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Abstract 

Computational models can be built to capture 
the syntactic structures and semantic patterns 
of human punning riddles. This model is then 
used as rules by a computer to generate its 
own puns. This paper presents T-PEG, a sys-
tem that utilizes phonetic and semantic lin-
guistic resources to automatically extract word 
relationships in puns and store the knowledge 
in template form. Given a set of training ex-
amples, it is able to extract 69.2% usable tem-
plates, resulting in computer-generated puns 
that received an average score of 2.13 as com-
pared to 2.70 for human-generated puns from 
user feedback. 

1 Introduction 

Previous works in computational humor have 
shown that by analyzing the syntax and semantics 
of how humans combine words to produce puns, 
computational models can be built to capture the 
linguistic aspects involved in this creative word-
play. The model is then used in the design of com-
puter systems that can generate puns which are 
almost at par with those of human-generated puns, 
as the case of the Joke Analysis and Production 
Engine or JAPE (Binsted et al, 1997) system. 

The computational model used by the JAPE 
(Binsted, 1996) system is in the form of schemas 
and templates with rules describing the linguistic 
structures of human puns. The use of templates in 
NLP tasks is not new. Information extraction sys-
tems (Muslea, 1999) have used templates as rules 
for extracting relevant information from large, un-
structured text. Text generation systems use tem-

plates as linguistic patterns with variables (or slots) 
that can be filled in to generate syntactically cor-
rect and coherent text for their human readers.  

One common characteristic among these NLP 
systems was that the templates were constructed 
manually. This is a tedious and time-consuming 
task. Because of this, several researches in exam-
ple-based machine translation systems, such as 
those in (Cicekli and Güvenir, 2003) and in (Go et 
al, 2007), have worked on automatically extracting 
templates from training examples. The learned 
templates are bilingual pairs of patterns with corre-
sponding words and phrases replaced with vari-
ables. Each template is a complete sentence to 
preserve the syntax and word order in the source 
text, regardless of the variance in the sentence 
structures of the source and target languages 
(Nunez et al, 2008).  

The motivation for T-PEG (Template-Based 
Pun Extractor and Generator) is to build a model of 
human-generated puns through the automatic iden-
tification, extraction and representation of the word 
relationships in a template, and then using these 
templates as patterns for the computer to generate 
its own puns. T-PEG does not maintain its own 
lexical resources, but instead relies on publicly 
available lexicons, in order to perform these tasks. 
The linguistic aspects of puns and the resources 
utilized by T-PEG are presented in Section 2. 

Sections 3 and 4 discuss the algorithms for ex-
tracting templates and generating puns, respec-
tively. The tests conducted and the analysis of the 
results on the learned templates and generated puns 
follow in Section 5, to show the limitations of T-
PEG’s approach and the level of humor in the gen-
erated puns. The paper concludes with a summary 
of what T-PEG has been able to accomplish. 
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2 Linguistic Resources  

Ritchie (2005) defines a pun as “a humorous writ-
ten or spoken text which relies crucially on pho-
netic similarity for its humorous effect”. Puns can 
be based on inexact matches between words (Bin-
sted and Ritchie, 2001), where tactics include me-
tathesis (e.g., throw stones and stow thrones) and 
substitution of a phonetically similar segment (e.g., 
glass and grass). 

In T-PEG, punning riddles are considered to be 
a class of jokes that use wordplay, specifically 
pronunciation, spelling, and possible semantic 
similarities and differences between words (Hong 
and Ong, 2008). Only puns using the question - 
answer format as shown in example (1) from (Bin-
sted, 1996) are considered. Compound words are 
also included, underlined in example (2) from 
(Webb, 1978). 

(1) What do you call a beloved mammal? 
A dear deer. 

(2) What do barbers study? Short-cuts. 
The automatic tasks of analyzing human-

generated puns in order to build a formal model of 
the word relationships present in the puns require 
the use of a number of linguistic resources. These 
same set of resources are used for later generation. 
STANDUP (Manurung et al, 2008), for example, 
uses “a database of word definitions, sounds and 
syntax to generate simple play-on-words jokes, or 
puns, on a chosen subject”. Aside from using 
WordNet (2006) as its lexical resource, STANDUP 
maintains its own lexical database of phonetic 
similarity ratings for pairs of words and phrases. 

