correspond with
whole noun phrases or adverbial phrases.

From the above types of PEs, we have built the
following types of patterns:

1. All-lemma patterns (including the prefix and
postfix).

2. All-semantic class patterns.
3. Combinations of token form with sem. class.
4. Combinations of lemma with sem. class.
5. All-POS tag patterns.
6. Combinations of token form with POS tag.
7. Combinations of lemma with POS tag.
8. All-syntactic chunk patterns.
9. All-generalized syntactic patterns.

4 Ranking and selection of patterns and
learning examples

4.1 Patterns
For the purposes of this section, let us define the
control set C as being formed by the seed examples
plus all the selected examples over the previous it-
erations (only the infix considered, not the context).

52

Note that, except for the seed examples, this is only
assumed correct, but cannot be guaranteed to be cor-
rect (unsupervised). In addition, let us define the in-
stance set Ip of a candidate pattern p as the set of
all the instances of the pattern found in a fraction of
the unlabelled corpus (only infix of the instance con-
sidered). Each candidate pattern pat is assigned two
partial scores:

1. A frequency-based score freq sc(p) that mea-
sures the coverage of the pattern in (a section
of) the unsupervised corpus:
freq sc(p) = Card(Ip ∩ C)

2. A precision score prec sc(p) that evaluates the
precision of the pattern in (a section of) the un-
supervised corpus, measured against the con-
trol set:
prec sc(p) = Card(Ip∩C)

Card(Ip)

These two scores are computed only against a
fraction of the unlabelled corpus for time effi-
ciency. There remains an issue with whether multi-
sets (counting each repeated instance several times)
or normal sets (counting them only once) should be
used for the instance sets Ip. Our experiments indi-
cate that the best results are obtained by employing
multisets for the frequency-based score and normal
sets for the precision score.

Given the two partial scores above, we have tried
three different strategies for combining them:

• Multiplicative combination: λ1 log(ε1 +
freq sc(p)) + λ2 log(ε2 + prec sc(p))

• The strategy suggested in (Collins and Singer,
1999): Patterns are first filtered by imposing
a threshold on their precision score. Only for
those patterns that pass this first filter, their final
score is considered to be their frequency-based
score.

• The strategy suggested in (Riloff, 1996):{
prec sc(p) · log(freq sc(p)) if prec sc(p) ≥ thr

0 otherwise

4.1.1 Analysis of subsumptions
Intertwined with the selection step, an analysis of

subsumptions is performed among the selected pat-
terns, and the patterns found to be subsumed by oth-
ers in the set are discarded. This is repeated until ei-
ther a maximum of m patterns with no subsumptions

among them are selected, or the list of candidate pat-
terns is exhausted, whichever happens first. The pur-
pose of this analysis of subsumptions is twofold: on
the one hand, it results in a cleaner output pattern
set by getting rid of redundant patterns; on the other
hand, it improves temporal efficiency by reducing
the number of patterns being handled in the last step
of the algorithm (i.e. searching for new candidate
examples).

In our scenario, a pattern p1 with instance set Ip1

is subsumed by a pattern p2 with instance set Ip2

if Ip1 ⊂ Ip2 . We make a distinction among “theo-
retical” and “empirical” subsumptions. Theoretical
subsumptions are those that can be justified based on
theoretical grounds alone, from observing the form
of the patterns. Empirical subsumptions are those
cases where in fact one pattern subsumes another ac-
cording to the former definition, but this could only
be detected by having calculated their respective in-
stance sets a priori, which beats one of the purposes
of the analysis of subsumptions —namely, tempo-
ral efficiency—. We are only dealing with theoreti-
cal subsumptions here. A pattern theoretically sub-
sumes another pattern when either of these condi-
tions occur:

• The first pattern is identical to the second, ex-
cept that the first has fewer contextual PEs in
the prefix and/or the postfix.

