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Abstract 

Assessment of reading proficiency is typically 
done by asking subjects to read a text passage 
silently and then answer questions related to 
the text. An alternate approach, measuring 
reading-aloud proficiency, has been shown to 
correlate well with the aforementioned com-
mon method and is used as a paradigm in this 
paper.  

We describe a system that is able to automati-
cally score two types of children’s read speech 
samples (text passages and word lists), using 
automatic speech recognition and the target 
criterion “correctly read words per minute”. 
Its performance is dependent on the data type 
(passages vs. word lists) as well as on the rela-
tive difficulty of passages or words for indi-
vidual readers. Pearson correlations with 
human assigned scores are around 0.86 for 
passages and around 0.80 for word lists. 

1 Introduction 

It has long been noted that a substantial number of 
U.S. students in the 10-14 years age group have 
deficiencies in their reading competence (National 
Center of Educational Statistics, 2006). With the 
enactment of the No Child Left Behind Act (2002), 
interest and focus on objectively assessing and im-
proving this unsatisfactory situation has come to 
the forefront. 

While assessment of reading is usually done post-
hoc with measures of reading comprehension, di-
rect reading assessment is also often performed 
using a different method, oral (read-aloud) reading. 
In this paradigm, students read texts aloud and 
their proficiency in terms of speed, fluency, pro-
nunciation, intonation etc. can be monitored di-
rectly while reading is in progress. In the reading 
research literature, oral reading has been one of the 
best diagnostic and predictive measures of founda-
tional reading weaknesses and of overall reading 
ability (e.g., Deno et al., 2001; Wayman et al., 
2007).  An association between low reading com-
prehension and slow, inaccurate reading rate has 
been confirmed repeatedly in middle school popu-
lations (e.g., Deno & Marsten, 2006).  Correlations 
consistently fall in the 0.65-0.7 range for predict-
ing untimed passage reading comprehension test 
outcomes (Wayman et al., 2007). 
 
In this paper, we investigate the feasibility of 
large-scale, automatic assessment of read-aloud 
speech of middle school students with a reasonable 
degree of accuracy (these students typically attend 
grades 6-8 and their age is in the 10-14 years 
range).  If possible, this would improve the utility 
of oral reading as a large-scale, school-based as-
sessment technique, making it more efficient by 
saving costs and time of human annotations and 
grading of reading errors. 
The most widely used measure of oral reading pro-
ficiency is “correctly read words per minute” 
(cwpm) (Wayman et al., 2007). To obtain this 
measure, students’ read speech samples are first 
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recorded, then the reading time is determined, and 
finally a human rater has to listen to the recording 
and note all reading errors and sum them up. Read-
ing errors are categorized into word substitutions, 
deletions etc.  
We have several sets of digitally recorded read-
aloud samples from middle school students avail-
able which were not collected for use with auto-
matic speech recognition (ASR) but which were 
scored by hand. 
Our approach here is to pass the children’s speech 
samples through an automatic speech recognizer 
and then to align its output word hypotheses with 
the original text that was read by the student. From 
this alignment and from the reading time, an esti-
mate for the above mentioned measure of cwpm 
can then be computed. If the automatically com-
puted cwpm measures are close enough to those 
obtained by human hand-scoring, this process may 
be employed in real world settings eventually to 
save much time and money. 
 
Recognizing children’s speech, however, has been 
shown to be substantially harder than adult speech 
(Lee et al., 1999; Li and Russell, 2002), which is 
partly due to children’s higher degree of variability 
in different dimensions of language such as pro-
nunciation or grammar. In our data, there was also 
a substantial number of non-native speakers of 
English, presenting additional challenges. We used 
targeted training and adaptation of our ASR sys-
tems to achieve reasonable word accuracies. While 
for text passages, the word accuracy on unseen 
speakers was about 72%, it was only about 50% 
for word lists, which was due in part to a higher 
percentage of non-native speakers in this data set, 
to the fact that various sources of noise often pre-
vented the recognizer from correctly locating the 
spoken words in the signal, and also due to our 
choice of a uniform language model since conven-
tional n-gram models did not work on this data 
with many silences and noises between words. 
 