Various works have already emphasized that 
puns can be generated by distorting a word in the 
source pun into a similar-sounding pun, e.g., 
(Ritchie, 2005 and Manurung et al, 2008). This 
notion of phonetic similarity can be extended fur-
ther by allowing puns containing words that sound 
similar to be generated, as shown in example (3), 
which was generated by T-PEG following the 
structure of (1). 

(3)  What do you call an overall absence? 
A whole hole. 

The Unisyn English Pronunciation lexicon (Fitt, 
2002) was utilized for this purpose. The dictionary 
contains about 70,000 entries with phonetic tran-
scriptions and is used by T-PEG to find the pro-
nunciation of individual words and to locate 

similar sounding words for a given word. Because 
Unisyn also provides support in checking for spell-
ing regularity, it is also used by T-PEG to check if 
a given word does exist, particularly when a com-
pound word is split into its constituent syllables 
and determining if these individual syllables are 
valid words, such as the constituents “short” and 
“cuts” for the compound word “shortcuts” in (2). 

The wordplay in punning riddles is not based on 
phonetic similarity alone, but may also involve the 
semantic links among words that make up the pun. 
These semantic relationships must also be identi-
fied and captured in the template, such that the 
generated puns are not  only syntactically well-
formed (due to the nature of templates) but also 
have consistent semantics with the source human 
pun, as shown in example (4) from (Binsted, 1996) 
and T-PEG’s counterpart in example (5). 

(4)   How is a car like an elephant? 
They both have trunks. 

(5)   How is a person like an elephant? 
They both have memory. 

Two resources are utilized for this purpose. 
WordNet (2006) is used to find the synonym of a 
given word, while ConceptNet (Liu and Singh, 
2004) is used to determine the semantic relation-
ships of words.  

ConceptNet is a large-scale common sense 
knowledge base with about 1.6 million assertions. 
It focuses on contextual common sense reasoning, 
which can be used by a computer to understand 
concepts and situating these concepts on previous 
knowledge.  
 

Relationship Types Examples 
IsA IsA headache pain 

IsA deer mammal 
PartOf PartOf window pane 

PartOf car trunk  
PropertyOf PropertyOf pancake flat 

PropertyOf ghost dead 
MadeOf MadeOf snowman snow 
CapableOf CapableOf sun burn 

CapableOf animal eat 
LocationOf LocationOf money bank 
CanDo CanDo ball bounce 
ConceptuallyRelatedTo ConceptuallyRelatedTo 

wedding bride 
forest animal 

Table 1. Some Semantic Relationships of Concept-
Net (Liu and Singh, 2004) 
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The concepts can be classified into three general 
classes – noun phrases, attributes, and activity 
phrases, and are connected by edges to form an 
ontology. Binary relationship types defined by the 
Open Mind Commonsense (OMCS) Project (Liu 
and Singh, 2004) are used to relate two concepts 
together, examples of which are shown in Table 1. 

3 Extracting Punning Templates 

The structural regularities of puns are captured in 
T-PEG with the use of templates. A template is the 
combined notion of schemas and templates in 
(Binsted, 2006), and it contains the relationship 
between the words (lexemes) in a pun as well as its 
syntactical structure. The template constrains the 
set of words that can be used to fill-in the slots dur-
ing the generation phase; it also preserves the syn-
tactical structure of the source pun, to enable the 
generated puns to follow the same syntax. 

3.1 Templates in T-Peg 

A template in T-PEG is composed of multiple 
parts. The first component is the source punning 
riddle, where variables replaced the keywords in 
the pun and also serve as slots that can be filled 
during the pun generation phase. 

Variables can be one of three types. A regular 
variable is a basic keyword in the source pun 
whose part-of-speech tag is a noun, a verb, or an 
adjective. Variables in the question-part of the pun 
are represented with Xn while Yn represent vari-
ables in the answer-part (where n denotes the lexi-
cal sequence of the word in the sentence starting at 
index 0). 

