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Abstract 

We describe and motivate an unsupervised 
lexical error detection and correction algo-
rithm and its application in a tool called Lex-
bar appearing as a query box on the Web 
browser toolbar or as a search engine inter-
face. Lexbar accepts as user input candidate 
strings of English to be checked for accept-
ability and, where errors are detected, offers 
corrections. We introduce the notion of hy-
brid n-gram and extract these from BNC as 
the knowledgebase against which to compare 
user input. An extended notion of edit dis-
tance is used to identify most likely candi-
dates for correcting detected errors. Results 
are illustrated with four types of errors. 

1 Introduction 

We describe and motivate an unsupervised lexical 
error detection and correction algorithm and its 
application in a tool called Lexbar appearing as a 
query box in a web-based corpus search engine or 
on the Web browser toolbar. The tool is intended 
as a proxy for search engines in the common prac-
tice where users put search engines to use as error 
checkers. A problem with this use of search en-
gines like Google is that such searches commonly 
provide false positives, hits for strings that contain 
errors. Lexbar accepts as user input candidate 
strings of English to be checked for acceptability 
and, where errors are detected, offers corrections.  

2 Related Work 

Among the many works on error detection, re-
cently unsupervised error detection approaches 

have been proposed, such as [Chodorow and Lea-
cock, 2000] and [Quixal and Badia 2008]. These 
use contextual features and statistical word asso-
ciation measurement to decide if the detected bi-
gram or trigram is an error or not. To our 
knowledge, such unsupervised methods have not 
been applied in error correction. [Gamon et  al 
2008] and [Felice and Pulman 2008] propose un-
supervised approaches to build a probabilistic 
model for detecting errors (prepositions and arti-
cles) and providing correct answers. They also 
typically focus on a particular type of error, usu-
ally limited to a specific word class such as prepo-
sition errors, often in a pre-determined 
paradigmatic slot. Our approach reported here is 
unsupervised in both detection and correction and 
is not tailored to a specific target error subtype or 
targeted to a specific position in a string. More 
generally the family of error types suitable for this 
approach are lexical or lexico-grammatical errors 
since detection and correction are based on pat-
terns of word use detected statistically. At the core 
of our approach is a bank of what we call “hybrid 
n-grams” extracted from BNC to serve as the tar-
get knowledge against which learner input is 
compared for detection and correction. We illus-
trate the single algorithm with results on four dif-
ferent categories of errors. 

3 Overview of the Algorithm 

The Lexbar application consists of two main 
components: (1) the target language knowledge-
base of hybrid n-grams that serves as the standard 
against which learner production is examined for 
errors, and (2) the error detection and correction 
algorithm that uses this knowledgebase to evalu-
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ate learner production through matching and edit 
distance. Relatively broad coverage is achieved 
from one algorithm since no specific error type is 
targeted but violations of word behaviors patterns. 

Typically, n-grams are contiguous sequences of 
lemmas or specific word forms. Using traditional 
n-grams and string matching against them as a 
means of error detection leads to weak precision 
since the absence of a specific n-gram in a stan-
dard corpus does not render it an error. To address 
this limitation, we extend the notion of n-gram to 
include in the string not only lemmas or word 
forms but parts-of-speech as well. For example, 
the chunk point of view can be part of a longer 
string from my point of view. Here, the preposition 
from is non-substitutable whereas the possessive 
pronoun my can be replaced by others of the same 
POS (his/her/your/etc.). Hence, replacing the one 
results in an error (*in my point of view1) while 
replacing the other is fine (from her/his/their/our 
point of view). The purpose of hybrid n-grams is 
to introduce the flexibility to capture the appropri-
ate level of abstraction for each slot in a lexical 
chunk. Hybrid n-grams permit any combination of 
word forms, lemmas, POSs in a string (see details 
below). Thus the hybrid n-gram for from my point 
of view is from [dps] point of view2.  

For a string of input submitted for error check-
ing, the algorithm first does a matching operation 
between the input string and the hybrid n-gram 
bank. The second step for input is finding hybrid 
n-grams which nearly match the input, using edit 
distance to measure nearness or similarity. Hybrid 
n-grams with a distance of 1 or less from the input 
string are candidates as correction suggestions and 
are ranked, least distant from the input string 
ranked as top correction suggestion. 