The remainder of this paper is organized as fol-
lows: in Section 2 we review related work, fol-
lowed by a description of our data in Section 3. 
Section 4 provides a brief description of our speech 
recognizer as well as the experimental setup. Sec-
tion 5 provides the results of our experiments, fol-
lowed by a discussion in Section 6 and conclusions 
and future work in Section 7. 

 

2 Related work 

Following the seminal paper about the LISTEN 
project (Mostow et al. 1994), a number of studies 
have been conducted on using automatic speech 
recognition technology to score children’s read 
speech. 
 
Similar to automated assessment of adults’ speech 
(Neumeyer, Franco et al. 2000; Witt, 1999), the 
likelihood computed in the Hidden Markov Model 
(HMM) decoding and some measurements of  flu-
ency, e.g., speaking rate, are widely used as fea-
tures for predicting children’s speaking 
proficiency. Children’s speech is different than 
adults’. For example, children’s speech exhibits 
higher fundamental frequencies (F0) than adults on 
average. Also, children’s more limited knowledge 
of vocabulary and grammar results in more errors 
when reading printed text. Therefore, to achieve 
high-quality recognition on children’s speech, 
modifications have to be made on recognizers that 
otherwise work well for adults. 
In the LISTEN project (Mostow et al., 1994), the 
basic technology is to use speech recognition to 
classify each word of text as correctly read or not. 
Such a classification task is hard in that the chil-
dren’s speaking deviations from the text may in-
clude arbitrary words and non-words. In a study, 
they modeled variations by the modification of the 
lexicon and the language model of the Sphinx1 
speech recognizer.  
 
Recently, the Technology Based Assessment  of 
Language and Literacy project (TBALL,  (Alwan, 
2007)) has been attempting to assess and evaluate 
the language and literacy skills of young children 
automatically. In the TBALL project, a variety of 
tests including word verification, syllable blending, 
letter naming, and reading comprehension, are 
jointly used. Word verification is an assessment 
that measures the child’s pronunciation of read-
aloud target words. A traditional pronunciation 
verification method based on log-likelihoods from 
HMM models is used initially (Tepperman et al., 
2006). Then an improvement based on a Bayesian 
network classifier (Tepperman et al., 2007) is em-

                                                           
1 See http://cmusphinx.sourceforge.net/html/cmusphinx.php 
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ployed to handle complicated errors such as pro-
nunciation variations and other reading mistakes. 
 
Many other approaches have been developed to 
further improve recognition performance on chil-
dren’s speech. For example, one highly accurate 
recognizer of children’s speech has been developed 
by Hagen et al. (2007). Vocal tract length normali-
zation (VTLN) has been utilized to cope with the 
children‘s different acoustic properties. Some spe-
cial processing techniques, e.g., using a general 
garbage model to model all miscues in speaking, 
have been devised to improve the language model  
used in the recognition of children’s speech (Li et 
al., 2007). 
 

3 Data 

For both system training and evaluation, we use a 
data set containing 3 passages read by the same 
265 speakers (Set1) and a fourth passage (a longer 
version of Passage 1), read by a different set of 55 
speakers (Set2). Further, we have word lists read 
by about 500 different speakers (Set3). All speak-
ers from Set12 and most (84%) from the third set 
were U. S. middle school students in grades 6-8 
(age 10-14). A smaller number of older students in 
grades 10-12 (age 15-18) was also included in the 
third set (16%).3 4  
In terms of native language, about 15% of Set1 and 
about 76% of Set35 are non-native speakers of 
English or list a language different from English as 
their preferred language. 
Table 1 provides the details of these data sets. In 
the word lists data set, there are 178 different word 
lists containing 212 different word types in total 
(some word lists were read by several different 
students). 
 