A similar-sound variable represents a word that 
has the same pronunciation as the regular variable, 
for example, deer and dear. A compound-word 
variable contains two regular or similar-sound 
variables that combine to form a word, for example 
sun and burn combine to form the word sunburn. 
A colon (:) is used to connect the variables com-
prising a compound variable, for example, X1:X2. 

Word relationships may exist among the vari-
ables in a pun. These word relationships comprise 
the second component of a template and are repre-
sented <var1> <relationship type> <var2>. 

There are four types of binary word relation-
ships captured by T-PEG. SynonymOf relation-
ships specify that two variables are synonymous 

with each other, as derived from WordNet (2006). 
Compound-word (or IsAWord) relationships spec-
ify that one variable combined with a second vari-
able should form a word. Unisyn (Fiit, 2002) is 
used to check that the individual constituents as 
well as the combined word are valid. SoundsLike 
relationships specify that two variables have the 
same pronunciation as derived from Unisyn. Se-
mantic relationships show the relationships of two 
variables derived from ConceptNet  (Liu and 
Singh, 2004), and can be any one of the relation-
ship types presented in Table 1. 

3.2 Learning Algorithm 

Template learning begins from a given corpus of 
training examples that is preprocessed by the tag-
ger and the stemmer. The tagged puns undergo 
valid word selection to identify keywords (noun, 
verb, or adjective) as candidate variables. The can-
didate variables are then paired with each other to 
identify any word relationships that may exist be-
tween them. The word relationships are determined 
by the phonetic checker, the synonym checker, and 
the semantic analyzer. Only those candidate vari-
ables with at least one word relationship with an-
other candidate variable will be retained as final 
variables in the learned template. 

Table 2 presents the template for “Which bird 
can lift the heaviest weights? The crane.” (Webb, 
1978). Keywords are underlined. All of the ex-
tracted word relationships in Table 2 were derived 
from ConceptNet. Notice that i) some word pairs 
may have one or more word relationships, for ex-
ample, “crane” and “lift”; while ii) some candidate 
keywords may not have any relationships, i.e, the 
adjective “heaviest”, thus it is not replaced with a 
variable in the resulting template. This second 
condition will be explored further in Section 5. 

 
Source 
Pun 

Which bird can lift the heaviest weights? 
The crane. 

Template  Which <X1> can <X3> the heaviest 
<X6>? The <Y1>. 

Word Re-
lationships 

X1 ConceptuallyRelatedTo X6 
X6 ConceptuallyRelatedTo X1 
Y1 IsA X1 
X6 CapableOfReceivingAction X3 
Y1 CapableOf X3 
Y1 UsedFor X3 

Table 2. Template with Semantic Relationships   
identified through ConceptNet 
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Table 3 presents another template from the pun 
“What do you call a beloved mammal? A dear 
deer.” (Binsted, 1996), with the SynonymOf 
relationship derived from WordNet, the IsA 
relationship from ConceptNet, and the SoundsLike 
relationship from Unisyn. Notice the “-0” suffix in 
variables Y1 and Y2. “<var>-0” is used to repre-
sent a word that is phonetically similar to <var>. 

 
Source 
Pun 

What do you call a beloved mammal? 
A dear deer. 

Template  What do you call a <X5> <X6>? 
A <Y1> <Y2>. 

Word Re-
lationships 

X5 SynonymOf Y1 
X5 SynonymOf Y2-0 
Y1-0 IsA X6 
Y2 IsA X6 
Y1 SoundsLike Y2 
Y1-0 SoundsLike Y1 
Y2-0 SoundsLike Y2 

Table 3. Template with Synonym Relationships and 
Sounds-Like Relationships 

 
A constituent word in a compound word (identi-

fied through the presence of a dash “-”) may also 
contain additional word relationships. Thus, in 
“What  kind of fruit fixes taps? A plum-ber.” (Bin-
sted, 1996), T-PEG learns the template shown in 
Table 4. The compound word relationship ex-
tracted is Y1 IsAWord Y2 (plum IsAWord ber). Y1 
(plum), which is a constituent of the compound 
word, has a relationship with another word in the 
pun, X3 (fruit). 
 
