
NAACL HLT 2009

Semi-supervised Learning
for

Natural Language
Processing

Proceedings of the Workshop

June 4, 2009
Boulder, Colorado



Production and Manufacturing by
Omnipress Inc.
2600 Anderson Street
Madison, WI 53707
USA

c©2009 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-932432-38-1

ii



Introduction

Welcome to the NAACL HLT Workshop on Semi-supervised Learning for Natural Language
Processing!

Will semi-supervised learning (SSL) become the next de-facto standard for building natural language
processing (NLP) systems, just as supervised learning has transformed the field in the last decade?
Or will it remain as a nice idea that doesn’t always work in practice? Semi-supervised learning has
become an important topic due to the promise that high-quality labeled data and abundant unlabeled
data, if leveraged appropriately, can achieve superior performance at lower cost. As researchers in
semi-supervised learning reach critical mass, we believe it is time to take a step back and think broadly
about whether we can discover general insights from the various techniques developed for different
NLP tasks.

The goal of this workshop is to help build a community of SSL-NLP researchers and foster discussions
about insights, speculations, and results (both positive and negative) that may otherwise not appear in a
technical paper at a major conference. In our call-for-paper, we posed some open questions:

1. Problem Structure: What are the different classes of NLP problem structures (e.g. sequences,
trees, N-best lists) and what algorithms are best suited for each class? For instance, can graph-based
algorithms be successfully applied to sequence-to-sequence problems like machine translation, or are
self-training and feature-based methods the only reasonable choices for these problems?

2. Background Knowledge: What kinds of NLP-specific background knowledge can we exploit to aid
semi-supervised learning? Recent learning paradigms such as constraint-driven learning and prototype
learning take advantage of our domain knowledge about particular NLP tasks; they represent a move
away from purely data-agnostic methods and are good examples of how linguistic intuition can drive
algorithm development.

3. Scalability: NLP data-sets are often large. What are the scalability challenges and solutions for
applying existing semi-supervised learning algorithms to NLP data?

4. Evaluation and Negative Results: What can we learn from negative results? Can we make an
educated guess as to when semi-supervised learning might outperform supervised or unsupervised
learning based on what we know about the NLP problem?

5. To Use or Not To Use: Should semi-supervised learning only be employed in low-resource
languages/tasks (i.e. little labeled data, much unlabeled data), or should we expect gains even in high-
resource scenarios (i.e. expecting semi-supervised learning to improve on a supervised system that is
already more than 95% accurate)?

We received 17 submissions and selected 10 papers after a rigorous review process. These papers cover
a variety of tasks, ranging from information extraction to speech recognition. Some introduce new
techniques, while others compared existing methods under a variety of situations. We are pleased to
present these papers in this volume.

Our workshop will be kicked off with a keynote talk by Jason Eisner (Johns Hopkins University). We
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will end with a panel discussion on the future of SSL-NLP, which will feature invited position papers
from several prominent researchers. (Some are included in this volume; others will be online at the
workshop website: http://sites.google.com/site/sslnlp/).

We are especially grateful to the program committee for their hard work and the presenters for their
excellent papers. We would also like to thank the following people for their many help and support: Hal
Daume, Sajib Dasgupta, Jason Eisner, Nizar Habash, Mark Hasegawa-Johnson, Andrew McCallum,
Vincent Ng, Anoop Sarkar, Eric Ringger, and Jerry Zhu.

Best regards,

Qin Iris Wang, Kevin Duh, Dekang Lin
SSL-NLP Workshop Organizers

26 April 2009
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Abstract

We consider semi-supervised learning of
information extraction methods, especially
for extracting instances of noun categories
(e.g., ‘athlete,’ ‘team’) and relations (e.g.,
‘playsForTeam(athlete,team)’). Semi-
supervised approaches using a small number
of labeled examples together with many un-
labeled examples are often unreliable as they
frequently produce an internally consistent,
but nevertheless incorrect set of extractions.
We propose that this problem can be over-
come by simultaneously learning classifiers
for many different categories and relations
in the presence of an ontology defining
constraints that couple the training of these
classifiers. Experimental results show that
simultaneously learning a coupled collection
of classifiers for 30 categories and relations
results in much more accurate extractions
than training classifiers individually.

1 Introduction

A great wealth of knowledge is expressed on the web
in natural language. Translating this into a struc-
tured knowledge base containing facts about enti-
ties (e.g., ‘Disney’) and relations between those en-
tities (e.g. CompanyIndustry(‘Disney’, ‘entertain-
ment’)) would be of great use to many applications.
Although fully supervised methods for learning to
extract such facts from text work well, the cost
of collecting many labeled examples of each type
of knowledge to be extracted is impractical. Re-
searchers have also explored semi-supervised learn-
ing methods that rely primarily on unlabeled data,

Figure 1: We show that significant improvements in ac-
curacy result from coupling the training of information
extractors for many inter-related categories and relations
(B), compared with the simpler but much more difficult
task of learning a single information extractor (A).

but these approaches tend to suffer from the fact that
they face an under-constrained learning task, result-
ing in extractions that are often inaccurate.

We present an approach to semi-supervised learn-
ing that yields more accurate results by coupling the
training of many information extractors. The intu-
ition behind our approach (summarized in Figure 1)
is that semi-supervised training of a single type of
extractor such as ‘coach’ is much more difficult than
simultaneously training many extractors that cover
a variety of inter-related entity and relation types.
In particular, prior knowledge about the relation-
ships between these different entities and relations
(e.g., that ‘coach(x)’ implies ‘person(x)’ and ‘not
sport(x)’) allows unlabeled data to become a much
more useful constraint during training.

Although previous work has coupled the learning
of multiple categories, or used static category rec-
ognizers to check arguments for learned relation ex-
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tractors, our work is the first we know of to couple
the simultaneous semi-supervised training of multi-
ple categories and relations. Our experiments show
that this coupling results in more accurate extrac-
tions. Based on our results reported here, we hy-
pothesize that significant accuracy improvements in
information extraction will be possible by coupling
the training of hundreds or thousands of extractors.

2 Problem Statement

It will be helpful to first explain our use of common
terms. An ontology is a collection of unary and bi-
nary predicates, also called categories and relations,
respectively.1 An instance of a category, or a cate-
gory instance, is a noun phrase; an instance of a rela-
tion, or a relation instance, is a pair of noun phrases.
Instances can be positive or negative with respect
to a specific predicate, meaning that the predicate
holds or does not hold for that particular instance.
A promoted instance is an instance which our algo-
rithm believes to be a positive instance of some pred-
icate. Also associated with both categories and rela-
tions are patterns: strings of tokens with placehold-
ers (e.g., ‘game against arg1’ and ‘arg1 , head coach
of arg2’). A promoted pattern is a pattern believed
to be a high-probability indicator for some predicate.

The challenge addressed by this work is to learn
extractors to automatically populate the categories
and relations of a specified ontology with high-
confidence instances, starting from a few seed pos-
itive instances and patterns for each predicate and
a large corpus of sentences annotated with part-of-
speech (POS) tags. We focus on extracting facts that
are stated multiple times in the corpus, which we
can assess probabilistically using corpus statistics.
We do not resolve strings to real-world entities— the
problems of synonym resolution and disambiguation
of strings that can refer to multiple entities are left
for future work.

3 Related Work

Work on multitask learning has demonstrated that
supervised learning of multiple “related” functions
together can yield higher accuracy than learning the
functions separately (Thrun, 1996; Caruana, 1997).
Semi-supervised multitask learning has been shown

1We do not consider predicates of higher arity in this work.

to increase accuracy when tasks are related, allow-
ing one to use a prior that encourages similar pa-
rameters (Liu et al., 2008). Our work also involves
semi-supervised training of multiple coupled func-
tions, but differs in that we assume explicit prior
knowledge of the precise way in which our multi-
ple functions are related (e.g., that the values of the
functions applied to the same input are mutually ex-
clusive, or that one implies the other).

In this paper, we focus on a ‘bootstrapping’
method for semi-supervised learning. Bootstrap-
ping approaches start with a small number of la-
beled ‘seed’ examples, use those seed examples to
train an initial model, then use this model to la-
bel some of the unlabeled data. The model is
then retrained, using the original seed examples plus
the self-labeled examples. This process iterates,
gradually expanding the amount of labeled data.
Such approaches have shown promise in applica-
tions such as web page classification (Blum and
Mitchell, 1998), named entity classification (Collins
and Singer, 1999), parsing (McClosky et al., 2006),
and machine translation (Ueffing, 2006).

Bootstrapping approaches to information extrac-
tion can yield impressive results with little initial
human effort (Brin, 1998; Agichtein and Gravano,
2000; Ravichandran and Hovy, 2002; Pasca et al.,
2006). However, after many iterations, they usu-
ally suffer from semantic drift, where errors in label-
ing accumulate and the learned concept ‘drifts’ from
what was intended (Curran et al., 2007). Coupling
the learning of predicates by using positive exam-
ples of one predicate as negative examples for oth-
ers has been shown to help limit this drift (Riloff and
Jones, 1999; Yangarber, 2003). Additionally, ensur-
ing that relation arguments are of certain, expected
types can help mitigate the promotion of incorrect
instances (Paşca et al., 2006; Rosenfeld and Feld-
man, 2007). Our work builds on these ideas to cou-
ple the simultaneous bootstrapped training of multi-
ple categories and multiple relations.

Our approach to information extraction is based
on using high precision contextual patterns (e.g., ‘is
mayor of arg1’ suggests that arg1 is a city). An early
pattern-based approach to information extraction ac-
quired ‘is a’ relations from text using generic con-
textual patterns (Hearst, 1992). This approach was
later scaled up to the web by Etzioni et al. (2005).
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Other research explores the task of ‘open informa-
tion extraction’, where the predicates to be learned
are not specified in advance (Shinyama and Sekine,
2006; Banko et al., 2007), but emerge instead from
analysis of the data. In contrast, our approach re-
lies strongly on knowledge in the ontology about the
predicates to be learned, and relationships among
them, in order to achieve high accuracy.

Chang et al. (2007) present a framework for
learning that optimizes the data likelihood plus
constraint-based penalty terms than capture prior
knowledge, and demonstrate it with semi-supervised
learning of segmentation models. Constraints that
capture domain knowledge guide bootstrap learn-
ing of a structured model by penalizing or disallow-
ing violations of those constraints. While similar in
spirit, our work differs in that we consider learning
many models, rather than one structured model, and
that we are consider a much larger scale application
in a different domain.

4 Approach

4.1 Coupling of Predicates

As mentioned above, our approach hinges on the no-
tion of coupling the learning of multiple functions
in order to constrain the semi-supervised learning
problem we face. Our system learns four different
types of functions. For each category c:

1. fc,inst : NP (C)→ [0, 1]
2. fc,patt : PattC(C)→ [0, 1]
and for each relation r:

1. fr,inst : NP (C)×NP (C)→ [0, 1]
2. fr,patt : PattR(C)→ [0, 1]
where C is the input corpus, NP (C) is the set of
valid noun phrases in C, PattC(C) is the set of valid
category patterns in C, and PattR(C) is the set of
valid relation patterns in C. “Valid” noun phrases,
category patterns, and relation patterns are defined
in Section 4.2.2.

The learning of these functions is coupled in two
ways:

1. Sharing among same-arity predicates according
to logical relations

2. Relation argument type-checking

These methods of coupling are made possible by
prior knowledge in the input ontology, beyond the

lists of categories and relations mentioned above.
We provide general descriptions of these methods
of coupling in the next sections, while the details are
given in section 4.2.

4.1.1 Sharing among same-arity predicates
Each predicate P in the ontology has a list of other

same-arity predicates with which P is mutually
exclusive, where mutuallyExclusive(P, P ′) ≡
(P (arg1) ⇒ ¬P ′(arg1)) ∧ (P ′(arg1) ⇒
¬P (arg1)), and similarly for relations. These mu-
tually exclusive relationships are used to carry out
the following simple but crucial coupling: if predi-
cate A is mutually exclusive with predicate B, A’s
positive instances and patterns become negative in-
stances and negative patterns for B. For example,
if ‘city’, having an instance ‘Boston’ and a pattern
‘mayor of arg1’, is mutually exclusive with ‘scien-
tist’, then ‘Boston’ and ‘mayor of arg1’ will become
a negative instance and a negative pattern respec-
tively for ‘scientist.’ Such negative instances and
patterns provide negative evidence to constrain the
bootstrapping process and forestall divergence.

Some categories are declared to be a subset of
one of the other categories being populated, where
subset(P, P ′) ≡ P (arg1) ⇒ P ′(arg1), (e.g., ‘ath-
lete’ is a subset of ‘person’). This prior knowledge
is used to share instances and patterns of the subcat-
egory (e.g., ‘athlete’) as positive instances and pat-
terns for the super-category (e.g., ‘person’).

4.1.2 Relation argument type-checking
The last type of prior knowledge we use to couple

the learning of functions is type checking informa-
tion which couples the learning of relations with cat-
egories. For example, the arguments of the ‘ceoOf’
relation are declared to be of the categories ‘person’
and ‘company’. Our approach does not promote a
pair of noun phrases as an instance of a relation un-
less the two noun phrases are classified as belonging
to the correct argument types. Additionally, when a
relation instance is promoted, the arguments become
promoted instances of their respective categories.

4.2 Algorithm Description

In this section, we describe our algorithm, CBL
(Coupled Bootstrap Learner), in detail.

The inputs to CBL are a large corpus of POS-
tagged sentences and an initial ontology with pre-
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Algorithm 1: CBL Algorithm
Input: An ontology O, and text corpus C
Output: Trusted instances/patterns for each

predicate

SHARE initial instances/patterns among
predicates;
for i = 1, 2, . . . ,∞ do

foreach predicate p ∈ O do
EXTRACT candidate instances/patterns;
FILTER candidates;
TRAIN instance/pattern classifiers;
ASSESS candidates using classifiers;
PROMOTE highest-confidence candidates;

end
SHARE promoted items among predicates;

end

defined categories, relations, mutually exclusive re-
lationships between same-arity predicates, subset re-
lationships between some categories, seed instances
for all predicates, and seed patterns for the cate-
gories. Categories in the input ontology also have
a flag indicating whether instances must be proper
nouns, common nouns, or whether they can be ei-
ther (e.g., instances of ‘city’ are proper nouns).

Algorithm 1 gives a summary of the CBL algo-
rithm. First, seed instances and patterns are shared
among predicates using the available mutual exclu-
sion, subset, and type-checking relations. Then,
for an indefinite number of iterations, CBL expands
the sets of promoted instances and patterns for each
predicate, as detailed below.

CBL was designed to allow learning many pred-
icates simultaneously from a large sample of text
from the web. In each iteration of the algorithm, the
information needed from the text corpus is gathered
in two passes through the corpus using the MapRe-
duce framework (Dean and Ghemawat, 2008). This
allows us to complete an iteration of the system in
1 hour using a corpus containing millions of web
pages (see Section 5.3 for details on the corpus).

4.2.1 Sharing
At the start of execution, seed instances and pat-

terns are shared among predicates according to the
mutual exclusion, subset, and type-checking con-
straints. Newly promoted instances and patterns are

shared at the end of each iteration.

4.2.2 Candidate Extraction
CBL finds new candidate instances by using

newly promoted patterns to extract the noun phrases
that co-occur with those patterns in the text corpus.
To keep the size of this set manageable, CBL lim-
its the number of new candidate instances for each
predicate to 1000 by selecting the ones that occur
with the most newly promoted patterns. An analo-
gous procedure is used to extract candidate patterns.
Candidate extraction is performed for all predicates
in a single pass through the corpus using the MapRe-
duce framework.

The candidate extraction procedure has defini-
tions for valid instances and patterns that limit ex-
traction to instances that look like noun phrases and
patterns that are likely to be informative. Here we
provide brief descriptions of those definitions.

Category Instances In the placeholder of a cate-
gory pattern, CBL looks for a noun phrase. It uses
part-of-speech tags to segment noun phrases, ignor-
ing determiners. Proper nouns containing prepo-
sitions are segmented using a reimplementation of
the Lex algorithm (Downey et al., 2007). Cate-
gory instances are only extracted if they obey the
proper/common noun specification of the category.

Category Patterns If a promoted category in-
stance is found in a sentence, CBL extracts the pre-
ceding words as a candidate pattern if they are verbs
followed by a sequence of adjectives, prepositions,
or determiners (e.g., ‘being acquired by arg1’) or
nouns and adjectives followed by a sequence of ad-
jectives, prepositions, or determiners (e.g., ‘former
CEO of arg1’).

CBL extracts the words following the instance as
a candidate pattern if they are verbs followed option-
ally by a noun phrase (e.g., ‘arg1 broke the home run
record’), or verbs followed by a preposition (e.g.,
‘arg1 said that’).

Relation Instances If a promoted relation pattern
(e.g., ‘arg1 is mayor of arg2’) is found, a candi-
date relation instance is extracted if both placehold-
ers are valid noun phrases, and if they obey the
proper/common specifications for their categories.

Relation Patterns If both arguments from a pro-
moted relation instance are found in a sentence then
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the intervening sequence of words is extracted as a
candidate relation pattern if it contains no more than
5 tokens, has a content word, has an uncapitalized
word, and has at least one non-noun.

4.2.3 Candidate Filtering
Candidate instances and patterns are filtered to

maintain high precision, and to avoid extremely spe-
cific patterns. An instance is only considered for as-
sessment if it co-occurs with at least two promoted
patterns in the text corpus, and if its co-occurrence
count with all promoted patterns is at least three
times greater than its co-occurrence count with neg-
ative patterns. Candidate patterns are filtered in the
same manner using instances.

All co-occurrence counts needed by the filtering
step are obtained with an additional pass through
the corpus using MapReduce. This implementa-
tion is much more efficient than one that relies on
web search queries. CBL typically requires co-
occurrence counts of at least 10,000 instances with
any of at least 10,000 patterns, which would require
100 million hit count queries.

4.2.4 Candidate Assessment
Next, for each predicate CBL trains a discretized

Naı̈ve Bayes classifier to classify the candidate in-
stances. Its features include pointwise mutual infor-
mation (PMI) scores (Turney, 2001) of the candidate
instance with each of the positive and negative pat-
terns associated with the class. The current sets of
promoted and negative instances are used as training
examples for the classifier. Attributes are discretized
based on information gain (Fayyad and Irani, 1993).

Patterns are assessed using an estimate of the pre-
cision of each pattern p:

Precision(p) =
∑

i∈I count(i, p)
count(p)

where I is the set of promoted instances for the
predicate currently being considered, count(i, p) is
the co-occurrence count of instance i with pattern p,
and count(p) is the hit count of the pattern p. This
is a pessimistic estimate because it assumes that the
rest of the occurrences of pattern p are not with pos-
itive examples of the predicate. We also penalize
extremely rare patterns by thresholding the denomi-
nator using the 25th percentile candidate pattern hit
count (McDowell and Cafarella, 2006).

All of the co-occurrence counts needed for the as-
sessment step are collected in the same MapReduce
pass as those required for filtering candidates.

4.2.5 Candidate Promotion
CBL then ranks the candidates according to their

assessment scores and promotes at most 100 in-
stances and 5 patterns for each predicate.

5 Experimental Evaluation

We designed our experimental evaluation to try to
answer the following questions: Can CBL iterate
many times and still achieve high precision? How
helpful are the types of coupling that we employ?
Can we extend existing semantic resources?

5.1 Configurations of the Algorithm
We ran our algorithm in three configurations:

• Full: The algorithm as described in Section 4.2.
• No Sharing Among Same-Arity Predicates (NS):

This configuration couples predicates only us-
ing type-checking constraints. It uses the full
algorithm, except that predicates of the same ar-
ity do not share promoted instances and patterns
with each other. Seed instances and patterns are
shared, though, so each predicate has a small,
fixed pool of negative evidence.

• No Category/Relation coupling (NCR): This
configuration couples predicates using mutual
exclusion and subset constraints, but not type-
checking. It uses the full algorithm, except
that relation instance arguments are not fil-
tered or assessed using their specified categories,
and arguments of promoted relations are not
shared as promoted instances of categories. The
only type-checking information used is the com-
mon/proper noun specifications of arguments for
filtering out implausible instances.

5.2 Initial ontology
Our ontology contained categories and relations re-
lated to two domains: companies and sports. Ex-
tra categories were added to provide negative evi-
dence to the domain-related categories: ‘hobby’ for
‘economic sector’; ‘actor,’ ‘politician,’ and ‘scien-
tist’ for ‘athlete’ and ‘coach’; and ‘board game’ for
‘sport’. Table 1 lists each predicate in the leftmost
column. Categories were started with 10–20 seed
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5 iterations 10 iterations 15 iterations
Predicate Full NS NCR Full NS NCR Full NS NCR
Actor 93 100 100 93 97 100 100 97 100
Athlete 100 100 100 100 93 100 100 73 100
Board Game 93 76 93 89 27 93 89 30 93
City 100 100 100 100 97 100 100 100 100
Coach 100 63 73 97 53 43 97 47 47
Company 100 100 100 97 90 97 100 90 100
Country 60 40 60 30 43 27 40 23 40
Economic Sector 77 63 73 57 67 67 50 63 40
Hobby 67 63 67 40 40 57 20 23 30
Person 97 97 90 97 93 97 93 97 93
Politician 93 93 97 73 53 90 90 53 87
Product 97 87 90 90 87 100 97 90 77
Product Type 93 93 90 70 73 97 77 80 67
Scientist 100 90 97 97 63 97 93 60 100
Sport 100 90 100 93 67 83 97 27 90
Sports Team 100 97 100 97 70 100 90 50 100
Category Average 92 84 89 82 70 84 83 63 79
Acquired(Company, Company) 77 77 80 67 80 47 70 63 47
CeoOf(Person, Company) 97 87 100 90 87 97 90 80 83
CoachesTeam(Coach, Sports Team) 100 100 100 100 100 97 100 100 90
CompetesIn(Company, Econ. Sector) 97 97 80 100 93 67 97 63 60
CompetesWith(Company, Company) 93 80 60 77 70 37 70 60 43
HasOfficesIn(Company, City) 97 93 40 93 90 27 93 57 30
HasOperationsIn(Company, Country) 100 95 50 100 97 40 90 83 13
HeadquarteredIn(Company, City) 77 90 20 70 77 27 70 60 7
LocatedIn(City, Country) 90 67 57 63 50 43 73 50 30
PlaysFor(Athlete, Sports Team) 100 100 0 100 97 7 100 43 0
PlaysSport(Athlete, Sport) 100 100 27 93 80 10 100 40 30
TeamPlaysSport(Sports Team, Sport) 100 100 77 100 97 80 93 83 67
Produces(Company, Product) 91 83 90 83 93 67 93 80 57
HasType(Product, Product Type) 73 63 17 33 67 33 40 57 27
Relation Average 92 88 57 84 84 48 84 66 42
All 92 86 74 83 76 68 84 64 62

Table 1: Precision (%) for each predicate. Results are presented after 5, 10, and 15 iterations, for the Full, No Sharing
(NS), and No Category/Relation Coupling (NCR) configurations of CBL . Note that we expect Full and NCR to
perform similarly for categories, but for Full to outperform NCR on relations and for Full to outperform NS on both
categories and relations.
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instances and 5 seed patterns. The seed instances
were specified by a human, and the seed patterns
were derived from the generic patterns of Hearst
for each predicate (Hearst, 1992). Relations were
started with similar numbers of seed instances, and
no seed patterns (it is less obvious how to gener-
ate good seed patterns from relation names). Most
predicates were declared as mutually exclusive with
most others, except for special cases (e.g., ‘hobby’
and ‘sport’; ‘university’ and ‘sports team’; and ‘has
offices in’ and ‘headquartered in’).

5.3 Corpus

Our text corpus was from a 200-million page web
crawl. We parsed the HTML, filtered out non-
English pages using a stop word ratio threshold, then
filtered out web spam and adult content using a ‘bad
word’ list. The pages were then segmented into sen-
tences, tokenized, and tagged with parts-of-speech
using the OpenNLP package. Finally, we filtered
the sentences to eliminate those that were likely to
be noisy and not useful for learning (e.g., sentences
without a verb, without any lowercase words, with
too many words that were all capital letters). This
yielded a corpus of roughly 514-million sentences.

5.4 Experimental Procedure

We ran each configuration for 15 iterations. To eval-
uate the precision of promoted instances, we sam-
pled 30 instances from the promoted set for each
predicate in each configuration after 5, 10, and 15 it-
erations, pooled together the samples for each pred-
icate, and then judged their correctness. The judge
did not know which run an instance was sampled
from. We estimated the precision of the promoted
instances from each run after 5, 10, and 15 itera-
tions as the number of correct promoted instances
divided by the number sampled. While samples of
30 instances do not produce tight confidence inter-
vals around individual estimates, they are sufficient
for testing for the effects in which we are interested.

5.5 Results

Table 1 shows the precision of each of the three al-
gorithm configurations for each category and rela-
tion after 5, 10, and 15 iterations. As is apparent
in this table, fully coupled training (Full) outper-
forms training when coupling is removed between

categories and relations (NCR), and also when cou-
pling is removed among predicates of the same ar-
ity (NS). The net effect is substantial, as is appar-
ent from the bottom row of Table 1, which shows
that the precision of Full outperforms NS by 6% and
NCR by 18% after the first 5 iterations, and by an
even larger 20% and 22% after 15 iterations. This
increasing gap in precision as iterations increase re-
flects the ability of coupled learning to constrain the
system to reduce the otherwise common drift asso-
ciated with self-trained classifiers.

Using Student’s paired t-test, we found that for
categories, the difference in performance between
Full and NS is statistically significant after 5, 10,
and 15 iterations (p-value < 0.05).2 No significant
difference was found between Full and NCR for cat-
egories, but this is not a surprise, because NCR still
uses mutually exclusive and subset constraints. The
same test finds that the differences between Full and
NS are significant for relations after 15 iterations,
and the differences between Full and NCR are sig-
nificant after 5, 10, and 15 iterations for relations.

The worst-performing categories after 15 itera-
tions of Full are ‘country,’ ‘economic sector,’ and
‘hobby.’ The Full configuration of CBL promoted
1637 instances for ‘country,’ far more than the num-
ber of correct answers. Many of these are general
geographic regions like ‘Bayfield Peninsula’ and
‘Baltic Republics.’ In the ‘hobby’ case, promoting
patterns like ‘the types of arg1’ led to the category
drifting into a general list of plural common nouns.
‘Economic sector’ drifted into academic fields like
‘Behavioral Science’ and ‘Political Sciences.’ We
expect that the learning of these categories would
be significantly better if there were even more cat-
egories being learned to provide additional negative
evidence during the filtering and assessment steps of
the algorithm.

At this stage of development, obtaining high re-
call is not a priority because our intent is to create
a continuously running and continuously improving
system; it is our hope that high recall will come with
time. However, to very roughly convey the com-
pleteness of the current results we show in Table 2
the average number of instances promoted for cate-

2Our selection of the paired t-test was motivated by the work
of Smucker et al. (2007), but the Wilcoxon signed rank test
gives the same results.
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Categories Relations
Configuration Instances Prec. Instances Prec.
Full 970 83 191 84
NS 1337 63 307 66
NCR 916 79 458 42

Table 2: Average numbers of promoted category and re-
lation instances and estimates of their precision for each
configuration of CBL after 15 iterations.

Figure 2: Extracted facts for two companies discovered
by CBL Full. These two companies were extracted by
the learned ‘company’ extractor, and the relations shown
were extracted by learned relation extractors.

gories and relations for each of the three configura-
tions of CBL after 15 iterations. For categories, not
sharing examples results in fewer negative examples
during the filtering and assessment steps. This yields
more promoted instances on average. For relations,
not using type checking yields higher relative recall,
but at a much lower level of precision.

Figure 2 gives one view of the type of information
extracted by the collection of learned category and
relation classifiers. Note the initial seed examples
provided to CBL did not include information about
either company or any of these relation instances.3

5.6 Comparison to an Existing Database

To estimate the capacity of our algorithm to con-
tribute additional facts to publicly available seman-
tic resources, we compared the complete lists of in-
stances promoted during the Full 15 iteration run
for certain categories to corresponding lists in the
Freebase database (Metaweb Technologies, 2009).
Excluding the categories that did not have a di-
rectly corresponding Freebase list, we computed for
each category: Precision × |CBLInstances| −
|Matches|, where Precision is the estimated pre-
cision from our random sample of 30 instances,
|CBLInstances| is the total number of instances
promoted for that category, and |Matches| is the

3See http://rtw.ml.cmu.edu/sslnlp09 for re-
sults from a full run of the system.

Est. CBL Freebase Est. New
Category Prec. Instances Matches Instances
Actor 100 522 465 57
Athlete 100 117 54 63
Board Game 89 18 6 10
City 100 1799 1665 134
Company 100 1937 995 942
Econ. Sector 50 1541 137 634
Politician 90 962 74 792
Product 97 1259 0 1221
Sports Team 90 414 139 234
Sport 97 613 134 461

Table 3: Estimated numbers of “new instances” (correct
instances promoted by CBL in the Full 15 iteration run
which do not have a match in Freebase) and the values
used in calculating them.

number of promoted instances that had an exact
match in Freebase. While exact matches may under-
estimate the number of matches, it should be noted
that rather than make definitive claims, our intent
here is simply to give rough estimates, which are
shown in Table 3. These approximate numbers in-
dicate a potential to use CBL to extend existing se-
mantic resources like Freebase.

6 Conclusion

We have presented a method of coupling the semi-
supervised learning of categories and relations and
demonstrated empirically that the coupling forestalls
the problem of semantic drift associated with boot-
strap learning methods. We suspect that learning
additional predicates simultaneously will yield even
more accurate learning. An approximate compari-
son with an existing repository of semantic knowl-
edge, Freebase, suggests that our methods can con-
tribute new facts to existing resources.

Acknowledgments

This work is supported in part by DARPA, Google,
a Yahoo! Fellowship to Andrew Carlson, and the
Brazilian research agency CNPq. We also gratefully
acknowledge Jamie Callan for making available his
collection of web pages, Yahoo! for use of their M45
computing cluster, and the anonymous reviewers for
their comments.

8



References

Eugene Agichtein and Luis Gravano. 2000. Snowball:
Extracting relations from large plain-text collections.
In JCDL.

Michele Banko, Michael J. Cafarella, Stephen Soderland,
Matt Broadhead, and Oren Etzioni. 2007. Open infor-
mation extraction from the web. In IJCAI.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In COLT.

Sergey Brin. 1998. Extracting patterns and relations
from the world wide web. In WebDB Workshop at
6th International Conference on Extending Database
Technology.

Rich Caruana. 1997. Multitask learning. Machine
Learning, 28:41–75.

Ming-Wei Chang, Lev-Arie Ratinov, and Dan Roth.
2007. Guiding semi-supervision with constraint-
driven learning. In ACL.

Michael Collins and Yoram Singer. 1999. Unsupervised
models for named entity classification. In EMNLP.

James R. Curran, Tara Murphy, and Bernhard Scholz.
2007. Minimising semantic drift with mutual exclu-
sion bootstrapping. In PACLING.

Jeffrey Dean and Sanjay Ghemawat. 2008. Mapreduce:
simplified data processing on large clusters. Commun.
ACM, 51(1):107–113.

Doug Downey, Matthew Broadhead, and Oren Etzioni.
2007. Locating complex named entities in web text.
In IJCAI.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-
Maria Popescu, Tal Shaked, Stephen Soderland,
Daniel S. Weld, and Alexander Yates. 2005. Unsu-
pervised named-entity extraction from the web: an ex-
perimental study. Artif. Intell., 165(1):91–134.

Usama M. Fayyad and Keki B. Irani. 1993. Multi-
interval discretization of continuous-valued attributes
for classification learning. In UAI.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In COLING.