4 The Knowledgebase: Hybrid N-grams 

As mentioned in Section 3, a hybrid n-gram bank 
will be needed. In our model, each slot has four 
levels of representation to choose from: word 
form (enjoys but not enjoy or enjoying, etc); 
lemma (representing all word forms of that lex-
eme, e.g., enjoy, enjoys, and enjoyed, etc); de-
tailed POS (CLAWS5 with 46 different POSs); 

                                                 
1 We use * to represent the error part in n-gram string. 
2 We use [] to represent POS categories. [dps] is the 
CLAWS5 tag for possessive pronoun.  

rough POS (9 different POSs)3. The main chal-
lenge is to extract hybrid n-grams which are the 
optimum combination of representations for each 
slot to represent a lexical chunk or pattern. One 
key to this is a pruning method (described below). 
Clearly, compared with traditional n-gram extrac-
tion, the size of our hybrid n-gram bank size will 
be extremely large if we save all the combinations 
that can be generated for each n-gram. Consider-
ing the example from my point of view and setting 
point as the target word, if we only extract hybrid 
5-gram strings for it, we will get 2*44=512 (two 
forms of noun point and four forms of others) dif-
ferent hybrid 5-grams. This entails many disad-
vantages, for example in storage space and 
processing time. Therefore, we apply several 
pruning approaches to keep only useful hybrid n-
grams in the bank. Another motivation for pruning 
the bank is to reach optimum recall and precision. 
The choice of which hybrid n-grams to retain in or 
discard from the bank directly determines which 
input strings would be judged as errors and what 
candidate corrections would be generated for er-
rors. We illustrate the effects of pruning below.  

The first criterion for pruning is frequency. 
Only hybrid n-grams with a frequency greater 
than the threshold are saved. The second criterion 
is called subset pruning. There will be overlap 
among different hybrid n-grams. For example, the 
chunk from my point of view could be represented 
by dozens of hybrid n-grams. Two of them are: (1) 
from [dps] point of view, and (2) from my point of 
view. Notice an input string from her point of view 
would match (1) but not (2). Here the optimum n-
gram is (1) because it includes all cases covered 
by (2) but other acceptable ones as well. Crucially, 
it is not the case that the more general hybrid n-
gram will always yield the more optimum results, 
however. This must be determined case by case. 
Consider the first slot in the same chunk from my 
point of view. The following two versions could 
represent that chunk: (3) from [dps] point of view 
and (4) [prp] [dps] point of view4. Notice here, 
however, that it will be the more specific rather 
than the more inclusive version that is to be pre-
ferred. (3) specifies the exact preposition for the 
chunk whereas (4) would accept any preposition 

                                                 
3 Rough POS includes verb, noun, adj, adv, conj, interj, prep, 
pron, vm0. 
4 [prp] is the CLAWS5 tag for preposition. 
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(or [prp]) occurring in the first slot. But indeed 
from is not freely substitutable in this chunk (cf 
* in my point of view). Thus in each slot in each 
chunk, pruning checks each potential hybrid n-
gram against the target corpus to determine statis-
tically the n-grams that capture the optimum de-
gree of substitutability or frozenness for each slot.  

This creates an extremely flexible means of 
representing the knowledgebase. Consider verb 
complement selection. In examples such as They 
enjoy swimming, the level of generalization is dif-
ferent for the governing verb slot (enjoy) on the 
one hand and the complement (swimming) on the 
other. The right generalization for the complement 
is a specific verb form but not specific to any one 
verb. This slot is captured under the CLAWS5 
POS [vvg] 5 , thus permitting enjoy swim-
ming/reading/sleeping, but not enjoy to 
swim/swam and so on. Unlike the complement, 
the governing verb slot here is a specific lexeme 
(enjoy swimming but not hope swimming; cf hope 
to swim) and moreover, it permits that lexeme in 
any of its word forms (enjoy/enjoying/enjoyed 
swimming). A hybrid n-gram representation has 
the power to capture these different levels of gen-
eralization and restriction in one representation. 

Here is how pruning is done. First, we set a fil-
ter factor ε, where 0<ε<1. Assume x and y are 
two hybrid n-grams and len(x)=len(y). If x ⊂ y and 

yx  ≥ ε6, we will eliminate y from bank. For 

example, for the two 5-grams x=from [dps] point 
of view and y=[prp] [dps] point of view, obviously 
x ⊂ y because from is a kind of [prp] (preposition). 

If we set the filter factor ε=80% and yx >ε, y 

will be not included in the hybrid n-gram bank. 
For example from 100M-word BNC, before prun-
ing, there are 110K hybrid n-grams containing 
target lemma point. After pruning, there are only 
5K useful hybrid n-grams left.   

5 The Edit Distance Algorithm for Error 
Detection and Correction 

5.1 Error Detection 

We apply a simple edit distance for error detection 
by comparing user input n-grams and standard 

                                                 
5 [vvg] is the CLAWS5 tag for gerund. 
6 x  means the frequency of x in BNC. 

hybrid n-gram in the bank. The approaches are 
briefly summarized and short examples given in 
the following: 

Step 1: POS tag the user input string and get all 
hybrid n-grams that can represent that string. For 
example, a user inputs in my point of view and 
then [prp] my point of view, [prp] [dps] point of 
view, in [dps] point of view, in my point of 
[nn1]… etc. will be generated. Let C denote the 
entire set of hybrid n-grams generated from an 
instance of user input. 

