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Abstract

This paper evaluates two semi-supervised
techniques for the adaptation of a parse selec-
tion model to Wikipedia domains. The tech-
niques examined areStructural Correspon-
dence Learning (SCL) (Blitzer et al., 2006)
andSelf-training (Abney, 2007; McClosky et
al., 2006). A preliminary evaluation favors the
use of SCL over the simpler self-training tech-
niques.

1 Introduction and Motivation

Parse selection constitutes an important part of many
parsing systems (Hara et al., 2005; van Noord and
Malouf, 2005; McClosky et al., 2006). Yet, there
is little to no work focusing on theadaptation of
parse selection models to novel domains. This is
most probably due to the fact that potential gains
for this task are inherently bounded by the under-
lying grammar. The few studies on adapting parse
disambiguation models, like Hara et al. (2005), have
focused exclusively onsupervised domain adapta-
tion, i.e. one has access to a comparably small, but
labeled amount of target data. In contrast, insemi-
supervised domain adaptation one has onlyunla-
beled target data. It is a more realistic situation, but
at the same time also considerably more difficult.

In this paper we evaluate two semi-supervised
approaches to domain adaptation of a discrimina-
tive parse selection model. We examineStruc-
tural Correspondence Learning (SCL) (Blitzer et
al., 2006) for this task, and compare it to several
variants ofSelf-training (Abney, 2007; McClosky et
al., 2006). For empirical evaluation (section 4) we
use the Alpino parsing system for Dutch (van Noord

and Malouf, 2005). As target domain, we exploit
Wikipedia as primary test and training collection.

2 Previous Work

So far, Structural Correspondence Learning has
been applied successfully to PoS tagging and Sen-
timent Analysis (Blitzer et al., 2006; Blitzer et
al., 2007). An attempt was made in the CoNLL
2007 shared task to apply SCL to non-projective de-
pendency parsing (Shimizu and Nakagawa, 2007).
However, the system just ended up at rank 7 out
of 8 teams. Based on annotation differences in the
datasets (Dredze et al., 2007) and a bug in their sys-
tem (Shimizu and Nakagawa, 2007), their results are
inconclusive. A recent attempt (Plank, 2009) shows
promising results on applying SCL to parse disam-
biguation. In this paper, we extend that line of work
and compare SCL to bootstrapping approaches such
as self-training.

Studies on self-training have focused mainly on
generative, constituent based parsing (Steedman et
al., 2003; McClosky et al., 2006; Reichart and Rap-
poport, 2007). Steedman et al. (2003) as well as Re-
ichart and Rappoport (2007) examine self-training
for PCFG parsing in the small seed case (< 1k la-
beled data), with different results. In contrast, Mc-
Closky et al. (2006) focus on large seeds and exploit
a reranking-parser. Improvements are obtained (Mc-
Closky et al., 2006; McClosky and Charniak, 2008),
showing that a reranker is necessary for successful
self-training in such a high-resource scenario. While
they self-trained a generative model, we examine
self-training and SCL for semi-supervised adapta-
tion of a discriminative parse selection system.
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3 Semi-supervised Domain Adaptation

3.1 Structural Correspondence Learning

Structural Correspondence Learning (Blitzer et al.,
2006) exploits unlabeled data from both source and
target domain to find correspondences among fea-
tures from different domains. These correspon-
dences are then integrated as new features in the la-
beled data of the source domain. The outline of SCL
is given in Algorithm 1.

The key to SCL is to exploitpivot features to au-
tomatically identify feature correspondences. Piv-
ots are features occurring frequently and behaving
similarly in both domains (Blitzer et al., 2006).
They correspond to auxiliary problems in Ando and
Zhang (2005). For every such pivot feature, a binary
classifier is trained (step 2 of Algorithm 1) by mask-
ing the pivot feature in the data and trying to predict
it with the remaining non-pivot features. Non-pivots
that correlate with many of the same pivots are as-
sumed to correspond. These pivot predictor weight
vectors thus implicitly align non-pivot features from
source and target domain. Intuitively, if we are able
to find good correspondences through ’linking’ piv-
ots, then the augmented source data should transfer
better to a target domain (Blitzer et al., 2006).

Algorithm 1 SCL (Blitzer et al., 2006)
1: Selectm pivot features.
2: Train m binary classifiers (pivot predictors). Cre-

ate matrixWn×m of binary predictor weight vectors
W = [w1, .., wm], with n number of nonpivots.

3: Dimensionality Reduction. Apply SVD toW :
Wn×m = Un×nDn×mV T

m×m and selectθ = UT
[1:h,:]

(theh top left singular vectors ofW ).
4: Train a new model on the original and new features

obtained by applying the projectionx · θ.