All data was manually transcribed using a spread-
sheet where each word is presented in one line and 
the annotator, who listens to the audio file, has to 

                                                           
2 For Set1, we have demographics for 254 of 265 speakers 
(both for grade level and native language). 
3 Grade demographics are available for 477 speakers of Set3. 
4 We do not have demographic data for the small Set2 (55 
speakers). 
5 This set (Set 3) has information on native language for 165 
speakers. 

mark-up any insertions, substitutions or deletions 
by the student.  
 
Name Recordings Length in 

words 
Passage 1 
(“Bed”, Set1-A) 

265 158 

Passage 2 
(“Girls”, Set1-B) 

265 74 

Passage 3 
(“Keen”, Set1-C) 

265 100 

Passage 4 
(“Bed*”) (Set2) 

55 197 

Word lists (Set3) 590 62 (average) 
Table 1. Text passages and word lists data sets. 
 
For ASR system training only, we additionally 
used parts of the OGI (Oregon Graduate Institute) 
and CMU (Carnegie Mellon University) Kids data 
sets as well (CSLU, 2008; LDC, 1997). 
 

4 ASR system and experiments 

The ASR system’s acoustic model (AM) was 
trained using portions of the OGI and CMU Kids’ 
corpora as well as a randomly selected sub-set of 
our own passage and word list data sets described 
in the previous section. About 90% of each data set 
(Set1, Set2, Set3) was used for that purpose. Since 
the size of our own data set was too small for AM 
training, we had to augment it with the two men-
tioned corpora (OGI, CMU Kids), although they 
were not a perfect match in age range and accent. 
All recordings were first converted and down-
sampled to 11 kHz, mono, 16 bit resolution, PCM 
format. There was no speaker overlap between 
training and test sets. 
 
For the language model (LM), two different mod-
els were created: for passages, we built an interpo-
lated trigram LM where 90% of the weight is 
assigned to a LM trained only on the 4 passages 
from the training set (Set1, Set2) and 10% to a ge-
neric LM using the Linguistic Data Consortium 
(LDC) Broadcast News corpus (LDC, 1997). The 
dictionary contains all words from the transcribed 
passages in the training set, augmented with the 
1,000 most frequent words from the Broadcast 
News corpus. That way, the LM is not too restric-
tive and allows the recognizer to hypothesize some 
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reading mistakes not already encountered in the 
human transcriptions of the training set. 
 
For the word lists, a trigram LM was found to be 
not working well since the words were spoken in 
isolation with sometimes significant pauses in be-
tween and automatic removal of these silences 
proved too hard given other confounding factors 
such as microphone, speaker, or background noise. 
Therefore it was decided to implement a grammar 
LM for the word list decoder where all possible 
words are present in a network that allows them to 
occur at any time and in any sequence, allowing 
for silence and/or noises in between words. This 
model with uniform priors, however, has the dis-
advantage of not including any words not present 
in the word list training set, such as common mis-
pronunciations and is therefore more restrictive 
than the LM for text passages. 
 
One could make the argument of using forced 
alignment instead of a statistical LM to determine 
reading errors. In fact, this approach is typically 
used when assessing the pronunciation of read 
speech. However, in our case, the interest is more 
in determining how many words were read cor-
rectly in the sequence of the text (and how fast 
they were read) as opposed to details in pronuncia-
tion. Further, even if we had confidence scores 
attached to words in forced alignment, deciding on 
which of the words obtained low confidence due to 
poor pronunciation or due to substitution would 
not be an easy decision. Finally, word deletions 
and insertions, if too frequent, might prevent the 
forced alignment algorithm from terminating. 
 
After training was complete, we tested the recog-
nizer on the held-out passage and word list data. 
After recognizing, we computed our target meas-
ure of “correct words per minute” (cwpm) accord-
ing to the following formula (W= all words in a 
text, S= substitutions, D= deletions, T= reading 
time in minutes), performing a string alignment 
between the recognizer hypothesis and the passage 
or word list to be read: 
 

(1) 
W S Dcwpm

T
− −

=   

The reason that insertions are not considered here 
is that they contribute to an increase in reading 

time and therefore can be considered to be ac-
counted for already in the formula.  
 