• Part or all of the PEs of the first pattern are
identical to the corresponding PEs in the sec-
ond pattern, except for the fact that they are
of a more general type (element-wise); the re-
maining PEs are identical. To this end, we have
defined a partial order of generality in the PE
types (see section 3), as follows:
FORM ≺ LEMMA ≺ SEMCLASS; FORM ≺ POS;

SYN ≺ SYN-SEMC

• Both the above conditions (fewer contextual
PEs and of a more general type) happen at the
same time.

4.2 Learning Examples
An example is composed of the tokens which have
been identified as a potential time expression (which
we shall call the infix) plus a certain amount of left
and right context (from now on, the context) en-
coded alongside the infix. For ranking and selecting

53

examples, we first assign a score and select a num-
ber n of distinct infixes and, in a second stage, we
assign a score to each context of appearance of an
infix and select (at most) m contexts per infix. Our
scoring system for the infixes is adapted from (Paşca
et al., 2006). Each distinct infix receives three par-
tial scores and the final score for the infix is a linear
combination of these, with the λi being parameters:
λ1sim sc(ex) + λ2pc sc(ex) + λ3ctxt sc(ex)

1. A similarity-based score (sim sc(ex)), which
measures the semantic similarity (as per the
Lin’s similarity corpus (Lin, 1998)) of the
infix with respect to set of “accepted” output
examples from all previous iterations plus the
initial seeds. If w1, . . . , wn are the tokens in
the infix (excluding stopwords); ej,1, . . . , ej,mj

are the tokens in the j-th example of the set
E of seed plus output examples; and sv(x, y)
represents a similarity value, the similarity
Sim(wi) of the i-th word of the infix wrt
the seeds and output is given by Sim(wi) =
∑|E|

j=1 max(sv(wi, ej,1), . . . , sv(wi, ej,mj)),
and the similarity-based score of an in-
fix containing n words is given by∑n

i=1
log(1+Sim(wi))

n .
2. A phrase-completeness score (pc sc(ex)),

which measures the likelihood that the infix
is a complete time expression and not merely
a part of one, over the entire set of candidate
example: count(INFIX)

count(∗INFIX∗)
3. A context-based score (ctxt sc(ex)), intended

as a measure of the infix’s relevance. For each
context (up to a length) where this infix appears
in the corpus, the frequency of the word with
maximum relative frequency (over the words
in all the infix’s contexts) is taken. The sum
is then scaled by the relative frequency of this
particular infix.

Apart from the score associated with the infix,
each example (i.e. infix plus a context) receives
two additional frequency scores for the left and right
context part of the example respectively. Each of
these is given by the relative frequency of the token
with maximum frequency of that context, computed
over all the tokens that appear in all the contexts of
all the candidate examples. For each selected infix,
the m contexts with best score are selected.

5 Experiments
5.1 Experimental setup

As unsupervised data for our experiments, we use
the NW (newswire) category of LDC’s ACE 2005
Unsupervised Data Pool, containing 456 Mbytes of
data in 204K documents for a total of over 82 mil-
lion tokens. Simultaneously, we use a much smaller
labelled corpus (where the correct time expressions
are tagged) to measure the precision, recall and F1-
measure of the pattern set learned by the bootstrap-
ping process. This is the ACE 2005 corpus, contain-
ing 550 documents with 257K tokens and approx.
4650 time expression mentions. The labelled corpus
is split in two halves: one half is used to obtain the
initial seed examples from among the time expres-
sions found therein; the other half is used for eval-
uation. We are requiring that a pattern captures the
target time expression mention exactly (no misalign-
ment allowed at the boundaries), in order to count it
as a precision or recall hit.

We will also be interested in measuring the gain
in recall, that is, the difference between the recall
in the best iteration and the initial recall given by
the seeds. Also important is the number of iter-
ations after which the bootstrapping process con-
verges. In the case where the same F1- measure
mark is achieved in two experimental settings, ear-
lier convergence of the algorithm will be prefered.
Otherwise, better F1 and gain in recall are the pri-
mary goals.