Qiuhua Liu, Xuejun Liao, and Lawrence Carin. 2008.
Semi-supervised multitask learning. In NIPS.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In NAACL.

Luke K. McDowell and Michael Cafarella. 2006.
Ontology-driven information extraction with on-
tosyphon. In ISWC.

Metaweb Technologies. 2009. Freebase data dumps.
http://download.freebase.com/datadumps/.
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Abstract

We consider the task of learning a classi-
fier from the feature space X to the set of
classes Y = {0, 1}, when the features can
be partitioned into class-conditionally inde-
pendent feature sets X1 and X2. We show
that the class-conditional independence can be
used to represent the original learning task
in terms of 1) learning a classifier from X2

to X1 (in the sense of estimating the prob-
ability P (x1|x2))and 2) learning the class-
conditional distribution of the feature set X1.
This fact can be exploited for semi-supervised
learning because the former task can be ac-
complished purely from unlabeled samples.
We present experimental evaluation of the idea
in two real world applications.

1 Introduction

Semi-supervised learning is said to occur when the
learner exploits (a presumably large quantity of) un-
labeled data to supplement a relatively small labeled
sample, for accurate induction. The high cost of la-
beled data and the simultaneous plenitude of unla-
beled data in many application domains, has led to
considerable interest in semi-supervised learning in
recent years (Chapelle et al., 2006).

We show a somewhat surprising consequence of
class-conditional feature independence that leads
to a principled and easily implementable semi-
supervised learning algorithm. When the feature set
can be partitioned into two class-conditionally in-
dependent sets, we show that the original learning
problem can be reformulated in terms of the problem

of learning a first predictor from one of the partitions
to the other, plus a second predictor from the latter
partition to class label. That is, the latter partition
acts as a surrogate for the class variable. Assum-
ing that the second predictor can be learned from
a relatively small labeled sample this results in an
effective semi-supervised algorithm, since the first
predictor can be learned from only unlabeled sam-
ples.

In the next section we present the simple yet in-
teresting result on which our semi-supervised learn-
ing algorithm (which we call surrogate learning) is
based. We present examples to clarify the intuition
behind the approach and present a special case of
our approach that is used in the applications section.
We then examine related ideas in previous work and
situate our algorithm among previous approaches
to semi-supervised learning. We present empirical
evaluation on two real world applications where the
required assumptions of our algorithm are satisfied.

2 Surrogate Learning

We consider the problem of learning a classifier
from the feature space X to the set of classes Y =
{0, 1}. Let the features be partitioned into X =
X1 × X2. The random feature vector x ∈ X will be
represented correspondingly as x = (x1,x2). Since
we restrict our consideration to a two-class problem,
the construction of the classifier involves the esti-
mation of the probability P (y = 0|x1,x2) at every
point (x1,x2) ∈ X .

We make the following assumptions on the joint
probabilities of the classes and features.
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1. P (x1,x2|y) = P (x1|y)P (x2|y) for y ∈
{0, 1}. That is, the feature sets x1 and x2

are class-conditionally independent for both
classes. Note that, when X1 and X2 are one-
dimensional, this condition is identical to the
Naive Bayes assumption, although in general
our assumption is weaker.

2. P (x1|x2) 6= 0, P (x1|y) 6= 0 and P (x1|y =
0) 6= P (x1|y = 1). These assumptions are
to avoid divide-by-zero problems in the alge-
bra below. If x1 is a discrete valued random
variable and not irrelevant for the classification
task, these conditions are often satisfied.

We can now show that P (y = 0|x1,x2) can
be written as a function of P (x1|x2) and P (x1|y).
When we consider the quantity P (y,x1|x2), we
may derive the following.

P (y,x1|x2) = P (x1|y,x2)P (y|x2)
⇒ P (y,x1|x2) = P (x1|y)P (y|x2)

(from the independence assumption)

⇒ P (y|x1,x2)P (x1|x2) = P (x1|y)P (y|x2)

⇒ P (y|x1,x2)P (x1|x2)
P (x1|y)

= P (y|x2) (1)

Since P (y = 0|x2) + P (y = 1|x2) = 1, Equa-
tion 1 implies

P (y = 0|x1,x2)P (x1|x2)
P (x1|y = 0)

+

P (y = 1|x1,x2)P (x1|x2)
P (x1|y = 1)

= 1

⇒ P (y = 0|x1,x2)P (x1|x2)
P (x1|y = 0)

+

(1− P (y = 0|x1,x2)) P (x1|x2)
P (x1|y = 1)

= 1(2)

Solving Equation 2 for P (y = 0|x1,x2), we ob-
tain

P (y = 0|x1,x2) =
P (x1|y = 0)

P (x1|x2)
· P (x1|y = 1)− P (x1|x2)
P (x1|y = 1)− P (x1|y = 0)

(3)

We have succeeded in writing P (y = 0|x1,x2) as
a function of P (x1|x2) and P (x1|y). Although this

result was previously observed in a different context
by Abney in (Abney, 2002), he does not use it to
derive a semi-supervised learning algorithm. This
result can lead to a significant simplification of the
learning task when a large amount of unlabeled data
is available. The semi-supervised learning algorithm
involves the following two steps.

1. From unlabeled data learn a predictor from the
feature space X2 to the space X1 to predict
P (x1|x2). There is no restriction on the learner
that can be used as long as it outputs posterior
class probability estimates.

2. Estimate the quantity P (x1|y) from a labeled
samples. In case x1 is finite valued, this can
be done by just counting. If X1 has low car-
dinality the estimation problem requires very
few labeled samples. For example, if x1 is
binary, then estimating P (x1|y) involves esti-
mating just two Bernoulli probabilities.

Thus, we can decouple the prediction problem into
two separate tasks, one of which involves predict-
ing x1 from the remaining features. In other words,
x1 serves as a surrogate for the class label. Fur-
thermore, for the two steps above there is no neces-
sity for complete samples. The labeled examples can
have the feature x2 missing.

At test time, an input sample (x1,x2) is classified
by computing P (x1|y) and P (x1|x2) from the pre-
dictors obtained from training, and plugging these
values into Equation 3. Note that these two quanti-
ties are computed for the actual value of x1 taken by
the input sample.

The following example illustrates surrogate learn-
ing.
—————————————–
Example 1
Consider the following variation on a problem
from (Duda et al., 2000) of classifying fish on a con-
veryor belt as either salmon (y = 0) or sea bass
(y = 1). The features describing the fish are x1,
a binary feature describing whether the fish is light
(x1 = 0) or dark (x1 = 1), and x2 describes the
length of the fish which is real-valued. Assume (un-
realistically) that P (x2|y), the class-conditional dis-
tribution of x2, the length for salmon is Gaussian,
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and for the sea bass is Laplacian as shown in Fig-
ure 1.
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Figure 1: Class-conditional probability distributions of
the feature x2.

Because of the class-conditional feature in-
dependence assumption, the joint distribution
P (x1,x2,y) = P (x2|y)P (x1,y) can now be
completely specified by fixing the joint probabil-
ity P (x1,y). Let P (x1 = 0,y = 0) = 0.3,
P (x1 = 0,y = 1) = 0.1, P (x1 = 1,y = 0) = 0.2,
and P (x1 = 1,y = 1) = 0.4. I.e., a salmon is more
likely to be light than dark and a sea bass is more
likely to be dark than light.

The full joint distribution is depicted in Figure 2.
Also shown in Figure 2 are the conditional distribu-
tions P (x1 = 0|x2) and P (y = 0|x1,x2).

Assume that we build a predictor to decide be-
tween x1 = light and x1 = dark from the length us-
ing a data set of unlabeled fish. On a random salmon,
this predictor will most likely decide that x1 = light
(because, for a salmon, x1 = light is more likely
than x1 = dark, and similarly for a sea bass the
predictor often decides that x1 = dark. Conse-
quently the predictor provides information about the
true class label y. This can also be seen in the sim-
ilarities between the curves P (y = 0|x1,x2) to the
curve P (x1|x2) in Figure 2.

Another way to interpret the example is to note
that if a predictor for P (x1|x2) were built on only
the salmons then P (x1 = light|x2) will be a con-
stant value (0.6). Similarly the value of P (x1 =
light|x2) for sea basses will also be a constant value
(0.2). That is, the value of P (x1 = light|x2) for
a sample is a good predictor of its class. However,
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Figure 2: The joint distributions and the posterior distri-
butions of the class y and the surrogate class x1.

surrogate learning builds the predictor P (x1|x2) on
unlabeled data from both types of fish and there-
fore additionally requires P (x1|y) to estimate the
boundary between the classes.

2.1 A Special Case

The independence assumptions made in the setting
above may seem too strong to hold in real problems,
especially because the feature sets are required to
be class-conditionally independent for both classes.
We now specialize the setting of the classification
problem to the one realized in the applications we
present later.

We still wish to learn a classifier from X = X1 ×
X2 to the set of classes Y = {0, 1}. We make the
following slightly modified assumptions.

1. x1 is a binary random variable. That is, X1 =
{0, 1}.

2. P (x1,x2|y = 0) = P (x1|y = 0)P (x2|y =
0). We require that the feature x1 be class-
conditionally independent of the remaining fea-
tures only for the class y = 0.

3. P (x1 = 0,y = 1) = 0. This assumption says
that x1 is a ‘100% recall’ feature for y = 11.

Assumption 3 simplifies the learning task to the
estimation of the probability P (y = 0|x1 = 1,x2)
for every point x2 ∈ X2. We can proceed as before

1This assumption can be seen to trivially enforce the inde-
pendence of the features for class y = 1.
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to obtain the expression in Equation 3.

P (y = 0|x1 = 1,x2)

=
P (x1 = 1|y = 0)

P (x1 = 1|x2)
. . .

. . .
P (x1 = 1|y = 1)− P (x1 = 1|x2)

P (x1 = 1|y = 1)− P (x1 = 1|y = 0)

=
P (x1 = 1|y = 0)

P (x1 = 1|x2)
· 1− P (x1 = 1|x2)
1− P (x1 = 1|y = 0)

=
P (x1 = 1|y = 0)

P (x1 = 1|x2)
· P (x1 = 0|x2)
P (x1 = 0|y = 0)

=
P (x1 = 1|y = 0)
P (x1 = 0|y = 0)

· P (x1 = 0|x2)
(1− P (x1 = 0|x2))

(4)

Equation 4 shows that P (y = 0|x1 = 1,x2)
is a monotonically increasing function of P (x1 =
0|x2). This means that after we build a predictor
from X2 to X1, we only need to establish the thresh-
old on P (x1 = 0|x2) to yield the optimum classi-
fication between y = 0 and y = 1. Therefore the
learning proceeds as follows.

1. From unlabeled data learn a predictor from the
feature space X2 to the binary space X1 to pre-
dict the quantity P (x1|x2).

2. Use labeled sample to establish the thresh-
old on P (x1 = 0|x2) to achieve the desired
precision-recall trade-off for the original clas-
sification problem.

Because of our assumptions, for a sample from
class y = 0 it is impossible to predict whether
x1 = 0 or x1 = 1 better than random by looking
at the x2 feature, whereas a sample from the posi-
tive class always has x1 = 1. Therefore the samples
with x1 = 0 serve to delineate the positive exam-
ples among the samples with x1 = 1. We therefore
call the samples that have x1 = 1 as the target sam-
ples and those that have x1 = 0 as the background
samples.

3 Related Work

Although the idea of using unlabeled data to im-
prove classifier accuracy has been around for several
decades (Nagy and Shelton, 1966), semi-supervised
learning has received much attention recently due
to impressive results in some domains. The com-
pilation of chapters edited by Chappelle et al. is an

excellent introduction to the various approaches to
semi-supervised learning, and the related practical
and theoretical issues (Chapelle et al., 2006).

Similar to our setup, co-training assumes that the
features can be split into two class-conditionally
independent sets or ‘views’ (Blum and Mitchell,
1998). Also assumed is the sufficiency of either
view for accurate classification. The co-training al-
gorithm iteratively uses the unlabeled data classified
with high confidence by the classifier on one view,
to generate labeled data for learning the classifier on
the other.

The intuition underlying co-training is that the er-
rors caused by the classifier on one view are inde-
pendent of the other view, hence can be conceived
as uniform2 noise added to the training examples
for the other view. Consequently, the number of la-
bel errors in a region in the feature space is propor-
tional to the number of samples in the region. If the
former classifier is reasonably accurate, the propor-
tionally distributed errors are ‘washed out’ by the
correctly labeled examples for the latter classifier.
Seeger showed that co-training can also be viewed
as an instance of the Expectation-Maximization al-
gorithm (Seeger, 2000).

The main distinction of surrogate learning from
co-training is the learning of a predictor from one
view to the other, as opposed to learning predictors
from both views to the class label. We can there-
fore eliminate the requirement that both views be
sufficiently informative for reasonably accurate pre-
diction. Furthermore, unlike co-training, surrogate
learning has no iterative component.

Ando and Zhang propose an algorithm to regu-
larize the hypothesis space by simultaneously con-
sidering multiple classification tasks on the same
feature space (Ando and Zhang, 2005). They then
use their so-called structural learning algorithm for
semi-supervised learning of one classification task,
by the artificial construction of ‘related’ problems
on unlabeled data. This is done by creating prob-
lems of predicting observable features of the data
and learning the structural regularization parame-
ters from these ‘auxiliary’ problems and unlabeled
data. More recently in (Ando and Zhang, 2007) they

2Whether or not a label is erroneous is independent of the
feature values of the latter view.
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showed that, with conditionally independent feature
sets predicting from one set to the other allows the
construction of a feature representation that leads
to an effective semi-supervised learning algorithm.
Our approach directly operates on the original fea-
ture space and can be viewed another justification
for the algorithm in (Ando and Zhang, 2005).

Multiple Instance Learning (MIL) is a learning
setting where training data is provided as positive
and negative bags of samples (Dietterich et al.,
1997). A negative bag contains only negative ex-
amples whereas a positive bag contains at least one
positive example. Surrogate learning can be viewed
as artificially constructing a MIL problem, with the
targets acting as one positive bag and the back-
grounds acting as one negative bag (Section 2.1).
The class-conditional feature independence assump-
tion for class y = 0 translates to the identical and
independent distribution of the negative samples in
both bags.

4 Two Applications

We applied the surrogate learning algorithm to the
problems of record linkage and paraphrase genera-
tion. As we shall see, the applications satisfy the
assumptions in our second (100% recall) setting.

4.1 Record Linkage/ Entity Resolution

Record linkage is the process of identification and
merging of records of the same entity in different
databases or the unification of records in a single
database, and constitutes an important component of
data management. The reader is referred to (Win-
kler, 1995) for an overview of the record linkage
problem, strategies and systems. In natural language
processing record linkage problems arise during res-
olution of entities found in natural language text to
a gazetteer.

Our problem consisted of merging each of ≈
20000 physician records, which we call the update
database, to the record of the same physician in
a master database of ≈ 106 records. The update
database has fields that are absent in the master
database and vice versa. The fields in common in-
clude the name (first, last and middle initial), sev-
eral address fields, phone, specialty, and the year-
of-graduation. Although the last name and year-

of-graduation are consistent when present, the ad-
dress, specialty and phone fields have several incon-
sistencies owing to different ways of writing the ad-
dress, new addresses, different terms for the same
specialty, missing fields, etc. However, the name
and year alone are insufficient for disambiguation.
We had access to ≈ 500 manually matched update
records for training and evaluation (about 40 of these
update records were labeled as unmatchable due to
insufficient information).

The general approach to record linkage involves
two steps: 1) blocking, where a small set of can-
didate records is retrieved from the master record
database, which contains the correct match with
high probability, and 2) matching, where the fields
of the update records are compared to those of the
candidates for scoring and selecting the match. We
performed blocking by querying the master record
database with the last name from the update record.
Matching was done by scoring a feature vector of
similarities over the various fields. The feature val-
ues were either binary (verifying the equality of a
particular field in the update and a master record) or
continuous (some kind of normalized string edit dis-
tance between fields like street address, first name
etc.).

The surrogate learning solution to our matching
problem was set up as follows. We designated the
binary feature of equality of year of graduation3 as
the ‘100% recall’ feature x1, and the remaining fea-
tures are relegated to x2. The required conditions
for surrogate learning are satisfied because 1) in our
data it is highly unlikely for two records with differ-
ent year- of-graduation to belong to the same physi-
cian and 2) if it is known that the update record
and a master record belong to two different physi-
cians, then knowing that they have the same (or dif-
ferent) year-of-graduation provides no information
about the other features. Therefore all the feature
vectors with the binary feature indicating equality
of year-of-graduation are targets and the remaining
are backgrounds.

First, we used feature vectors obtained from the
records in all blocks from all 20000 update records
to estimate the probability P (x1|x2). We used lo-

3We believe that the equality of the middle intial would have
worked just as well for x1.
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Table 1: Precision and Recall for record linkage.
Training Precision Recall

proportion
Surrogate 0.96 0.95
Supervised 0.5 0.96 0.94
Supervised 0.2 0.96 0.91

gistic regression for this prediction task. For learn-
ing the logistic regression parameters, we discarded
the feature vectors for which x1 was missing and
performed mean imputation for the missing values
of other features. Second, the probability P (x1 =
1|y = 0) (the probability that two different ran-
domly chosen physicians have the same year of
graduation) was estimated straightforwardly from
the counts of the different years-of-graduation in the
master record database.

These estimates were used to assign the score
P (y = 1|x1 = 1,x2) to the records in a block (cf.
Equation 4). The score of 0 is assigned to feature
vectors which have x1 = 0. The only caveat is cal-
culating the score for feature vectors that had miss-
ing x1. For such records we assign the score P (y =
1|x2) = P (y = 1|x1 = 1,x2)P (x1 = 1|x2). We
have estimates for both quantities on the right hand
side. The highest scoring record in each block was
flagged as a match if it exceeded some appropriate
threshold.

We compared the results of the surrogate learn-
ing approach to a supervised logistic regression
based matcher which used a portion of the manual
matches for training and the remaining for testing.
Table 1 shows the match precision and recall for
both the surrogate learning and the supervised ap-
proaches. For the supervised algorithm, we show the
results for the case where half the manually matched
records were used for training and half for testing,
as well as for the case where a fifth of the records of
training and the remaining four-fifths for testing. In
the latter case, every record participated in exactly
one training fold but in four test folds.

The results indicate that the surrogate learner per-
forms better matching by exploiting the unlabeled
data than the supervised learner with insufficient
training data. The results although not dramatic are
still promising, considering that the surrogate learn-

ing approach used none of the manually matched
records.

4.2 Paraphrase Generation for Event
Extraction

Sentence classification is often a preprocessing step
for event or relation extraction from text. One of the
challenges posed by sentence classification is the di-
versity in the language for expressing the same event
or relationship. We present a surrogate learning ap-
proach to generating paraphrases for expressing the
merger-acquisition (MA) event between two organi-
zations in financial news. Our goal is to find para-
phrase sentences for the MA event from an unla-
beled corpus of news articles, that might eventually
be used to train a sentence classifier that discrimi-
nates between MA and non-MA sentences.

We assume that the unlabeled sentence corpus is
time-stamped and named entity tagged with orga-
nizations. We further assume that a MA sentence
must mention at least two organizations. Our ap-
proach to generate paraphrases is the following. We
first extract all the so-called source sentences from
the corpus that match a few high-precision seed pat-
terns. An example of a seed pattern used for the
MA event is ‘<ORG1> acquired <ORG2>’ (where
<ORG1> and <ORG2> are place holders for
strings that have been tagged as organizations). An
example of a source sentence that matches the seed
is ‘It was announced yesterday that <ORG>Google
Inc.<ORG> acquired <ORG>Youtube <ORG>’.
The purpose of the seed patterns is to produce pairs
of participant organizations in an MA event with
high precision.

We then extract every sentence in the corpus that
contains at least two organizations, such that at least
one of them matches an organization in the source
sentences, and has a time-stamp within a two month
time window of the matching source sentence. Of
this set of sentences, all that contain two or more or-
ganizations from the same source sentence are des-
ignated as target sentences, and the rest are desig-
nated as background sentences.

We speculate that since an organization is unlikely
to have a MA relationship with two different orga-
nizations in the same time period the backgrounds
are unlikely to contain MA sentences, and more-
over the language of the non-MA target sentences is
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Table 2: Patterns used as seeds and the number of source
sentences matching each seed.

Seed pattern # of sources
1 <ORG> acquired <ORG> 57
2 <ORG> bought <ORG> 70
3 offer for <ORG> 287
4 to buy <ORG> 396
5 merger with <ORG> 294

indistinguishable from that of the background sen-
tences. To relate the approach to surrogate learning,
we note that the binary “organization-pair equality”
feature (both organizations in the current sentence
being the same as those in a source sentence) serves
as the ‘100% recall’ feature x1. Word unigram, bi-
gram and trigram features were used as x2. This
setup satisfies the required conditions for surrogate
learning because 1) if a sentence is about MA, the
organization pair mentioned in it must be the same
as that in a source sentence, (i.e., if only one of the
organizations match those in a source sentence, the
sentence is unlikely to be about MA) and 2) if an un-
labeled sentence is non-MA, then knowing whether
or not it shares an organization with a source does
not provide any information about the language in
the sentence.

If the original unlabeled corpus is sufficiently
large, we expect the target set to cover most of the
paraphrases for the MA event but may contain many
non-MA sentences as well. The task of generating
paraphrases involves filtering the target sentences
that are non-MA and flagging the rest of the tar-
gets as paraphrases. This is done by constructing a
classifier between the targets and backgrounds. The
feature set used for this task was a bag of word un-
igrams, bigrams and trigrams, generated from the
sentences and selected by ranking the n-grams by
the divergence of their distributions in the targets
and backgrounds. A support vector machine (SVM)
was used to learn to classify between the targets and
backgrounds and the sentences were ranked accord-
ing to the score assigned by the SVM (which is a
proxy for P (x1 = 1|x2)). We then thresholded the
score to obtain the paraphrases.

Our approach is similar in principle to the ‘Snow-
ball’ system proposed in (Agichtein and Gravano,

2000) for relation extraction. Similar to us, ‘Snow-
ball’ looks for known participants in a relationship in
an unlabeled corpus, and uses the newly discovered
contexts to extract more participant tuples. How-
ever, unlike surrogate learning, which can use a rich
set of features for ranking the targets, ‘Snowball’
scores the newly extracted contexts according to a
single feature value which is confidence measure
based only on the number of known participant tu-
ples that are found in the context.

Example 2 below lists some sentences to illustrate
the surrogate learning approach. Note that the tar-
gets may contain both MA and non-MA sentences
but the backgrounds are unlikely to be MA.
—————————————–
Example 2
Seed Pattern
“offer for <ORG>”
Source Sentences
1. <ORG>US Airways<ORG> said Wednesday it will
increase its offer for <ORG>Delta<ORG>.
Target Sentences (SVM score)
1.<ORG>US Airways<ORG> were to combine with a
standalone <ORG>Delta<ORG>. (1.0008563)

2.<ORG>US Airways<ORG> argued that the nearly
$10 billion acquisition of <ORG>Delta<ORG> would
result in an efficiently run carrier that could offer low
fares to fliers. (0.99958149)

3.<ORG>US Airways<ORG> is asking
<ORG>Delta<ORG>’s official creditors commit-
tee to support postponing that hearing. (-0.99914371)
Background Sentences (SVM score)
1. The cities have made various overtures to
<ORG>US Airways<ORG>, including a promise
from <ORG>America West Airlines<ORG> and the
former <ORG>US Airways<ORG>. (0.99957752)

2. <ORG>US Airways<ORG> shares rose 8 cents
to close at $53.35 on the <ORG>New York Stock
Exchange<ORG>. (-0.99906444)

—————————————–

We tested our algorithm on an unlabeled corpus of
approximately 700000 financial news articles. We
experimented with the five seed patterns shown in
Table 2. We extracted a total of 870 source sentences
from the five seeds. The number of source sentences
matching each of the seeds is also shown in Table 2.
Note that the numbers add to more than 870 because
it is possible for a source sentence to match more
than one seed.

The participants that were extracted from sources
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Table 3: Precision/Recall of surrogate learning on the
MA paraphrase problem for various thresholds. The
baseline of using all the targets as paraphrases for MA
has a precision of 66% and a recall of 100%.

Threshold Precision Recall
0.0 0.83 0.94

-0.2 0.82 0.95
-0.8 0.79 0.99

corresponded to approximately 12000 target sen-
tences and approximately 120000 background sen-
tences. For the purpose of evaluation, 500 randomly
selected sentences from the targets were manually
checked leading to 330 being tagged as MA and the
remaining 170 as non-MA. This corresponds to a
66% precision of the targets.

We then ranked the targets according to the score
assigned by the SVM trained to classify between the
targets and backgrounds, and selected all the targets
above a threshold as paraphrases for MA. Table 3
presents the precision and recall on the 500 manu-
ally tagged sentences as the threshold varies. The
results indicate that our approach provides an effec-
tive way to rank the target sentences according to
their likelihood of being about MA.

To evaluate the capability of the method to find
paraphrases, we conducted five separate experi-
ments using each pattern in Table 2 individually as a
seed and counting the number of obtained sentences
containing each of the other patterns (using a thresh-
old of 0.0). These numbers are shown in the differ-
ent columns of Table 4. Although new patterns are
obtained, their distribution only roughly resembles
the original distribution in the corpus. We attribute
this to the correlation in the language used to de-
scribe a MA event based on its type (merger vs. ac-
quisition, hostile takeover vs. seeking a buyer, etc.).

Finally we used the paraphrases, which were
found by surrogate learning, to augment the train-
ing data for a MA sentence classifier and evaluated
its accuracy. We first built a SVM classifier only
on a portion of the labeled targets and classified the
remaining. This approach yielded an accuracy of
76% on the test set (with two-fold cross validation).
We then added all the targets scored above a thresh-
old by surrogate learning as positive examples (4000

Table 4: Number of sentences found by surrogate learn-
ing matching each of the remaining seed patterns, when
only one of the patterns was used as a seed. Each column
is for one experiment with the corresponding pattern used
as the seed. For example, when only the first pattern was
used as the seed, we obtained 18 sentences that match the
fourth pattern.

Seeds 1 2 3 4 5
1 2 2 5 1
2 5 6 7 5
3 4 6 152 103
4 18 16 93 57
5 3 9 195 57

positive sentences in all were added), and all the
backgrounds that scored below a low threshold as
negative examples (27000 sentences), to the training
data and repeated the two-fold cross validation. The
classifier learned on the augmented training data im-
proved the accuracy on the test data to 86% .

We believe that better designed features (than
word n-grams) will provide paraphrases with higher
precision and recall of the MA sentences found by
surrogate learning. To apply our approach to a new
event extraction problem, the design step also in-
volves the selection of the x1 feature such that the
targets and backgrounds satisfy our assumptions.

5 Conclusions

We presented surrogate learning – an easily imple-
mentable semi-supervised learning algorithm that
can be applied when the features satisfy the required
independence assumptions. We presented two appli-
cations, showed how the assumptions are satisfied,
and presented empirical evidence for the efficacy of
our algorithm. We have also applied surrogate learn-
ing to problems in information retrieval and docu-
ment zoning. We expect that surrogate learning is
sufficiently general to be applied in many NLP ap-
plications, if the features are carefully designed. We
briefly note that a surrogate learning method based
on regression and requiring only mean independence
instead of full statistical independence can be de-
rived using techniques similar to those in Section 2
– this modification is closely related to the problem
and solution presented in (Quadrianto et al., 2008).
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Abstract

We address two critical issues involved in ap-
plying semi-supervised learning (SSL) to a
real-world task: parameter tuning and choos-
ing which (if any) SSL algorithm is best suited
for the task at hand. To gain a better un-
derstanding of these issues, we carry out a
medium-scale empirical study comparing su-
pervised learning (SL) to two popular SSL al-
gorithms on eight natural language processing
tasks under three performance metrics. We
simulate how a practitioner would go about
tackling a new problem, including parameter
tuning using cross validation (CV). We show
that, under such realistic conditions, each of
the SSL algorithms can be worse than SL on
some datasets. However, we also show that
CV can select SL/SSL to achieve “agnostic
SSL,” whose performance is almost always no
worse than SL. While CV is often dismissed as
unreliable for SSL due to the small amount of
labeled data, we show that it is in fact effective
for accuracy even when the labeled dataset
size is as small as 10.

1 Introduction

Imagine you are a real-world practitioner working
on a machine learning problem in natural language
processing. If you have unlabeled data, should you
use semi-supervised learning (SSL)? Which SSL al-
gorithm should you use? How should you set its pa-
rameters? Or could it actually hurt performance, in
which case you might be better off with supervised
learning (SL)?

A large number of SSL algorithms have been de-
veloped in recent years that allow one to improve

performance with unlabeled data, in tasks such
as text classification, sequence labeling, and pars-
ing (Zhu, 2005; Chapelle et al., 2006; Brefeld and
Scheffer, 2006). However, many of them are tested
on “SSL-friendly” datasets, such as “two moons,”
USPS, and MNIST. Furthermore, the algorithms’
parameters are often chosen based on test set per-
formance or manually set based on heuristics and
researcher experience. These issues create practical
concerns for deploying SSL in the real world.

We note that (Chapelle et al., 2006)’s benchmark
chapter explores these issues to some extent by com-
paring several SSL methods on several real and ar-
tificial datasets. The authors reach the conclusions
that parameter tuning is difficult with little labeled
data and that no method is universally superior. We
reexamine these issues in the context of NLP tasks
and offer a simple attempt at overcoming these road-
blocks to practical application of SSL.

The contributions of this paper include:

• We present a medium-scale empirical study
comparing SL to two popular SSL algorithms
on eight less-familiar tasks using three per-
formance metrics. Importantly, wetune pa-
rameters realisticallybased on cross validation
(CV), as a practitioner would do in reality.

• We show that, under such realistic conditions,
each of the SSL algorithms can be worse than
SL on some datasets.

• However, this can be prevented. We show that
CV can be used to select SL/SSL to achieve
agnostic SSL, whose performance is almost al-
ways no worse than SL. Traditionally, CV is
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often dismissed as unreliable for SSL because
of the small labeled dataset size. But we show
that CV is effective when using accuracy as an
optimization criterion, even when the labeled
dataset size is as small as 10.

• We show the power of cloud computing: we
were able to complete roughly 3 months worth
of experiments in less than a week.

2 SSL with Realistic Tuning

Given a particular labeled and unlabeled dataset,
how should you set parameters for a particular SSL
model? The most realistic approach for a practi-
tioner is to use CV to tune parameters on a grid. We
therefore argue that the model parameters obtained
in this way truly determine how SSL will perform
in practice. Algorithm 1 describes a particular in-
stance1 of CV in detail. We call it “RealSSL,” as
this is all a real user can hope to do when applying
SSL (and SL too) in a realistic problem scenario.

3 Experimental Procedure

Given the RealSSL procedure in Algorithm 1, we
designed an experimental setup to simulate differ-
ent settings that a real-world practitioner might face
when given a new task and a set of algorithms to
choose from (some of which use unlabeled data).
This will allow us to compare algorithms across
datasets in a variety of situations. Algorithm 2
measures the performance of one algorithm on one
dataset for several differentl andu combinations.
Specifically, we considerl ∈ {10, 100} and u ∈
{100, 1000}. For each combination, we perform
multiple trials (T = 10 here) using different random
assignments of data toDlabeled andDunlabeled, to
obtain confidence intervals around our performance
measurements. All random selections of subsets of
data are the same across different algorithms’ runs,
to permit pairedt-tests for evaluation. Note that,
when l 6= max(L) or u 6= max(U), a portion of
Dpool is not used for training. Also, the RealSSL
procedure ensures that all parameters are tuned by
cross-validation without ever seeing the held-out

1The particular choice of 5-fold CV, the way to split labeled
and unlabeled data, and the parameter grid, is important too.
But we view them as secondary to the fact that we are tuning
SSL by CV.

test setDtest. Lastly, we stress that the same grid
of algorithm-specific parameter values (discussed in
Section 5) is considered for all datasets.