SCL for Discriminative Parse Selection So far,
pivot features on the word level were used (Blitzer
et al., 2006; Blitzer et al., 2007). However, for parse
disambiguation based on a conditional model they
are irrelevant. Hence, we follow Plank (2009) and
actually first parse the unlabeled data. This allows
a possibly noisy, but more abstract representation
of the underlying data. Features thus correspond to
properties of parses: application of grammar rules
(r1,r2 features), dependency relations (dep), PoS

tags (f1,f2), syntactic features (s1), precedence (mf ),
bilexical preferences (z), apposition (appos) and fur-
ther features for unknown words, temporal phrases,
coordination (h,in year andp1, respectively). These
features are further described in van Noord and Mal-
ouf (2005).

Selection of pivot features As pivot features
should be common across domains, here we restrict
our pivots to be of the typer1,p1,s1 (the most fre-
quently occurring feature types). In more detail,r1
indicates which grammar rule applied,p1 whether
coordination conjuncts are parallel, ands1 whether
local/non-local extraction occurred. We count how
often each feature appears in the parsed source and
target domain data, and select thoser1,p1,s1 fea-
tures aspivot features, whose count is> t, where
t is a specified threshold. In all our experiments, we
set t = 5000. In this way we obtained on average
360 pivot features, on the datasets described in Sec-
tion 4.

3.2 Self-training

Self-training (Algorithm 2) is a simple single-view
bootstrapping algorithm. In self-training, the newly
labeled instances are taken at face value and added
to the training data.

There are many possible ways to instantiate self-
training (Abney, 2007). One variant, introduced in
Abney (2007) is the notion of ’(in)delibility’: in the
delible case the classifier relabels all of the unla-
beled data from scratch in every iteration. The clas-
sifier may become unconfident about previously se-
lected instances and they may drop out (Steven Ab-
ney, personal communication). In contrast, in the
indelible case, labels once assigned do not change
again (Abney, 2007).

In this paper we look at the following variants of
self-training:

• single versus multiple iterations,

• selection versus no selection (taking all self-
labeled data or selecting presumably higher
quality instances); different scoring functions
for selection,

• delibility versus indelibility for multiple itera-
tions.
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Algorithm 2 Self-training (indelible) (Abney, 2007).
1: L0 is labeled [seed] data,U is unlabeled data
2: c← train(L0)
3: repeat
4: L← L + select(label(U − L, c))
5: c← train(L)
6: until stopping criterion is met

Scoring methods We examine three simple scor-
ing functions for instance selection: i)Entropy
(−∑

y∈Y (s) p(ω|s, θ) log p(ω|s, θ)). ii) Number of
parses (|Y (s)|); and iii) Sentence Length (|s|).

4 Experiments and Results

Experimental Design The system used in this
study is Alpino, a two-stage dependency parser for
Dutch (van Noord and Malouf, 2005). The first
stage consists of a HPSG-like grammar that consti-
tutes the parse generation component. The second
stage is a Maximum Entropy (MaxEnt) parse selec-
tion model. To train the MaxEnt model, parame-
ters are estimated based on informative samples (Os-
borne, 2000). A parse is added to the training data
with a score indicating its “goodness” (van Noord
and Malouf, 2005). The score is obtained by com-
paring it with the gold standard (if available; other-
wise the score is approximated through parse proba-
bility).

The source domain is the Alpino Treebank (van
Noord and Malouf, 2005) (newspaper text; approx.
7,000 sentences; 145k tokens). We use Wikipedia
both as testset and as unlabeled target data source.
We assume that in order to parse data from a very
specific domain, say about the artist Prince, then
data related to that domain, like information about
the New Power Generation, the Purple rain movie,
or other American singers and artists, should be of
help. Thus, we exploit Wikipedia’s category system
to gather domain-specific target data. In our empiri-
cal setup, we follow Blitzer et al. (2006) and balance
the size of source and target data. Thus, depending
on the size of the resulting target domain dataset, and
the “broadness” of the categories involved in creat-
ing it, we might wish to filter out certain pages. We
implemented a filter mechanism that excludes pages
of a certain category (e.g. a supercategory that is hy-
pothesized to be “too broad”). Further details about

the dataset construction are given in (Plank, 2009).
Table 1 provides information on the target domain
datasets constructed from Wikipedia.

Related to Articles Sents Tokens Relationship
Prince 290 9,772 145,504 filtered super
Paus 445 8,832 134,451 all
DeMorgan 394 8,466 132,948 all

Table 1: Size of related unlabeled data; relationship in-
dicates whether all related pages are used or some are
filtered out.

The size of the target domain testsets is given in
Table 2. As evaluation measure concept accuracy
(CA) (van Noord and Malouf, 2005) is used (similar
to labeled dependency accuracy).

The training data for the pivot predictors are the
1-best parses of source and target domain data as
selected by the original Alpino model. We report
on results of SCL with dimensionality parameter set
to h = 25, and remaining settings identical to Plank
(2009) (i.e., no feature-specific regularization and no
feature normalization and rescaling).