Source 
Pun 

What kind of fruit fixes taps?  
A plum-ber. 

Template  What kind of <X3> <X4> taps? 
A <Y1>:<Y2>. 

Word Re-
lationships 

Y1 IsA X3 
Y1 IsAWord Y2 
Y1:Y2 CapableOf X4 

Table 4. Template with Compound Word 
 
The last phase of the learning algorithm in-

volves template usability check to determine if the 
extracted template has any missing link. A tem-
plate is usable if all of the word relationships form 
a connected graph. If the graph contains unreach-
able node/s (that is, it has missing edges), the tem-
plate cannot be used in the pun generation phase 
since not all of the variables will be filled with 
possible words. 

Consider a template with four variables named 
X3, X4, Y1 and Y2. The word relationships X3-X4, 
X4-Y1 and Y1-Y2 form a connected graph as shown 
in Figure 1(a). However, if only X3-X4 and Y1-Y2 
relationships are available as shown in Figure 1(b), 
there is a missing edge such that if variable X3 has 
an initial possible word and is the starting point for 
generation, a corresponding word for variable X4 
can be derived through the X3-X4 edge, but no 
words can be derived for variables Y1 and Y2. 

 

  
(a) Connected Graph (b) Graph with Missing Edge 

Figure 1. Graphs for Word Relationships 
 

 This condition is exemplified in Table 5, where 
two disjoint subgraphs are created as a result of the 
missing “house-wall” and “wall-wal” relationships. 
Further discussion on this is found in Section 5.  

 
Source 
Pun 

What nuts can you use to build a house? 
Wal-nuts. (Binsted, 1996) 

Template  What <X1> can you use to <X6> a <X8>? 
<Y0>-<Y1>. 

Word Re-
lationships 

X8 CapableOfReceivingAction X6 
X1 SoundsLike Y1 
Y0 IsAWord Y1 
Y0:Y1 IsA X1 

Missing 
Relations 

Y0-0 PartOf X8 
Y0-0 SoundsLike Y0 

Table 5. Template with Missing Word Relationships 
where Y0-0 is the word “wall” 

4 Generating Puns from Templates 

The pun generation phase, having access to the 
library of learned templates and utilizing the same 
set of linguistic resources as the template learning 
algorithm, begins with a keyword input from the 
user. For each of the usable templates in the li-
brary, the keyword is tested on each variable with 
the same POS tag, except for SoundsLike and IsA-
Word relationships where tags are ignored. When a 
variable has a word, it is used to populate other 
variables with words that satisfy the word relation-
ships in the template. 
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T-PEG uses two approaches of populating the 
variables – forward recursion and backward recur-
sion. Forward recursion involves traversing the 
graph by moving from one node (variable in a 
template) to the next and following the edges of 
relationships. Consider the template in Table 6. 

 
Human 
Joke 

How is a window like a headache? 
They are both panes. (Binsted, 1996) 

Template  How is a <X3> like a <X6>?  
They are both <Y3>. 

Word Re-
lationships 

Y3-0 SoundsLike Y3 
X3 ConceptuallyRelatedTo Y3 
Y3 ConceptuallyRelatedTo X3 
Y3 PartOf X3 
X6 ConceptallyRelatedTo Y3-0 
X6 IsA Y3-0 
Y3-0 ConceptuallyRelatedTo X6 

Table 6. Sample Template for Pun Generation 
 
Given the keyword “garbage”, one possible se-

quence of activities to locate words and populate 
the variables in this template is as follows: 

a. “garbage” is tried on variable X6. 
b. X6 has three word relationships all of which 

are with Y3-0, so it is used to find possible 
words for Y3-0. ConceptNet returns an “IsA” 
relationship with the word “waste”. 

c. Y3-0 has only one word relationship and this 
is with Y3. Unisyn returns the phonetically 
similar word “waist”. 

d. Y3 has two possible relationships with X3, 
and ConceptNet satisfies the “PartOf” rela-
tionship with the word “trunk”. 