4 Datasets

Table 1 summarizes the datasets used for the com-
parisons. In this study we consider only binary clas-
sification tasks. Note thatd is the number of dimen-
sions,P (y = 1) is the proportion of instances in
the full dataset belonging to classy = 1, and|Dtest|
refers to the size of the test set (the instances remain-
ing aftermax(L) + max(U) = 1100 have been set
aside for training trials).

[MacWin] is the Mac versus Windows text clas-
sification data from the 20-newsgroups dataset, pre-
processed by the authors of (Sindhwani et al., 2005).

[Interest] is a binary version of the word sense
disambiguation data from (Bruce and Wiebe, 1994).
The task is to distinguish the sense of “interest”
meaning “money paid for the use of money” from
the other five senses (e.g., “readiness to give atten-
tion,” “a share in a company or business”). The
data comes from a corpus of part-of-speech (POS)
tagged sentences containing the word “interest.”
Each instance is a bag-of-word/POS vector, exclud-
ing words containing the root “interest” and those
that appeared in less than three sentences overall.

Datasets [aut-avn] and [real-sim] are the
auto/aviation and real/simulated text classification
datasets from the SRAA corpus of UseNet articles.
The [ccat] and [gcat] datasets involve identifying
corporate and government articles, respectively, in
the RCV1 corpus. We use the versions of these
datasets prepared by the authors of (Sindhwani et
al., 2006).

Finally, the two WISH datasets come from (Gold-
berg et al., 2009) and involve discriminating be-
tween sentences that contain wishful expressions
and those that do not. The instances in [WISH-
politics] correspond to sentences taken from a po-
litical discussion board, while [WISH-products] is
based on sentences from Amazon product reviews.
The features are a combination of word and template
features as described in (Goldberg et al., 2009).
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Input : datasetDlabeled = {xi, yi}li=1,Dunlabeled = {xj}uj=1, algorithm, performancemetric

Randomly partitionDlabeled into 5 equally-sized disjoint subsets{Dl1, Dl2, Dl3, Dl4, Dl5}.
Randomly partitionDunlabeled into 5 equally-sized disjoint subsets{Du1, Du2, Du3, Du4, Du5}.
Combine partitions: LetDfold k = Dlk ∪Duk for all k = 1, . . . , 5.
foreachparameter configuration in griddo

foreach fold k do
Train model usingalgorithm on∪i6=kDfold i.
Evaluatemetric onDfold k.

end
Compute the averagemetric value across the 5 folds.

end
Choose parameter configuration that optimizes averagemetric.
Train model usingalgorithm and the chosen parameters onDlabeled andDunlabeled.

Output : Optimal model; Averagemetric value achieved by optimal parameters during tuning.

Algorithm 1 : RealSSL procedure for running an SSL (or SL, simply ignore the unlabeled data) algorithm on a
specific labeled and unlabeled dataset using cross-validation to tune parameters.

Input : datasetD = {xi, yi}ni=1, algorithm, performancemetric, setL, setU , trialsT
Randomly divideD intoDpool (of sizemax(L) + max(U)) andDtest (the rest).
foreach l in L do

foreachu in U do
foreach trial 1 up toT do

Randomly selectDlabeled = {xj , yj}lj=l andDunlabeled = {xk}uk=1 fromDpool.
Run RealSSL(Dlabeled,Dunlabeled, algorithm,metric) to obtain model and tuning

performance value (see Algorithm 1).
Use model to classifyDunlabeled and record transductivemetric value.
Use model to classifyDtest and record testmetric value.

end
end

end
Output : Tuning, transductive, and test performance forT runs ofalgorithm using alll andu

combinations.

Algorithm 2 : Experimental procedure used for all comparisons.
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Name d P (y = 1) |Dtest|
[MacWin] 7511 0.51 846
[Interest] 2687 0.53 1268
[aut-avn] 20707 0.65 70075
[real-sim] 20958 0.31 71209
[ccat] 47236 0.47 22019
[gcat] 47236 0.30 22019
[WISH-politics] 13610 0.34 4999
[WISH-products] 4823 0.12 129

Table 1: Datasets used in benchmark comparison. See
text for details.

5 Algorithms

We consider only linear classifiers for this study,
since they tend to work well for text problems. In
future work, we plan to explore a range of kernels
and other non-linear classifiers.

As a baseline supervised learning method, we use
a support vector machine (SVM), as implemented
by SVMlight (Joachims, 1999). This baseline simply
ignores all the unlabeled data (xl+1, . . . ,xn). Recall
this solves the following regularized risk minimiza-
tion problem

min
f

1
2
||f ||22 + C

l∑

i=1

max(0, 1− yif(xi)), (1)

where f(x) = w>x + b, and C is a parame-
ter controlling the trade-off between training er-
rors and model complexity. Using the procedure
outlined above, we tuneC over a grid of values
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100}.

We consider two popular SSL algorithms, which
make different assumptions about the link between
the marginal data distributionPx and the conditional
label distributionPy|x. If the assumption does not
hold in a particular dataset, the SSL algorithm could
use the unlabeled data “incorrectly,” and perform
worse than SL.

The first SSL algorithm we use is a semi-
supervised support vector machine (S3VM), which
makes the cluster assumption: the classes are well-
separated clusters of data, such that the decision
boundary falls into a low density region in the fea-
ture space. While many implementations exist,
we chose the deterministic annealing (DA) algo-

rithm implemented in the SVMlin package (Sind-
hwani et al., 2006; Sindhwani and Keerthi, 2007).
This DA algorithm often achieved the best accu-
racy across several datasets in the empirical com-
parison in (Sindhwani and Keerthi, 2007), despite
being slower than the multi-switch algorithm pre-
sented in the same paper. Note that the transductive
SVM implemented in SVMlight would have been
prohibitively slow to carry out the range of exper-
iments conducted here. Recall that an S3VM seeks
an optimal classifierf∗ that cuts through a region of
low density between clusters of data. One way to
view this is that it tries to find the best possible la-
beling of the unlabeled data such the classifier maxi-
mizes the margin on both labeled and unlabeled data
points. This is achieved by solving the following
non-convex minimization problem

min
f,y′∈{−1,1}u

λ

2
||f ||22

+
1
l

l∑

i=1

V (yif(xi) +
λ′

u

n∑

j=l+1

V (y′jf(xj)),

subject to a class-balance constraint. Note that
V is a loss function (typically the hinge loss
as in (1)), and the parametersλ, λ′ control the
relative importance of model complexity versus
locating a low-density region within the unlabeled
data. We tune both parameters in a grid of values
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100}.
In past studies (Sindhwani et al., 2006),λ was set to
1, andλ′ was tuned over a grid containing a subset
of these values.

Finally, as an example of a graph-based
SSL method, we consider manifold regularization
(MR) (Belkin et al., 2006), using the implementa-
tion provided on the authors’ Web site.2 This algo-
rithm makes the manifold assumption: the labels are
“smooth” with respect to a graph connecting labeled
and unlabeled instances. In other words, if two in-
stances are connected by a strong edge (e.g., they
are highly similar to one another), their labels tend
to be the same. Manifold regularization represents a
family of methods; we specifically use the Laplacian
SVM, which extends the basic SVM optimization

2http://manifold.cs.uchicago.edu/
manifold regularization/software.html
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problem with a graph-based regularization term.

min
f
γA||f ||22 +

1
l

l∑

i=1

max(0, 1− yif(xi))

+ γI

n∑

i=1

n∑

j=1

wij(f(xi)− f(xj))2,

whereγA andγI are parameters that trade off am-
bient and intrinsic smoothness, andwij is a graph
weight between instancesxi and xj . In this pa-
per, we considerkNN graphs withk ∈ {3, 10, 20}.
Edge weights are formed using a heat kernelwij =
exp(− ||xi−xj ||2

2σ2 ), whereσ is set to be the mean dis-
tance between nearest neighbors in the graph, as
in (Chapelle et al., 2006). Theγ parameters are each
tuned over the grid{10−6, 10−4, 10−2, 1, 100}.

Of course, many other SSL algorithms exist, some
of which combine different assumptions (Chapelle
and Zien, 2005; Karlen et al., 2008), and others
which exploit multiple (real or artificial) views of
the data (Blum and Mitchell, 1998; Sindhwani and
Rosenberg, 2008). We plan to extend our study to
include many more diverse SSL algorithms in the
future.

6 Choosing an Algorithm for a Real-World
Task

Given the choice of several algorithms, how should
one choose the best one to apply to a particular learn-
ing setting? Traditionally, CV is used for model
selection in supervised learning settings. However,
with only a small amount of labeled data in semi-
supervised settings, model selection with CV is of-
ten viewed as unreliable. We explicitly tested this
hypothesis by using CV to not only choose the pa-
rameters of the model, but also choose the type of
model itself. The main goal is to automatically
choose between SVM, S3VM, and MR for a par-
ticular learning setting, in an attempt to ensure that
the final performance is never hurt by including un-
labeled data (which might be called agnostic SSL).

Given a set of algorithms (e.g., one SL, several
SSL), the procedure is the following:

1. Tune the parameters of each algorithm on the
labeled and unlabeled training set using Algo-

rithm 1.3

2. Compare the best tuning performance (5-fold
CV average) achieved by the optimal parame-
ters for each of the algorithms.

• If there are no ties, select the algorithm
with the highest tuning performance.

• If there is a tie, and SL is among the best,
select SL.

• If there is a tie between SSL algorithms,
select one of them at random.

3. Use the selected “Best Tuning” algorithm (and
the tuned parameters) to build a model on all
the training data; then apply it to the test data.

Note that the procedure is conservative in that it
prefers SL in the case of ties. In this paper, we use
this simple “best tuning performance” heuristic.

Finally, we stress the fact that, when applying
this procedure within the context of Algorithm 2, a
potentially different algorithm is chosen in each of
the 10 trials for a particular setting. This simulates
the real-world scenario where one only has a single
fixed training set of labeled and unlabeled data and
must choose a single algorithm to produce a model
for future predictions.

7 Performance Metrics

We compare different algorithms’ performance us-
ing three metrics often used for evaluation in NLP
tasks: accuracy, maxF1, and AUROC. Accuracy
is simply the fraction of instances correctly classi-
fied. MaxF1 is the maximal F1 value (harmonic
mean of recall and precision) achieved over the en-
tire precision-recall curve (Cai and Hofmann, 2003).
AUROC is the area under the ROC curve (Fawcett,
2004). Throughout the paper, when we discuss a
result involving a particular metric, the algorithms
use this metric as the criterion for parameter tuning,
and we use it for the final evaluation. We are not
simply evaluating a single experiment using multi-
ple metrics—the experiments are fundamentally dif-
ferent and produce different learned models.

3We ensure each algorithm uses the same 5 partitions during
the tuning step.
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8 Results

We now report the results of our empirical compar-
ison of SL and SSL on the eight NLP datasets. We
first consider each dataset separately and examine
how often each type of algorithm outperforms the
other. We then examine cross-dataset performance.

8.1 Detailed Results

Table 2 contains all results for SVM, S3VM, and
MR for all datasets and all metrics.4 Note that within
eachl,u cell for a particular dataset and evaluation
metric, we show the maximum value in each row
(tune, transductive, or test) in boldface. Results that
are not statistically significantly different using a
pairedt-test are also shown in boldface.

Several things are immediately obvious from Ta-
ble 2. First, no algorithm is superior in all datasets
or settings. In several cases, all algorithms are statis-
tically indistinguishable. Most importantly, though,
each of the SSL algorithms can be worse than SL on
some datasets using some metric. We used paired
t-tests to compare transductive and test performance
of each SSL algorithm with SVM for a particularl,u
combination and dataset (32 settings total per evalu-
ation metric). In terms of accuracy, MR transductive
performance is significantly worse than SVM in 5
settings, while MR test performance is significantly
worse in 7 settings. MR is also significantly worse in
4 settings based on transductive maxF1, in 3 settings
based on transductive AUROC, and 1 setting based
on test AUROC. S3VM is significantly worse than
SVM in 2 settings based on transductive maxF1, 2
settings based on transductive AUROC, and in 1 set-
ting based on test AUROC. While these numbers
may seem relatively low, it is important to realize
that each algorithm may be worse than SSL many
times on a trial-by-trial basis, which is the more real-
istic scenario: a practitioner has only a single dataset
to work with. Results based on individual trials are
discussed below shortly.

4Note that the results here for a particular dataset and algo-
rithm combination may be qualitatively and quantitatively dif-
ferent than in previous published work, due to differences in
parameter tuning, choices of parameter grids,l andu sizes, and
randomization. We are not trying to replicate or raise doubt
about past results: we simply intend to compare algorithms on
a wide array of datasets using the standardized procedures out-
lined above.

We also applied our “Best Tuning” model selec-
tion procedure to automatically choose a single al-
gorithm for each trial in each setting. We compare
average SL test performance versus the average test
performance of the Best Tuning selections across the
10 trials (not shown in Table 2). Comparisons based
on transductive performance are similar. When the
performance metric is test accuracy, the Best Tuning
algorithm performs statistically significantly better
than SL in 24 settings and worse in only 6 settings.
In the remaining 2 settings, Best Tuning chose SL
in all 10 trials, so they are equivalent. These results
suggest that accuracy-based tuning is a valid method
for choosing a SSL algorithm to improve accuracy
on test data. To some extent, this holds for maxF1,
too: the Best Tuning selections perform better than
SL (on average) in 18 settings and worse in 14 set-
tings when tuning and test evaluation is based on
maxF1. However, when using AUROC as the per-
formance metric, cross validation seems to be unre-
liable: Best Tuning produces a better result in only
11 out of the 32 settings.

8.2 Results Aggregated Across Datasets

We now aggregate the detailed results to better un-
derstand the relative performance of the different
methods across all datasets. We perform this sum-
mary evaluation in two ways, based on test set
performance (transductive performance is similar).
First, we compare the SSL algorithms across all
datasets based on the numbers of times each is worse
than, the same as, or better than SL. For each of
the 80 trials of a particularl,u,metric combination,
we compare the performance of S3VM, MR, and
Best Tuning to SVM. Note that each of these com-
parisons is akin to a real-world scenario where a
practitioner would have to choose an algorithm to
use. Table 3 lists tuples of the form “(#trials worse
than SVM, #trials equal to SVM, #trials better than
SVM).” Note that the numbers in each tuple sum to
80. The perfect SSL algorithm would have a tuple of
“(0, 0, 80),” meaning that it always outperforms SL.
In terms of accuracy (Table 3, top) and maxF1 (Ta-
ble 3, middle), the Best Tuning method turns out to
do worse than SVM less often than either S3VM or
MR does (i.e., the first number in the tuples for Best
Tuning is lower than the corresponding numbers for
the other algorithms). At the same time, Best Tuning
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accuracy maxF1 AUROC
u = 100 u = 1000 u = 100 u = 1000 u = 100 u = 1000

Dataset l SVM S3VM MR SVM S3VM MR SVM S3VM MR SVM S3VM MR SVM S3VM MR SVM S3VM MR

[MacWin]

10
0.60 0.72 0.83 0.60 0.72 0.86 0.66 0.67 0.67 0.66 0.67 0.67 0.63 0.69 0.67 0.63 0.69 0.69 Tune
0.51 0.51 0.70 0.51 0.50 0.69 0.74 0.77 0.80 0.74 0.74 0.75 0.72 0.75 0.82 0.72 0.71 0.80 Trans
0.53 0.50 0.71 0.53 0.50 0.68 0.74 0.75 0.79 0.74 0.75 0.74 0.73 0.72 0.83 0.73 0.71 0.76 Test

100
0.87 0.87 0.91 0.87 0.87 0.90 0.94 0.95 0.95 0.94 0.95 0.95 0.96 0.97 0.97 0.96 0.96 0.96 Tune
0.89 0.89 0.89 0.89 0.89 0.89 0.91 0.93 0.92 0.91 0.90 0.90 0.97 0.97 0.96 0.97 0.97 0.96 Trans
0.89 0.89 0.91 0.89 0.89 0.90 0.92 0.92 0.92 0.92 0.91 0.91 0.97 0.97 0.97 0.97 0.97 0.97 Test

[Interest]

10
0.68 0.75 0.78 0.68 0.75 0.79 0.73 0.77 0.77 0.73 0.78 0.77 0.52 0.66 0.66 0.52 0.68 0.64 Tune
0.52 0.56 0.56 0.52 0.56 0.56 0.72 0.72 0.72 0.72 0.71 0.71 0.55 0.54 0.54 0.55 0.56 0.61 Trans
0.52 0.57 0.57 0.52 0.57 0.58 0.68 0.69 0.69 0.68 0.69 0.69 0.58 0.56 0.61 0.58 0.58 0.62 Test

100
0.77 0.78 0.76 0.77 0.78 0.77 0.84 0.85 0.85 0.84 0.85 0.84 0.89 0.90 0.89 0.89 0.85 0.84 Tune
0.79 0.79 0.71 0.79 0.79 0.77 0.84 0.83 0.82 0.84 0.81 0.81 0.91 0.91 0.89 0.91 0.79 0.87 Trans
0.81 0.80 0.78 0.81 0.80 0.79 0.82 0.81 0.81 0.82 0.81 0.81 0.90 0.91 0.89 0.90 0.81 0.88 Test

[aut-avn]

10
0.72 0.76 0.82 0.72 0.76 0.79 0.89 0.92 0.91 0.89 0.92 0.91 0.58 0.67 0.65 0.58 0.67 0.65 Tune
0.65 0.63 0.67 0.65 0.61 0.69 0.83 0.83 0.84 0.83 0.81 0.82 0.71 0.67 0.73 0.71 0.65 0.72 Trans
0.62 0.61 0.67 0.62 0.61 0.67 0.80 0.81 0.82 0.80 0.81 0.81 0.71 0.70 0.73 0.71 0.65 0.69 Test

100
0.75 0.82 0.87 0.75 0.82 0.86 0.94 0.94 0.95 0.94 0.94 0.94 0.93 0.94 0.94 0.93 0.94 0.93 Tune
0.77 0.79 0.88 0.77 0.83 0.87 0.92 0.92 0.91 0.92 0.91 0.90 0.93 0.93 0.91 0.93 0.94 0.93 Trans
0.77 0.82 0.89 0.77 0.83 0.87 0.91 0.91 0.91 0.91 0.91 0.91 0.95 0.94 0.95 0.95 0.95 0.95 Test

[real-sim]

10
0.53 0.63 0.82 0.53 0.63 0.78 0.65 0.66 0.66 0.65 0.66 0.65 0.77 0.81 0.81 0.77 0.81 0.77 Tune
0.64 0.63 0.72 0.64 0.64 0.70 0.57 0.66 0.70 0.57 0.62 0.56 0.65 0.75 0.79 0.65 0.74 0.67 Trans
0.65 0.66 0.74 0.65 0.66 0.68 0.53 0.58 0.63 0.53 0.59 0.53 0.64 0.73 0.80 0.64 0.74 0.66 Test

100
0.74 0.73 0.86 0.74 0.73 0.84 0.88 0.90 0.90 0.88 0.91 0.89 0.93 0.94 0.94 0.93 0.94 0.93 Tune
0.78 0.76 0.84 0.78 0.78 0.85 0.81 0.83 0.79 0.81 0.81 0.81 0.94 0.93 0.91 0.94 0.94 0.94 Trans
0.79 0.78 0.85 0.79 0.78 0.85 0.78 0.79 0.78 0.78 0.79 0.79 0.93 0.93 0.93 0.93 0.94 0.93 Test

[ccat]

10
0.54 0.60 0.82 0.54 0.60 0.81 0.84 0.85 0.85 0.84 0.85 0.84 0.74 0.78 0.78 0.74 0.78 0.74 Tune
0.50 0.49 0.65 0.50 0.51 0.67 0.69 0.69 0.73 0.69 0.67 0.69 0.60 0.61 0.71 0.60 0.59 0.72 Trans
0.49 0.52 0.64 0.49 0.52 0.66 0.66 0.66 0.69 0.66 0.67 0.67 0.61 0.63 0.72 0.61 0.59 0.71 Test

100
0.80 0.80 0.84 0.80 0.80 0.84 0.89 0.89 0.90 0.89 0.89 0.89 0.91 0.92 0.92 0.91 0.92 0.91 Tune
0.80 0.79 0.80 0.80 0.81 0.83 0.83 0.85 0.84 0.83 0.82 0.82 0.91 0.91 0.89 0.91 0.90 0.91 Trans
0.81 0.80 0.81 0.81 0.80 0.82 0.80 0.81 0.81 0.80 0.81 0.81 0.90 0.90 0.90 0.90 0.90 0.90 Test

[gcat]

10
0.74 0.83 0.82 0.74 0.79 0.81 0.44 0.47 0.46 0.44 0.47 0.46 0.69 0.79 0.75 0.69 0.79 0.75 Tune
0.69 0.68 0.75 0.69 0.72 0.76 0.60 0.62 0.69 0.60 0.59 0.62 0.71 0.73 0.82 0.71 0.69 0.76 Trans
0.66 0.67 0.73 0.66 0.71 0.74 0.58 0.61 0.66 0.58 0.60 0.59 0.69 0.69 0.81 0.69 0.69 0.75 Test

100
0.77 0.77 0.90 0.77 0.77 0.91 0.92 0.92 0.93 0.92 0.92 0.92 0.97 0.96 0.97 0.97 0.96 0.96 Tune
0.81 0.80 0.89 0.81 0.81 0.90 0.88 0.88 0.84 0.88 0.86 0.85 0.96 0.97 0.95 0.96 0.96 0.96 Trans
0.80 0.80 0.89 0.80 0.80 0.90 0.86 0.86 0.85 0.86 0.86 0.86 0.96 0.96 0.96 0.96 0.96 0.96 Test

[WISH-politics]

10
0.70 0.77 0.79 0.70 0.77 0.82 0.61 0.62 0.61 0.61 0.62 0.61 0.74 0.78 0.74 0.74 0.78 0.76 Tune
0.50 0.56 0.63 0.50 0.62 0.56 0.58 0.58 0.61 0.58 0.55 0.53 0.62 0.62 0.69 0.62 0.62 0.61 Trans
0.52 0.56 0.60 0.52 0.62 0.53 0.52 0.53 0.53 0.52 0.54 0.52 0.57 0.58 0.61 0.57 0.62 0.60 Test

100
0.75 0.75 0.75 0.75 0.75 0.74 0.74 0.75 0.76 0.74 0.75 0.75 0.79 0.80 0.80 0.79 0.80 0.80 Tune
0.73 0.73 0.71 0.73 0.73 0.70 0.65 0.66 0.67 0.65 0.64 0.64 0.76 0.74 0.75 0.76 0.75 0.76 Trans
0.75 0.75 0.72 0.75 0.75 0.71 0.64 0.63 0.63 0.64 0.63 0.64 0.78 0.76 0.77 0.78 0.76 0.77 Test

[WISH-products]

10
0.89 0.89 0.67 0.89 0.89 0.67 0.19 0.22 0.16 0.19 0.22 0.16 0.76 0.80 0.74 0.76 0.80 0.74 Tune
0.87 0.87 0.66 0.87 0.87 0.61 0.31 0.29 0.32 0.31 0.24 0.25 0.56 0.52 0.58 0.56 0.54 0.56 Trans
0.90 0.90 0.67 0.90 0.90 0.61 0.22 0.23 0.30 0.22 0.24 0.27 0.50 0.53 0.62 0.50 0.54 0.59 Test

100
0.90 0.90 0.82 0.90 0.90 0.81 0.49 0.50 0.54 0.49 0.52 0.52 0.73 0.73 0.77 0.73 0.78 0.75 Tune
0.88 0.88 0.81 0.88 0.88 0.80 0.34 0.28 0.37 0.34 0.27 0.30 0.60 0.55 0.57 0.60 0.57 0.61 Trans
0.90 0.90 0.79 0.90 0.91 0.76 0.33 0.28 0.33 0.33 0.32 0.38 0.59 0.56 0.60 0.59 0.56 0.60 Test

Table 2: Benchmark comparison results. All numbers are averages over 10 trials. Within each cell of nine numbers,
the boldface indicates the maximum value in each row, as well as others in the row that are not statistically significantly
different based on a pairedt-test.

u = 100 u = 1000
Metric l S3VM MR Best Tuning S3VM MR Best Tuning

accuracy
10 (14, 27, 39) (27, 0, 53) (8, 31, 41) (14, 25, 41) (27, 0, 53) (8, 29, 43) Test
100 (27, 7, 46) (38, 0, 42) (20, 16, 44) (27, 6, 47) (37, 0, 43) (16, 19, 45) Test

Metric l S3VM MR Best Tuning S3VM MR Best Tuning

maxF1
10 (29, 2, 49) (16, 1, 63) (14, 55, 11) (27, 0, 53) (24, 0, 56) (13, 53, 14) Test
100 (39, 0, 41) (34, 4, 42) (31, 15, 34) (39, 1, 40) (44, 4, 32) (26, 21, 33) Test

Metric l S3VM MR Best Tuning S3VM MR Best Tuning

AUROC
10 (26, 0, 54) (11, 0, 69) (12, 57, 11) (25, 0, 55) (25, 0, 55) (11, 56, 13) Test
100 (43, 0, 37) (37, 0, 43) (38, 8, 34) (38, 0, 42) (46, 0, 34) (28, 24, 28) Test

Table 3: Aggregate test performance comparisons versus SVM in 80 trials per setting. Each cell contains a tuple of
the form “(#trials worse than SVM, #trials equal to SVM, #trials better than SVM).”
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u = 100 u = 1000
Metric l SVM S3VM MR Best Tuning SVM S3VM MR Best Tuning

accuracy
10 0.61 0.62 0.67 0.68 0.61 0.63 0.64 0.67 Test
100 0.81 0.82 0.83 0.85 0.81 0.82 0.83 0.85 Test

Metric l SVM S3VM MR Best Tuning SVM S3VM MR Best Tuning

maxF1
10 0.59 0.61 0.64 0.59 0.59 0.61 0.61 0.59 Test
100 0.76 0.75 0.76 0.75 0.76 0.76 0.76 0.76 Test

Metric l SVM S3VM MR Best Tuning SVM S3VM MR Best Tuning

AUROC
10 0.63 0.64 0.72 0.61 0.63 0.64 0.67 0.61 Test
100 0.87 0.87 0.87 0.87 0.87 0.86 0.87 0.86 Test

Table 4: Aggregate test results averaged over the 80 trials (8 datasets, 10 trials each) in a particular setting.

outperforms SVM in fewer trials than the other algo-
rithms in some settings for these two metrics. This
is because Best Tuning conservatively selects SVM
in many trials. The take home message is that tuning
using CV based on accuracy (and to a lesser extent
maxF1) appears to mitigate some risk involved in
applying SSL. AUROC, on the other hand, does not
appear as effective for this purpose. Table 3 (bottom)
shows that, foru = 1000, Best Tuning is worse than
SVM fewer times, but foru = 100, MR achieves
better performance overall.

We also compare overall average test performance
(across datasets) for each metric andl,u combina-
tion. Table 4 reports these results for accuracy,
maxF1, and AUROC. In terms of accuracy, we see
that the Best Tuning approach leads to better per-
formance than SVM, S3VM, or MR in all settings
when averaged over datasets. We appear to achieve
some synergy in dynamically choosing a different
algorithm in each trial. In terms of maxF1, Best
Tuning, S3VM, and MR are all at least as good as
SL in three of the fourl,u settings, and nearly as
good in the fourth. Based on AUROC, though, the
results are mixed depending on the specific setting.
Notably, though, Best Tuning consistently leads to
worse performance than SL when using this metric.

8.3 A Note on Cloud Computing

The experiments were carried out using the Condor
High-Throughput Computing platform (Thain et al.,
2005). We ran many trials per algorithm (using dif-
ferent datasets,l, u, and metrics). Each trial in-
volved training hundreds of models using different
parameter configurations repeated across five folds,
and then training once more using the selected pa-

rameters. In the end, we trained a grand total of
794,880 individual models to produce the results in
Table 2. Through distributed computing on approxi-
mately 50 machines in parallel, we were able to run
all these experiments in less than a week, while us-
ing roughly three months worth of CPU time.

9 Conclusions

We have explored “realistic SSL,” where all parame-
ters are tuned via 5-fold cross validation, to simulate
a real-world experience of trying to use unlabeled
data in a novel NLP task. Our medium-scale empir-
ical study of SVM, S3VM, and MR revealed that no
algorithm is always superior, and furthermore that
there are cases in which each SSL algorithm we ex-
amined can perform worse than SVM (in some cases
significantly worse across 10 trials). To mitigate
such risks, we proposed a simple meta-level proce-
dure that selects one of the three models based on
tuning performance. While cross validation is often
dismissed for model selection in SSL due to a lack
of labeled data, this Best Tuning approach proves ef-
fective in helping to ensure that incorporating unla-
beled data does not hurt performance. Interestingly,
this works well only when optimizing accuracy dur-
ing tuning. For future work, we plan to extend this
study to include additional datasets, algorithms, and
tuning criteria. We also plan to develop more so-
phisticated techniques for choosing which SL/SSL
algorithm to use in practice.
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Abstract

Support Vector Machines present an interest-
ing and effective approach to solve automated
classification tasks. Although it only han-
dles binary and supervised problems by na-
ture, it has been transformed into multiclass
and semi-supervised approaches in several
works. A previous study on supervised and
semi-supervised SVM classification over bi-
nary taxonomies showed how the latter clearly
outperforms the former, proving the suitability
of unlabeled data for the learning phase in this
kind of tasks. However, the suitability of un-
labeled data for multiclass tasks using SVM
has never been tested before. In this work,
we present a study on whether unlabeled data
could improve results for multiclass web page
classification tasks using Support Vector Ma-
chines. As a conclusion, we encourage to rely
only on labeled data, both for improving (or at
least equaling) performance and for reducing
the computational cost.

1 Introduction

The amount of web documents is increasing in a
very fast way in the last years, what makes more
and more complicated its organization. For this rea-
son, web page classification has gained importance
as a task to ease and improve information access.
Web page classification can be defined as the task
of labeling and organizing web documents within a
set of predefined categories. In this work, we focus
on web page classification based on Support Vec-
tor Machines (SVM, (Joachims, 1998)). This kind
of classification tasks rely on a previously labeled

training set of documents, with which the classi-
fier acquires the required ability to classify new un-
known documents.

Different settings can be distinguished for web
page classification problems. On the one hand, at-
tending to the learning technique the system bases
on, it may be supervised, with all the training docu-
ments previously labeled, or semi-supervised, where
unlabeled documents are also taken into account
during the learning phase. On the other hand, attend-
ing to the number of classes, the classification may
be binary, where only two possible categories can
be assigned to each document, or multiclass, where
three or more categories can be set. The former is
commonly used for filtering systems, whereas the
latter is necessary for bigger taxonomies, e.g. topi-
cal classification.

Although multiple studies have been made for
text classification, its application to the web page
classification area remains without enough attention
(Qi and Davison, 2007). Analyzing the nature of
a web page classification task, we can consider it
to be, generally, multiclass problems, where it is
usual to find numerous classes. In the same way,
if we take into account that the number of available
labeled documents is tiny compared to the size of
the Web, this task becomes semi-supervised besides
multiclass.