Baseline Table 2 shows the baseline accuracies
(model trained on labeled out-of-domain data) on
the Wikipedia testsets (last column: size in number
of sentences). The second and third column indicate
lower (first parse) and upper- (oracle) bounds.

Wikipedia article baseline first oracle sent
Prince (musician) 85.03 71.95 88.70357
Paus Johannes Paulus II 85.72 74.30 89.09232
Augustus De Morgan 80.09 70.08 83.52254

Table 2: Supervised Baseline results.

SCL and Self-training results The results for
SCL (Table 3) show a small, but consistent increase
in absolute performance on all testsets over the base-
lines (up to+0.27 absolute CA or 7.34% relative
error reduction, which is significant atp < 0.05 ac-
cording to sign test).

In contrast, basic self-training (Table 3) achieves
roughly only baseline accuracy and lower perfor-
mance than SCL, with one exception. On the De-
Morgan testset, self-training scores slightly higher
than SCL. However, the improvements of both SCL
and self-training are not significant on this rather
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small testset. Indeed, self-training scores better than
the baseline on only 5 parses out of 254, while its
performance is lower on 2, leaving only 3 parses that
account for the difference.

CA φ Rel.ER
Prince baseline 85.03 78.06 0.00
SCL ⋆ 85.30 79.67 7.34
Self-train (all-at-once) 85.08 78.38 1.46
Paus baseline 85.72 77.23 0.00
SCL 85.82 77.87 2.81
Self-train (all-at-once) 85.78 77.62 1.71
DeMorgan baseline 80.09 74.44 0.00
SCL 80.15 74.92 1.88
Self-train (all-at-once) 80.24 75.63 4.65

Table 3: Results of SCL and self-training (single itera-
tion, no selection). Entries marked with⋆ are statistically
significant atp < 0.05. Theφ score incorporates upper-
and lower-bounds.

To gauge whether other instantiations of self-
training are more effective, we evaluated the self-
training variants introduced in section 3.2 on the
Prince dataset. In the iterative setting, we fol-
low Steedman et al. (2003) and parse 30 sentences
from which 20 are selected in every iteration.

With regard to the comparison of delible versus
indelible self-training (whether labels may change),
our empirical findings shows that the two cases
achievevery similar performance; the two curves
highly overlap (Figure 1). The accuracies of both
curves fluctuate around 85.13, showing no upward
or downward trend. In general, however, indelibility
is preferred since it takes considerably less time (the
classifier does not have to relabelU from scratch in
every iteration). In addition, we tested EM (which
uses all unlabeled data in each iteration). Its per-
formance is consistently lower, varying around the
baseline.

Figure 2 compares several self-training variants
with the supervised baseline and SCL. It summa-
rizes the effect of i) selection versus no selection
(and various selection techniques) as well as ii) sin-
gle versus multiple iterations of self-training. For
clarity, the figure shows the learning curve of the
best selection technique only, but depicts the perfor-
mance of the various selection techniques in a single
iteration (non-solid lines).

In the iterative setting, taking the whole self-
labeled data and not selecting certain instances (grey

curve in Figure 2) degrades performance. In con-
trast, selecting shorter sentences slightly improves
accuracy, and is the best selection method among
the ones tested (shorter sentences, entropy, fewer
parses).

For all self-training instantiations, running multi-
ple iterations is on average just the same as running
a single iteration (the non-solid lines are roughly the
average of the learning curves). Thus there is no real
need to run several iterations of self-training.

The main conclusion is that in contrast to SCL,
none of the self-training instantiations achieves a
significant improvement over the baseline.

5 Conclusions and Future Work

The paper compares Structural Correspondence
Learning (Blitzer et al., 2006) with (various in-
stances of) self-training (Abney, 2007; McClosky
et al., 2006) for the adaptation of a parse selection
model to Wikipedia domains.

The empirical findings show that none of the eval-
uated self-training variants (delible/indelible, single
versus multiple iterations, various selection tech-
niques) achieves a significant improvement over the
baseline. The more ’indirect’ exploitation of unla-
beled data through SCL is more fruitful than pure
self-training. Thus, favoring the use of the more
complex method, although the findings are not con-
firmed on all testsets.

Of course, our results are preliminary and, rather
than warranting yet many definite conclusions, en-
courage further investigation of SCL (varying size
of target data, pivots selection, bigger testsets as
well as other domains etc.) as well as related semi-
supervised adaptation techniques.
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Figure 1: Delible versus Indelible self-training and EM. Delible and indelible self-training achievevery similar per-
formance. However, indelibility is preferred over delibility since it is considerably faster.
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Figure 2: Self-training variants compared to supervised baseline and SCL. The effect of various selection techniques
(Sec. 3.2) in a single iteration is depicted (non-solid lines; fewer parses and no selection achieve identical results). For
clarity, the figure shows the learning curve for the best selection technique only (shorter sent) versus no selection. On
average running multiple iterations is just the same as a single iteration. In all cases SCL still performs best.
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