Next, we performed an experiment that looks at 
whether automatic scoring of read-aloud speech 
allows for accurate predictions of student place-
ments in broad cohorts of reading proficiency. 
 
We then also look more closely at typical errors 
made by human readers and the speech recognizer. 
All these experiments are described and discussed 
in the following section. 
 
Table 2 describes the set-up of the experiments. 
Note that Passage4 (Set2) was included only in the 
training but not in the evaluation set since this set 
was very small. As mentioned in the previous sec-
tion, most speakers from the passage sets read 
more than one passage and a few speakers from the 
word lists set read more than one word list. 
 
Data set Recordings Speakers Language 

model 
type 

Passages1-
3 

101 37 Trigram  

Word lists 42 38 Grammar 
Table 2. Experiment set-up (evaluation sets). 
 

5 Results 

5.1 Overall results 

Table 3 depicts the results of our evaluation run 
with the ASR system described above. Word accu-
racy is measured against the transcribed speaker 
reference (not against the true text that was read). 
Word accuracy is computed according to Equation 
(2), giving equal weight to reference and ASR hy-
pothesis (c=correct, s=substitutions, d=deletions, 
i=insertions). This way, the formula is unbiased 
with respect to insertions or deletions: 
 

(2)  
0.5 100.0 c cwacc

c s d c s i
⎛ ⎞= × × +⎜ ⎟+ + + +⎝ ⎠  
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Data set Recordings Speakers Average word 

Accuracy over all 
speech sample 

Minimum word 
accuracy on a 
speech sample 

Maximum word  
accuracy on a speech 
sample 

All Passages  
(1-3) 

101 37 72.2 20.4 93.8 

Passage1 
(“Bed”) 

28 28 70.8 20.4 83.6 

Passage2 
(“Girls”) 

36 36 64.1 25.4 85.7 

Passage3 
(“Keen”) 

37 37 77.7 27.4 93.8 

Word lists 42 38 49.6 10.8 78.9 
Table 3. ASR experiment results (word accuracies in percent) 
 
 
The typical run-time on a 3.2GHz Pentium proces-
sor was less than 30 seconds for a recording (faster 
than real time). 
 
We next compute cwpm measures for both human 
annotations (transcripts, “gold standard”) and ma-
chine (ASR) hypotheses  
Human annotators went over each read passage 
and word list and marked all reading errors of the 
speakers (here, only deletions and substitutions are 
relevant). The reading time is computed directly 
from the speech sample, so machine and human 
cwpm scores only differ in error counts of dele-
tions and substitutions. Currently we only have one 
human annotation available per speech sample, but 
we aim to obtain a second annotation for the pur-
pose of determining inter-annotator agreement. 
 
Table 4 presents the overall results of comparing 
machine and human cwpm scoring. We performed 
both Pearson correlation as well as Spearman rank 
correlation. While the former provides a more ge-
neric measure of cwpm correlation, the latter fo-
cuses more on the question of the relative 
performance of different speakers compared to 
their peers which is usually the more interesting 
question in practical applications of reading as-
sessment. Note that unlike for Table 3, the ASR 
hypotheses are now aligned with the text to be read 
since in a real-world application, no human tran-
scriptions would be available. 
We can see that despite the less than perfect recog-
nition rate of the ASR system which causes a much 

lower average estimate for cwpm or cw (for word-
lists), both Pearson and Spearman correlation coef-
ficients are quite high, all above 0.7 for Spearman 
rank correlation and equal to 0.8 or higher for the 
Pearson product moment correlation. This is en-
couraging as it indicates that while current ASR 
technology is not yet able to exactly transcribe 
children’s read speech, it is 
 