However, the original SVM algorithm supports
neither semi-supervised learning nor multiclass tax-
onomies, due to its dichotomic and supervised na-
ture. To solve this issue, different studies for
both multiclass SVM and semi-supervised SVM ap-
proaches have been proposed, but a little effort has
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been invested in the combination of them.
(Joachims, 1999) compares supervised and semi-

supervised approaches for binary tasks using SVM.
It shows encouraging results for the transductive
semi-supervised approach, clearly improving the su-
pervised, and so he proved unlabeled data to be
suitable to optimize binary SVM classifiers’ results.
On the other hand, the few works presented for
semi-supervised multiclass SVM classification do
not provide clear information on whether the unla-
beled data improves the classification results in com-
parison with the only use of labeled data.

In this work, we performed an experiment among
different SVM-based multiclass approaches, both
supervised and semi-supervised. The experiments
were focused on web page classification, and
were carried out over three benchmark datasets:
BankSearch, WebKB and Yahoo! Science. Using
the results of the comparison, we analyze and study
the suitability of unlabeled data for multiclass SVM
classification tasks. We discuss these results and
evaluate whether it is worthy to rely on a semi-
supervised SVM approach to conduct this kind of
tasks.

The remainder of this document is organized as
follows. Next, in section 2, we briefly explain how
SVM classifiers work for binary classifications, both
for a supervised and a semi-supervised view. In sec-
tion 3, we continue with the adaptation of SVM to
multiclass environments, and show what has been
done in the literature. Section 4 presents the details
of the experiments carried out in this work, aim at
evaluating the suitability of unlabeled data for mul-
ticlass SVM classification. In section 5 we show and
discuss the results of the experiments. Finally, in
section 6, we conclude with our thoughts and future
work.

2 Binary SVM

In the last decade, SVM has become one of the most
studied techniques for text classification, due to the
positive results it has shown. This technique uses the
vector space model for the documents’ representa-
tion, and assumes that documents in the same class
should fall into separable spaces of the representa-
tion. Upon this, it looks for a hyperplane that sepa-
rates the classes; therefore, this hyperplane should

maximize the distance between it and the nearest
documents, what is called the margin. The following
function is used to define the hyperplane (see Figure
1):

f(x) = w · x+ b

Figure 1: An example of binary SVM classification, sep-
arating two classes (black dots from white dots)

In order to resolve this function, all the possible
values should be considered and, after that, the val-
ues of w and b that maximize the margin should be
selected. This would be computationally expensive,
so the following equivalent function is used to relax
it (Boser et al. , 1992) (Cortes and Vapnik, 1995):

min

[
1
2
||w||2 + C

l∑

i=1

ξdi

]

Subject to: yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0

where C is the penalty parameter, ξi is an stack
variable for the ith document, and l is the number of
labeled documents.

This function can only resolve linearly separable
problems, thus the use of a kernel function is com-
monly required for the redimension of the space; in
this manner, the new space will be linearly separa-
ble. After that, the redimension is undone, so the
found hyperplane will be transformed to the original
space, respecting the classification function. Best-
known kernel functions include linear, polynomial,
radial basis function (RBF) and sigmoid, among oth-
ers. Different kernel functions’ performance has
been studied in (Schölkopf and Smola, 1999) and
(Kivinen et al., 2002).
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Note that the function above can only resolve bi-
nary and supervised problems, so different variants
are necessary to perform semi-supervised or multi-
class tasks.

2.1 Semi-supervised Learning for SVM
(S3VM)

Semi-supervised learning approaches differ in the
learning phase. As opposed to supervised ap-
proaches, unlabeled data is used during the learn-
ing phase, and so classifier’s predictions over them
is also included as labeled data to learn. The fact of
taking into account unlabeled data to learn can im-
prove the classification done by supervised methods,
specially when its predictions provide new useful in-
formation, as shown in figure 2. However, the noise
added by erroneus predictions can make worse the
learning phase and, therefore, its final performance.
This makes interesting the study on whether relying
on semi-supervised approaches is suitable for each
kind of task.

Semi-supervised learning for SVM, also known
as S3VM, was first introduced by (Joachims, 1999)
in a transductive way, by modifying the original
SVM function. To do that, he proposed to add an
additional term to the optimization function:

min


1

2
· ||ω||2 + C ·

l∑

i=1

ξdi + C∗ ·
u∑

j=1

ξ∗
d

j




where u is the number of unlabeled data.
Nevertheless, the adaptation of SVM to semi-

supervised learning significantly increases its com-
putational cost, due to the non-convex nature of the
resulting function, and so obtaining the minimum
value is even more complicated. In order to relax
the function, convex optimization techniques such
as semi-definite programming are commonly used
(Xu et al. , 2007), where minimizing the function
gets much easier.

By means of this approach, (Joachims, 1999)
demonstrated a large performance gap between the
original supervised SVM and his semi-supervised
proposal, in favour of the latter one. He showed
that for binary classification tasks, the smaller is
the training set size, the larger gets the difference
among these two approaches. Although he worked

Figure 2: SVM vs S3VM, where white balls are unla-
beled documents

with multiclass datasets, he splitted the problems
into smaller binary ones, and so he did not demon-
strate whether the same performance gap occurs for
multiclass classification. This paper tries to cover
this issue. (Chapelle et al., 2008) present a compre-
hensive study on S3VM approaches.

3 Multiclass SVM

Due to the dichotomic nature of SVM, it came up
the need to implement new methods to solve multi-
class problems, where more than two classes must
be considered. Different approaches have been pro-
posed to achieve this. On the one hand, as a direct
approach, (Weston, 1999) proposed modifying the
optimization function getting into account all the k
classes at once:

min


1

2

k∑

m=1

||wm||2 + C
l∑

i=1

∑

m6=yi
ξmi




Subject to:

wyi · xi + byi ≥ wm · xi + bm + 2− ξmi , ξmi ≥ 0

On the other hand, the original binary SVM clas-
sifier has usually been combined to obtain a multi-
class solution. As combinations of binary SVM clas-
sifiers, two different approaches to k-class classifiers
can be emphasized (Hsu and Lin, 2002):

• one-against-all constructs k classifiers defining
that many hyperplanes; each of them separates
the class i from the rest k-1. For instance, for
a problem with 4 classes, 1 vs 2-3-4, 2 vs 1-3-
4, 3 vs 1-2-4 and 4 vs 1-2-3 classifiers would
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be created. New documents will be categorized
in the class of the classifier that maximizes the
margin: Ĉi = arg maxi=1,...,k(wix + bi). As
the number of classes increases, the amount of
classifiers will increase linearly.

• one-against-one constructs k(k−1)
2 classifiers,

one for each possible category pair. For in-
stance, for a problem with 4 classes, 1 vs 2,
1 vs 3, 1 vs 4, 2 vs 3, 2 vs 4 and 3 vs 4 clas-
sifiers would be created. After that, it classi-
fies each new document by using all the clas-
sifiers, where a vote is added for the winning
class over each classifier; the method will pro-
pose the class with more votes as the result. As
the number of classes increases, the amount of
classifiers will increase in an exponential way,
and so the problem could became very expen-
sive for large taxonomies.

Both (Weston, 1999) and (Hsu and Lin, 2002)
compare the direct multiclass approach to the one-
against-one and one-against-all binary classifier
combining approaches. They agree concluding that
the direct approach does not outperform the results
by one-against-one nor one-against-all, although
it considerably reduces the computational cost be-
cause the number of support vector machines it
constructs is lower. Among the binary combin-
ing approaches, they show the performance of one-
against-one to be superior to one-against-all.

Although these approaches have been widely
used in supervised learning environments, they have
scarcely been applied to semi-supervised learning.
Because of this, we believe the study on its appli-
cability and performance for this type of problems
could be interesting.

3.1 Multiclass S3VM
When the taxonomy is defined by more than two
classes and the number of previously labeled doc-
uments is very small, the combination of both mul-
ticlass and semi-supervised approaches could be re-
quired. That is, a multiclass S3VM approach. The
usual web page classification problem meets with
these characteristics, since more than two classes
are usually needed, and the tiny amount of labeled
documents requires the use of unlabeled data for the
learning phase.

Actually, there are a few works focused on trans-
forming SVM into a semi-supervised and multiclass
approach. As a direct approach, a proposal by (Ya-
jima and Kuo, 2006) can be found. They modify the
function for multiclass SVM classification and get it
usable for semi-supervised tasks. The resulting op-
timization function is as follows:

min
1
2

h∑

i=1

βi
T
K−1βi

+C
l∑

j=1

∑

i6=yj
max{0, 1− (βyjj − βij)}2

where β represents the product of a vector of vari-
ables and a kernel matrix defined by the author.

On the other hand, some other works are based on
different approaches to achieve a multiclass S3VM
classifier.

(Qi et al., 2004) use Fuzzy C-Means (FCM) to
predict labels for unlabeled documents. After that,
multiclass SVM is used to learn with the augmented
training set, classifying the test set. (Xu y Schu-
urmans, 2005) rely on a clustering-based approach
to label the unlabeled data. Afterwards, they ap-
ply a multiclass SVM classifier to the fully labeled
training set. (Chapelle et al., 2006) present a direct
multiclass S3VM approach by using the Continua-
tion Method. On the other hand, this is the only
work, to the best of our knowledge, that has tested
the one-against-all and one-against-one approaches
in a semi-supervised environment. They apply these
methods to some news datasets, for which they get
low performance. Additionally, they show that one-
against-one is not sufficient for real-world multi-
class semi-supervised learning, since the unlabeled
data cannot be restricted to the two classes under
consideration.

It is noteworthy that most of the above works
only presented their approaches and compared them
to other semi-supervised classifying methods, such
as Expectation-Maximization (EM) or Naive Bayes.
As an exception, (Chapelle et al., 2006) compared
a semi-supervised and a supervised SVM approach,
but only over image datasets. Against this, we felt
the need to evaluate and compare multiclass SVM
and multiclass S3VM approaches, for the sake of
discovering whether learning with unlabeled web
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documents is helpful for multiclass problems when
using SVM as a classifier.

4 Multiclass SVM versus Multiclass S3VM

The main goal of this work is to evaluate the real
contribution of unlabeled data for multiclass SVM-
based web page classification tasks. There are a few
works using semi-supervised multiclass SVM clas-
sifiers, but nobody has demonstrated it improves su-
pervised SVM classifier’s performance. Next, we
detail the experiments we carried out to clear up any
doubts and to ensure which is better for multiclass
SVM-based web page classifications.

4.1 Approaches
In order to evaluate and compare multiclass SVM
and multiclass S3VM, we decided to use three differ-
ent but equivalent approaches for each view, super-
vised and semi-supervised. For further information
on these approaches, see section 3. We add a suffix,
-SVM or -S3VM, to the names of the approaches, to
differentiate whether they are based in a supervised
or a semi-supervised algorithm.

On the part of the semi-supervised view, the fol-
lowing three approaches were selected:

• 2-steps-SVM: we called 2-steps-SVM to the
technique based on the direct multiclass su-
pervised approach exposed in section 3. This
method works, on its first step, with the train-
ing collection, learning with the labeled docu-
ments and predicting the unlabeled ones; after
that, the latter documents are labeled based on
the generated predictions. On the second step,
now with a fully labeled training set, the usual
supervised classification process is done, learn-
ing with the training documents and predicting
the documents in the test set.

This approach is somehow similar to those pro-
posed by (Qi et al., 2004) and (Xu y Schu-
urmans, 2005). Nonetheless, the 2-steps-SVM
approach uses the same method for both the
first and second steps. A supervised multiclass
SVM is used to increase the labeled set and, af-
ter that, to classify the test set.

• one-against-all-S3VM: the one-against-all ap-
proach has not sufficiently been tested for semi-

supervised environments, and seems interest-
ing to evaluate its performance.

• one-against-one-S3VM: the one-against-one
does not seem to be suitable for semi-
supervised environments, since the classifier is
not able to ignore the inadecuate unlabeled doc-
uments for each 1-vs-1 binary task, as stated by
(Chapelle et al., 2006). Anyway, since it has
scarcely been tested, we also consider this ap-
proach.

On the other hand, the approaches selected for
the supervised view were these: (1) 1-step-SVM;
(2) one-against-all-SVM, and (3) one-against-one-
SVM.

The three approaches mentioned above are anal-
ogous to the semi-supervised approaches, 2-steps-
SVM, one-against-all-S3VM and one-against-one-
S3VM, respectively. They differ in the learning
phase: unlike the semi-supervised approaches, these
three supervised approaches only rely on the labeled
documents for the learning task, but after that they
classify the same test documents. These approaches
allow to evaluate whether the unlabeled documents
are contributing in a positive or negative way in the
learning phase.

4.2 Datasets
For these experiments we have used three web page
benchmark datasets previously used for classifica-
tion tasks:

• BankSearch (Sinka and Corne, 2002), a col-
lection of 11,000 web pages over 11 classes,
with very different topics: commercial banks,
building societies, insurance agencies, java, c,
visual basic, astronomy, biology, soccer, mo-
torsports and sports. We removed the category
sports, since it includes both soccer and motor-
sports in it, as a parent category. This results
10,000 web pages over 10 categories. 4,000 in-
stances were assigned to the training set, while
the other 6,000 were left on the test set.

• WebKB1, with a total of 4,518 documents of
4 universities, and classified into 7 classes

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-
20/www/data/

32



(student, faculty, personal, department, course,
project and other). The class named other was
removed due to its ambiguity, and so we finally
got 6 classes. 2,000 instances fell into the train-
ing set, and 2,518 to the test set.

• Yahoo! Science (Tan, 2002), with 788 scien-
tific documents, classified into 6 classes (agri-
culture, biology, earth science, math, chemistry
and others). We selected 200 documents for the
training set, and 588 for the test set.

Within the training set, for each dataset, multiple
versions were created, modifying the number of la-
beled documents, while the rest were left unlabeled.
Thus, the size of labeled subset within the training
set changes, ranging from 50 web documents to the
whole training set.

4.3 Document Representation

SVM requires a vectorial representation of the docu-
ments as an input for the classifier, both for train and
test phases. To obtain this vectorial representation,
we first converted the original html files into plain
text files, removing all the html tags. After that, we
removed the noisy tokens, such as URLs, email ad-
dresses or some stopwords. For these edited docu-
ments, the tf-idf term weighting function was used
to define the values for the uniterms found on the
texts. As the term dimensionality became too large,
we then removed the least-frequent terms by its doc-
ument frequency; terms appearing in less than 0.5%
of the documents were removed for the representa-
tion. The remaining uniterms define the vector space
dimensions. That derived term vectors with 8285 di-
mensions for BankSearch dataset, 3115 for WebKB
and 8437 for Yahoo! Science.

4.4 Implementation

To carry out our experiments, we based on freely
available and already tested and experimented soft-
ware. Different SVM classifiers were needed to im-
plement the methods described in section 4.1.

SVMlight2 was used to work with binary semi-
supervised classifiers for the one-against-all-S3VM
and one-against-one-S3VM approaches. In the same
way, we implemented their supervised versions,

2http://svmlight.joachims.org

one-against-all-SVM and one-against-one-SVM, in
order to evaluate the contribution of unlabeled data.
To achieve the supervised approaches, we ignored
the unlabeled data during the training phase and, af-
ter that, tested with the same test set used for semi-
supervised approaches. The default settings using
a polynomial kernel were selected for the experi-
ments.

SVMmulticlass3 was used to implement the 2-
steps-SVM approach, by using it two times. Firstly,
to train the labeled data and classify unlabeled data.
After that, to train with the whole training set labeled
with classifier’s predictions, and to test with the test
set. In the same way, the 1-step-SVM method was
implemented by ignoring unlabeled data and train-
ing only the labeled data. This method allows to
evaluate the contribution of unlabeled data for the
2-steps-SVM method.

4.5 Evaluation Measures

For the evaluation of the experiments we used the
accuracy to measure the performance, since it has
been frequently used for text classification prob-
lems, specially for multiclass tasks. The accuracy
offers the percent of the correct predictions for the
whole test set. We have considered the same weight
for all the correct guesses for any class. A correct
prediction in any of the classes has the same value,
thus no weighting exists.

On the other hand, an averaged accuracy evalu-
ation is also possible for the binary combining ap-
proaches. An averaged accuracy makes possible to
evaluate the results by each binary classifier, and
provides an averaged value for the whole binary
classifier set. It is worth to note that these values do
not provide any information for the evaluation of the
combined multiclass results, but only for evaluating
each binary classifier before combining them.

5 Results and Discussion

Next, we show and discuss the results of our experi-
ments. It is remarkable that both one-against-one-
SVM and one-against-one-S3VM approaches were
very inferior to the rest, and so we decided not to plot
them in order to maintain graphs’ clarity. Hence,
figures 3, 4 and 5 show the results in accordance

3http://www.cs.cornell.edu/People/tj/svm light/svm multiclass.html
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with the labeled subset size for the 2-steps-SVM, 1-
step-SVM, one-against-all-S3VM and one-against-
all-SVM approaches within our experiments. For
the results to be more representative, nine execu-
tions were done for each subset, obtaining the mean
value. These nine executions vary on the labeled
subset within the training set.

The fact that one-against-one-S3VM has been the
worst approach for our experiments confirms that
the noise added by the unlabeled documents within
each 1-vs-1 binary classification task is harmful to
the learning phase, and it is not corrected when
merging all the binary tasks.

The averaged accuracy for the combined bi-
nary classifiers allows to compare the one-against-
one and one-against-all views. The averaged ac-
curacy for one-against-one-S3VM shows very low
performance (about 60% in most cases), whereas
the same value for one-against-all-S3VM is much
higher (about 90% in most cases). This is obvi-
ous to happen for the one-against-all view, since
it is much easier to predict documents not pertain-
ing to the class under consideration for each 1-vs-
all binary classifier. Although each binary classifier
gets about 90% accuracy for the one-against-one-
S3VM approach, this value falls considerably when
combining them to get the multiclass result. This
shows the additional difficulty for multiclass prob-
lems compared to binary ones. Hence, the difficulty
to correctly predict unlabeled data increases for mul-
ticlass tasks, and it is more likely to add noise during
the learning phase.

Figure 3: Results for BankSearch dataset

Figure 4: Results for WebKB dataset

Figure 5: Results for Yahoo! Science dataset

For all the datasets we worked with, there is a
noticeable performance gap between direct multi-
class and binary combining approaches. Both 2-
steps-SVM and 1-step-SVM are always on the top
of the graphs, and one-against-all-S3VM and one-
against-all-SVM approaches are so far from catch-
ing up with their results, except for WebKB dataset,
where the gap is not so noticeable. This seems en-
couraging, since considering less support vectors in
a direct multiclass approach reduces the computa-
tional cost and improves the final results.

Comparing the two analogous approaches among
them, different conclusions could be extracted.
On the one hand, one-against-all-S3VM shows
slightly better results than one-against-all-SVM, and
so considering unlabeled documents seems to be
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favourable for the one-against-all view. On the other
hand, the direct multiclass view shows varying re-
sults. Both 2-steps-SVM and 1-step-SVM show very
similar results for BankSearch and Yahoo! Science
datasets, but superior for 1-step-SVM over the We-
bKB dataset. As a conclusion of this, ignoring un-
labeled documents by means of the 1-step-SVM ap-
proach seems to be advisable, since it reduces the
computation cost, obtaining at least the same results
than the semi-supervised 2-steps-SVM.

Although their results are so poor, as we said
above, the supervised approach wins for the one-
against-one view; this confirms, again, that the one-
against-one view is not an adecuate view to be ap-
plied in a semi-supervised environment, due to the
noise existing during the learning phase.

When analyzing the performance gaps between
the analogous approaches, a general conclusion can
be extracted: the smaller is the labeled subset the
bigger is the performance gap, except for the Ya-
hoo! Science dataset. Comparing the two best
approaches, 1-step-SVM and 2-steps-SVM, the per-
formance gap increases when the number of la-
beled documents decrease for BankSearch; for this
dataset, the accuracy by 1-step-SVM is 0.92 times
the one by 2-steps-SVM when the number of labeled
documents is only 50, but this proportion goes to
0.99 with 500 labeled documents. This reflects how
the contribution of unlabeled data decreases while
the labeled set increases. For WebKB, the perfor-
mance gap is in favour of 1-step-SVM, and varies
between 1.01 and 1.05 times 2-steps-SVM method’s
accuracy, even with only 50 labeled documents.
Again, increasing the labeled set negatively affects
semi-supervised algorithm’s performance. Last, for
Yahoo! Science, the performance gap among these
two approaches is not considerable, since their re-
sults are very similar.

Our conjecture for the performance difference be-
tween 1-step-SVM and 2-steps-SVM for the three
datasets is the nature of the classes. The accuracy
by semi-supervised 2-steps-SVM is slightly higher
for BankSearch and Yahoo! Science, where the
classes are quite heterogeneous. On the other hand,
the accuracy by supervised 1-step-SVM is clearly
higher for WebKB, where all the classes are an aca-
demic topic, and so more homogeneous. The semi-
supervised classifiers show a major problem for pre-

dicting the unlabeled documents when the collection
is more homogeneous, and so more difficult to differ
between classes.

In summary, the main idea is that unlabeled doc-
uments do not seem to contribute as they would for
multiclass tasks using SVM. Within the approaches
we tested, the supervised 1-step-SVM approach
shows the best (or very similar to the best in some
cases) results in accuracy and, taking into account
it is the least-expensive approach, we strongly en-
courage to use this approach to solve multiclass web
page classification tasks, mainly when the classes
under consideration are homogeneous.

6 Conclusions and Outlook

We have studied and analyzed the contribution of
considering unlabeled data during the learning phase
for multiclass web page classification tasks using
SVM. Our results show that ignoring unlabeled doc-
ument to learn reduces computational cost and, ad-
ditionaly, obtains similar or slightly worse accuracy
values for heterogeneus taxonomies, but higher for
homogeneous ones. Therefore we show that, unlike
for binary cases, as was shown by (Joachims, 1999),
a supervised view outperforms a semi-supervised
one for multiclass environments. Our thought is that
predicting unlabeled documents’ class is much more
difficult when the number of classes increases, and
so, the mistaken labeled documents are harmful for
classifier’s learning phase.

As a future work, a direct semi-supervised multi-
class approach, such as those proposed by (Yajima
and Kuo, 2006) and (Chapelle et al., 2006), should
also be considered, as well as setting the classifier
with different parameters or kernels. Balancing the
weight of previously and newly labeled data could
also be interesting to improve semi-supervised ap-
proaches’ results.
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Abstract

This paper evaluates two semi-supervised
techniques for the adaptation of a parse selec-
tion model to Wikipedia domains. The tech-
niques examined areStructural Correspon-
dence Learning (SCL) (Blitzer et al., 2006)
andSelf-training (Abney, 2007; McClosky et
al., 2006). A preliminary evaluation favors the
use of SCL over the simpler self-training tech-
niques.

1 Introduction and Motivation

Parse selection constitutes an important part of many
parsing systems (Hara et al., 2005; van Noord and
Malouf, 2005; McClosky et al., 2006). Yet, there
is little to no work focusing on theadaptation of
parse selection models to novel domains. This is
most probably due to the fact that potential gains
for this task are inherently bounded by the under-
lying grammar. The few studies on adapting parse
disambiguation models, like Hara et al. (2005), have
focused exclusively onsupervised domain adapta-
tion, i.e. one has access to a comparably small, but
labeled amount of target data. In contrast, insemi-
supervised domain adaptation one has onlyunla-
beled target data. It is a more realistic situation, but
at the same time also considerably more difficult.

In this paper we evaluate two semi-supervised
approaches to domain adaptation of a discrimina-
tive parse selection model. We examineStruc-
tural Correspondence Learning (SCL) (Blitzer et
al., 2006) for this task, and compare it to several
variants ofSelf-training (Abney, 2007; McClosky et
al., 2006). For empirical evaluation (section 4) we
use the Alpino parsing system for Dutch (van Noord

and Malouf, 2005). As target domain, we exploit
Wikipedia as primary test and training collection.

2 Previous Work

So far, Structural Correspondence Learning has
been applied successfully to PoS tagging and Sen-
timent Analysis (Blitzer et al., 2006; Blitzer et
al., 2007). An attempt was made in the CoNLL
2007 shared task to apply SCL to non-projective de-
pendency parsing (Shimizu and Nakagawa, 2007).
However, the system just ended up at rank 7 out
of 8 teams. Based on annotation differences in the
datasets (Dredze et al., 2007) and a bug in their sys-
tem (Shimizu and Nakagawa, 2007), their results are
inconclusive. A recent attempt (Plank, 2009) shows
promising results on applying SCL to parse disam-
biguation. In this paper, we extend that line of work
and compare SCL to bootstrapping approaches such
as self-training.

Studies on self-training have focused mainly on
generative, constituent based parsing (Steedman et
al., 2003; McClosky et al., 2006; Reichart and Rap-
poport, 2007). Steedman et al. (2003) as well as Re-
ichart and Rappoport (2007) examine self-training
for PCFG parsing in the small seed case (< 1k la-
beled data), with different results. In contrast, Mc-
Closky et al. (2006) focus on large seeds and exploit
a reranking-parser. Improvements are obtained (Mc-
Closky et al., 2006; McClosky and Charniak, 2008),
showing that a reranker is necessary for successful
self-training in such a high-resource scenario. While
they self-trained a generative model, we examine
self-training and SCL for semi-supervised adapta-
tion of a discriminative parse selection system.
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3 Semi-supervised Domain Adaptation

3.1 Structural Correspondence Learning

Structural Correspondence Learning (Blitzer et al.,
2006) exploits unlabeled data from both source and
target domain to find correspondences among fea-
tures from different domains. These correspon-
dences are then integrated as new features in the la-
beled data of the source domain. The outline of SCL
is given in Algorithm 1.

The key to SCL is to exploitpivot features to au-
tomatically identify feature correspondences. Piv-
ots are features occurring frequently and behaving
similarly in both domains (Blitzer et al., 2006).
They correspond to auxiliary problems in Ando and
Zhang (2005). For every such pivot feature, a binary
classifier is trained (step 2 of Algorithm 1) by mask-
ing the pivot feature in the data and trying to predict
it with the remaining non-pivot features. Non-pivots
that correlate with many of the same pivots are as-
sumed to correspond. These pivot predictor weight
vectors thus implicitly align non-pivot features from
source and target domain. Intuitively, if we are able
to find good correspondences through ’linking’ piv-
ots, then the augmented source data should transfer
better to a target domain (Blitzer et al., 2006).

Algorithm 1 SCL (Blitzer et al., 2006)
1: Selectm pivot features.
2: Train m binary classifiers (pivot predictors). Cre-

ate matrixWn×m of binary predictor weight vectors
W = [w1, .., wm], with n number of nonpivots.

3: Dimensionality Reduction. Apply SVD toW :
Wn×m = Un×nDn×mV T

m×m and selectθ = UT
[1:h,:]

(theh top left singular vectors ofW ).
4: Train a new model on the original and new features

obtained by applying the projectionx · θ.

SCL for Discriminative Parse Selection So far,
pivot features on the word level were used (Blitzer
et al., 2006; Blitzer et al., 2007). However, for parse
disambiguation based on a conditional model they
are irrelevant. Hence, we follow Plank (2009) and
actually first parse the unlabeled data. This allows
a possibly noisy, but more abstract representation
of the underlying data. Features thus correspond to
properties of parses: application of grammar rules
(r1,r2 features), dependency relations (dep), PoS

tags (f1,f2), syntactic features (s1), precedence (mf ),
bilexical preferences (z), apposition (appos) and fur-
ther features for unknown words, temporal phrases,
coordination (h,in year andp1, respectively). These
features are further described in van Noord and Mal-
ouf (2005).

Selection of pivot features As pivot features
should be common across domains, here we restrict
our pivots to be of the typer1,p1,s1 (the most fre-
quently occurring feature types). In more detail,r1
indicates which grammar rule applied,p1 whether
coordination conjuncts are parallel, ands1 whether
local/non-local extraction occurred. We count how
often each feature appears in the parsed source and
target domain data, and select thoser1,p1,s1 fea-
tures aspivot features, whose count is> t, where
t is a specified threshold. In all our experiments, we
set t = 5000. In this way we obtained on average
360 pivot features, on the datasets described in Sec-
tion 4.

3.2 Self-training

Self-training (Algorithm 2) is a simple single-view
bootstrapping algorithm. In self-training, the newly
labeled instances are taken at face value and added
to the training data.

There are many possible ways to instantiate self-
training (Abney, 2007). One variant, introduced in
Abney (2007) is the notion of ’(in)delibility’: in the
delible case the classifier relabels all of the unla-
beled data from scratch in every iteration. The clas-
sifier may become unconfident about previously se-
lected instances and they may drop out (Steven Ab-
ney, personal communication). In contrast, in the
indelible case, labels once assigned do not change
again (Abney, 2007).

In this paper we look at the following variants of
self-training:

• single versus multiple iterations,

• selection versus no selection (taking all self-
labeled data or selecting presumably higher
quality instances); different scoring functions
for selection,

• delibility versus indelibility for multiple itera-
tions.
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Algorithm 2 Self-training (indelible) (Abney, 2007).
1: L0 is labeled [seed] data,U is unlabeled data
2: c← train(L0)
3: repeat
4: L← L + select(label(U − L, c))
5: c← train(L)
6: until stopping criterion is met

Scoring methods We examine three simple scor-
ing functions for instance selection: i)Entropy
(−∑

y∈Y (s) p(ω|s, θ) log p(ω|s, θ)). ii) Number of
parses (|Y (s)|); and iii) Sentence Length (|s|).

4 Experiments and Results

Experimental Design The system used in this
study is Alpino, a two-stage dependency parser for
Dutch (van Noord and Malouf, 2005). The first
stage consists of a HPSG-like grammar that consti-
tutes the parse generation component. The second
stage is a Maximum Entropy (MaxEnt) parse selec-
tion model. To train the MaxEnt model, parame-
ters are estimated based on informative samples (Os-
borne, 2000). A parse is added to the training data
with a score indicating its “goodness” (van Noord
and Malouf, 2005). The score is obtained by com-
paring it with the gold standard (if available; other-
wise the score is approximated through parse proba-
bility).

The source domain is the Alpino Treebank (van
Noord and Malouf, 2005) (newspaper text; approx.
7,000 sentences; 145k tokens). We use Wikipedia
both as testset and as unlabeled target data source.
We assume that in order to parse data from a very
specific domain, say about the artist Prince, then
data related to that domain, like information about
the New Power Generation, the Purple rain movie,
or other American singers and artists, should be of
help. Thus, we exploit Wikipedia’s category system
to gather domain-specific target data. In our empiri-
cal setup, we follow Blitzer et al. (2006) and balance
the size of source and target data. Thus, depending
on the size of the resulting target domain dataset, and
the “broadness” of the categories involved in creat-
ing it, we might wish to filter out certain pages. We
implemented a filter mechanism that excludes pages
of a certain category (e.g. a supercategory that is hy-
pothesized to be “too broad”). Further details about

the dataset construction are given in (Plank, 2009).
Table 1 provides information on the target domain
datasets constructed from Wikipedia.

Related to Articles Sents Tokens Relationship
Prince 290 9,772 145,504 filtered super
Paus 445 8,832 134,451 all
DeMorgan 394 8,466 132,948 all

Table 1: Size of related unlabeled data; relationship in-
dicates whether all related pages are used or some are
filtered out.

The size of the target domain testsets is given in
Table 2. As evaluation measure concept accuracy
(CA) (van Noord and Malouf, 2005) is used (similar
to labeled dependency accuracy).

The training data for the pivot predictors are the
1-best parses of source and target domain data as
selected by the original Alpino model. We report
on results of SCL with dimensionality parameter set
to h = 25, and remaining settings identical to Plank
(2009) (i.e., no feature-specific regularization and no
feature normalization and rescaling).

Baseline Table 2 shows the baseline accuracies
(model trained on labeled out-of-domain data) on
the Wikipedia testsets (last column: size in number
of sentences). The second and third column indicate
lower (first parse) and upper- (oracle) bounds.