In order to start with a set of seeds with high pre-
cision, we select them automatically, imposing that
a seed time expression must have precision above a
certain value (understood as the percentage, of all
the appearances of the sequence of tokens in the su-
pervised corpus, those in which it is tagged as a cor-
rect time expression). In the experiments presented
below, this threshold for precision of the seeds is
90% —in the half of the supervised corpus reserved
for extraction of seeds—. From those that pass this
filter, the ones that appear with greater frequency are
selected. For time expressions that have an identi-
cal digit pattern (e.g. two dates “@@ December”
or two years “@@@@”, where @ stands for any
digit), only one seed is taken. This approach sim-
ulates the human domain expert, which typically is
the first step in bootstrapping IE models

54

Unless specifically stated otherwise, all the exper-
iments presented below share the following default
settings:
• Only the first 2.36 Mbytes of the unsupervised

corpus are used (10 Mbytes after tokenization
and feature extraction), that is 0.5% of the
available data. This is to keep the execution
time of experiments low, where multiple exper-
iments need to be run to optimize a certain pa-
rameter.

• We use the Collins and Singer strategy (see
section 4.1) with a precision threshold of 0.50
for sub-score combination in pattern selection.
This strategy favours patterns with slightly
higher precision.

• The maximum length of prefix and postfix is 1
and 0 elements, respectively. This was deter-
mined experimentally.

• 100 seed examples are used (out of a maximum
of 605 available).

• In the ranking of examples, the λi weights for
the three sub- scores for infixes are 0.5 for
the “similarity-based score”, 0.25 for “phrase-
completeness” and 0.25 for “context-based
score”.

• In the selection of examples, the maximum
number of new infixes accepted per iteration is
200, with a maximum of 50 different contexts
per infix. In the selection of patterns, the max-
imum number of new accepted patterns per it-
eration is 5000 (although this number is never
reached due to the analysis of subsumptions).

• In the selection of patterns, multisets are used
for computing the instance set of a pattern
for the frequency-based score and normal sets
for the precision score (determined experimen-
tally).

• The POS tag type of generalization (pattern el-
ement) has been deactivated, that is, neither all-
POS patterns, nor patterns that are combina-
tions of POS PEs with another are generated.
After an analysis of errors, it was observed that
POS generalizations (because of the fact that
they are not lexicalized like, for instance, the
syntactic PEs with a given headword) give rise
to a considerable number of precision errors.

• All patterns are generated with COMPLETE-
PHRASE modifier automatically attached. It
was determined experimentally that it was best
to use this heuristic in all cases (see section 3).

5.2 Variation of the number of seeds

We have performed experiments using 1, 5, 10, 20,
50, 100, 200 and 500 seeds. The general trends ob-
served were as follows. The final precision (when
the bootstrapping converges) decreases more or less
monotonically as the number of seeds increases, al-
though there are slight fluctuations; besides, the dif-
ference in this respect between using few seeds (20
to 50) or more (100 to 200) is of only around 3%.
However, a big leap can be observed in moving from
200 to 500 seeds, where both the initial precision
(of the seeds) and final precision (at point of con-
vergence) drop by 10% wrt to using 200 seeds. The
final recall increases monotonically as the number
of seeds increases —since more supervised informa-
tion is provided—. The final F1-measure first in-
creases and then decreases with an increasing num-
ber of seeds, with an optimum value being reached
somewhere between the 50 and 100 seeds.

The largest gain in recall (difference between re-
call of the seeds and recall at the point of con-
vergence) is achieved with 20 seeds, for a gain
of 16.38% (initial recall is 20.08% and final is
36.46%). The best mark in F1-measure is achieved
with 100 seeds, after 6 iterations: 60.43% (the final
precision is 69.29% and the final recall is 53.58%;
the drop in precision is 6.5% and the gain in recall is
14.28%). Figure 3 shows a line plot of precision vs
recall for these experiments. This experiment sug-
gests that the problem of temporal expression recog-
nition can be captured with minimal supervised in-
formation (100 seeds) and larger amounts of unsu-
pervised information.