Data set Gold 

cwpm
ASR-
based 
cwpm 

Pearson 
r corre-
lation 

Spearman 
rank cor-
relation 

All Pas-
sages  
(1-3) 

152.0 109.8 0.86 NA 

Passage1 
(Bed) 

174.3 123.5 0.87 0.72 

Passage2 
(Girls) 

133.1 86.5 0.86 0.73 

Passage3 
(Keen) 

153.4 122.2 0.86 0.77 

Word 
lists* 
 

48.0 29.4 0.80 0.81 

Table 4. CWPM results for passages and word 
lists. All correlations are significant at p<0.01. 
*For word lists, we use “cw” (correct words, nu-
merator of Equation (1)) as the measure, since stu-
dents were not told to be rewarded for faster 
reading time here. 
 
possible to use its output to compute reasonable 
read-aloud performance measures such as cwpm 
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which can help to quickly and automatically assess 
reading proficiencies of students. 

5.2 Cohort assignment experiment 

To follow up on the encouraging results with basic 
and rank correlation, we conducted an experiment 
to explore the question of practical importance 
whether the automatic system can assign students 
to reading proficiency cohorts automatically. 
For better comparison, we selected those 27 stu-
dents from 37 total who read all 3 passages (Set 1) 
and grouped them into three cohorts of 9 students 
each, based on their human generated cwpm score 
for all passages combined: (a) proficient 
(cwpm>190), (b) intermediate (135<cwpm<190), 
and (c) low proficient (cwpm<135). 
We then had the automatic system predict each 
student’s cohort based on the cwpm computed 
from ASR. Since ASR-based cwpm values are co-
nsistently lower than human annotator based cwpm 
values, the automatic cohort assignment is not 
based on the cwpm values but rather on their rank-
ing. 
The outcome of this experiment is very encourag-
ing in that there were no cohort prediction errors 
by the automatic system. While the precise ranking 
differs, the system is very well able to predict 
overall cohort placement of students based on 
cwpm. 

5.3 Overall comparison of students’ reading er-
rors and ASR recognition errors 

To look into more detail of what types of reading 
errors children make and to what extent they are 
reflected by the ASR system output, we used the 
sclite-tool by the National Institute for Standards 
and Technology (NIST, 2008) and performed two 
alignments on the evaluation set: 
1. TRANS-TRUE: Alignment between human 
transcription and true passage or word list text to 
be read: this alignment informs us about the kinds 
of reading errors made by the students. 
2. HYPO-TRANS: Alignment between the ASR 
hypotheses and the human transcriptions; this 
alignment informs us of ASR errors. (Note that this 
is different from the experiments reported in Table 
4 above where we aligned the ASR hypotheses 
with the true reference texts to compute cwpm.) 
 

Table 5 provides general statistics on these two 
alignments. 
 
Data set Alignment SUB DEL INS 

Passages
1-3 

TRANS-
TRUE 

2.0% 6.1% 1.8% 

Pas-
sages1-3 

HYPO-
TRANS 

18.7% 9.6% 8.1% 

Word 
lists 

TRANS-
TRUE 

5.6% 6.2% 0.6% 

Word 
lists 

HYPO-
TRANS 

42.0%  8.9% 6.4% 

Table 5. Word error statistics on TRANS-TRUE 
and HYPO-TRANS alignments for both evaluation 
data sets. 

 
From Table 5 we can see that while for students, 
deletions occur more frequently than substitutions 
and, in particular, insertions, the ASR system, due 
to its imperfect recognition, generates mostly sub-
stitutions, in particular for the word lists where the 
word accuracy is only around 50%. 
Further, we observe that the students’ average 
reading word error rate (only taking into account 
substitutions and deletions as we did above for the 
cwpm and cw measures) lies around 8% for pas-
sages and 12% for wordlists (all measured on the 
held-out evaluation data). 