Wikipedia article baseline first oracle sent
Prince (musician) 85.03 71.95 88.70357
Paus Johannes Paulus II 85.72 74.30 89.09232
Augustus De Morgan 80.09 70.08 83.52254

Table 2: Supervised Baseline results.

SCL and Self-training results The results for
SCL (Table 3) show a small, but consistent increase
in absolute performance on all testsets over the base-
lines (up to+0.27 absolute CA or 7.34% relative
error reduction, which is significant atp < 0.05 ac-
cording to sign test).

In contrast, basic self-training (Table 3) achieves
roughly only baseline accuracy and lower perfor-
mance than SCL, with one exception. On the De-
Morgan testset, self-training scores slightly higher
than SCL. However, the improvements of both SCL
and self-training are not significant on this rather
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small testset. Indeed, self-training scores better than
the baseline on only 5 parses out of 254, while its
performance is lower on 2, leaving only 3 parses that
account for the difference.

CA φ Rel.ER
Prince baseline 85.03 78.06 0.00
SCL ⋆ 85.30 79.67 7.34
Self-train (all-at-once) 85.08 78.38 1.46
Paus baseline 85.72 77.23 0.00
SCL 85.82 77.87 2.81
Self-train (all-at-once) 85.78 77.62 1.71
DeMorgan baseline 80.09 74.44 0.00
SCL 80.15 74.92 1.88
Self-train (all-at-once) 80.24 75.63 4.65

Table 3: Results of SCL and self-training (single itera-
tion, no selection). Entries marked with⋆ are statistically
significant atp < 0.05. Theφ score incorporates upper-
and lower-bounds.

To gauge whether other instantiations of self-
training are more effective, we evaluated the self-
training variants introduced in section 3.2 on the
Prince dataset. In the iterative setting, we fol-
low Steedman et al. (2003) and parse 30 sentences
from which 20 are selected in every iteration.

With regard to the comparison of delible versus
indelible self-training (whether labels may change),
our empirical findings shows that the two cases
achievevery similar performance; the two curves
highly overlap (Figure 1). The accuracies of both
curves fluctuate around 85.13, showing no upward
or downward trend. In general, however, indelibility
is preferred since it takes considerably less time (the
classifier does not have to relabelU from scratch in
every iteration). In addition, we tested EM (which
uses all unlabeled data in each iteration). Its per-
formance is consistently lower, varying around the
baseline.

Figure 2 compares several self-training variants
with the supervised baseline and SCL. It summa-
rizes the effect of i) selection versus no selection
(and various selection techniques) as well as ii) sin-
gle versus multiple iterations of self-training. For
clarity, the figure shows the learning curve of the
best selection technique only, but depicts the perfor-
mance of the various selection techniques in a single
iteration (non-solid lines).

In the iterative setting, taking the whole self-
labeled data and not selecting certain instances (grey

curve in Figure 2) degrades performance. In con-
trast, selecting shorter sentences slightly improves
accuracy, and is the best selection method among
the ones tested (shorter sentences, entropy, fewer
parses).

For all self-training instantiations, running multi-
ple iterations is on average just the same as running
a single iteration (the non-solid lines are roughly the
average of the learning curves). Thus there is no real
need to run several iterations of self-training.

The main conclusion is that in contrast to SCL,
none of the self-training instantiations achieves a
significant improvement over the baseline.

5 Conclusions and Future Work

The paper compares Structural Correspondence
Learning (Blitzer et al., 2006) with (various in-
stances of) self-training (Abney, 2007; McClosky
et al., 2006) for the adaptation of a parse selection
model to Wikipedia domains.

The empirical findings show that none of the eval-
uated self-training variants (delible/indelible, single
versus multiple iterations, various selection tech-
niques) achieves a significant improvement over the
baseline. The more ’indirect’ exploitation of unla-
beled data through SCL is more fruitful than pure
self-training. Thus, favoring the use of the more
complex method, although the findings are not con-
firmed on all testsets.

Of course, our results are preliminary and, rather
than warranting yet many definite conclusions, en-
courage further investigation of SCL (varying size
of target data, pivots selection, bigger testsets as
well as other domains etc.) as well as related semi-
supervised adaptation techniques.
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Abstract

Latent Dirichlet Allocation is an unsupervised
graphical model which can discover latent top-
ics in unlabeled data. We propose a mech-
anism for adding partial supervision, called
topic-in-set knowledge, to latent topic mod-
eling. This type of supervision can be used
to encourage the recovery of topics which are
more relevant to user modeling goals than the
topics which would be recovered otherwise.
Preliminary experiments on text datasets are
presented to demonstrate the potential effec-
tiveness of this method.

1 Introduction

Latent topic models such as Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) have emerged as a use-
ful family of graphical models with many interesting
applications in natural language processing. One of
the key virtues of LDA is its status as a fully genera-
tive probabilistic model, allowing principled exten-
sions and variations capable of expressing rich prob-
lem domain structure (Newman et al., 2007; Rosen-
Zvi et al., 2004; Boyd-Graber et al., 2007; Griffiths
et al., 2005).

LDA is an unsupervised learning model. This
work aims to add supervised information in the form
of latent topic assignments to LDA. Traditionally,
topic assignments have been denoted by the variable
z in LDA, and we will call such supervised informa-
tion “z-labels.” In particular, az-label is the knowl-

∗ We would like to acknowledge the assistance of Brandi
Gancarz with the biological annotations. This work is supported
in part by the Wisconsin Alumni Research Foundation.

edge that the topic assignment for a given word po-
sition is within a subset of topics. As such, this work
is a combination of unsupervised model and super-
vised knowledge, and falls into the category simi-
lar to constrained clustering (Basu et al., 2008) and
semi-supervised dimensionality reduction (Yang et
al., 2006).

1.1 Related Work

A similar but simpler type of topic labeling infor-
mation has been applied to computer vision tasks.
Topic modeling approaches have been applied to
scene modeling (Sudderth et al., 2005), segmen-
tation, and classification or detection (Wang and
Grimson, 2008). In some of these vision applica-
tions, the latent topics themselves are assumed to
correspond to object labels. If labeled data is avail-
able, either all (Wang and Mori, 2009) or some (Cao
and Fei-Fei, 2007) of thez values can be treated as
observed, rather than latent, variables. Our model
extendsz-labels from single values to subsets, thus
offer additional model expressiveness.

If the topic-based representations of documents
are to be used for document clustering or classi-
fication, providingz-labels for words can be seen
as similar to semi-supervised learning with labeled
features (Druck et al., 2008). Here the words are
features, andz-label guidance acts as a feature la-
bel. This differs from other supervised LDA vari-
ants (Blei and McAuliffe, 2008; Lacoste-Julien et
al., 2008) which use document label information.

The∆LDA model for statistical software debug-
ging (Andrzejewski et al., 2007) partitions the topics
into 2 sets: “usage” topics which can appear in all
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documents, and “bug” topics which can only appear
in a special subset of documents. This effect was
achieved by using differentα hyperparameters for
the 2 subsets of documents.z-labels can achieve the
same effect by restricting thez’s in documents out-
side the special subset, so that thez’s cannot assume
the “bug” topic values. Therefore, the present ap-
proach can be viewed as a generalization of∆LDA.

Another perspective is that ourz-labels may
guide the topic model towards the discovery of sec-
ondary or non-dominant statistical patterns in the
data (Chechik and Tishby, 2002). These topics may
be more interesting or relevant to the goals of the
user, but standard LDA would ignore them in favor
of more prominent (and perhaps orthogonal) struc-
ture.

2 Our Model

2.1 Review of Latent Dirichlet Allocation

We briefly review LDA, following the notation
of (Griffiths and Steyvers, 2004)1. Let there be
T topics. Let w = w1 . . . wn represent a cor-
pus ofD documents, with a total ofn words. We
usedi to denote the document of wordwi, andzi
the hidden topic from whichwi is generated. Let
φ

(w)
j = p(w|z = j), and θ(d)

j = p(z = j) for
documentd. LDA involves the following generative
model:

θ ∼ Dirichlet(α) (1)

zi|θ(di) ∼ Multinomial(θ(di)) (2)

φ ∼ Dirichlet(β) (3)

wi|zi, φ ∼ Multinomial(φzi), (4)

where α and β are hyperparameters for the
document-topic and topic-word Dirichlet distribu-
tions, respectively. Even though they can be vector
valued, for simplicity we assumeα andβ are scalars,
resulting in symmetric Dirichlet priors.

Given our observed wordsw, the key task is in-
ference of the hidden topicsz. Unfortunately, this
posterior is intractable and we resort to a Markov
Chain Monte Carlo (MCMC) sampling scheme,
specifically Collapsed Gibbs Sampling (Griffiths
and Steyvers, 2004). The full conditional equation

1We enclose superscripts in parentheses in this paper.

used for sampling individualzi values from the pos-
terior is given by

P (zi = v|z−i,w, α, β) ∝
(

n
(d)
−i,v + α

∑T
u (n(d)

−i,u + α)

)(
n

(wi)
−i,v + β

∑W
w′(β + n

(w′)
−i,v)

)
(5)

wheren(d)
−i,v is the number of times topicv is used in

documentd, andn(wi)
−i,v is the number of times word

wi is generated by topicv. The−i notation signifies
that the counts are taken omitting the value ofzi.

2.2 Topic-in-Set Knowledge:z-labels

Let

qiv =

(
n

(d)
−i,v + α

∑T
u (n(d)

−i,u + α)

)(
n

(wi)
−i,v + β

∑W
w′(β + n

(w′)
−i,v)

)
.

We now define ourz-labels. LetC(i) be the set of
possiblez-labels for latent topiczi. We set a hard
constraint by modifying the Gibbs sampling equa-
tion with an indicator functionδ(v ∈ C(i)), which
takes on value1 if v ∈ C(i) and is0 otherwise:

P (zi = v|z−i,w, α, β) ∝ qivδ(v ∈ C(i)) (6)

If we wish to restrictzi to a single value (e.g.,zi =
5), this can now be accomplished by settingC(i) =
{5}. Likewise, we can restrictzi to a subset of val-
ues{1, 2, 3} by settingC(i) = {1, 2, 3}. Finally, for
unconstrainedzi we simply setC(i) = {1, 2, ..., T},
in which case our modified sampling (6) reduces to
the standard Gibbs sampling (5).

This formulation gives us a flexible method for in-
serting prior domain knowledge into the inference of
latent topics. We can setC(i) independently for ev-
ery single wordwi in the corpus. This allows us, for
example, to force two occurrences of the same word
(e.g., “Applepie” and “AppleiPod”) to be explained
by different topics. This effect would be impossible
to achieve by using topic-specific asymmetricβ vec-
tors and setting some entries to zero.

This hard constraint model can be relaxed. Let
0 ≤ η ≤ 1 be the strength of our constraint, where
η = 1 recovers the hard constraint (6) andη = 0
recovers unconstrained sampling (5):

P (zi = v|z−i,w, α, β) ∝ qiv
(
ηδ(v ∈ C(i)) + 1− η

)
.
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While we present thez-label constraints as a me-
chanical modification to the Gibbs sampling equa-
tions, it can be derived from an undirected extension
of LDA (omitted here) which encodesz-labels. The
soft constraint Gibbs sampling equation arises nat-
urally from this formulation, which is the basis for
the First-Order Logic constraints described later in
the future work section.

3 Experiments

We now present preliminary experimental results to
demonstrate some interesting applications for topic-
in-set knowledge. Unless otherwise specified, sym-
metric hyperparametersα = .5 andβ = .1 were
used and all MCMC chains were run for 2000 sam-
ples before estimatingφ andθ from the final sample,
as in (Griffiths and Steyvers, 2004).

3.1 Concept Expansion

We explore the use of topic-in-set for identifying
words related to a target concept, given a set of
seed words associated with that concept. For ex-
ample, a biological expert may be interested in the
concept “translation”. The expert would then pro-
vide a set of seed words which are strongly related
to this concept, here we assume the seed word set
{translation,trna,anticodon,ribosome}. We add the
hard constraint thatzi = 0 for all occurrences of
these four words in our corpus of approximately
9,000 yeast-related abstracts.

We ran LDA with the number of topicsT = 100,
both with and without thez-label knowledge on the
seed words. Table 1 shows the most probable words
in selected topics from both runs. Table 1a shows
Topic 0 from the constrained run, while Table 1b
shows the topics which contained seed words among
the top 50 most probable words from the uncon-
strained run.

In order to better understand the results, these
top words were annotated for relevance to the tar-
get concept (translation) by an outside biological ex-
pert. The words in Table 1 were then colored blue
if they were one of the original seed words, red if
they were judged as relevant, and left black other-
wise. From a quick glance, we can see that Topic
0 from the constrained run contains more relevant
terms than Topic 43 from the standard LDA run.

Topic 31 has a similar number of relevant terms, but
taken together we can see that the emphasis of Topic
31 is slightly off-target, more focused on “mRNA
turnover” than “translation”. Likewise, Topic 73
seems more focused on the ribosome itself than the
process of translation. Overall, these results demon-
strate the potential effectiveness ofz-label informa-
tion for guiding topic models towards a user-seeded
concept.

3.2 Concept Exploration

Suppose that a user has chosen a set of terms and
wishes to discover different topics related to these
terms. By constraining these terms to only appear
in a restricted set of topics, these terms will becon-
centratedin the set of topics. The split within those
set of topics may be different from what a standard
LDA will produce, thus revealing new information
within the data.

To make this concrete, say we are interested in
the location “United Kingdom”. We seed this con-
cept with the following LOCATION-tagged terms
{britain, british, england, uk, u.k., wales, scotland,
london}. These terms are then restricted to ap-
pear only in the first 3 topics. Our corpus is an
entity-tagged Reuters newswire corpus used for the
CoNLL-2003 shared task (Tjong Kim Sang and
De Meulder, 2003). In order to focus on our tar-
get location, we also restrict all other LOCATION-
tagged tokens tonot appear in the first 3 topics. For
this experiment we setT = 12, arrived at by trial-
and-error in the baseline (standard LDA) case.

The 50 most probable words for each topic are
shown in Figure 2, and tagged entities are prefixed
with their tags for easy identification. Table 2a
shows the top words for the first 3 topics of ourz-
label run. These three topics are all related to the
target LOCATION United Kingdom, but they also
split nicely into business, cricket, and soccer. Words
which are highly relevant to each of these 3 concepts
are colored blue, red, and green, respectively.

In contrast, in Table 2b we show topics from stan-
dard LDA which contain any of the “United King-
dom” LOCATION terms (which are underlined)
among the 50 most probable words for that topic.
We make several observations about these topics.
First, standard LDA Topic 0 is mostly concerned
with political unrest in Russia, which is not particu-
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Topic 0

translation, ribosomal, trna, rrna, initiation, ribosome, protein, ribosomes, is, factor, processing, translational
nucleolar, pre-rrna, synthesis, small,60s, eukaryotic,biogenesis, subunit, trnas, subunits, large,nucleolus
factors, 40, synthetase, free,modification, rna, depletion,eif-2, initiator, 40s, ef-3, anticodon, maturation
18s, eif2, mature, eif4e, associated, synthetases,aminoacylation, snornas, assembly, eif4g, elongation

(a) Topic 0 withz-label

Topic 31

mrna, translation, initiation, mrnas, rna, transcripts, 3, transcript, polya, factor, 5, translational, decay, codon
decapping, factors, degradation, end, termination, eukaryotic,polyadenylation, cap, required, efficiency
synthesis, show,codons, abundance,rnas, aug, nmd, messenger, turnover, rna-binding, processing, eif2, eif4e
eif4g, cf, occurs,pab1p, cleavage, eif5, cerevisiae, major,primary, rapid,tail, efficient, upf1p,eif-2

Topic 43

type, is, wild, yeast,trna, synthetase, both,methionine, synthetases, class,trnas, enzyme, whereas,cytoplasmic
because, direct, efficiency, presence,modification, aminoacylation, anticodon, either, eukaryotic, between
different, specific, discussed, results, similar, some,met, compared,aminoacyl-trna, able,initiator, sam
not, free, however,recognition, several, arc1p, fully, same, forms, leads, identical, responsible, found, only, well

Topic 73

ribosomal, rrna, protein, is, processing, ribosome, ribosomes, rna, nucleolar, pre-rrna, rnase, small,biogenesis
depletion,subunits, 60s, subunit, large,synthesis, maturation, nucleolus, associated, essential,assembly
components,translation, involved,rnas, found, component,mature, rp, 40s, accumulation,18s, 40, particles
snornas, factors, precursor, during,primary, rrnas, 35s, has,21s, specifically, results,ribonucleoprotein, early

(b) Standard LDA Topics

Figure 1: Concept seed words are colored blue, other words judged relevant to the target concept are colored
red.

larly related to the target location. Second, Topic 2
is similar to our previous business topic, but with
a more US-oriented slant. Note that “dollar” ap-
pears with high probability in standard LDA Topic
2, but not in ourz-label LDA Topic 0. Standard
LDA Topic 8 appears to be a mix of both soccer and
cricket words. Therefore, it seems that our topic-in-
set knowledge helps in distilling topics related to the
seed words.

Given this promising result, we attempted to
repeat this experiment with some other nations
(United States, Germany, China), but without much
success. When we tried to restrict these LOCATION
words to the first few topics, these topics tended to
be used to explain other concepts unrelated to the
target location (often other sports). We are investi-
gating the possible causes of this problem.

4 Conclusions and Future Work

We have defined Topic-in-Set knowledge and
demonstrated its use within LDA. As shown in the
experiments, the partial supervision provided byz-
labels can encourage LDA to recover topics rele-
vant to user interests. This approach combines the
pattern-discovery power of LDA with user-provided

guidance, which we believe will be very attractive to
practical users of topic modeling.

Future work will deal with at least two impor-
tant issues. First, when will this form of partial
supervision be most effective or appropriate? Our
experimental results suggest that this approach will
struggle if the user’s target concepts are simply not
prevalent in the text. Second, can we modify this
approach to express richer forms of partial super-
vision? More sophisticated forms of knowledge
may allow users to specify their preferences or prior
knowledge more effectively. Towards this end, we
are investigating the use of First-Order Logic in
specifying prior knowledge. Note that the setz-
labels presented here can be expressed as simple log-
ical formulas. Extending our model to general log-
ical formulas would allow the expression of more
powerful relational preferences.
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Topic 0

million, company, ’s, year,shares, net, profit, half, group,[I-ORG]corp, market, sales, share, percent
expected,business, loss, stock, results, forecast, companies, deal, earnings, statement, price, [I-LOC]london
billion, [I-ORG]newsroom,industry, newsroom,pay, pct, analysts, issue,services, analyst, profits, sale
added, firm, [I-ORG]london,chief, quarter, investors, contract, note,tax, financial, months,costs

Topic 1

[I-LOC]england, [I-LOC]london, [I-LOC]britain, cricket, [I-PER]m.,overs, test, wickets, scores, [I-PER]ahmed
[I-PER]paul, [I-PER]wasim,innings, [I-PER]a., [I-PER]akram, [I-PER]mushtaq, day,one-day, [I-PER]mark, final
[I-LOC]scotland, [I-PER]waqar,[I-MISC]series, [I-PER]croft, [I-PER]david, [I-PER]younis, match, [I-PER]ian
total, [I-MISC]english, [I-PER]khan, [I-PER]mullally,bat, declared, fall, [I-PER]d., [I-PER]g., [I-PER]j.
bowling, [I-PER]r., [I-PER]robert, [I-PER]s., [I-PER]steve, [I-PER]c.captain, golf, tour, [I-PER]sohail, extras
[I-ORG]surrey

Topic 2

soccer, division, results, played, standings, league, matches,halftime, goals, attendance, points, won, [I-ORG]st
drawn, saturday, [I-MISC]english, lost,premier, [I-MISC]french, result, scorers, [I-MISC]dutch, [I-ORG]united
[I-MISC]scottish, sunday,match, [I-LOC]london, [I-ORG]psv, tabulate, [I-ORG]hapoel, [I-ORG]sydney, friday
summary, [I-ORG]ajax, [I-ORG]manchester, tabulated, [I-MISC]german, [I-ORG]munich, [I-ORG]city
[I-MISC]european, [I-ORG]rangers, summaries, weekend, [I-ORG]fc, [I-ORG]sheffield, wednesday, [I-ORG]borussia
[I-ORG]fortuna, [I-ORG]paris, tuesday

(a) Topics with setz-labels

Topic 0

police, ’s, people, killed, [I-MISC]russian, friday, spokesman, [I-LOC]moscow, told, rebels, group, officials
[I-PER]yeltsin, arrested, found, miles, km, [I-PER]lebed, capital, thursday, tuesday, [I-LOC]chechnya, news
saturday, town, authorities, airport, man, government, state, agency, plane, reported, security, forces
city, monday, air, quoted, students, region, area, local, [I-LOC]russia, [I-ORG]reuters, military, [I-LOC]london
held, southern, died

Topic 2

percent, ’s, market, thursday, july,tonnes, week, year, lower, [I-LOC]u.s.,rate, prices, billion, cents, dollar
friday, trade, bank, closed,trading, higher, close,oil, bond, fell, markets, index, points, rose
demand, june,rates, september,traders, [I-ORG]newsroom, day,bonds, million, price, shares, budget, government
growth, interest, monday, [I-LOC]london, economic, august, expected,rise

Topic 5

’s, match, team, win, play, season, [I-MISC]french, lead, home, year, players, [I-MISC]cup, back, minutes
champion, victory, time, n’t, game, saturday, title, side, set, made, wednesday, [I-LOC]england
league, run, club, top, good, final, scored, coach, shot, world, left, [I-MISC]american, captain
[I-MISC]world, goal, start, won, champions, round, winner, end, years, defeat, lost

Topic 8

division, [I-LOC]england, soccer, results, [I-LOC]london, [I-LOC]pakistan, [I-MISC]english, matches, played
standings, league, points, [I-ORG]st,cricket, saturday, [I-PER]ahmed, won, [I-ORG]united,goals
[I-PER]wasim, [I-PER]akram, [I-PER]m., [I-MISC]scottish, [I-PER]mushtaq, drawn,innings, premier, lost
[I-PER]waqar,test, [I-PER]croft, [I-PER]a., [I-PER]younis, declared,wickets, [I-ORG]hapoel, [I-PER]mullally
[I-ORG]sydney, day, [I-ORG]manchester, [I-PER]khan, final,scores, [I-PER]d., [I-MISC]german, [I-ORG]munich
[I-PER]sohail, friday, total, [I-LOC]oval

Topic 10

[I-LOC]germany, ’s, [I-LOC]italy, [I-LOC]u.s., metres, seconds, [I-LOC]france, [I-LOC]britain, [I-LOC]russia
world, race, leading, [I-LOC]sweden, [I-LOC]australia, [I-LOC]spain, women, [I-MISC]world, [I-LOC]belgium
[I-LOC]netherlands, [I-PER]paul, [I-LOC]japan, [I-MISC]olympic, [I-LOC]austria, [I-LOC]kenya, men, time
results, [I-LOC]brussels, [I-MISC]cup, [I-LOC]canada, final, minutes, record, [I-PER]michael, meeting, round
[I-LOC]norway, friday, scores, [I-PER]mark, [I-PER]van, [I-LOC]ireland, [I-PER]peter, [I-MISC]grand
[I-MISC]prix, points, saturday, [I-LOC]finland, cycling, [I-ORG]honda

(b) Standard LDA Topics

Figure 2: Topics containing “United Kingdom” location words. Words related to business are colored blue,
cricket red, and soccer green.
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Abstract

We present a semi-supervised (bootstrapping)
approach to the extraction of time expression
mentions in large unlabelled corpora. Because
the only supervision is in the form of seed
examples, it becomes necessary to resort to
heuristics to rank and filter out spurious pat-
terns and candidate time expressions. The
application of bootstrapping to time expres-
sion recognition is, to the best of our knowl-
edge, novel. In this paper, we describe one
such architecture for bootstrapping Informa-
tion Extraction (IE) patterns —suited to the
extraction of entities, as opposed to events or
relations— and summarize our experimental
findings. These point out to the fact that a
pattern set with a good increase in recall with
respect to the seeds is achievable within our
framework while, on the other side, the de-
crease in precision in successive iterations is
succesfully controlled through the use of rank-
ing and selection heuristics. Experiments are
still underway to achieve the best use of these
heuristics and other parameters of the boot-
strapping algorithm.

1 Introduction
The problem of time expression recognition refers
to the identification in free-format natural language
text of the occurrences of expressions that denote
time. Time-denoting expressions appear in a great
diversity of forms, beyond the most obvious ab-
solute time or date references (e.g. 11pm, Febru-
ary 14th, 2005): time references that anchor on an-
other time (three hours after midnight, two weeks be-
fore Christmas), expressions denoting durations (a

few months), expressions denoting recurring times
(every third month, twice in the hour), context-
dependent times (today, last year), vague references
(somewhere in the middle of June, the near future)
or times that are indicated by an event (the day G.
Bush was reelected). This problem is a subpart of
a task called TERN (Temporal Expression Recog-
nition and Normalization), where temporal expres-
sions are first identified in text and then its intended
temporal meaning is represented in a canonical for-
mat. TERN was first proposed as an independent
task in the 2004 edition of the ACE conferences1.
The most widely used standard for the annotation of
temporal expressions is TIMEX (Ferro et al., 2005).

The most common approach to temporal expres-
sion recognition in the past has been the use of
hand-made grammars to capture the expressions (see
(Wiebe et al., 1998; Filatova and Hovy, 2001; Sa-
quete et al., 2004) for examples), which can then
be easily expanded with additional attributes for the
normalization task, based on computing distance
and direction (past or future) with respect to a ref-
erence time. This approach achieves an F1-measure
of approximately 85% for recognition and normal-
ization. The use of machine learning techniques —
mainly statistical— for this task is a more recent
development, either alongside the traditional hand-
grammar approach to learn to distinguish specific
difficult cases (Mani and Wilson, 2000), or on its
own (Hacioglu et al., 2005). The latter apply SVMs
to the recognition task alone, using the output of sev-
eral human-made taggers as additional features for
the classifier, and report an F1-measure of 87.8%.

1http://www.nist.gov/speech/tests/ace/
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Bootstrapping techniques have been used for such
diverse NLP problems as: word sense disambigua-
tion (Yarowsky, 1995), named entity classification
(Collins and Singer, 1999), IE pattern acquisition
(Riloff, 1996; Yangarber et al., 2000; Yangarber,
2003; Stevenson and Greenwood, 2005), document
classification (Surdeanu et al., 2006), fact extraction
from the web (Paşca et al., 2006) and hyponymy re-
lation extraction (Kozareva et al., 2008).

(Yarowsky, 1995) used bootstrapping to train de-
cision list classifiers to disambiguate between two
senses of a word, achieving impressive classification
accuracy. (Collins and Singer, 1999) applied boot-
strapping to extract rules for named entity (NE) clas-
sification, seeding the sytem with a few handcrafted
rules. Their main innovation was to split training
in two alternate stages: during one step, only con-
textual rules are sought; during the second step, the
new contextual rules are used to tag further NEs and
these are used to produce new spelling rules.

Bootstrapping approaches are employed in
(Riloff, 1996), (Yangarber et al., 2000), (Yangarber,
2003), and (Stevenson and Greenwood, 2005)
in order to find IE patterns for domain-specific
event extraction. (Paşca et al., 2006) employ a
bootstrapping process to extract general facts from
the Web, viewed as two-term relationships (e.g
[Donald Knuth, 1938] could be an instance of
a “born in year” relationship). (Surdeanu et al.,
2006) used bootstrapping co-trained with an EM
classifier in order to perform topic classification
of documents based on the presence of certain
learned syntactic-semantic patterns. In (Kozareva
et al., 2008), bootstrapping is applied to finding
new members of certain class of objects (i.e. an
“is-a” relationship), by providing a member of the
required class as seed and using a “such as” type of
textual pattern to locate new instances.

The recognition of temporal expressions is cru-
cial for many applications in NLP, among them: IE,
Question Answering (QA) and Automatic Summa-
rization (for the temporal ordering of events). Work
on slightly supervised approaches such as bootstrap-
ping is justified by the large availability of unla-
belled corpora, as opposed to tagged ones, from
which to learn models for recognition.

2 Architecture
Figure 1 illustrates the building blocks of the algo-
rithm and their interactions, along with input and
output data.

The inputs to the bootstrapping algorithm are the
unlabelled training corpus and a file of seed ex-
amples. The unlabelled corpus is a large collec-
tion of documents which has been tokenized, POS
tagged, lemmatized, and syntactically analyzed for
basic syntactic constituents (shallow parsing) and
headwords. The second input is a set of seed exam-
ples, consisting of a series of token sequences which
we assume to be correct time expressions. The seeds
are supplied without additional features, and without
context information.

Our bootstrapping algorithm works with two al-
ternative views of the same target data (time expres-
sions), that is: patterns and examples (i.e. an in-
stance of a pattern in the corpus). A pattern is a gen-
eralized representation that can match any sequence
of tokens meeting the conditions expressed in the
pattern (these can be morphological, semantic, syn-
tactic and contextual). An example is an actual can-
didate occurrence of a time expression. Patterns are
generated from examples found in the corpus and,
in its turn, new examples are found by searching
for matches of new patterns. Both patterns and ex-
amples may carry contextual information, that is, a
window of tokens left and right of the candidate time
expression.

Output examples and output patterns are the out-
puts of the bootstrapping process. Both the set of
output examples and the set of output patterns are
increased with each new iteration, by adding the new
candidate examples (respectively, patterns) that have
been “accepted” during the last iteration (i.e. those
that have passed the ranking and selection step).

Initially, a single pass through the corpus is per-
formed in order to find occurrences of the seeds in
the text. Thus, we bootstrap an initial set of exam-
ples. From then on, the bootstrapping process con-
sists of a succession of iterations with the following
steps:

1. Ranking and selection of examples: Each ex-
ample produced during any of the previous it-
erations, 0 to i − 1, is assigned a score (rank-
ing). The top n examples are selected to grow
the set of output examples (selection) and will
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Figure 1: Block diagram of bootstrapping algorithm

be used for the next step. The details are given
in Section 4.2.

2. Generation of candidate patterns: Candidate
patterns for the current iteration are generated
from the selected examples of the previous step
(discussed in Section 3).

3. Ranking and selection of candidate patterns:
Each pattern from the current iteration is as-
signed a score and the top m patterns are se-
lected to grow the set of output patterns and to
be used in the next step (discussed in Section
4.1). This step also involves a process of analy-
sis of subsumptions, performed simultaneously
with selection, in which the set of selected pat-
terns is examined and those that are subsumed
by other patterns are discarded.

4. Search for instances of the selected patterns:
The training corpus is traversed, in order to
search for instances (matches) of the selected
patterns, which, together with the accepted ex-
amples from all previous iterations, will form
the set of candidate examples for iteration i+1.

Also, in order to relax the matching of pat-
terns to corpus tokens and of token forms among
themselves, the matching of token forms is case-
insensitive, and all the digits in a token are gen-
eralized to a generic digit marker (for instance,
“12-23-2006” is internally rewritten as “@@-@@-
@@@@”).

Even though our architecture is built on a tradi-
tional boostrapping approach, there are several ele-
ments that are novel, at least in the context of tem-
poral expression recognition: a) our pattern repre-
sentation incorporates full syntax and distributional

semantics in a unified model (see Section 3); b) our
pattern ranking/selection approach includes a sub-
sumption model to limit redundancy; c) the formu-
lae in our example ranking/selection approach are
designed to work with variable-length expressions
that incorporate a context.

3 Pattern representation
Patterns capture both the sequence of tokens that
integrate a potential time expression (i.e. a time
expression mention), and information from the left
and right context where it occurs (up to a bounded
length). Let us call prefix the part of the pattern that
represents the left context, infix the part that repre-
sents a potential time expression mention and postfix
the part that represents the right context.