Step 2: Search all hybrid n-grams in the target 
knowledgebase containing point or view, which 
are the content words in user input. Let S denote 
all of the target hybrid n-grams containing point 
or view.   

Step 3: Compute the edit distance d between 
every element in C and S. If ∃ d=0 in (C, S), we 
assume the user input n-gram is correct. If ∀ d>1 
in (C, S), our system will ignore this case and pro-
vide nothing. If ∃ d=1, we assume the user input 
might be wrong and the system will enter the error 
correction procedure. 

For efficiency’s sake in Step 2, the hybrid n-
grams are indexed by content words. We use 
Levenshtein’s edit distance algorithm [Leven-
shtein 1996] in Step 3. It indicates the difference 
between user input and standard n-grams in three 
ways: “substitute relation,” i.e., two n-grams are 
the same length and identical except for one slot. 
“Delete relation” and “insert relation” hold be-
tween two different length n-grams. In this paper 
we consider only the “substitute relation,” such as 
in my point of view and from my point of view. 
This limits edit distance computing to pairs of n-
grams of the same length (e.g. 5-gram to 5-gram).  

5.2 Error Correction 

The system identifies correction candidates from S 
as those with edit distance d=1 from some mem-
ber(s) in C. Once the system gets several correc-
tion candidates for an input string whose edit 
distances from user input are 1, we have to decide 
the ranking of the correct candidates by a value 
called weighted edit distance. Weighted edit dis-
tance can identify more appropriate correct n-
grams for the user. Imagine a case where an n-
gram from C and an n-gram from S show a substi-
tution relation. Assume u is the differing element 
in the C n-gram and v is its counterpart in the S n-
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gram. Weighted edit distance between these two is 
computed by the following rules: 

Rule 1: If u and v are both word-forms and are 
different word-forms of the same lemma (for ex-
ample enjoyed and enjoying), given distance α. 

Rule 2: If u and v are both members of 
CLAWS5 POS and their rough POS are the same, 
given distance β7. 

Rule 3: If u and v are both function words, give 
distance γ. 

Rule 4: If u and v are both content word, give 
distance δ. 

We set α<β and γ<δ. Correct candidate with 
lower weighted distance makes itself more appro-
priate for suggestion. For example, before weight-
ing, the error string pay attention on gets two 
distance 1 correct candidates pay attention to and 
focus attention on. Weighting will give pay atten-
tion to a lower weighted distance because on and 
to are function words whereas focus and pay are 
content words.  

6 Experimental Result 

Four types of errors shown in Table 1 are exam-
ined for our detection and correction algorithm.   

Error string Algorithm result Correction sug-
gested to user 

Preposition 
have a look *of have a look at have a look at 
I am interested 
*of 

[pnp] be interested in I am interested in 

*in my point of 
view 

from [dps] point of view from my point of 
view 

pay attention 
*on 

pay attention to 
pay attention to 

pay attention to 

We can discuss 
*about. 

we [vm0] discuss it 
we [vm0] discuss 
[noun] 
we [vm0] discuss [av0] 

we can discuss it 
we can discuss 
[noun] 
we can discuss 
{adv} 

Adjectival participles 
He is 
*confusing with 

[pnp] be confused [prp] He is confused 
with 

I am 
*interesting in 

[pnp] be interested in I am interested in 

I am *exciting 
about 

[pnp] be excited [prp] I am excited about 

Verb form 
He wants 
*reading. 

he wants [vvt] 
he want [vvt] 

He wants to read 

 I enjoy *to 
read. 

i enjoy [vvg] 
i enjoy [vvg] 

I enjoy reading 

                                                 
7 Recall we use two levels of POS tagging in our hybrid n-
grams: 1. The detailed one is CLAWS5 with 46 tags. 2. The 
rough or simple tag set of 9 tags. 

let them *to 
stay. 

let them [vvi] 
let them [vvi] 

let them stay 

make him *to 
leave 

make him [vvi] 
make him [vvi] 

make him leave 

must let them 
*to stay 

[vm0] let them [vvi] must let them stay 

spend time to 
understand 

spend time [vvg] spend time under-
standing 

will make him 
*to leave 

will  make [pnp] [vvi] will make him 
leave 

Missing be 
I* afraid of be afraid of 

[adv] afraid of 
[av0] afraid of 

be afraid of 
[adv]afraid of 
[adj] afraid of 

They* aware of be aware of 
[av0] aware of 

be aware of 
[adv]aware of 

Table 1: Four error types and their examples with cor-
rect suggestions.  

7 Conclusion 

We propose an algorithm for unsupervised lexical 
error detection and correction and apply it to a 
user tool called Lexbar. This is a work-in-progress 
report, and we have not yet run full testing with a 
large data set, such as a learner corpus. However 
the early stage experimental results show promise, 
especially its broad coverage over different error 
types compared to error-specific approaches.  
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