Since two variables may have more than one 
word relationships connecting them, relationship 
grouping is also performed. A word relationship 
group is said to be satisfied if at least one of the 
word relationships in the group is satisfied. Table 7 
shows the relationship grouping and the word rela-
tionship that was satisfied in each group for the 
template in Table 6. 
 

Word Relationship Filled Template 
X6 ConceptallyRelatedTo Y3-0 
X6 IsA Y3-0 
Y3-0 ConceptuallyRelatedTo X6 

 
garbage IsA waste 

Y3-0 SoundsLike Y3 waste SoundsLike 
waist 

X3 ConceptuallyRelatedTo Y3 
Y3 ConceptuallyRelatedTo X3 
Y3 PartOf X3  

 
 
waist PartOf trunk  

Table 7. Relationship Groups and Filled Template 

The filled template is passed to the surface real-
izer, LanguageTool (Naber, 2007), to fix gram-
matical errors, before displaying the resulting pun 
“How is a trunk like a garbage? They are both 
waists.” to the user. 

The forward recursion approach may lead to a 
situation in which a variable has been filled with 
two different sets of words. This usually occurs 
when the graph contains a cycle, as shown in Fig-
ure 2. 

 

 
Figure 2. Graph with Cycle 

 
Assume the process of populating the template 

begins at X0. The following edges and resulting set 
of possible words are retrieved in sequence: 

a. X0-X1 (Words retrieved for X1  A, B) 
b. X1-X2 (Words retrieved for X2  D, E, F) 
c. X2-X3 (Words retrieved for X3  G, H) 
d. X3-X1 (Words retrieved for X1  B, C) 
When the forward recursion algorithm reaches 

X3 in step (d), a second set of possible words for 
X1 is generated. Since the two sets of words for X1 
do not match, the algorithm gets the intersection of 
(A, B) and (B, C) and assigns this to X1 (in this 
case, the word “B” is assigned to X1). Backward 
recursion has to be performed starting from step 
(b) using the new set of words so that other vari-
ables with relationships to X1 will also be checked 
for possible changes in their values. 

5 Test Results 

Various tests were conducted to validate the com-
pleteness of the word relationships in the learned 
template, the correctness of the generation algo-
rithm, and the quality of the generated puns.  

5.1 Evaluating the Learned Templates 

The corpus used in training T-PEG contained 39 
punning riddles derived from JAPE (Binsted, 
1996) and The Crack-a-Joke Book (Webb, 1978). 
Since one template is learned from each source 
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pun, the size of the corpus is not a factor in deter-
mining the quality of the generated jokes. 

Of the 39 resulting templates, only 27 (69.2%) 
are usable. The unusable templates contain missing 
word relationships that are caused by two factors. 
Unisyn contains entries only for valid words and 
not for syllables. Thus, in (6), the relationship be-
tween “house” and “wall” is missing in the learned 
template shown in Table 5 because “wal” is not 
found in Unisyn to produce “wall”. In (7), Con-
ceptNet is unable to determine the relationship be-
tween “infantry” and “army”.  

(6)  What nuts can you use to build a house? 
Wal-nuts. (Binsted, 1996) 

(7)  What part of the army could a baby join? 
The infant-ry. (Webb, 1978) 

The generation algorithm relies heavily on the 
presence of correct word relationships. 10 of the 27 
usable templates were selected for manual evalua-
tion by a linguist to determine the completeness of 
the extracted word relationships. A template is said 
to be complete if it is able to capture the essential 
word relationships in a pun. The evaluation criteria 
are based on the number of incorrect relationships 
as identified by the linguist, and includes missing 
relationship, extra relationship, or incorrect word 
pairing. A scoring system from 1 to 5 is used, 
where 5 means there are no incorrect relationship, 
4 means there is one incorrect relationship, and so 
on. 