The EBNF grammar that encodes our pattern rep-
resentation is given in Figure 2. Patterns are com-
posed of multiple pattern elements (PEs). A pattern
element is the minimal unit that is matched against
the tokens in the text, and a single pattern element
can match to one or several tokens, depending on
the pattern element type. A pattern is considered to
match a sequence of tokens in the text when: first,
all the PEs from the infix are matched (this gives the
potential time expression mention) and, second, all
the PEs from the prefix and the postfix are matched
(this gives the left and right context information for
the new candidate example, respectively). There-
fore, patterns with a larger context window are more
restrictive, because all of the PEs in the prefix and
the postfix have to be matched (on top of the infix)
for the pattern to yield a match.

We distinguish among token-level generalizations
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pattern ::= prefix SEP infix SEP postfix SEP
(modifiers)*

prefix ::= (pattern-elem)*
infix ::= (pattern-elem)+
postfix ::= (pattern-elem)*
pattern-elem ::= FORM "(" token-form ")" |

SEMCLASS "(" token-form ")" |
POS "(" pos-tag ")" | LEMMA "(" lemma-form ")" |
SYN "(" syn-type "," head ")" |
SYN-SEM "(" syn-type "," head ")"

modifiers ::= COMPLETE-PHRASE

Figure 2: The EBNF Grammar for Patterns

(i.e. PEs) and chunk-level generalizations. The for-
mer have been generated from the features of a sin-
gle token and will match to a single token in the text.
The latter have been generated from and match to a
sequence of tokens in the text (e.g. a basic syntactic
chunk). Patterns are built from the following types
of PEs (which can be seen in the grammar from Fig-
ure 2):

1. Token form PEs: The more restrictive, only
match a given token form.

2. Semantic class PEs: Match tokens (sometimes
multiwords) that belong to a given semantic
similarity class. This concept is defined below.

3. POS tag PEs: Match tokens with a given POS.
4. Lemma PEs: Match tokens with a given

lemma.
5. Syntactic chunk PEs: Match a sequence of to-

kens that is a syntactic chunk of a given type
(e.g. NP) and whose headword has the same
lemma as indicated.

6. Generalized syntactic PEs: Same as the previ-
ous, but the lemma of the headword may be any
in a given semantic similarity class.

The semantic similarity class of a word is defined
as the word itself plus a group of other semanti-
cally similar words. For computing these, we em-
ploy Lin’s corpus of pairwise distributional similari-
ties among words (nouns, verbs and adjectives) (Lin,
1998), filtered to include only those words whose
similarity value is above both an absolute (highest
n) and relative (to the highest similarity value in the
class) threshold. Even after filtering, Lin’s similari-
ties can be “noisy”, since the corpus has been con-
structed relying on purely statistical means. There-
fore, we are employing in addition a set of manu-
ally defined semantic classes (hardcoded lists) sen-
sitive to our domain of temporal expressions, such
that these lists “override” the Lin’s similarity cor-
pus whenever the semantic class of a word present

in them is involved. The manually defined semantic
classes include: the written form of cardinals; ordi-
nals; days of the week (plus today, tomorrow and
yesterday); months of the year; date trigger words
(e.g. day, week); time trigger words (e.g. hour, sec-
ond); frequency adverbs (e.g. hourly, monthly); date
adjectives (e.g. two- day, @@-week-long); and time
adjectives (e.g. three-hour, @@-minute-long).

We use a dynamic window for the amount of con-
text that is encoded into a pattern, that is, we gen-
erate all the possible patterns with the same infix,
and anything between 0 and the specified length of
the context window PEs in the prefix and the postfix,
and let the selection step decide which variations get
accepted into the next iteration.

The modifiers field in the pattern representa-
tion has been devised as an extension mecha-
nism. Currently the only implemented mod-
ifier is COMPLETE-PHRASE, which when at-
tached to a pattern, “rounds” the instance (i.e.
candidate time expression) captured by its infix
to include the closest complete basic syntactic
chunk (e.g. “LEMMA(end) LEMMA(of) SEM-
CLASS(January)” would match “the end of De-
cember 2009” instead of only “end of December”
against the text “. . . By the end of December 2009,
. . . ”). This modifier was implemented in view of the
fact that most temporal expressions correspond with
whole noun phrases or adverbial phrases.

From the above types of PEs, we have built the
following types of patterns:

1. All-lemma patterns (including the prefix and
postfix).

2. All-semantic class patterns.
3. Combinations of token form with sem. class.
4. Combinations of lemma with sem. class.
5. All-POS tag patterns.
6. Combinations of token form with POS tag.
7. Combinations of lemma with POS tag.
8. All-syntactic chunk patterns.
9. All-generalized syntactic patterns.

4 Ranking and selection of patterns and
learning examples

4.1 Patterns
For the purposes of this section, let us define the
control set C as being formed by the seed examples
plus all the selected examples over the previous it-
erations (only the infix considered, not the context).
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Note that, except for the seed examples, this is only
assumed correct, but cannot be guaranteed to be cor-
rect (unsupervised). In addition, let us define the in-
stance set Ip of a candidate pattern p as the set of
all the instances of the pattern found in a fraction of
the unlabelled corpus (only infix of the instance con-
sidered). Each candidate pattern pat is assigned two
partial scores:

1. A frequency-based score freq sc(p) that mea-
sures the coverage of the pattern in (a section
of) the unsupervised corpus:
freq sc(p) = Card(Ip ∩ C)

2. A precision score prec sc(p) that evaluates the
precision of the pattern in (a section of) the un-
supervised corpus, measured against the con-
trol set:
prec sc(p) = Card(Ip∩C)

Card(Ip)

These two scores are computed only against a
fraction of the unlabelled corpus for time effi-
ciency. There remains an issue with whether multi-
sets (counting each repeated instance several times)
or normal sets (counting them only once) should be
used for the instance sets Ip. Our experiments indi-
cate that the best results are obtained by employing
multisets for the frequency-based score and normal
sets for the precision score.

Given the two partial scores above, we have tried
three different strategies for combining them:

• Multiplicative combination: λ1 log(ε1 +
freq sc(p)) + λ2 log(ε2 + prec sc(p))
• The strategy suggested in (Collins and Singer,

1999): Patterns are first filtered by imposing
a threshold on their precision score. Only for
those patterns that pass this first filter, their final
score is considered to be their frequency-based
score.
• The strategy suggested in (Riloff, 1996):{

prec sc(p) · log(freq sc(p)) if prec sc(p) ≥ thr
0 otherwise

4.1.1 Analysis of subsumptions
Intertwined with the selection step, an analysis of

subsumptions is performed among the selected pat-
terns, and the patterns found to be subsumed by oth-
ers in the set are discarded. This is repeated until ei-
ther a maximum of m patterns with no subsumptions

among them are selected, or the list of candidate pat-
terns is exhausted, whichever happens first. The pur-
pose of this analysis of subsumptions is twofold: on
the one hand, it results in a cleaner output pattern
set by getting rid of redundant patterns; on the other
hand, it improves temporal efficiency by reducing
the number of patterns being handled in the last step
of the algorithm (i.e. searching for new candidate
examples).

In our scenario, a pattern p1 with instance set Ip1

is subsumed by a pattern p2 with instance set Ip2

if Ip1 ⊂ Ip2 . We make a distinction among “theo-
retical” and “empirical” subsumptions. Theoretical
subsumptions are those that can be justified based on
theoretical grounds alone, from observing the form
of the patterns. Empirical subsumptions are those
cases where in fact one pattern subsumes another ac-
cording to the former definition, but this could only
be detected by having calculated their respective in-
stance sets a priori, which beats one of the purposes
of the analysis of subsumptions —namely, tempo-
ral efficiency—. We are only dealing with theoreti-
cal subsumptions here. A pattern theoretically sub-
sumes another pattern when either of these condi-
tions occur:

• The first pattern is identical to the second, ex-
cept that the first has fewer contextual PEs in
the prefix and/or the postfix.
• Part or all of the PEs of the first pattern are

identical to the corresponding PEs in the sec-
ond pattern, except for the fact that they are
of a more general type (element-wise); the re-
maining PEs are identical. To this end, we have
defined a partial order of generality in the PE
types (see section 3), as follows:
FORM ≺ LEMMA ≺ SEMCLASS; FORM ≺ POS;

SYN ≺ SYN-SEMC

• Both the above conditions (fewer contextual
PEs and of a more general type) happen at the
same time.

4.2 Learning Examples
An example is composed of the tokens which have
been identified as a potential time expression (which
we shall call the infix) plus a certain amount of left
and right context (from now on, the context) en-
coded alongside the infix. For ranking and selecting
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examples, we first assign a score and select a num-
ber n of distinct infixes and, in a second stage, we
assign a score to each context of appearance of an
infix and select (at most) m contexts per infix. Our
scoring system for the infixes is adapted from (Paşca
et al., 2006). Each distinct infix receives three par-
tial scores and the final score for the infix is a linear
combination of these, with the λi being parameters:
λ1sim sc(ex) + λ2pc sc(ex) + λ3ctxt sc(ex)

1. A similarity-based score (sim sc(ex)), which
measures the semantic similarity (as per the
Lin’s similarity corpus (Lin, 1998)) of the
infix with respect to set of “accepted” output
examples from all previous iterations plus the
initial seeds. If w1, . . . , wn are the tokens in
the infix (excluding stopwords); ej,1, . . . , ej,mj

are the tokens in the j-th example of the set
E of seed plus output examples; and sv(x, y)
represents a similarity value, the similarity
Sim(wi) of the i-th word of the infix wrt
the seeds and output is given by Sim(wi) =
∑|E|

j=1 max(sv(wi, ej,1), . . . , sv(wi, ej,mj )),
and the similarity-based score of an in-
fix containing n words is given by∑n

i=1
log(1+Sim(wi))

n .
2. A phrase-completeness score (pc sc(ex)),

which measures the likelihood that the infix
is a complete time expression and not merely
a part of one, over the entire set of candidate
example: count(INFIX)

count(∗INFIX∗)
3. A context-based score (ctxt sc(ex)), intended

as a measure of the infix’s relevance. For each
context (up to a length) where this infix appears
in the corpus, the frequency of the word with
maximum relative frequency (over the words
in all the infix’s contexts) is taken. The sum
is then scaled by the relative frequency of this
particular infix.

Apart from the score associated with the infix,
each example (i.e. infix plus a context) receives
two additional frequency scores for the left and right
context part of the example respectively. Each of
these is given by the relative frequency of the token
with maximum frequency of that context, computed
over all the tokens that appear in all the contexts of
all the candidate examples. For each selected infix,
the m contexts with best score are selected.

5 Experiments
5.1 Experimental setup

As unsupervised data for our experiments, we use
the NW (newswire) category of LDC’s ACE 2005
Unsupervised Data Pool, containing 456 Mbytes of
data in 204K documents for a total of over 82 mil-
lion tokens. Simultaneously, we use a much smaller
labelled corpus (where the correct time expressions
are tagged) to measure the precision, recall and F1-
measure of the pattern set learned by the bootstrap-
ping process. This is the ACE 2005 corpus, contain-
ing 550 documents with 257K tokens and approx.
4650 time expression mentions. The labelled corpus
is split in two halves: one half is used to obtain the
initial seed examples from among the time expres-
sions found therein; the other half is used for eval-
uation. We are requiring that a pattern captures the
target time expression mention exactly (no misalign-
ment allowed at the boundaries), in order to count it
as a precision or recall hit.

We will also be interested in measuring the gain
in recall, that is, the difference between the recall
in the best iteration and the initial recall given by
the seeds. Also important is the number of iter-
ations after which the bootstrapping process con-
verges. In the case where the same F1- measure
mark is achieved in two experimental settings, ear-
lier convergence of the algorithm will be prefered.
Otherwise, better F1 and gain in recall are the pri-
mary goals.

In order to start with a set of seeds with high pre-
cision, we select them automatically, imposing that
a seed time expression must have precision above a
certain value (understood as the percentage, of all
the appearances of the sequence of tokens in the su-
pervised corpus, those in which it is tagged as a cor-
rect time expression). In the experiments presented
below, this threshold for precision of the seeds is
90% —in the half of the supervised corpus reserved
for extraction of seeds—. From those that pass this
filter, the ones that appear with greater frequency are
selected. For time expressions that have an identi-
cal digit pattern (e.g. two dates “@@ December”
or two years “@@@@”, where @ stands for any
digit), only one seed is taken. This approach sim-
ulates the human domain expert, which typically is
the first step in bootstrapping IE models
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Unless specifically stated otherwise, all the exper-
iments presented below share the following default
settings:
• Only the first 2.36 Mbytes of the unsupervised

corpus are used (10 Mbytes after tokenization
and feature extraction), that is 0.5% of the
available data. This is to keep the execution
time of experiments low, where multiple exper-
iments need to be run to optimize a certain pa-
rameter.
• We use the Collins and Singer strategy (see

section 4.1) with a precision threshold of 0.50
for sub-score combination in pattern selection.
This strategy favours patterns with slightly
higher precision.
• The maximum length of prefix and postfix is 1

and 0 elements, respectively. This was deter-
mined experimentally.
• 100 seed examples are used (out of a maximum

of 605 available).
• In the ranking of examples, the λi weights for

the three sub- scores for infixes are 0.5 for
the “similarity-based score”, 0.25 for “phrase-
completeness” and 0.25 for “context-based
score”.
• In the selection of examples, the maximum

number of new infixes accepted per iteration is
200, with a maximum of 50 different contexts
per infix. In the selection of patterns, the max-
imum number of new accepted patterns per it-
eration is 5000 (although this number is never
reached due to the analysis of subsumptions).
• In the selection of patterns, multisets are used

for computing the instance set of a pattern
for the frequency-based score and normal sets
for the precision score (determined experimen-
tally).
• The POS tag type of generalization (pattern el-

ement) has been deactivated, that is, neither all-
POS patterns, nor patterns that are combina-
tions of POS PEs with another are generated.
After an analysis of errors, it was observed that
POS generalizations (because of the fact that
they are not lexicalized like, for instance, the
syntactic PEs with a given headword) give rise
to a considerable number of precision errors.
• All patterns are generated with COMPLETE-

PHRASE modifier automatically attached. It
was determined experimentally that it was best
to use this heuristic in all cases (see section 3).

5.2 Variation of the number of seeds

We have performed experiments using 1, 5, 10, 20,
50, 100, 200 and 500 seeds. The general trends ob-
served were as follows. The final precision (when
the bootstrapping converges) decreases more or less
monotonically as the number of seeds increases, al-
though there are slight fluctuations; besides, the dif-
ference in this respect between using few seeds (20
to 50) or more (100 to 200) is of only around 3%.
However, a big leap can be observed in moving from
200 to 500 seeds, where both the initial precision
(of the seeds) and final precision (at point of con-
vergence) drop by 10% wrt to using 200 seeds. The
final recall increases monotonically as the number
of seeds increases —since more supervised informa-
tion is provided—. The final F1-measure first in-
creases and then decreases with an increasing num-
ber of seeds, with an optimum value being reached
somewhere between the 50 and 100 seeds.

The largest gain in recall (difference between re-
call of the seeds and recall at the point of con-
vergence) is achieved with 20 seeds, for a gain
of 16.38% (initial recall is 20.08% and final is
36.46%). The best mark in F1-measure is achieved
with 100 seeds, after 6 iterations: 60.43% (the final
precision is 69.29% and the final recall is 53.58%;
the drop in precision is 6.5% and the gain in recall is
14.28%). Figure 3 shows a line plot of precision vs
recall for these experiments. This experiment sug-
gests that the problem of temporal expression recog-
nition can be captured with minimal supervised in-
formation (100 seeds) and larger amounts of unsu-
pervised information.

Figure 3: Effect of varying the number of seeds
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5.3 Variation of the type of generalizations
used in patterns

In these experiments, we have defined four differ-
ents sets of generalizations (i.e. types of pattern ele-
ments among those specified in section 3) to evalu-
ate how semantic and syntactic generalizations con-
tribute to performance of the algorithm. These four
experiments are labelled as follows: NONE includes
only PEs of the LEMMA type; SYN includes PEs
of the lemma type and of the not-generalized syn-
tactic chunk (SYN) type; SEM includes PEs of the
lemma type and of the semantic class (SEMCLASS)
type, as well as combinations of lemma with SEM-
CLASS PEs; and lastly, SYN+SEM includes every-
thing that both SYN and SEM experiments include,
plus PEs of the generalized syntactic chunk (SYN-
SEMC) type.

One can observe than neither type of generaliza-
tion, syntactic or semantic, is specially “effective”
when used in isolation (only a 3.5% gain in recall in
both cases). It is only the combination of both types
that gives a good gain in recall (14.28% in the case
of this experiment). Figure 4 shows a line plot of this
experiment. The figure indicates that the problem of
temporal expression recognition, even though appar-
ently simple, requires both syntactic and semantic
information for efficient modeling.

Figure 4: Effect of using syntactic and/or semantic gen-
eralizations
5.4 Variation of the size of unsupervised data

used
We performed experiments using increasing
amounts of unsupervised data for training in the
bootstrapping: 1, 5, 10, 50 and 100 Mbytes of
preprocessed corpus (tokenized and with feature
extraction). The amounts of plain text data are

roughly a fifth part, respectively. The objective
of these experiments is to determine whether
performance improves as the amount of training
data is increased. The number of seeds passed to
the bootstrapping is 68. The maximum number of
new infixes (the part of an example that contains a
candidate time expression) accepted per iteration
has been increased from 200 to 1000, because it
was observed that larger amounts of unsupervised
training data need a greater number of selection
“slots” in order to render an improvement (that is, a
more “reckless” bootstrapping), otherwise they will
fill up all the allowed selection slots.

The observed effect is that both the drop in preci-
sion (from the initial iteration to the point of conver-
gence) and the gain in recall improve more or less
consistently as a larger amount of training data is
taken, or otherwise the same recall point is achieved
in an earlier iteration. These improvements are nev-
ertheless slight, in the order of between 0.5% and
2%. The biggest improvement is observed in the 100
Mbytes experiment, where recall after 5 iterations is
6% better than in the 50 Mbytes experiment after 7
iterations. The drop in precision in the 100 Mbytes
experiment is 13.05%, for a gain in recall of 21.36%
(final precision is 71.02%, final recall 52.84% and
final F1 60.59%). Figure 5 shows a line plot of this
experiment. This experiment indicates that increas-
ing amounts of unsupervised data can be used to im-
prove the performance of our model, but the task is
not trivial.

Figure 5: Effect of varying the amount of unsupervised
training data

6 Conclusions and future research
We have presented a slightly supervised algorithm
for the extraction of IE patterns for the recognition
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of time expressions, based on bootstrapping, which
introduces a novel representation of patterns suited
to this task. Our experiments show that with a rel-
atively small amount of supervision (50 to 100 ini-
tial correct examples or seeds) and using a combina-
tion of syntactic and semantic generalizations, it is
possible to obtain an improvement of around 15%-
20% in recall (with regard to the seeds) and F1-
measure over 60% learning exclusively from unla-
belled data. Furthermore, using increasing amounts
of unlabelled training data (of which there is plenty
available) is a workable way to obtain small im-
provements in performance, at the expense of train-
ing time. Our current focus is on addressing specific
problems that appear on inspection of the precision
errors in test, which can improve both precision and
recall to a degree. Future planned lines of research
include using WordNet for improving the semantic
aspects of the algorithm (semantic classes and simi-
larity), and studying forms of combining the patterns
obtained in this semi-supervised approach with su-
pervised learning.
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Abstract

We present a simple semi-supervised learning
algorithm for named entity recognition (NER)
using conditional random fields (CRFs). The
algorithm is based on exploiting evidence that
is independent from the features used for a
classifier, which provides high-precision la-
bels to unlabeled data. Such independent ev-
idence is used to automatically extract high-
accuracy and non-redundant data, leading to a
much improved classifier at the next iteration.
We show that our algorithm achieves an aver-
age improvement of 12 in recall and 4 in pre-
cision compared to the supervised algorithm.
We also show that our algorithm achieves high
accuracy when the training and test sets are
from different domains.

1 Introduction

Named entity recognition (NER) or tagging is the
task of finding names such as organizations, persons,
locations, etc. in text. Since whether or not a word is
a name and the entity type of a name are determined
mostly by the context of the word as well as by the
entity type of its neighbors, NER is often posed as a
sequence classification problem and solved by meth-
ods such as hidden Markov models (HMM) and con-
ditional random fields (CRF).

Automatically tagging named entities (NE) with
high precision and recall requires a large amount of
hand-annotated data, which is expensive to obtain.
This problem presents itself time and again because
tagging the same NEs in different domains usually
requires different labeled data. However, in most

domains one often has access to large amounts of
unlabeled text. This fact motivates semi-supervised
approaches for NER.

Semi-supervised learning involves the utilization
of unlabeled data to mitigate the effect of insuf-
ficient labeled data on classifier accuracy. One
variety of semi-supervised learning essentially at-
tempts to automatically generate high-quality train-
ing data from an unlabeled corpus. Algorithms such
as co-training (Blum and Mitchell, 1998)(Collins
and Singer, 1999)(Pierce and Cardie, 2001) and
the Yarowsky algorithm (Yarowsky, 1995) make as-
sumptions about the data that permit such an ap-
proach.

The main requirement for the automatically gen-
erated training data in addition to high accuracy,
is that it covers regions in the feature space with
low probability density. Furthermore, it is neces-
sary that all the classes are represented according to
their prior probabilities in every region in the fea-
ture space. One approach to achieve these goals is
to select unlabeled data that has been classified with
low confidence by the classifier trained on the orig-
inal training data, but whose labels are known with
high precision from independent evidence. Here in-
dependence means that the high-precision decision
rule that classifies these low confidence instances
uses information that is independent of the features
used by the classifier.

We propose two ways of obtaining such inde-
pendent evidence for NER. The first is based on
the fact that multiple mentions of capitalized to-
kens are likely to have the same label and occur
in independently chosen contexts. We call this the
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multi-mention property. The second is based on the
fact that entities such as organizations, persons, etc.,
have context that is highly indicative of the class,
yet is independent of the other context (e.g. com-
pany suffixes like Inc., Co., etc., person titles like
Mr., CEO, etc.). We call such context high precision
independent context.

Let us first look at two examples.
Example 1:
1) said Harry You, CEO of HearingPoint ....
2) For this year’s second quarter, You said the

company’s ...
The classifier tags “Harry You” as person (PER)

correctly since its context (said, CEO) makes it an
obvious name. However, in the second sentence, the
classifier fails to tag “You” as a person since “You”
is usually a stopword. The second sentence is ex-
actly the type of data needed in the training set.

Example 2:
(1) Medtronic Inc 4Q profits rise 10 percent...
(2) Medtronic 4Q profits rise 10 percent...
The classifier tags “Medtronic” correctly in the

first sentence because of the company suffix “Inc”
while it fails to tag “Medtronic” in the second
sentence since “4Q profits” is a new pattern and
“Medtronic” is unseen in the training data. Thus the
second sentence is what we need in the training set.

The two examples have one thing in common. In
both cases, the second sentence has a new pattern
and incorrect labels, which can be fixed by using
either multi-mention or high-precision context from
the first sentence. We actually artificially construct
the second sentence to be added to the training set in
Example 2 although only the first sentence exists in
the unlabeled corpus.

By leveraging such independent evidence, our
algorithm can automatically extract high-accuracy
and non-redundant data for training, and thus ob-
tain an improved model for NER. Specifically, our
algorithm starts with a model trained with a small
amount of gold data (manually tagged data). This
model is then used to extract high-confidence data,
which is then used to discover low-confidence data
by using other independent features. These low-
confidence data are then added to the training data
to retrain the model. The whole process repeats
until no significant improvement can be achieved.
Our experiments show that the algorithm is not only

much better than the initial model, but also better
than the supervised learning when a large amount
of gold data are available. Especially, even when
the domain from which the original training data is
sampled is different from the domain of the testing
data, our algorithm still provides significant gains in
classification accuracy.

2 Related Work

The Yarowsky algorithm (Yarowsky, 1995), orig-
inally proposed for word sense disambiguation,
makes the assumption that it is very unlikely for two
occurrences of a word in the same discourse to have
different senses. This assumption is exploited by
selecting words classified with high confidence ac-
cording to sense and adding other contexts of the
same words in the same discourse to the training
data, even if they have low confidence. This allows
the algorithm to learn new contexts for the senses
leading to higher accuracy. Our algorithm also uses
multi-mention features. However, the application
of the Yarowsky algorithm to NER involves several
domain-specific choices as will become evident be-
low.

Wong and Ng (Wong and Ng, 2007) use the same
idea of multiple mentions of a token sequence be-
ing to the same named entity for feature engineer-
ing. They use a named entity recognition model
based on the maximum entropy framework to tag a
large unlabeled corpus. Then the majority tags of
the named entities are collected in lists. The model
is then retrained by using these lists as extra fea-
tures. This method requires a sufficient amount of
manually tagged data initially to work. Their paper
shows that, if the initial model has a low F-score,
the model with the new features leads to low F-score
too. Our method works with a small amount of gold
data because, instead of constructing new features,
we use independent evidence to enrich the training
data with high-accuracy and non-redundant data.

The co-training algorithm proposed by Blum and
Mitchell (Blum and Mitchell, 1998) assumes that
the features can be split into two class-conditionally
independent sets or “views” and that each view is
sufficient for accurate classification. The classifier
built on one of the views is used to classify a large
unlabeled corpus and the data classified with high-
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confidence are added to the training set on which
the classifier on the other view is trained. This pro-
cess is iterated by interchanging the views. The
main reason that co-training works is that, because
of the class-conditional independence assumptions,
the high-confidence data from one view, in addition
to being highly precise, is unbiased when added to
the training set for the other view. We could not
apply co-training for semi-supervised named entity
recognition because of the difficulty of finding infor-
mative yet class-conditionally independent feature
sets.

Collins et al.(Collins and Singer, 1999) proposed
two algorithms for NER by modifying Yarowsky’s
method (Yarowsky, 1995) and the framework sug-
gested by (Blum and Mitchell, 1998). However, all
their features are at the word sequence level, instead
of at the token level. At the token level, the seed
rules they proposed do not necessarily work. In ad-
dition, parsing sentences into word sequences is not
a trivial task, and also not necessary for NER, in our
opinion.

Jiao et al. propose semi-supervised conditional
random fields (Jiao et al., 2006) that try to maxi-
mize the conditional log-likelihood on the training
data and simultaneously minimize the conditional
entropy of the class labels on the unlabeled data.
This approach is reminiscent of the semi-supervised
learning algorithms that try to discourage the bound-
ary from being in regions with high density of unla-
beled data. The resulting objective function is no
longer convex and may result in local optima. Our
approach in contrast avoids changing the CRF train-
ing procedure, which guarantees global maximum.

3 Named Entity Recognition

As long as independent evidence exists for one type
of NE, our method can be directly applied to classify
such NE. As an example, we demonstrate how to ap-
ply our method to classify three types of NEs: orga-
nization (ORG), person (PER), and location (LOC)
since they are the most common ones. A non-NE is
annotated as O.

3.1 Conditional Random Fields for NER

We use CRF to perform classification in our frame-
work. CRFs are undirected graphical models trained

to maximize the conditional probability of a se-
quence of labels given the corresponding input se-
quence. Let X , X = x1...xN , be an input sequence,
and Y , Y = y1....yN , be the label sequence for the
input sequence. The conditional probability of Y
given X is:

P (Y |X) =
1

Z(X)
exp(

N∑

n=1

∑

k

λkfk(yn−1, yn, X, n))

(1)

where Z(X) is a normalization term, fk is a feature
function, which often takes a binary value, and λk

is a learned weight associated with the feature fk.
The parameters can be learned by maximizing log-
likelihood ` which is given by

` =
∑

i

log P (Yi|Xi)−
∑

k

λ2
k

2σ2
k

(2)

where σ2
k is the smoothing (or regularization) pa-

rameter for feature fk. The penalty term, used for
regularization, basically imposes a prior distribution
on the parameters.

It has been shown that ` is convex and thus a
global optimum is guaranteed (McCallum, 2003).
Inferring label sequence for an input sequence X
involves finding the most probable label sequence,
Y ∗ = arg max

Y
P (Y |X), which is done by the

Viterbi algorithm (Forney, 1973).

3.2 Features for NER

One big advantage of CRF is that it can naturally
represent rich domain knowledge with features.

3.2.1 Standard Features
Part of the features we used for our CRF classifier

are common features that are widely used in NER
(McCallum and Li, 2003), as shown below.

1) Lexicon. Each token is itself a feature.
2) Orthography. Orthographic information is

used to identify whether a token is capitalized, or
an acronym, or a pure number, or a punctuation, or
has mixed letters and digits, etc.

3) Single/multiple-token list. Each list is a collec-
tion of words that have a common sematic meaning,
such as last name, first name, organization, company
suffix, city, university, etc.
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4) Joint features. Joint features are the conjunc-
tions of individual features. For example, if a token
is in a last name list and its previous token is in a
title list, the token will have a joint feature called as
Title+Name.

5) Features of neighbors. After extracting the
above features for each token, its features are then
copied to its neighbors (The neighbors of a token in-
clude the previous two and next two tokens) with a
position id. For example, if the previous token of a
token has a feature “Cap@0”, this token will have a
feature “Cap@-1”.

3.2.2 Label Features
One unique and important feature used in our al-

gorithm is called Label Features. A label feature
is the output label of a token itself if it is known.
We designed some simple high-precision rules to
classify each token, which take precedence over the
CRF. Specifically, if a token does not include any
uppercase letter, is not a number, and it is not in the
nocap list (which includes the tokens that are not
capitalized but still could be part of an NE, such as
al, at, in, -, etc), the label of this token is “O”.

Table 1: An example of extracted features
Tokens Feature
Monday W=Monday@0 O@0
vice W=vice@0 O@0
chairman W=chairman@0 title@0 O@0
Goff W=Goff@0 CAP@0 Lastname@0

W=chairman@-1 title@-1 O@-1
W=vice@-2 O@-2
W=said@1 O@1 W=it@2 O@2

said W=said@0 O@0
the W=it@0 O@0
company W=company@0 O@0

In addition, if a token is surrounded by “O” to-
kens and is in a Stopword list, or in a Time list (a
collection of date, time related tokens), or in a no-
cap list, or a nonNE list (a collection of tokens that
are unlikely to be an NE), or a pure number, its label
is “O” as well. For example, in the sentence “Ford
has said there is no plan to lay off workers”, all the
tokens except “Ford” have “O” labels. More rules
can be designed to classify NE labels. For example,
if a token is in an unambiguousORG list, it has a
label “ORG”.

For any token with a known label, unless it is a

neighbor of a token with its label unknown (i.e., not
pretagged with high precision), its features include
only its lexicon and its label itself. No features will
be copied from its neighbors either. Table 1 gives
an example to demonstrate the features used in our
algorithm. For the sentence “Monday vice chairman
Goff said the company ...”, only “Goff” includes its
own features and features copied from its neighbors,
while most of the other tokens have only two fea-
tures since they are “O” tokens based on the high-
precision rules.

Usually, more than half the tokens will be classi-
fied as “O”. This strategy greatly saves feature ex-
traction time, training time, and inference time, as
well as improving the accuracy of the model. Most
importantly, this strategy is necessary in the semi-
supervised learning, which will be explained in the
next section.

4 Semi-supervised Learning Algorithm

Our semi-supervised algorithm is outlined in Ta-
ble 2. We assume that we have a small amount of
labeled data L and a classifier Ck that is trained on
L. We exploit a large unlabeled corpus U from the
test domain from which we automatically and grad-
ually add new training data D to L, such that L
has two properties: 1) accurately labeled, meaning
that the labels assigned by automatic annotation of
the selected unlabeled data are correct, and 2) non-
redundant, which means that the new data is from
regions in the feature space that the original training
set does not adequately cover. Thus the classifier Ck

is expected to get better monotonically as the train-
ing data gets updated.

