
Proceedings of the NAACL HLT Workshop on Computational Approaches to Linguistic Creativity, pages 24–31,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Automatically Extracting Word Relationships
as Templates for Pun Generation

Bryan Anthony Hong and Ethel Ong
College of Computer Studies

De La Salle University
Manila, 1004 Philippines

bashx5@yahoo.com, ethel.ong@delasalle.ph

Abstract

Computational models can be built to capture
the syntactic structures and semantic patterns
of human punning riddles. This model is then
used as rules by a computer to generate its
own puns. This paper presents T-PEG, a sys-
tem that utilizes phonetic and semantic lin-
guistic resources to automatically extract word
relationships in puns and store the knowledge
in template form. Given a set of training ex-
amples, it is able to extract 69.2% usable tem-
plates, resulting in computer-generated puns
that received an average score of 2.13 as com-
pared to 2.70 for human-generated puns from
user feedback.

1 Introduction

Previous works in computational humor have
shown that by analyzing the syntax and semantics
of how humans combine words to produce puns,
computational models can be built to capture the
linguistic aspects involved in this creative word-
play. The model is then used in the design of com-
puter systems that can generate puns which are
almost at par with those of human-generated puns,
as the case of the Joke Analysis and Production
Engine or JAPE (Binsted et al, 1997) system.

The computational model used by the JAPE
(Binsted, 1996) system is in the form of schemas
and templates with rules describing the linguistic
structures of human puns. The use of templates in
NLP tasks is not new. Information extraction sys-
tems (Muslea, 1999) have used templates as rules
for extracting relevant information from large, un-
structured text. Text generation systems use tem-

plates as linguistic patterns with variables (or slots)
that can be filled in to generate syntactically cor-
rect and coherent text for their human readers.

One common characteristic among these NLP
systems was that the templates were constructed
manually. This is a tedious and time-consuming
task. Because of this, several researches in exam-
ple-based machine translation systems, such as
those in (Cicekli and Güvenir, 2003) and in (Go et
al, 2007), have worked on automatically extracting
templates from training examples. The learned
templates are bilingual pairs of patterns with corre-
sponding words and phrases replaced with vari-
ables. Each template is a complete sentence to
preserve the syntax and word order in the source
text, regardless of the variance in the sentence
structures of the source and target languages
(Nunez et al, 2008).

The motivation for T-PEG (Template-Based
Pun Extractor and Generator) is to build a model of
human-generated puns through the automatic iden-
tification, extraction and representation of the word
relationships in a template, and then using these
templates as patterns for the computer to generate
its own puns. T-PEG does not maintain its own
lexical resources, but instead relies on publicly
available lexicons, in order to perform these tasks.
The linguistic aspects of puns and the resources
utilized by T-PEG are presented in Section 2.

Sections 3 and 4 discuss the algorithms for ex-
tracting templates and generating puns, respec-
tively. The tests conducted and the analysis of the
results on the learned templates and generated puns
follow in Section 5, to show the limitations of T-
PEG’s approach and the level of humor in the gen-
erated puns. The paper concludes with a summary
of what T-PEG has been able to accomplish.

24

2 Linguistic Resources

Ritchie (2005) defines a pun as “a humorous writ-
ten or spoken text which relies crucially on pho-
netic similarity for its humorous effect”. Puns can
be based on inexact matches between words (Bin-
sted and Ritchie, 2001), where tactics include me-
tathesis (e.g., throw stones and stow thrones) and
substitution of a phonetically similar segment (e.g.,
glass and grass).

In T-PEG, punning riddles are considered to be
a class of jokes that use wordplay, specifically
pronunciation, spelling, and possible semantic
similarities and differences between words (Hong
and Ong, 2008). Only puns using the question -
answer format as shown in example (1) from (Bin-
sted, 1996) are considered. Compound words are
also included, underlined in example (2) from
(Webb, 1978).

(1) What do you call a beloved mammal?
A dear deer.

(2) What do barbers study? Short-cuts.
The automatic tasks of analyzing human-

generated puns in order to build a formal model of
the word relationships present in the puns require
the use of a number of linguistic resources. These
same set of resources are used for later generation.
STANDUP (Manurung et al, 2008), for example,
uses “a database of word definitions, sounds and
syntax to generate simple play-on-words jokes, or
puns, on a chosen subject”. Aside from using
WordNet (2006) as its lexical resource, STANDUP
maintains its own lexical database of phonetic
similarity ratings for pairs of words and phrases.

Various works have already emphasized that
puns can be generated by distorting a word in the
source pun into a similar-sounding pun, e.g.,
(Ritchie, 2005 and Manurung et al, 2008). This
notion of phonetic similarity can be extended fur-
ther by allowing puns containing words that sound
similar to be generated, as shown in example (3),
which was generated by T-PEG following the
structure of (1).

(3) What do you call an overall absence?
A whole hole.