5.4 Specific examples 

Next, we look at some examples of frequent confu-
sion pairs for those 4 combinations of data sets and 
alignments. Table 6 lists the top 5 most frequent 
confusion pairs (i.e., substitutions).  
 
For passages, all of the most frequent reading er-
rors by students are morphological variants of the 
target words, whereas this is only true for some of 
the ASR errors, while other ASR errors can be far 
off the target words. For word lists, student errors 
are sometimes just orthographically related to the 
target word (e.g., “liner” instead of “linear”), and 
sometimes of different part-of-speech (e.g., 
“equally” instead of “equality”). ASR errors are 
typically related to the target word by some pho-
netic similarity (e.g., “example” instead of “sim-
ple”). 
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Finally, we look at a comparison between errors 
made by the students and the fraction of those cor-
rectly identified by the ASR system in the recogni-
tion hypotheses. Table 7 provides the statistics on 
these matched errors for text passages and word 
lists.  

 
Data 
set 

Align-
ment 

Refer-
ence 

Spoken/ 
recog-
nized 

Count 

Pas-
sages
1-3 

TRANS
-TRUE 

asks 
savings 
projects 
teacher’s 
time 

ask 
saving 
project 
teacher 
times 

6 
5 
4 
4 
4 

Pas-
sages
1-3 

HYPO-
TRANS 

storm 
lee’s 
lee’s 
observer 
thousand 

storms 
be 
we 
and 
the 

11 
6 
6 
6 
6 

Word 
lists 

TRANS
-TRUE 

nature 
over-
sleep 
equality 
linear 
ware-
housed 

Natural 
overslept 
 
equally 
liner 
ware-
house 

6 
5 
 
4 
4 
3 

Word 
lists 

HYPO-
TRANS 

plan      
see  
simple 
unoffi-
cial   
loud 

planned 
season 
example 
competi-
tion 
through-
out 

8 
6 
6 
5 
 
4 

Table 6. Top 5 most frequent confusion pairs for 
passages and word list evaluation sets in two dif-
ferent alignments. For passages, substitutions 
among closed class words such as determiners or 
prepositions are omitted. 
 
Table 7 shows that while for text passages, almost 
half of the relevant errors (substitutions and dele-
tions) were correctly identified by the recognizer, 
for word lists, this percentage is substantially 
smaller. 

 
 
 
 

6 Discussion 

The goal of this paper is to evaluate the possibility 
of creating a system for automatic oral reading as-
sessment for middle school children, based on text 
passages and word lists. 
We decided to use the common reading profi-
ciency measure of “correct words per minute” 
which enables us to align ASR word hypotheses 
with the correct texts, estimate cwpm based on this 
alignment and the reading time, and then compare 
the automatically estimated cwpm with human an-
notations of the same texts. 
 
 

Data set / error type Percentage of correctly 
identified errors 

Passages 1-3 – SUB 20.6 
Passages 1-3 – DEL 56.4 
Passages 1-3 – 
SUB+DEL 

47.7 

Word lists – SUB 2.7 
Word lists – DEL 29.4 
Word lists – 
SUB+DEL 

16.8 

Table 7. Statistics on matched errors: percentage of  
students’ reading errors (substitutions and dele-
tions) that were also correctly identified by the 
ASR system. 
 