Table 2: The semi-supervised NER algorithm
Given:

L - a small set of labeled training data
U - unlabeled data

Loop for k iterations:
Step 1: Train a classifier Ck based on L;
Step 2: Extract new data D based on Ck;
Step 3: Add D to L;

At each iteration, the classifier trained on the pre-
vious training data (using the features introduced in
the previous section) is used to tag the unlabeled
data. In addition, for each O token and NE seg-
ment, a confidence score is computed using the con-
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strained forward-backward algorithm (Culotta and
McCallum, 2004), which calculates the Lc

X , the sum
of the probabilities of all the paths passing through
the constrained segment (constrained to be the as-
signed labels).

One way to increase the size of the training data
is to add all the tokens classified with high confi-
dence to the training set. This scheme is unlikely
to improve the accuracy of the classifier at the next
iteration because the newly added data is unlikely
to include new patterns. Instead, we use the high
confidence data to tag other data by exploiting inde-
pendent features.

• Tagging ORG

If a sequence of tokens has been classified as
“ORG” with high confidence score (> T )1,
we force the labels of other occurrences of the
same sequence in the same document, to be
“ORG” and add all such duplicate sequences
classified with low confidence to the training
data for the next iteration. In addition if a high
confidence segment ends with company suf-
fix, we remove the company suffix and check
the multi-mentions of the remaining segment
also. In addition to that, we reclassify the sen-
tence after removing the company suffix and
check if the labels are still the same with high-
confidence. If not, the sequence will be added
to the training data. As shown in Example 4,
“Safeway shares ticked” is added to training
data because “Safeway” has low confidence af-
ter removing “Inc.”.

Example 4:
High-confidence ORG: Safeway Inc. shares
ticked up ...
Low-confidence ORG:
1) Safeway shares ticked up ...
2) Wall Street expects Safeway to post earnings
...

• Tagging PER

If a PER segment has a high confidence score
and includes at least two tokens, both this seg-

1Through the rest of the paper, a high confidence score
means the score is larger than T. In our experiments, T is set
as 0.98. A low confidence score means the score is lower than
0.8.

ment and the last token of this segment are
used to find their other mentions. Similarly,
we force their labels to be PER and add them
to the training data if their confidence score is
low. However, if these mentions are followed
by any company suffix and are not classified
as ORG, their labels, as well as the company
suffix are forced to be ORG (e.g., Jefferies &
Co.). We require the high-confidence PER seg-
ment to include at least two tokens because the
classifier may confuse single-token ORG with
PER due to their common context. For ex-
ample, “Tesoro proposed 1.63 billion purchase
of...”, Tesoro has high-confidence based on the
model, but it represents Tesoro Corp in the doc-
ument and thus is an ORG.

In addition, the title feature can be used simi-
larly as the company suffix features. If a PER
with a title feature has a high confidence score,
but has a low score after the title feature is
removed, the PER and its neighbors will be
put into training data after removing the title-
related tokens.

Example 5:
High-confidence PER:
1)Investor AB appoints Johan Bygge as CFO...
2)He is replacing Chief CEO Avallone...
Low-confidence PER:
1) Bygge is employed at...
2) He is replacing Avallone ...
(It is obvious for a human-being that Bygge is
PER because of the existence of “employed”.
However, when the training data doesn’t in-
clude such cases, the classifier just cannot rec-
ognize it.)

• Tagging LOC

The same approach is used for a LOC segment
with a high confidence score. We force the la-
bels of its other mentions to be LOC and add
them to the training data if their confidence
score is low. Again, if any of these mentions
follows or is followed by an ORG segment with
a high confidence score, we force the labels to
be ORG as well. This is because when a LOC
is around an ORG, the LOC is usually treated
as part of an ORG, e.g., Google China.
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Example 6:
High-confidence LOC: The former Soviet re-
public of Azerbaijan is...
Low-confidence PER:
Azerbaijan energy reserves better than...
Change LOC to ORG: shareholders of the
Chicago Board of Trade...

• Tagging O

Since all the NE segments added to the train-
ing data have low confidence scores based on
the original model, and especially since many
of them were incorrectly classified before cor-
rection, these segments form good training data
candidates. However, all of them are positive
examples. To balance the training data, we
need negative examples as well. If a token is
classified as “O” with high confidence score
and does not have a label feature “O”, this to-
ken will be used as a negative example to be
added to the training data.

Since the features of each token include the fea-
tures copied from its neighbors, in addition to those
extracted from the token itself, its neighbors need to
be added to the training set also. If the confidence of
the neighbors are low, the neighbors will be removed
from the training data after copying their features to
the token of interest. If the confidence scores of the
neighbors are high, we further extend to the neigh-
bors of the neighbors until low-confidence tokens
are reached. We remove low-confidence neighbors
in order to reduce the chances of adding training ex-
amples with false labels.

Table 3: Step 2 of the semi-supervised algorithm
Step 2: Extract new data D based on Ck

i) Classify kth portion of U and compute confidence
scores;
ii) Find high-confidence NE segments and use them

to tag other low-confidence tokens
iii) Find qualified O tokens
iv) Extract selected NE and O tokens as well as
their neighbors
v) Shuffle part of the NEs in the extracted data
vi) Add extracted data to D

Now we have both negative and positive training
examples. However, one problem with the positive
data is that the same NE may appear too many times

since the multi-mention property is used. For ex-
ample, the word “Citigroup” may appear hundreds
of times in recent financial articles because of the
subprime crisis. To account for this bias in the data
we randomly replace these NEs. Specifically, we
replace a portion of such NEs with NEs randomly
chosen from our NE lists. The size of the portion is
decided by the ratio of the NEs that are not in our
NE list over all the NEs in the gold data.

Table 3 summarizes the key sub-steps in Step 2
of the algorithm. At each step, more non-redundant
and high-accuracy data is added into the training set
and thus improves the model gradually.

5 Experiments

The data set used in the experiments is explained
in Table 4. Although we have 1000 labeled news
documents from the Thomson Financial (TF) News
source, only 60 documents are used as the initial
training data in our algorithm. For the evaluation,
the gold data was split into training and test sets as
appropriate. The toolbox we used for CRF is Mallet
(McCallum, 2002).

Table 4: Data source. Tokens include words, punctuation
and sentence breaks.

Gold Data 1000 docs from TF news
(around 330 tokens per doc)

Unlabeled Corpus 100,000 docs from TF news
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Figure 1: Token accuracy vs confidence score.

We first investigated our assumption that a high
confidence score indicates high classification accu-
racy. Figure 1 illustrates how accuracy varies as
CRF confidence score changes when 60 documents
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are used as training data and the remaining are used
as testing data. When the threshold is 0.98, the token
accuracy is close to 99%. We believe this accuracy is
sufficiently high to justify using the high confidence
score to extract tokens with correct labels.

Table 5: Precision and recall of the automatically ex-
tracted training data

NE Precision% Recall% F-score%
LOC 94.5 96.8 95.6
ORG 96.6 93.4 94.9
PER 95.0 89.6 92.2

We wished to study the accuracy of our training
data generation strategy from how well it does on the
gold data. We treat the remaining gold data (except
the data trained for the initial model) as if they were
unlabeled, and then applied our data extraction strat-
egy on them. Table 5 illustrates the precision and re-
call for the three types of NEs of the extracted data,
which only accounts for a small part of the gold data.
The average F-score is close to 95%. Although the
precision and recall are not perfect, we believe they
are good enough for the training purpose, consider-
ing that human tagged data is seldom more accurate.

We compared the semi-supervised algorithm with
a supervised algorithm using the same features. The
semi-supervised algorithm starts with 60 labeled
documents (around 20,000 tokens) and ends with
around 1.5 million tokens. We trained the supervised
algorithm with two data sets: using only 60 docu-
ments (around 20,000 tokens) and using 700 doc-
uments (around 220,000 tokens) respectively. The
reason for the choice of the training set size is
the fact that 20,000 tokens are a reasonably small
amount of data for human to tag, and 220,000 tokens
are the amount usually used for supervised algo-
rithms (CoNLL 2003 English NER (Sang and Meul-
der, 2003) training set has around 220,000 tokens).

Table 6 illustrates the results when 300 docu-
ments are used for testing. As shown in Table 6,
starting with only 6% of the gold data, the semi-
supervised algorithm achieves much better results
than the semi-supervised algorithm when the same
amount of gold data is used. For LOC, ORG, and
PER, the recall increases 5.5, 16.8, and 8.2 respec-
tively, and the precision increases 2.4, 1.5, and 6.8
respectively. Even compared with the model trained
with 220,000 tokens, the semi-supervised learning

algorithm is better. Especially, for PER, the pre-
cision and recall increase 2.8 and 4.6 respectively.
Figure 2 illustrates how the classifier is improved at
each iteration in the semi-supervised learning algo-
rithm.

Table 6: Classification results. P/R represents Preci-
sion/Recall. The numbers inside the parentheses are the
result differences when the model trained from 60 docs is
used as baseline.

Training Data P/R(LOC) P/R(ORG) P/R(PER)
60 docs 88.1/85.6 86.0/64.2 74.5/81.2
700 docs 91.2/88.2 90.5/76.6 78.3/84.8

(3.1/3.6) (4.5/12.4) (3.8/3.6)
semi-supervised 90.5/91.1 87.5/81.0 81.1/89.4

(60 docs) (2.4/5.5) (1.5/16.8) (6.6/8.2)
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Figure 2: Overall F-score vs iteration numbers

Table 7 compares the results when the multi-
mention property is also used in testing as a high-
precision rule. Comparing Table 7 to Table 6, we
can see that with the same training data, using multi-
mention property helps improve classification re-
sults. However, this improvement is less than that
obtained by using this property to extract training
data thus improve the model itself. (For a fair com-
parison, the model used in the semi-supervised algo-
rithm in Table 6 only uses multi-mention property to
extract data.)

Our last experiment is to test how this method can
be used when the initial gold data and the testing
data are from different domains. We use the CoNLL
2003 English NER (Sang and Meulder, 2003) train-
ing set as the initial training data, and automatically
extract training data from the TF financial news cor-
pus. The CoNLL data is a collection of news wire
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documents from the Reuters Corpus, while TF data
includes financial-related news only. Table 8 illus-
trates the results. As shown in the table, with only
CoNLL data, although it contains around 220,000
tokens, the results are not better than the results
when only 60 TF docs (Table 6) are used for train-
ing. This indicates that data from different domains
can adversely affect NER accuracy for supervised
learning. However, the semi-supervised algorithm
achieves reasonably high accuracy. For LOC, ORG,
and PER, the recall increases 16, 20.3, and 4.7 re-
spectively, and the precision increases 4.5, 5.5, and
4.7 respectively. Therefore our semi-supervised ap-
proach is effective for situation where the test and
training data are from different sources.

Table 7: Classification results when multi-mention prop-
erty (M) is used in testing

Trainig Data P/R(LOC) P/R(ORG) P/R(PER)
60 docs +M 89.9/87.6 82.4/71.4 78.2/87.3
700 docs+M 91.2/89.1 90.2/78.3 79.4/91.1

(1.3/1.5) (7.8/6.9) (1.2/3.8)
semi-supervised 90.0/91.0 86.6/82.4 81.3/90.6

+M (60 docs) (1.1/3.4) (4.2/11.0) (3.1/3.3)

Table 8: Classification results trained on CoNLL data and
test on TF data. Training data for the semi-supervised
algorithm are automatically extracted using both multi-
mention and high-precision context from TF corpus.

Training Data P/R(LOC) P/R(ORG) P/R(PER)
CoNLL 85.6/74.7 75.2/65.9 72.4/85.2

Semi-supervised 90.1/90.7 81.7/86.2 77.1/90.5
(CoNLL) (4.5/16) (5.5/20.3) (4.7/4.7)

6 Conclusion

We presented a simple semi-supervised learning al-
gorithm for NER using conditional random fields
(CRFs). In addition we proposed using high preci-
sion label features to improve classification accuracy
as well as to reduce training and test time.

Compared to other semi-supervised learning al-
gorithm, our proposed algorithm has several advan-
tages. It is domain and data independent. Although
it requires a small amount of labeled training data,
the data is not required to be from the same domain
as the one in which are interested to tag NEs. It can
be applied to different types of NEs as long as in-
dependent evidence exists, which is usually avail-

able. It is simple and, we believe not limited by the
choice of the classifier. Although we used CRFs in
our framework, other models can be easily incorpo-
rated to our framework as long as they provide accu-
rate confidence scores. With only a small amount of
training data, our algorithm can achieve a better NE
tagging accuracy than a supervised algorithm with a
large amount of training data.
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Abstract 

This paper proposes a new bootstrapping 
framework using cross-lingual information pro-
jection. We demonstrate that this framework is 
particularly effective for a challenging NLP task 
which is situated at the end of a pipeline and 
thus suffers from the errors propagated from up-
stream processing and has low-performance 
baseline. Using Chinese event extraction as a 
case study and bitexts as a new source of infor-
mation, we present three bootstrapping tech-
niques. We first conclude that the standard 
mono-lingual bootstrapping approach is not so 
effective. Then we exploit a second approach 
that potentially benefits from the extra informa-
tion captured by an English event extraction sys-
tem and projected into Chinese. Such a cross-
lingual scheme produces significant performance 
gain. Finally we show that the combination of 
mono-lingual and cross-lingual information in 
bootstrapping can further enhance the perform-
ance. Ultimately this new framework obtained 
10.1% relative improvement in trigger labeling 
(F-measure) and 9.5% relative improvement in 
argument-labeling. 

1 Introduction 

Bootstrapping methods can reduce the efforts 
needed to develop a training set and have shown 
promise in improving the performance of many 
tasks such as name tagging (Miller et al., 2004; Ji 
and Grishman, 2006), semantic class extraction 
(Lin et al., 2003), chunking (Ando and Zhang, 
2005), coreference resolution (Bean and Riloff, 
2004) and text classification (Blum and Mitchell, 
1998). Most of these bootstrapping methods im-
plicitly assume that: 

• There exists a high-accuracy ‘seed set’ or ‘seed 
model’ as the baseline; 

• There exists unlabeled data which is reliable 
and relevant to the test set in some aspects, e.g. 
from similar time frames and news sources; 
and therefore the unlabeled data supports the 
acquisition of new information, to provide new 
evidence to be incorporated to bootstrap the 
model and reduce the sparse data problem. 

• The seeds and unlabeled data won’t make the 
old estimates worse by adding too many incor-
rect instances. 

However, for some more comprehensive and 
challenging tasks such as event extraction, the per-
formance of the seed model suffers from the lim-
ited annotated training data and also from the 
errors propagated from upstream processing such 
as part-of-speech tagging and parsing. In addition, 
simply relying upon large unlabeled corpora can-
not compensate for these limitations because more 
errors can be propagated from upstream processing 
such as entity extraction and temporal expression 
identification. 

Inspired from the idea of co-training (Blum and 
Mitchell, 1998), in this paper we intend to boot-
strap an event extraction system in one language 
(Chinese) by exploring new evidences from the 
event extraction system in another language (Eng-
lish) via cross-lingual projection. We conjecture 
that the cross-lingual bootstrapping for event ex-
traction can naturally fit the co-training model:  a 
same event is represented in two “views” (de-
scribed in two languages). Furthermore, the cross-
lingual bootstrapping can benefit from the different 
sources of training data.  For example, the Chinese 
training corpus includes articles from Chinese new 
agencies in 2000 while most of English training 
data are from the US news agencies in 2003, thus 
English and Chinese event extraction systems have 
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the nature of generating different results on parallel 
documents and may complement each other. In this 
paper, we explore approaches of exploiting the 
increasingly available bilingual parallel texts 
(bitexts).  

We first investigate whether we can improve a 
Chinese event extraction system by simply using 
the Chinese side of bitexts in a regular monolin-
gual bootstrapping framework. By gradually in-
creasing the size of the corpus with unlabeled data, 
we did not get much improvement for trigger label-
ing and even observed performance deterioration 
for argument labeling. But then by aligning the 
texts at the word level, we found that the English 
event extraction results can be projected into Chi-
nese for bootstrapping and lead to significant im-
provement. We also obtained clear further 
improvement by combining mono-lingual and 
cross-lingual bootstrapping. 

The main contributions of this paper are two- 
fold. We formulate a new algorithm of cross-
lingual bootstrapping, and demonstrate its effec-
tiveness in a challenging task of event extraction; 
and we conclude that, for some applications be-
sides machine translation, effective use of bitexts 
can be beneficial.  

The remainder of the paper is organized as fol-
lows. Section 2 formalizes the event extraction task 
addressed in this paper. Section 3 discusses event 
extraction bootstrapping techniques. Section 4 re-
ports our experimental results. Section 5 presents 
related work. Section 6 concludes this paper and 
points out future directions. 

2 Event Extraction  

2.1 Task Definition and Terminology 
The event extraction that we address in this paper 
is specified in the Automatic Content Extraction 
(ACE)1 program. The ACE 2005 Evaluation de-
fines the following terminology for the event ex-
traction task: 
• event trigger: the word that most clearly ex-

presses an event’s occurrence 
• event argument:  an entity, a temporal expres-

sion or a value that plays a certain role in the 
event instance 

• event mention: a phrase or sentence with a 
distinguished trigger and participant arguments 

                                                             
1 http://www.nist.gov/speech/tests/ace/ 

 
The event extraction task in our paper is to de-

tect certain types of event mentions that are indi-
cated by event triggers (trigger labeling), 
recognize the event participants e.g., who, when, 
where, how (argument labeling) and merge the co-
referenced event mentions into a unified event 
(post-processing). In this paper, we focus on dis-
cussing trigger labeling and argument labeling. 

In the following example,  
Mike got married in 2008. 
The event extraction system should identify 

“married” as the event trigger which indicates the 
event type of “Life” and subtype of “Marry”. Fur-
thermore, it should detect “Mike” and “2008” as 
arguments in which “Mike” has a role of “Person” 
and “2008” has a role of “Time-Within”. 

2.2 A Pipeline of Event Extraction 
Our pipeline framework of event extraction in-
cludes trigger labeling, argument labeling and 
post-processing, similar to (Grishman et al., 2005), 
(Ahn, 2006) and (Chen and Ji, 2009). We depict 
the framework as Figure 1.  

 
 

Figure 1. Pipeline of Event Extraction 
 

The event extraction system takes raw docu-
ments as input and conducts some pre-processing 
steps. The texts are automatically annotated with 
word segmentation, Part-of-Speech tags, parsing 
structures, entities, time expressions, and relations. 

Argument labeling 
 

Trigger labeling 

Trigger classification 

Trigger identification 

Argument identification 

Pre-processing 

Argument classification 

Post-processing 
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The annotated documents are then sent to the fol-
lowing four components. Each component is a 
classifier and produces confidence values; 
• Trigger identification: the classifier recognizes 

a word or a phrase as the event trigger. 
• Trigger classification: the classifier assigns an 

event type to an identified trigger.  
• Argument identification: the classifier recog-

nizes whether an entity, temporal expression or 
value is an argument associated with a particu-
lar trigger in the same sentence. 

• Argument classification: the classifier assigns 
a role to the argument.  

The post-processing merges co-referenced event 
mentions into a unified representation of event. 

2.3 Two Monolingual Event Extraction Sys-
tems 

We use two monolingual event extraction systems, 
one for English, and the other for Chinese. Both 
systems employ the above framework and use 
Maximum Entropy based classifiers. The corre-
sponding classifiers in both systems also share 
some language-independent features, for example, 
in trigger identification, both classifiers use the 
“previous word” and “next word” as features, 
however, there are some language-dependent fea-
tures that only work well for one monolingual sys-
tem, for example, in argument identification, the 
next word of the candidate argument is a good fea-
ture for Chinese system but not for English system. 
To illustrate this, in the Chinese “的” (of) structure, 
the word “的” (of) strongly suggests that the entity 
on the left side of “的” is not an argument. For a 
specific example, in “纽约市的市长” (The mayor 
of New York City), “纽约市” (New York City) on 
the left side of “的” (of) cannot be considered as an 
argument because it is a modifier of the noun “市
长”(mayor). Unlike Chinese, “of” (“的”) appears 
ahead of the entity in the English phrase. 

Table 1 lists the overall Precision (P), Recall (R) 
and F-Measure (F) scores for trigger labeling and 
argument labeling in our two monolingual event 
extraction systems.  For comparison, we also list 
the performance of an English human annotator 
and a Chinese human annotator.   

Table 1 shows that event extraction is a difficult 
NLP task because even human annotators cannot 
achieve satisfying performance. Both monolingual 
systems relied on expensive human labeled data 

(much more expensive than other NLP tasks due to 
the extra tagging tasks of entities and temporal ex-
pressions), thus a natural question arises: can the  
monolingual system benefit from bootstrapping 
techniques with a relative small set of training 
data? The other question is: can a monolingual sys-
tem benefit from the other monolingual system by 
cross-lingual bootstrapping? 

Trigger  
Labeling 

Argument 
Labeling 

Performance 
 
System/ 
Human 

P R F P R F 

English  
System 

64.
3 

59.
4 

61.
8 

49.
2 

34.
7 

40.
7 

Chinese  
System 

78.8 48.3 59.9 60.6 34.3 43.8 

English  
Annotator 

59.
2 

59.
4 

59.
3 

51.
6 

59.
5 

55.
3 

Chinese  
Annotator 

75.2 74.6 74.9 58.6 60.9 59.7 

Table 1.Performance of Two Monolingual Event 
Extraction Systems and Human Annotators 

3 Bootstrapping Event Extraction 

3.1 General Bootstrapping Algorithm 
Bootstrapping algorithms have attracted much at-
tention from researchers because a large number of 
unlabeled examples are available and can be util-
ized to boost the performance of a system trained 
on a small set of labeled examples. The general 
bootstrapping algorithm is depicted in Figure 2, 
similar to (Mihalcea, 2004). 

Self-training and Co-training are two most 
commonly used bootstrapping methods. 

A typical self-training process is described as 
follows: it starts with a set of training examples 
and builds a classifier with the full integrated fea-
ture set. The classifier is then used to label an addi-
tional portion of the unlabeled examples. Among 
the resulting labeled examples, put the most confi-
dent ones into the training set, and re-train the clas-
sifier. This iterates until a certain condition is 
satisfied (e.g., all the unlabeled examples have 
been labeled, or it reaches a certain number of it-
erations). 

Co-training(Blum and Mitchell, 1998) differs 
from self-training in that it assumes that the data 
can be represented using two or more separate 
“views” (thus the whole feature set is split into dis-
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joint feature subsets) and each classifier can be 
trained on one view of the data. For each iteration, 
both classifiers label an additional portion of the 
unlabeled examples and put the most confident 
ones to the training set. Then the two classifiers are 
retrained on the new training set and iterate until a 
certain condition is satisfied. 

Both self-training and co-training can fit in the 
general bootstrapping process. If the number of 
classifiers is set to one, it is a self-training process, 
and it is a co-training process if there are two dif-
ferent classifiers that interact in the bootstrapping 
process.  

 

Figure 2. General Bootstrapping Algorithm. 

In the following sections, we adapt the boot-
strapping techniques discussed in this section to a 
larger scale (system level). In other words, we aim 
to bootstrap the overall performance of the system 
which may include multiple classifiers, rather than 
just improve the performance of a single classifier 
in the system. It is worth noting that for the pipe-
line event extraction depicted in Section 2.2, there 
are two major steps that determine the overall sys-
tem performance: trigger labeling and argument 
labeling. Furthermore, the performance of trigger 
labeling can directly affect the performance of ar-
gument labeling because the involving arguments 
are constructed according to the trigger. If a trigger 
is wrongly recognized, all the involving arguments 

will be considered as wrong arguments. If a trigger 
is missing, all the attached arguments will be con-
sidered as missing arguments. 

3.2 Monolingual Self-training 
It is rather smooth to adapt the idea of traditional 
self-training to monolingual self-training if we 
consider our monolingual event extraction system 
as a black box or even a single classifier that de-
termines whether an event combining the result of 
trigger labeling and argument labeling is a report-
able event.  

Thus the monolingual self-training procedure for 
event extraction is quite similar with the one de-
scribed in Section 3.1. The monolingual event ex-
traction system is first trained on a starting set of 
labeled documents, and then tag on an additional 
portion of unlabeled documents. Note that in each 
labeled document, multiple events could be tagged 
and confidence score is assigned to each event. 
Then the labeled documents are added into the 
training set and the system is retrained based on 
the events with high confidence. This iterates until 
all the unlabeled documents have been tagged. 

3.3 Cross-lingual Co-Training 
We extend the idea of co-training to cross-lingual 
co-training. The intuition behind cross-lingual co-
training is that the same event has different 
“views” described in different languages, because 
the lexical unit, the grammar and sentence con-
struction differ from one language to the other. 
Thus one monolingual event extraction system 
probably utilizes the language dependent features 
that cannot work well for the other monolingual 
event extraction systems. Blum and Mitchell (1998) 
derived PAC-like guarantees on learning under two 
assumptions: 1) the two views are individually suf-
ficient for classification and 2) the two views are 
conditionally independent given the class. Obvi-
ously, the first assumption can be satisfied in 
cross-lingual co-training for event extraction, since 
each monolingual event extraction system is suffi-
cient for event extraction task. However, we re-
serve our opinion on the second assumption. 
Although the two monolingual event extraction 
systems may apply the same language-independent 
features such as the part-of-speech, the next word 
and the previous word, the features are exhibited in 
their own context of language, thus it is too subjec-
tive to conclude that the two feature sets are or are 

Input:  
L : a set of labeled examples,  
U : a set of unlabeled examples   
{

i
C }: a set of classifiers 

Initialization:  
Create a pool U ¢of examples by choosing 

P random examples from U  
Loop until a condition is satisfied (e.g., U =Æ , or 
iteration counter reaches a preset number I ) 
 Train each classifier 

i
C  on L , and label 

the examples in U ¢ 
 For each classifier 

i
C ,select the most con-

fidently labeled examples (e.g., the confi-
dence score is above a preset threshold 
qor the top  K ) and add them to L  

 Refill U ¢with examples from U , and keep 
the size of U ¢ as constant P  
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not conditionally independent. It is left to be an 
unsolved issue which needs further strict analysis 
and supporting experiments. 

The cross-lingual co-training differs from tradi-
tional co-training in that the two systems in cross-
lingual co-training are not initially trained from the 
same labeled data. Furthermore, in the bootstrap-
ping phase, each system only labels half portion of 
the bitexts in its own language. In order to utilize 
the labeling result by the other system, we need to 
conduct an extra step named cross-lingual projec-
tion that transforms tagged events from one lan-
guage to the other. 

3.3.1 A Cross-lingual Co-training Algorithm 

The algorithm for cross-lingual co-training is de-
picted in Figure 3. 

 
 

Figure 3. Cross-lingual Co-training Algorithm 

3.3.2 Cross-lingual Semi-co-training 

Cross-lingual semi-co-training is a variation of 
cross-lingual co-training, and it differs from cross-
lingual co-training in that it tries to bootstrap only 
one system by the other fine-trained system. This 
technique is helpful when we have relatively large 
amount of training data in one language while we 
have scarce data in the other language.  

Thus we only need to make a small modification 
in the cross-lingual co-training algorithm so that it 
can soon be adapted to cross-lingual semi-co-
training, i.e., we retrain one system and do not re-
train the other. In this paper, we will conduct ex-
periments to investigate whether a fine-trained 
English event extraction system can bootstrap the 
Chinese event extraction system, starting from a 
small set of training data. 

3.3.3 Cross-lingual Projection 

Cross-lingual projection is a key operation in the 
cross-lingual co-training algorithm. In the case of 
event extraction, we need to project the triggers 
and the participant arguments from one language 
into the other language according to the alignment 
information provided by bitexts. Figure 4 shows an 
example of projecting an English event into the 
corresponding Chinese event. 

 
Figure 4. An Example of Cross-lingual Projection 

Input:  
1

L : a set of labeled examples in language A 

2
L : a set of labeled examples in language B 
U : a set of unlabeled bilingual examples  

(bitexts) with alignment information 
{ 12,SS }: two monolingual systems, one for 

language A and the other for language B. 
Initialization:  

Create a pool U ¢of examples by choosing 
P random examples from U  
Loop until a condition is satisfied (e.g., U =Æ , 
or iteration counter reaches a preset number I ) 
 Train 

1
S on 

1
L and 

2
S on 

2
L  

 Use
1

S to label the examples in U ¢ (the por-

tion in Language A) and use 
2

S to label the 
examples in U ¢(the portion in Language B) 

 For
1

S , select the most confidently labeled 
examples (e.g., the confidence score is 
above a preset threshold qor the top K ) , 
apply the operation of cross-lingual projec-
tion, transform the selected examples from 
Language A to Language B, and put them 
into 

2
L . The same procedure applies to

2
S . 

 Refill U ¢with examples from U , and keep 
the size of U ¢ as constant P  
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4 Experiments and Results 

4.1 Data and Scoring Metric 
We used the ACE 2005 corpus to set up two mono-
lingual event extraction systems, one for English, 
the other for Chinese. 

The ACE 2005 corpus contains 560 English 
documents from 6 sources: newswire, broadcast 
news, broadcast conversations, weblogs, news-
groups and conversational telephone speech; 
meanwhile the corpus contains 633 Chinese docu-
ments from 3 sources: newswire, broadcast news 
and weblogs.  

We then use 159 texts from the LDC Chinese 
Treebank English Parallel corpus with manual 
alignment for our cross-lingual bootstrapping ex-
periments. 

We define the following standards to determine 
the correctness of an event mention: 
• A trigger is correctly labeled if its event type 

and offsets match a reference trigger. 
• An argument is correctly labeled if its event 

type, offsets, and role match any of the refer-
ence argument mentions. 

4.2 Monolingual Self-training on ACE 2005 
Data 

We first investigate whether our Chinese event 
extraction system can benefit from monolingual 
self-training on ACE data. We reserve 66 Chinese 
documents for testing purpose and set the size of 
seed training set to 100. For a single trial of the 
experiment, we randomly select 100 documents as 
training set and use the remaining documents as 
self-training data. For each iteration of the self-
training, we keep the pool size as 50, in other 
words, we always pick another 50 ACE documents 
to self-train the system. The iteration continues 
until all the unlabeled ACE documents have been 
tagged and thus it completes one trial of the ex-
periment. We conduct the same experiment for 100 
trials and compute the average scores.  

The most important motivation for us to conduct 
self-training experiments on ACE data is that the 
ACE data provide ground-truth entities and tempo-
ral expressions so that we do not have to take into 
account the effects of propagated errors from up-
stream processing such as entity extraction and 
temporal expression identification. 

For one setting of the experiments, we set the 
confidence threshold to 0, in other words, we keep 
all the labeling results for retraining. The results 
are given in Figure 5 (trigger labeling) and Figure 
6 (argument labeling). It shows that when the 
number of self-trained ACE documents reaches 
450, we obtain a gain of 3.4% (F-Measure) above 
the baseline for trigger labeling and a gain of 1.4% 
for argument labeling. 

For the other setting of the experiments, we set 
the confidence threshold to 0.8, and the results are 
presented in Figure 7 and Figure 8. Surprisingly, 
retraining on the high confidence examples does 
not lead to much improvement. We obtain a gain 
of 3.7% above the baseline for trigger labeling and 
1.5% for argument labeling when the number of 
self-trained documents reaches 450. 
 