The learning algorithm received an average 
score of 4.0 out of 5, due to missing word relation-
ships in some of the templates. Again, these were 
caused by limitations of the resources. For exam-
ple, in (8), the linguist noted that no relationship 
between “heaviest” and “weight” (i.e., PropertyOf 
heavy weight) is included in the learned template 
presented in Table 2. 

(8)  What bird can lift the heaviest weights? 
The crane. (Webb, 1978) 

(9)  What kind of fruit fixes taps? 
The plum-ber. (Binsted, 1996) 

In (9), the linguist identified a missing relation-
ship between “tap” and “plumber”, which is not 
extracted by the template shown in Table 4. 

The linguist also noted that the constituents of a 
compound word do not always form valid words, 
such as “ber” in plum-ber of pun (9), and “wal” in 
wal-nuts of pun (6). This type of templates were 

considered to contain incorrect relationships, and 
they may cause problems during generation be-
cause similar sounding words could not be found 
for the constituent of the compound word that is 
not a valid word. 

5.2 Evaluating the Generation Algorithm 

The generation algorithm was evaluated on two 
aspects. In the first test, a keyword from each of 
the source puns was used as input to T-PEG to de-
termine if it can generate back the training corpus. 
From the 27 usable templates, 20 (74.07%) of the 
source puns were generated back. Regeneration 
failed in cases where a word in the source pun has 
multiple POS tags, as the case in (10), where “cut” 
is tagged as a noun during learning, but verb dur-
ing generation. In the learning phase, tagging is 
done at the sentence level, as opposed to a single-
word tagging in the generation phase. 

(10)  What do barbers study? Short-cuts. 
(Webb, 1978) 

Since a keyword is tried on each variable with 
the same POS tag in the template, the linguistic 
resources provided the generation algorithm with a 
large set of possible words. Consider again the pun 
in (10), using its template and given the keyword 
“farmer” as an example, the system generated 122 
possible puns, some of which are listed in Table 8. 
Notice that only a couple of these seemed plausible 
puns, i.e., #3 and #7. 

 
1. What do farmers study?  Egg - plant. 
2. What do farmers study?  Power - plant. 
3. What do farmers study?  Trans - plant. 
4. What do farmers study?  Battle - ground. 
5. What do farmers study?  Play - ground. 
6. What do farmers study?  Battle - field. 
7. What do farmers study?  Gar - field. 

Table 8. Excerpt of the Generated Puns Using 
“farmer” as Keyword 

 
In order to find out how this affects the overall 

performance of the system, the execution times in 
locating words for the different types of word rela-
tionships were measured for the set of 20 regener-
ated human puns. Table 9 shows the summary for 
the running time and the number of word relation-
ships extracted for each relationship type. 

Another test was also conducted to validate the 
previous finding. A threshold for the maximum 
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number of possible words to be generated was set 
to 50, resulting in a shorter running time as de-
picted in Table 10. A negative outcome of using a 
threshold value is that only 16 (instead of 20) hu-
man puns were regenerated. The other four cases 
failed because the threshold became restrictive and 
filtered out the words that should be generated. 

 
Relationship Type Running Time # Relationships 

Synonym 2 seconds 2 
IsAWord 875 seconds 5 
Semantic 1,699 seconds 82 

SoundsLike 979 seconds 8 
Table 9. Running Time of the Generation Algorithm 

 
Relationship Type Running Time # Relationships 

Synonym 2 seconds 2 
IsAWord 321 seconds 4 
Semantic 315 seconds 57 

SoundsLike 273 seconds 8 
Table 10. Running Time of the Generation Algorithm 

with Threshold = 50 Possible Words 

5.3 Evaluating the Generated Puns 

Common words, such as man, farmer, cow, gar-
bage, and computer, were fed to T-PEG so that the 
chances of these keywords being covered by the 
resources (specifically ConceptNet) are higher. An 
exception to this is the use of keywords with pos-
sible homonyms (i.e., whole and hole) to increase 
the possibility of generating puns with SoundsLike 
relationships. 