Figure 3: Effect of varying the number of seeds

55

5.3 Variation of the type of generalizations
used in patterns

In these experiments, we have defined four differ-
ents sets of generalizations (i.e. types of pattern ele-
ments among those specified in section 3) to evalu-
ate how semantic and syntactic generalizations con-
tribute to performance of the algorithm. These four
experiments are labelled as follows: NONE includes
only PEs of the LEMMA type; SYN includes PEs
of the lemma type and of the not-generalized syn-
tactic chunk (SYN) type; SEM includes PEs of the
lemma type and of the semantic class (SEMCLASS)
type, as well as combinations of lemma with SEM-
CLASS PEs; and lastly, SYN+SEM includes every-
thing that both SYN and SEM experiments include,
plus PEs of the generalized syntactic chunk (SYN-
SEMC) type.

One can observe than neither type of generaliza-
tion, syntactic or semantic, is specially “effective”
when used in isolation (only a 3.5% gain in recall in
both cases). It is only the combination of both types
that gives a good gain in recall (14.28% in the case
of this experiment). Figure 4 shows a line plot of this
experiment. The figure indicates that the problem of
temporal expression recognition, even though appar-
ently simple, requires both syntactic and semantic
information for efficient modeling.

Figure 4: Effect of using syntactic and/or semantic gen-
eralizations
5.4 Variation of the size of unsupervised data

used
We performed experiments using increasing
amounts of unsupervised data for training in the
bootstrapping: 1, 5, 10, 50 and 100 Mbytes of
preprocessed corpus (tokenized and with feature
extraction). The amounts of plain text data are

roughly a fifth part, respectively. The objective
of these experiments is to determine whether
performance improves as the amount of training
data is increased. The number of seeds passed to
the bootstrapping is 68. The maximum number of
new infixes (the part of an example that contains a
candidate time expression) accepted per iteration
has been increased from 200 to 1000, because it
was observed that larger amounts of unsupervised
training data need a greater number of selection
“slots” in order to render an improvement (that is, a
more “reckless” bootstrapping), otherwise they will
fill up all the allowed selection slots.

The observed effect is that both the drop in preci-
sion (from the initial iteration to the point of conver-
gence) and the gain in recall improve more or less
consistently as a larger amount of training data is
taken, or otherwise the same recall point is achieved
in an earlier iteration. These improvements are nev-
ertheless slight, in the order of between 0.5% and
2%. The biggest improvement is observed in the 100
Mbytes experiment, where recall after 5 iterations is
6% better than in the 50 Mbytes experiment after 7
iterations. The drop in precision in the 100 Mbytes
experiment is 13.05%, for a gain in recall of 21.36%
(final precision is 71.02%, final recall 52.84% and
final F1 60.59%). Figure 5 shows a line plot of this
experiment. This experiment indicates that increas-
ing amounts of unsupervised data can be used to im-
prove the performance of our model, but the task is
not trivial.

Figure 5: Effect of varying the amount of unsupervised
training data

6 Conclusions and future research
We have presented a slightly supervised algorithm
for the extraction of IE patterns for the recognition

56

of time expressions, based on bootstrapping, which
introduces a novel representation of patterns suited
to this task. Our experiments show that with a rel-
atively small amount of supervision (50 to 100 ini-
tial correct examples or seeds) and using a combina-
tion of syntactic and semantic generalizations, it is
possible to obtain an improvement of around 15%-
20% in recall (with regard to the seeds) and F1-
measure over 60% learning exclusively from unla-
belled data. Furthermore, using increasing amounts
of unlabelled training data (of which there is plenty
available) is a workable way to obtain small im-
provements in performance, at the expense of train-
ing time. Our current focus is on addressing specific
problems that appear on inspection of the precision
errors in test, which can improve both precision and
recall to a degree. Future planned lines of research
include using WordNet for improving the semantic
aspects of the algorithm (semantic classes and simi-
larity), and studying forms of combining the patterns
obtained in this semi-supervised approach with su-
pervised learning.