 
 

Figure 5. Self-training for trigger labeling  
(confidence threshold = 0) 

 

 
 

Figure 6. Self-training for argument labeling  
(confidence threshold= 0) 
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Figure 7. Self-training for trigger labeling  

(confidence threshold = 0.8) 
 

 
Figure 8. Self-training for argument labeling  

(confidence threshold = 0.8)  
4.3 Cross-lingual Semi-co-training on Bitexts 
The experiments in Section 4.2 show that we can 
obtain gain in performance by monolingual self-
training on data with ground-truth entities and 
temporal expressions, but what if we do not have 
such ground-truth data, then how the errors propa-
gated from entity extraction and temporal expres-
sion identification will affect the overall 
performance of our event extraction system? And 
if these errors are compounded in event extraction, 
can the cross-lingual semi-co-training alleviate the 
impact? 

To investigate all these issues, we use 159 texts 
from LDC Chinese Treebank English Parallel cor-
pus to conduct cross-lingual semi-co-training.  The 
experimental results are summarized in Figure 9 
and Figure 10.  

 For monolingual self-training on the bitexts, we 
conduct experiments exactly as section 4.2 except 
that the entities are tagged by the IE system and the 

labeling pool size is set to 20. When the number of 
bitexts reaches 159, we obtain a little gain of 0.4% 
above the baseline for trigger labeling and a loss of 
0.1% below the baseline for argument labeling. 
The deterioration tendency of the self-training 
curve in Figure 10 indicates that entity extraction 
errors do have counteractive impacts on argument 
labeling. 

We then conduct the cross-lingual semi-co-
training experiments as follows: we set up an Eng-
lish event extraction system trained on a relative 
large training set (500 documents). For each trial 
of the experiment, we randomly select 100 ACE 
Chinese document as seed training set, and then it 
enters a cross-lingual semi-co-training process: for 
each iteration, the English system labels the Eng-
lish portions of the 20 bitexts and by cross-lingual 
projection, the labeled results are transformed into 
Chinese and put into the training set of Chinese 
system. From Figure 9 and Figure 10 we can see 
that when the number of bitexts reaches 159, we 
obtain a gain of 1.7% for trigger labeling and 0.7% 
for argument labeling. 

We then apply a third approach to bootstrap our 
Chinese system: during each iteration, the Chinese 
system also labels the Chinese portions of the 20 
bitexts. Then we combine the results from both 
monolingual systems using the following rules:  
 If the event labeled by English system is not 

labeled by Chinese system, add the event to 
Chinese system 

 If the event labeled by Chinese system is not 
labeled by English system, keep the event in 
the Chinese system 

 If both systems label the same event but with 
different event types and arguments, select the 
one with higher confidence 

From Figure 9 and Figure 10 we can see that this 
approach leads to even further improvement in per-
formance, shown as the “Combined-labeled” 
curves. When the number of bitexts reaches 159, 
we obtain a gain of 3.1% for trigger labeling and 
2.1% for argument labeling.  

In order to check how robust our approach  
is, we conducted the Wilcoxon Matched-Pairs 
Signed-Ranks Test on F-measures for all these 100 
trials. The results show that we can reject  
the hypotheses that the improvements using Cross-
lingual Semi-co-training were random at a 99.99% 
confidence level, for both trigger labeling and ar-
gument labeling. 
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Figure 9. Self-training, and Semi-co-training  

(English- labeled & Combined-labeled)  
for Trigger Labeling 

 

 
Figure 10. Self-training, and Semi-co-training  

(English- labeled & Combined-labeled)  
for Argument Labeling 

5 Related Work 

There is a huge literature on utilizing parallel cor-
pus for monolingual improvement. To our knowl-
edge, it can retrace to (Dagan et.al 1991). We 
apologize to those whose work is not cited due to 
space constraints. The work described here com-
plements some recent research using bitexts or 
translation techniques as feedback to improve en-
tity extraction. Huang and Vogel (2002) presented 
an effective integrated approach that can improve 
the extracted named entity translation dictionary 
and the entity annotation in a bilingual training 
corpus. Ji and Grishman (2007) expanded this idea 
of alignment consistency to the task of entity ex-
traction in a monolingual test corpus without refer-
ence translations, and applied sophisticated 

inference rules to enhance both entity extraction 
and translation. Zitouni and Florian (2008) applied 
English mention detection on translated texts and 
added the results as additional features to improve 
mention detection in other languages.  

In this paper we share the similar idea of import-
ing evidences from English with richer resources 
to improve extraction in other languages. However, 
to the best of our knowledge this is the first work 
of incorporating cross-lingual feedback to improve 
the event extraction task. More importantly, it is 
the first attempt of combining cross-lingual projec-
tion with bootstrapping methods, which can avoid 
the efforts of designing sophisticated inference 
rules or features. 

6� Conclusions and Future Work 

Event extraction remains a difficult task not only 
because it is situated at the end of an IE pipeline 
and thus suffers from the errors propagated from 
upstream processing, but also because the labeled 
data are expensive and thus suffers from data scar-
city. In this paper, we proposed a new co-training 
framework using cross-lingual information projec-
tion and demonstrate that the additional informa-
tion from English system can be used to bootstrap 
a Chinese event extraction system.  

To move a step forward, we would like to con-
duct experiments on cross-lingual co-training and 
investigate whether the two systems on both sides 
can benefit from each other. A main issue existing 
in cross-lingual co-training is that the cross-lingual 
projection may not be perfect due to the word 
alignment problem. In this paper, we used a corpus 
with manual alignment, but in the future we intend 
to investigate the effect of automatic alignment 
errors.  

We believe that the proposed cross-lingual boot-
strapping framework can also be applied to many 
other challenging NLP tasks such as relation ex-
traction. However, we still need to provide a theo-
retical analysis of the framework. 
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Abstract

This paper investigates semi-supervised learn-

ing of Gaussian mixture models using an uni-

fied objective function taking both labeled and

unlabeled data into account. Two methods

are compared in this work – the hybrid dis-

criminative/generative method and the purely

generative method. They differ in the crite-

rion type on labeled data; the hybrid method

uses the class posterior probabilities and the

purely generative method uses the data like-

lihood. We conducted experiments on the

TIMIT database and a standard synthetic data

set from UCI Machine Learning repository.

The results show that the two methods be-

have similarly in various conditions. For both

methods, unlabeled data improve training on

models of higher complexity in which the su-

pervised method performs poorly. In addition,

there is a trend that more unlabeled data re-

sults in more improvement in classification ac-

curacy over the supervised model. We also

provided experimental observations on the rel-

ative weights of labeled and unlabeled parts

of the training objective and suggested a criti-

cal value which could be useful for selecting a

good weighing factor.

1 Introduction

Speech recognition acoustic models can be trained

using untranscribed speech data (Wessel and Ney,

2005; Lamel et al., 2002; L. Wang and Woodland,

2007). Most such experiments begin by boostraping

∗This research is funded by NSF grants 0534106 and

0703624.

an initial acoustic model using a limited amount of

manually transcribed data (normally in a scale from

30 minutes to several hours), and then the initial

model is used to transcribe a relatively large amount

of untranscribed data. Only the transcriptions with

high confidence measures (Wessel and Ney, 2005;

L. Wang and Woodland, 2007) or high agreement

with closed captions (Lamel et al., 2002) are se-

lected to augment the manually transcribed data, and

new acoustic models are trained on the augmented

data set.

The general procedure described above exactly

lies in the context of semi-supervised learning prob-

lems and can be categorized as a self-training algo-

rithm. Self-training is probably the simplest semi-

supervised learning method, but it is also flexible

to be applied to complex classifiers such as speech

recognition systems. This may be the reason why

little work has been done on exploiting other semi-

supervised learning methods in speech recognition.

Though not incorporated to speech recognizers yet,

there has been some work on semi-supervised learn-

ing of Hidden Markov Models (HMM) for sequen-

tial classification. Inoue and Ueda (2003) treated the

unknown class labels of the unlabeled data as hidden

variables and used the expectation-maximization

(EM) algorithm to optimize the joint likelihood of

labeled and unlabeled data. Recently Ji et al. (2009)

applied a homotopy method to select the optimal

weight to balance between the log likelihood of la-

beled and unlabeled data when training HMMs.

Besides generative training of acoustic models,

discriminative training is another popular paradigm

in the area of speech recognition, but only when
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the transcriptions are available. Wang and Wood-

land (2007) used the self-training method to aug-

ment the training set for discriminative training.

Huang and Hasegawa-Johnson (2008) investigated

another use of discriminative information from la-

beled data by replacing the likelihood of labeled data

with the class posterior probability of labeled data in

the semi-supervised training objective for Gaussian

Mixture Models (GMM), resulting in a hybrid dis-

criminative/generative objective function. Their ex-

perimental results in binary phonetic classification

showed significant improvement in classification ac-

curacy when labeled data are scarce. A similar strat-

egy called ”‘multi-conditional learning”’ was pre-

sented in (Druck et al., 2007) applied to Markov

Random Field models for text classification tasks,

with the difference that the likelihood of labeled data

is also included in the objective. The hybrid dis-

criminative/generative objective function can be in-

terpreted as having an extra regularization term, the

likelihood of unlabeled data, in the discriminative

training criterion for labeled data. However, both

methods in (Huang and Hasegawa-Johnson, 2008)

and (Druck et al., 2007) encountered the same issue

about determining the weights for labeled and un-

labeled part in the objective function and chose to

use a development set to select the optimal weight.

This paper provides an experimental analysis on the

effect of the weight.

With the ultimate goal of applying semi-

supervised learning in speech recognition, this pa-

per investigates the learning capability of algorithms

within Gaussian Mixture Models because GMM is

the basic model inside a HMM, therefore 1) the up-

date equations derived for the parameters of GMM

can be conveniently extended to HMM for speech

recognition. 2) GMM can serve as an initial point

to help us understand more details about the semi-

supervised learning process of spectral features.

This paper makes the following contribution:

• it provides an experimental comparison of hy-

brid and purely generative training objectives.

• it studies the impact of model complexity on

learning capability of algorithms.

• it studies the impact of the amount of unlabeled

data on learning capability of algorithms.

• it analyzes the role of the relative weights of

labeled and unlabeled parts of the training ob-

jective.

2 Algorithm

Suppose a labeled set XL = (x1, . . . , xn, . . . , xNL
)

has NL data points and xn ∈ Rd. YL =

(y1, . . . , yn, . . . , yNL
) are the corresponding class

labels, where yn ∈ {1, 2, . . . , Y } and Y is the num-

ber of classes. In addition, we also have an unla-

beled set XU = (x1, . . . , xn, . . . , xNU
) without cor-

responding class labels. Each class is assigned a

Gaussian Mixture model, and all models are trained

given XL and XU . This section first presents the

hybrid discriminative/generative objective function

for training and then the purely generative objective

function. The parameter update equations are also

derived here.

2.1 Hybrid Objective Function

The hybrid discriminative/generative objective func-

tion combines the discriminative criterion for la-

beled data and the generative criterion for unlabeled

data:

F (λ) = log P (YL|XL;λ) + α log P (XU ;λ), (1)

and we chose the parameters so that (1) is maxi-

mized:

λ̂ = arg max
λ
F (λ) . (2)

The first component considers the log posterior

class probability of the labeled set whereas the sec-

ond component considers the log likelihood of the

unlabeled set weighted by α. In ASR community,

model training based the first component is usually

referred to as Maximum Mutual Information Esti-

mation (MMIE) and the second component Maxi-

mum Likelihood Estimation (MLE), therefore in this

paper we use a brief notation for (1) just for conve-

nience:

F (λ) = F (DL)
MMI (λ) + αF (DU )

ML (λ) . (3)

The two components are different in scale. First,

the size of the labeled set is usually smaller than

the size of the unlabeled set in the scenario of semi-

supervised learning, so the sums over the data sets

involve different numbers of terms; Second, the
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scales of the posterior probability and the likeli-

hood are essentially different, so are their gradients.

While the weight α balances the impacts of two

components on the training process, it may also im-

plicitly normalize the scales of the two components.

In section (3.2) we will discuss and provide a further

experimental analysis.

In this paper, the models to be trained are Gaus-

sian mixture models of continuous spectral feature

vectors for phonetic classes, which can be further

extended to Hidden Markov Models with extra pa-

rameters such as transition probabilities.

The maximization of (1) follows the techniques

in (Povey, 2003), which uses auxiliary functions for

objective maximization; In each iteration, a strong

or weak sense auxiliary function is maximized, such

that if the auxiliary function converges after itera-

tions, the objective function will be at a local maxi-

mum as well.

The objective function (1) can be rewritten as

F (λ) = log P (XL|YL;λ)− log P (XL;λ)
+ α log P (XU ;λ),

(4)

where the term log P (YL;λ) is removed because it

is independent of acoustic model parameters.

The auxiliary function at the current parameter

λold for (4) is

G(λ, λ(old)) =Gnum(λ, λ(old))− Gden(λ, λ(old))

+αGden(λ, λ(old);DU ) + Gsm(λ, λ(old)),
(5)

where the first three terms are strong-sense auxiliary

functions for the conditional likelihood (referred to

as the numerator(num) model because it appears in

the numerator when computing the class posterior

probability) log P (XL|YL;λ) and the marginal like-

lihoods (referred to as the denominator(den) model

likewise) log P (XL;λ) and α log P (XU ;λ) respec-
tively. The last term is a smoothing function that

doesn’t affect the local differential but ensures that

the sum of the first three term is at least a convex

weak-sense auxiliary function for good convergence

in optimization.

Maximization of (5) leads to the update equations

for the class j and mixture m given as follows:

µ̂jm =
1

γjm

(
xxxnum

jm, − xxxden
jm + αxxxden

jm(DU ) + Djmµjm

)

(6)

σ̂2
jm =

1
γjm

(
sssnumjm − sssdenjm + αsssdenjm(DU )

+Djm

(
σ2

jm + µ2
jm

))
− µ̂2

jm,

(7)

where for clarity the following substitution is used:

γjm = γnum
jm − γden

jm + αγden
jm(DU ) + Djm (8)

and γjm is the sum of the posterior probabilities of

occupation of mixture component m of class j over

the dataset:

γnum
jm (X) =

∑

xi∈X,yi=j

p (m|xi, yi = j)

γden
jm(X) =

∑

xi∈X

p (m|xi)
(9)

and xxxjm and sssjm are respectively the weighted

sum of xi and x2
i over the whole dataset with the

weight p (m|xi, yi = j) or p (m|xi), depending on

whether the superscript is the numerator or denomi-

nator model. Djm is a constant set to be the greater

of twice the smallest value that guarantees positive

variances or γden
jm (Povey, 2003). The re-estimation

formula for mixture weights is also derived from the

Extended Baum-Welch algorithm:

ĉjm =
cjm

{
∂F

∂cjm
+ C

}

∑
m′ cjm′

{
∂F

∂cjm
+ C

} , (10)

where the derivative was approximated (Merialdo,

1988) in the following form for practical robustness

for small-valued parameters :

∂FMMI

∂cjm
≈

γnum
jm∑

m′ γnum
jm′

−
γden

jm∑
m′ γden

jm′
. (11)

Under our hybrid framework, there is an extra term

γden
jm(DU )/

∑
m′ γden

jm′(DU ) that should exist in (11),

but in practice we found that adding this term to the

approximation is not better than the original form.

Therefore, we keep using MMI-only update for mix-

ture weights. The constant C is chosen such that all

parameter derivatives are positive.
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2.2 Purely Generative Objective

In this paper we compare the hybrid objective with

the purely generative one:

F (λ) = log P (XL|YL;λ) + α log P (XU ;λ),
(12)

where the two components are total log likelihood of

labeled and unlabeled data respectively. (12) doesn’t

suffer from the problem of combining two heteroge-

neous probabilistic items, and the weight α being

equal to one means that the objective is a joint data

likelihood of labeled and unlabeled set with the as-

sumption that the two sets are independent. How-

ever, DL or DU might just be a sampled set of the

population and might not reflect the true proportion,

so we keep α to allow a flexible combination of two

criteria. On top of that, we need to adjust the relative

weights of the two components in practical experi-

ments.

The parameter update equation is a reduced form

of the equations in Section (2.1):

µ̂jm =
xxxnum

jm, + αxxxden
jm(DU )

γnum
jm + αγden

jm(DU )
(13)

σ̂2
jm =

sssnumjm + αsssdenjm(DU )

γnum
jm + αγden

jm(DU )
− µ̂2

jm (14)

3 Results and Discussion

The purpose of designing the learning algorithms

is for classification/recognition of speech sounds,

so we conducted phonetic classification experiments

using the TIMIT database (Garofolo et al., 1993).

We would like to investigate the relation of learning

capability of semi-supervised algorithms to other

factors and generalize our observations to other data

sets. Therefore, we used another synthetic dataset

Waveform for the evaluation of semi-supervised

learning algorithms for Gaussian Mixture model.

TIMIT: We used the same 48 phone classes and

further grouped into 39 classes according to (Lee

and Hon, 1989) as our final set of phone classes to

model. We extracted 50 speakers out of the NIST

complete test set to form the development set. All

of our experimental analyses were on the develop-

ment set. We used segmental features (Halberstadt,

1998) in the phonetic classification task. For each

phone occurrence, a fixed-length vector was calcu-

lated from the frame-based spectral features (12 PLP

coefficients plus energy) with a 5 ms frame rate and

a 25 ms Hamming window. More specifically, we

divided the frames for each phone into three regions

with 3-4-3 proportion and calculated the PLP av-

erage over each region. Three averages plus the

log duration of that phone gave a 40-dimensional

(13× 3 + 1) measurement vector.

Waveform: We used the second versions of

the Waveform dataset available at the UCI reposi-

tory (Asuncion and Newman, 2007). There are three

classes of data. Each token is described by 40 real

attributes, and the class distribution is even.

Forwaveform, because the class labels are equally

distributed, we simply assigned equal number of

mixtures for each class. For TIMIT, the phone

classes are unevenly distributed, so we assigned

variable number of Gaussian mixtures for each class

by controlling the averaged data counts per mixture.

For all experiments, the initial model is an MLE

model trained with labeled data only.

To construct a mixed labeled/unlabeled data set,

the original training set were randomly divided into

the labeled and unlabeled sets with desired ratio, and

the class labels in the unlabeled set are assumed to be

unknown. To avoid that the classifier performance

may vary with particular portions of data, we ran five

folds for every experiment, each fold corresponding

to different division of training data into labeled and

unlabeled set, and took the averaged performance.

3.1 Model Complexity

This section analyzes the learning capability of

semi-supervised learning algorithms for different

model complexities, that is, the number of mix-

tures for Gaussian mixture model. In this experi-

ment, the sizes of labeled and unlabeled set are fixed

(|DL| : |DU | = 1 : 10 and the averaged token

counts per class is around 140 for both data sets),

as we varied the total number of mixtures and eval-

uated the updated model by its classification accu-

racy. For waveform, number of mixtures was set

from 2 to 7; for TIMIT, because the number of mix-

tures per class is determined by the averaged data

counts per mixture c, we set c to 25, 20 and 15 as

the higher c gives less number of mixtures in total.

Figure 3.1 plots the averaged classification accura-
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Figure 1: Mean classification accuracies vs. α for different model complexity. The accuracies for the initial MLE

models are indicated in the parentheses. (a) waveform: training with the hybrid objective. (b) waveform: purely

generative objective. (c) TIMIT: training with the hybrid objective. (d) TIMIT: purely generative objective.
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cies of the updated model versus the value of α with

different model complexities. The ranges of α are

different for waveform and TIMIT because the value

of α for each dataset has different scales.

First of all, the hybrid method and purely gen-

erative method have very similar behaviors in both

waveform and TIMIT; the differences between the

two methods are insignificant regardless of α. The

hybrid method with α = 0 means supervised MMI-

training with labeled data only, and the purely gener-

ative method with α = 0 means extra several rounds

of supervised MLE-training if the convergence cri-

terion is not achieved. With the small amount of la-

beled data, most of hybrid curves start slightly lower

than the purely generative ones at α = 0, but in-
crease to as high as the purely generative ones as α
increases.

For waveform, the accuracies increase with α in-

creases for all cases except for the 2-mixture model.

Table 1 summarizes the numbers from Figure 3.1.

Except for the 2-mixture case, the improvement over

the supervised model (α = 0) is positively corre-

lated to the model complexity, as the largest im-

provements occur at the 5-mixture and 6-mixture

model for the hybrid and purely generative method

respectively. However, the highest complexity does

not necessarily gives the best classification accu-

racy; the 3-mixture model achieves the best accu-

racy among all models after semi-supervised learn-

ing whereas the 2-mixture model is the best model

for supervised learning using labeled data only.

Experiments on TIMIT show a similar behavior1 ;

as shown in both Figure 3.1 and Table 2, the im-

provement over the supervised model (α = 0) is
also positively correlated to the model complexity,

1Note that our baseline performance (the initial MLEmodel)

is much worse than benchmark because only 10% of the train-

ing data were used. We justified our baseline model by using

the whole training data and a similar accuracy ( 74%) to other

work (e.g. (Sha and Saul, 2007)) was obtained.

79



Table 1: The accuracies(%) of the initial MLEmodel, the supervised model (α = 0), the best accuracies with unlabeled
data and the absolute improvements (∆) over α = 0 for different model complexities for waveform. The bolded

number is the highest value along the same column.

Hybrid Purely generative

#. mix init. acc. α = 0 best acc. ∆ α = 0 best acc. ∆
2 83.02 81.73 83.74 2.01 82.96 83.14 0.18

3 82.08 81.66 84.69 3.03 82.18 84.58 2.40

4 81.56 80.53 83.93 3.40 81.34 84.13 2.79

5 80.18 80.14 83.82 3.68 80.16 83.84 3.68

6 79.61 79.40 83.19 3.79 79.71 83.31 3.60

Table 2: The accuracies(%) of the initial MLEmodel, the supervised model (α = 0), the best accuracies with unlabeled
data and the absolute improvements (∆) over α = 0 for different model complexities for TIMIT. The bolded number

is the highest value along the same column.

Hybrid Purely generative

c init. acc. α = 0 best acc. ∆ α = 0 best acc. ∆
25 55.34 55.47 56.58 1.11 55.32 56.7 1.38

20 55.36 55.67 56.72 1.05 55.2 56.25 1.05

15 54.72 53.71 55.39 1.68 53.7 56.09 2.39

as the most improvements occur at c = 25 for both

hybrid and purely generative methods. The semi-

supervised model consistently improves over the su-

pervised model. To summarize, unlabeled data im-

prove training on models of higher complexity, and

sometimes it helps achieve the best performance

with a more complex model.

3.2 Size of Unlabeled Data

In Figure 2, we fixed the size of the labeled set (4%
of the training set) and plotted the averaged classi-

fication accuracies for learning with different sizes

of unlabeled data. First of all, the hybrid method

and purely generative method still behave similarly

in both waveform and TIMIT. For both datasets, the

figures clearly illustrate that more unlabeled data

contributes more improvement over the supervised

model regardless of the value of α. Generally, a data
distribution can be expected more precisely with a

larger sample size from the data pool, therefore we

expect the more unlabeled data the more precise in-

formation about the population, which improves the

learning capability.

3.3 Discussion of α

During training, the weighted sum ofFMMI andFML

in equation (15) increases with iterations, however

FMMI and FML are not guaranteed to increase indi-

vidually. Figure 3 illustrates how α affects the re-

spective change of the two components for a partic-

ular setting for waveform. When α = 0, the ob-

jective function does not take unlabeled data into

account, so FMMI increases while FML decreases.

FML starts to increase for nonzero α; α = 0.01
corresponds to the case where both objectives in-

creases. As α keeps growing, FMMI starts to de-

crease whereas FML keeps rising. In this partic-

ular example, α = 0.05 is the critical value at

which FMMI changes from increasing to decreas-

ing. According to our observation, the value of α
depends on the dataset and the relative size of la-

beled/unlabeled data. Table 3 shows the critical val-

ues for waveform and TIMIT for different sizes of

labeled data (5, 10, 15, 20% of the training set) with

a fixed set of unlabeled data (80%.) The numbers are

very different across the datasets, but there is a con-

sistent pattern within the dataset–the critical value

increases as the size of labeled set increases. One

possible explanation is that α contains an normal-
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Figure 2: Mean classification accuracies vs. α for different amounts of unlabeled data (the percentage in the training

set). The averaged accuracy for the initial MLE model is 81.66% for waveform and 59.41% for TIMIT. (a) waveform:

training with the hybrid objective. (b) waveform: purely generative objective. (c) TIMIT: training with the hybrid

objective. (d) TIMIT: purely generative objective.
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ization factor with respect to the relative size of la-

beled/unlabeled set. The objective function in (15)

can be rewritten in terms of the normalized objective

with respect to the data size:

F (λ) = |DL|F (DL)
MMI (λ)+α|DU |F (DU )

ML (λ) . (15)

where F (X)
means the averaged value over the data

set X. When the labeled set size increases, α may

have to scale up accordingly such that the relative

change of the two averaged component remains in

the same scale.

Although α controls the dominance of the crite-

rion on labeled data or on unlabeled data, the fact

that which dominates the objective or the critical

value does not necessary indicate the best α. How-
ever, we observed that the best α is usually close to

or larger than the critical value, but the exact value

varies with different data. At this point, it might still

be easier to find the best weight using a small de-

velopment set. But this observation also provides a

guide about the reasonable range to search the best

α – searching starting from the critical value and it

should reach the optimal value soon according to the

plots in Figure 3.1.

Table 3: The critical values for waveform and TIMIT

for different sizes of labeled data (percentage of training

data) with a fixed set of unlabeled data (80 %.)

Size of labeled data waveform TIMIT

5% 0.09-0.11 0.03-0.04

10% 0.12-0.14 0.07-0.08

15% 0.5-0.6 0.08-0.09

20% 1-1.5 0.11-0.12
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Figure 3: Accuracy (left), FMMI (center), and FML (right) at different values of alpha.
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3.4 Hybrid Criterion vs. Purely Generative

Criterion

From the previous experiments, we found that the

hybrid criterion and purely generative criterion al-

most match each other in performance and are able

to learn models of the same complexity. This implies

that the criterion on labeled data has less impact on

the overall training direction than unlabeled data. In

Section 3.2, we mentioned that the best α is usually

larger than or close to the critical value around which

the unlabeled data likelihood tends to dominate the

training objective. This again suggests that labeled

data contribute less to the training objective function

compared to unlabeled data, and the criterion on la-

beled data doesn’t matter as much as the criterion on

unlabeled data. It is possible that most of the con-

tributions from labeled data have already been used

for training an initial MLE model, therefore little in-

formation could be extracted in the further training

process.

4 Conclusion

Regardless of the dataset and the training objective

type on labeled data, there are some general prop-

erties about the semi-supervised learning algorithms

studied in this work. First, while limited amount of

labeled data can at most train models of lower com-

plexity well, the addition of unlabeled data makes

the updated models of higher complexity much im-

proved and sometimes perform better than less com-

plex models. Second, the amount of unlabeled data

in our semi-supervised framework generally follows

‘the-more-the-better’ principle; there is a trend that

more unlabeled data results in more improvement in

classification accuracy over the supervised model.

We also found that the objective type on labeled

data has little impact on the updated model, in the

sense that hybrid and purely generative objectives

behave similarly in learning capability. The obser-

vation that the best α occurs after the MMI criterion

begins to decrease supports the fact that the criterion

on labeled data contributes less than the criterion on

unlabeled data. This observation is also helpful in

determining the search range for the best α on the

development set by locating the critical value of the

objective as a start point to perform search.

The unified training objective method has a nice

convergence property which self-training methods

can not guarantee. The next step is to extend the

similar framework to speech recognition task where

HMMs are trained and phone boundaries are seg-

mented. It would be interesting to compare it with

self-training methods in different aspects (e.g. per-

formance, reliability, stability and computational ef-

ficiency).
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1 Discriminative vs. Generative Models

An interesting question surrounding semi-
supervised learning for NLP is: should we use
discriminative models or generative models? De-
spite the fact that generative models have been
frequently employed in a semi-supervised setting
since the early days of the statistical revolution
in NLP, we advocate the use of discriminative
models. The ability of discriminative models to
handle complex, high-dimensional feature spaces
and their strong theoretical guarantees have made
them a very appealing alternative to their gen-
erative counterparts. Perhaps more importantly,
discriminative models have been shown to offer
competitive performance on a variety of sequential
and structured learning tasks in NLP that are
traditionally tackled via generative models , such
as letter-to-phoneme conversion (Jiampojamarn
et al., 2008), semantic role labeling (Toutanova
et al., 2005), syntactic parsing (Taskar et al.,
2004), language modeling (Roark et al., 2004), and
machine translation (Liang et al., 2006). While
generative models allow the seamless integration
of prior knowledge, discriminative models seem
to outperform generative models in a “no prior”,
agnostic learning setting. See Ng and Jordan (2002)
and Toutanova (2006) for insightful comparisons of
generative and discriminative models.

2 Discriminative EM?

A number of semi-supervised learning systems can
bootstrap from small amounts of labeled data using
discriminative learners, including self-training, co-

training (Blum and Mitchell, 1998), and transduc-
tive SVM (Joachims, 1999). However, none of them
seems to outperform the others across different do-
mains, and each has its pros and cons. Self-training
can be used in combination with any discriminative
learning model, but it does not take into account the
confidence associated with the label of each data
point, for instance, by placing more weight on the
(perfectly labeled) seeds than on the (presumably
noisily labeled) bootstrapped data during the learn-
ing process. Co-training is a natural choice if the
data possesses two independent, redundant feature
splits. However, this conditional independence as-
sumption is a fairly strict assumption and can rarely
be satisfied in practice; worse still, it is typically not
easy to determine the extent to which a dataset sat-
isfies this assumption. Transductive SVM tends to
learn better max-margin hyperplanes with the use
of unlabeled data, but its optimization procedure is
non-trivial and its performance tends to deteriorate if
a sufficiently large amount of unlabeled data is used.

Recently, Brefeld and Scheffer (2004) have pro-
posed a new semi-supervised learning technique,
EM-SVM, which is interesting in that it incorpo-
rates a discriminative model in an EM setting. Un-
like self-training, EM-SVM takes into account the
confidence of the new labels, ensuring that the in-
stances that are labeled with less confidence by the
SVM have less impact on the training process than
the confidently-labeled instances. So far, EM-SVM
has been tested on text classification problems, out-
performing transductive SVM. It would be interest-
ing to see whether EM-SVM can beat existing semi-
supervised learners for other NLP tasks.
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3 Effectiveness of Bootstrapping

How effective are the aforementioned semi-
supervised learning systems in bootstrapping from
small amounts of labeled data? While there are quite
a few success stories reporting considerable perfor-
mance gains over an inductive baseline (e.g., parsing
(McClosky et al., 2008), coreference resolution (Ng
and Cardie, 2003), and machine translation (Ueff-
ing et al., 2007)), there are negative results too (see
Pierce and Cardie (2001), He and Gildea (2006),
Duh and Kirchhoff (2006)). Bootstrapping perfor-
mance can be sensitive to the setting of the param-
eters of these semi-supervised learners (e.g., when
to stop, how many instances to be added to the la-
beled data in each iteration). To date, however, re-
searchers have relied on various heuristics for pa-
rameter selection, but what we need is a principled
method for addressing this problem. Recently, Mc-
Closky et al. (2008) have characterized the condi-
tions under which self-training would be effective
for semi-supervised syntactic parsing. We believe
that the NLP community needs to perform more re-
search of this kind, which focuses on identifying the
algorithm(s) that achieve good performance under a
given setting (e.g., few initial seeds, large amounts
of unlabeled data, complex feature space, skewed
class distributions).

4 Domain Adaptation

Domain adaptation has recently become a popular
research topic in the NLP community. Labeled data
for one domain might be used to train a initial classi-
fier for another (possibly related) domain, and then
bootstrapping can be employed to learn new knowl-
edge from the new domain (Blitzer et al., 2007). It
would be interesting to see if we can come up with
a similar semi-supervised learning model for pro-
jecting resources from a resource-rich language to
a resource-scarce language.
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