As previously stated, the linguistic resources 
provided the generation algorithm with various 
words that generated a large set of puns. The pro-
ponents manually went through this set, identifying 
which of the output seemed humorous, resulting in 
the subjective selection of eight puns that were 
then forwarded for user feedback. 

User feedback was gathered from 40 people to 
compare if the puns of T-PEG are as funny as their 
source human puns. 15 puns (7 pairs of human-T-
PEG puns, with the last pair containing 1 human 
and 2 T-PEG puns) were rated from a scale of 0 to 
5, with 5 being the funniest. This rating system 
was based on the joke judging process used in 
(Binsted, 1996), where 0 means it is not a joke, 1 is 
a pathetic joke, 2 is a “not-so-bad” joke, 3 means 
average, 4 is quite funny, and 5 is really funny. 

T-PEG puns received an average score of 2.13 
while the corresponding source puns received an 

average score of 2.70. Table 11 shows the scores 
of four pairs of punning riddles that were evalu-
ated, with the input keyword used in generating the 
T-PEG puns enclosed in parentheses. Pun evalua-
tion is very subjective and depends on the prior 
knowledge of the reader. Most of the users in-
volved in the survey, for example, did not under-
stand the relationship between elephant and 
memory1, accounting for its low feedback score. 

 
Training Pun T-Peg Generated Pun 

What keys are furry? 
Mon-keys.  
(Webb, 1978) 
(2.93) 

What verses are endless? 
Uni-verses. 
(Keyword: verses) 
(2.73) 

What part of a fish weighs 
the most? The scales. 
(Webb, 1978) 
(3.00) 

What part of a man 
lengthens the most? The 
shadow. 
(Keyword: man) 
(2.43) 

What do you call a lizard 
on the wall? A rep-tile. 
(Binsted, 1996) 
(2.33) 

What do you call a fire on 
the floor? A fire-wood. 
(Keyword: fire) 
(1.90) 

How is a car like an ele-
phant? They both have 
trunks. 
(Binsted, 1996) 
(2.50) 

How is a person like an 
elephant? They both have 
memory. 
(Keyword: elephant) 
(1.50) 

Table 11. Sample Puns and User Feedback Scores 
 

Although the generated puns of T-PEG did not 
receive scores that are as high as the puns in the 
training corpus, with an average difference rating 
of 0.57, this work is able to show that the available 
linguistic resources can be used to train computers 
to extract word relationships in human puns and to 
use these learned templates to automatically gener-
ate their own puns. 

6 Conclusions 

Puns have syntactic structures and semantic pat-
terns that can be analyzed and represented in com-
putational models. T-PEG has shown that these 
computational models or templates can be auto-
matically extracted from training examples of hu-
man puns with the use of available linguistic 
resources. The word relationships extracted are 

                                                             
1 Elephant characters in children’s stories are usually por-
trayed to have good memories, with the common phrase “An 
elephant never forgets.” 
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synonyms, is-a-word, sounds-like, and semantic 
relationships. User feedback further showed that 
the resulting puns are of a standard comparable to 
their source puns. 

A template is learned for each new joke fed to 
the T-PEG system. However, the quantity of the 
learned templates does not necessarily improve the 
quality of the generated puns. Future work for T-
PEG involves exploring template refinement or 
merging, where a newly learned template may up-
date previously learned templates to improve their 
quality.  

T-PEG is also heavily reliant on the presence of 
word relationships from linguistic resources. This 
limitation can be addressed by adding some form 
of manual intervention to address the missing word 
relationships caused by limitations of the external 
resources, thereby increasing the number of usable 
templates. A different tagger that returns multiple 
tags may also be explored to consider all possible 
tags in both the learning and the generation phases. 

The manual process employed by the propo-
nents in identifying which of the generated puns 
are indeed humorous is very time-consuming and 
subjective. Automatic humor recognition, similar 
to the works of Mihalcea and Pulman (2007), may 
be considered for future work. 

The template-learning algorithm of T-PEG can 
be applied in other NLP systems where the extrac-
tion of word relationships can be explored further 
as a means of teaching vocabulary and related con-
cepts to young readers. 
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