References

M. Collins and Y. Singer. 1999. Unsupervised mod-
els for named entity classification. In Proceedings of
the Joint SIGDAT Conference on Empirical Methods
in Natural Language Processing and Very Large Cor-
pora, pages 100–110, College Park, MD. ACL.

L. Ferro, L. Gerber, I. Mani, B. Sundheim, and G. Wil-
son. 2005. Tides 2005 standard for the annotation of
temporal expressions. Technical report, MITRE Cor-
poration.

E. Filatova and E. Hovy. 2001. Assigning time-stamps to
event-clauses. In Proceedings of the 2001 ACL Work-
shop on Temporal and Spatial Information Processing,
pages 88–95.

K. Hacioglu, Y. Chen, and B. Douglas. 2005. Automatic
time expression labelling for english and chinese text.
In Proc. of the 6th International Conference on Intel-
ligent Text Processing and Computational Linguistics
(CICLing), pages 548–559. Springer.

Z. Kozareva, E. Riloff, and E. Hovy. 2008. Seman-
tic class learning from the web with hyponym pattern
linkage graphs. In Proc. of the Association for Com-
putational Linguistics 2008 (ACL-2008:HLT), pages
1048–1056.

D. Lin. 1998. Automatic retrieval and clustering of sim-
ilar words. In Proceedings of the 17th International
Conference on Computational Linguistics and the 36th

Annual Meeting of the Association for Computational
Linguistics (COLING-ACL-98), pages 768–774, Mon-
treal, Quebec. ACL.

I. Mani and G. Wilson. 2000. Robust temporal process-
ing of news. In Proceedings of the 38th Annual Meet-
ing of the Association for Computational Linguistics,
pages 69–76, Morristown, NJ, USA. ACL.

M. Paşca, D. Lin, J. Bigham, A. Lifchits, and A. Jain.
2006. Names and similarities on the web: Fact extrac-
tion in the fast lane. In Proceedings of the 21th In-
ternational Conference on Computational Linguistics
and 44th Annual Meeting of the ACL, pages 809–816.
ACL.

E. Riloff. 1996. Automatically generating extraction pat-
terns from untagged text. In Proceedings of the Thir-
teenth National Conference on Artificial Intelligence
(AAAI-96), pages 1044–1049. AAAI/MIT Press.

E. Saquete, R. Muñoz, and P. Martı́nez-Barco. 2004.
Event ordering using terseo system. In Proc. of the
9th International Conference on Application of Natu-
ral Language to Information Systems (NLDB), pages
39–50. Springer.

M. Stevenson and M. Greenwood. 2005. A semantic
approach to IE pattern induction. In Proceedings of
the 43rd Meeting of the Association for Computational
Linguistics, pages 379–386. ACL.

M. Surdeanu, J. Turmo, and A. Ageno. 2006. A hybrid
approach for the acquisition of information extraction
patterns. In Proceedings of the EACL 2006 Workshop
on Adaptive Text Extraction and Mining (ATEM 2006).
ACL.

J. M. Wiebe, T. P. O’Hara, T. Ohrstrom-Sandgren, and
K. J. McKeever. 1998. An empirical approach to tem-
poral reference resolution. Journal of Artificial Intelli-
gence Research, 9:247–293.

R. Yangarber, R. Grishman, P. Tapanainen, and
S. Hutunen. 2000. Automatic acquisition of domain
knowledge for information extraction. In Proceedings
of the 18th International Conference of Computational
Linguistics, pages 940–946.

R. Yangarber. 2003. Counter-training in discovery of
semantic patterns. In Proceedings of the 41st Annual
Meeting of the Association for Computational Linguis-
tics. ACL.

D. Yarowsky. 1995. Unsupervised word sense disam-
biguation rivaling supervised methods. In Proceed-
ings of the 33rd Annual Meeting of the Association
for Computational Linguistics, pages 189–196, Cam-
bridge, MA. ACL.

57