We built a recognizer with an acoustic model 
based on CMU and OGI kids’ corpora as well as 
about 90% of our own text passages and word list 
data (Sets 1-3). For the in-context reading (text 
passages) we trained a trigram model focused 
mostly on transcriptions of the passages. For the 
out-of-context isolated word reading, we used a 
grammar language model where every possible 
word of the word lists in the training set can follow 
any other word at any time, with silence and/or 
noise between words. (While this was not our pre-
ferred choice, standard n-gram language models 
performed very poorly given the difficulty of re-
moving inter-word silences or noise automati-
cally.) 
Given how hard ASR for children’s speech is and 
given our small matched data sets, the word accu-
racy of 72% for text passages was not unreason-
able and was acceptable, particularly in a first 
development cycle. The word accuracy of only 
about 50% for word lists, however, is more prob-
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lematic and we conjecture that the two main rea-
sons for the worse performance were (a) the ab-
sence of time stamps for the location of words 
which made it sometimes hard for the recognizer to 
locate the correct segment in the signal for word 
decoding (given noises in between), and (b) the 
sometimes poor recording conditions where vol-
umes were set too high or too low, too much back-
ground or speaker noise was present etc. Further, 
the high relative number of non-native speakers in 
that data set may also have contributed to the lower 
word accuracy of the word lists. 
While the current data collection had not been 
done with speech recognition in mind, in future 
data collection efforts, we will make sure that the 
sound quality of recordings is better monitored, 
with some initial calibration, and that we store time 
stamps when words are presented on the screen to 
facilitate the recognition task and to allow the rec-
ognizer to expect one particular word at one par-
ticular point in time. 
Despite imperfect word accuracies, however, for 
both passages and word lists we found encourag-
ingly high correlations between human and auto-
matic cwpm measures (cw measures for word 
lists). Obviously, the absolute values of cwpm dif-
fer greatly as the ASR system generates many 
more errors on average than the readers, but both 
Pearson correlation as well as Spearman rank cor-
relation measures are all above 0.7. This means 
that if we would use our automatic scoring results 
to rank students’ reading proficiency, the ranking 
order would be overall quite similar to an order 
produced by human annotators. This observation 
about the rank, rather than the absolute value of 
cwpm, is important in so far as it is often the case 
that educators are interested in separating “co-
horts” of readers with similar proficiency and in 
particular to identify the lowest performing cohort 
for additional reading practice and tutoring. 
An experiment testing the ability of the system to 
place students into three reading proficiency co-
horts based on cwpm was very encouraging in that 
all 27 students of the test set were placed in the 
correct cohort by the system. 
When we compare frequent student errors with 
those made by the machine (Table 6), we see that 
often times, students just substitute slight morpho-
logical variants (e.g., “ask” for “asks”), whereas in 
the ASR system, errors are typically more complex 
than just simple substitutions of morphological 

variants. However, in the case of word lists, we do 
find substitutions with related phonological content 
in the ASR output (e.g., “example” for “simple”). 
Finally, we observed that, only for the text pas-
sages, the ASR system could correctly identify a 
substantial percentage of readers’ substitutions and 
deletions (about 48%, see Table 7). This is also 
encouraging as it is a first step towards meaningful 
feedback in a potential interactive setting. How-
ever, we here only look at recall – because of the 
much larger number of ASR substitutions, preci-
sion is much lower and therefore the risk of over-
correction (false alarms) is still quite high. 
Despite all of the current shortcomings, we feel 
that we were able to demonstrate a “proof-of-
concept” with our initial system in that we can use 
our trained ASR system to make reliable estimates 
on students’ reading proficiency as measured with 
“correct words per minute”, where correlations 
between human and machine scores are in the 
0.80-0.86 range for text passages and word lists. 
 

7 Conclusions and future work 

This paper demonstrates the feasibility of building 
an automatic scoring system for middle school stu-
dents’ reading proficiency, using a targeted trained 
speech recognition system and the widely used 
measure of “correctly read words per minute” 
(cwpm). 
The speech recognizer was trained both on external 
data (OGI and CMU kids’ corpora) and internal 
data (text passages and word lists), yielding two 
different modes for text passages (trigram language 
model) and word lists (grammar language model). 
Automatically estimated cwpm measures agreed 
closely with human cwpm measures, achieving 0.8 
and higher correlation with Pearson and 0.7 and 
higher correlation with Spearman rank correlation 
measures. 
Future work includes an improved set-up for re-
cordings such as initial calibration and on-line 
sound quality monitoring, adding time stamps to 
recordings of word lists, adding more data for 
training/adaptation of the ASR system, and explor-
ing other features (such as fluency features) and 
their potential role in cwpm prediction. 
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