The Unisyn English Pronunciation lexicon (Fitt,
2002) was utilized for this purpose. The dictionary
contains about 70,000 entries with phonetic tran-
scriptions and is used by T-PEG to find the pro-
nunciation of individual words and to locate

similar sounding words for a given word. Because
Unisyn also provides support in checking for spell-
ing regularity, it is also used by T-PEG to check if
a given word does exist, particularly when a com-
pound word is split into its constituent syllables
and determining if these individual syllables are
valid words, such as the constituents “short” and
“cuts” for the compound word “shortcuts” in (2).

The wordplay in punning riddles is not based on
phonetic similarity alone, but may also involve the
semantic links among words that make up the pun.
These semantic relationships must also be identi-
fied and captured in the template, such that the
generated puns are not only syntactically well-
formed (due to the nature of templates) but also
have consistent semantics with the source human
pun, as shown in example (4) from (Binsted, 1996)
and T-PEG’s counterpart in example (5).

(4) How is a car like an elephant?
They both have trunks.

(5) How is a person like an elephant?
They both have memory.

Two resources are utilized for this purpose.
WordNet (2006) is used to find the synonym of a
given word, while ConceptNet (Liu and Singh,
2004) is used to determine the semantic relation-
ships of words.

ConceptNet is a large-scale common sense
knowledge base with about 1.6 million assertions.
It focuses on contextual common sense reasoning,
which can be used by a computer to understand
concepts and situating these concepts on previous
knowledge.

Relationship Types Examples
IsA IsA headache pain

IsA deer mammal
PartOf PartOf window pane

PartOf car trunk
PropertyOf PropertyOf pancake flat

PropertyOf ghost dead
MadeOf MadeOf snowman snow
CapableOf CapableOf sun burn

CapableOf animal eat
LocationOf LocationOf money bank
CanDo CanDo ball bounce
ConceptuallyRelatedTo ConceptuallyRelatedTo

wedding bride
forest animal

Table 1. Some Semantic Relationships of Concept-
Net (Liu and Singh, 2004)

25

The concepts can be classified into three general
classes – noun phrases, attributes, and activity
phrases, and are connected by edges to form an
ontology. Binary relationship types defined by the
Open Mind Commonsense (OMCS) Project (Liu
and Singh, 2004) are used to relate two concepts
together, examples of which are shown in Table 1.

3 Extracting Punning Templates

The structural regularities of puns are captured in
T-PEG with the use of templates. A template is the
combined notion of schemas and templates in
(Binsted, 2006), and it contains the relationship
between the words (lexemes) in a pun as well as its
syntactical structure. The template constrains the
set of words that can be used to fill-in the slots dur-
ing the generation phase; it also preserves the syn-
tactical structure of the source pun, to enable the
generated puns to follow the same syntax.

3.1 Templates in T-Peg

A template in T-PEG is composed of multiple
parts. The first component is the source punning
riddle, where variables replaced the keywords in
the pun and also serve as slots that can be filled
during the pun generation phase.

Variables can be one of three types. A regular
variable is a basic keyword in the source pun
whose part-of-speech tag is a noun, a verb, or an
adjective. Variables in the question-part of the pun
are represented with Xn while Yn represent vari-
ables in the answer-part (where n denotes the lexi-
cal sequence of the word in the sentence starting at
index 0).

A similar-sound variable represents a word that
has the same pronunciation as the regular variable,
for example, deer and dear. A compound-word
variable contains two regular or similar-sound
variables that combine to form a word, for example
sun and burn combine to form the word sunburn.
A colon (:) is used to connect the variables com-
prising a compound variable, for example, X1:X2.

Word relationships may exist among the vari-
ables in a pun. These word relationships comprise
the second component of a template and are repre-
sented <var1> <relationship type> <var2>.

There are four types of binary word relation-
ships captured by T-PEG. SynonymOf relation-
ships specify that two variables are synonymous

with each other, as derived from WordNet (2006).
Compound-word (or IsAWord) relationships spec-
ify that one variable combined with a second vari-
able should form a word. Unisyn (Fiit, 2002) is
used to check that the individual constituents as
well as the combined word are valid. SoundsLike
relationships specify that two variables have the
same pronunciation as derived from Unisyn. Se-
mantic relationships show the relationships of two
variables derived from ConceptNet (Liu and
Singh, 2004), and can be any one of the relation-
ship types presented in Table 1.

3.2 Learning Algorithm

Template learning begins from a given corpus of
training examples that is preprocessed by the tag-
ger and the stemmer. The tagged puns undergo
valid word selection to identify keywords (noun,
verb, or adjective) as candidate variables. The can-
didate variables are then paired with each other to
identify any word relationships that may exist be-
tween them. The word relationships are determined
by the phonetic checker, the synonym checker, and
the semantic analyzer. Only those candidate vari-
ables with at least one word relationship with an-
other candidate variable will be retained as final
variables in the learned template.

Table 2 presents the template for “Which bird
can lift the heaviest weights? The crane.” (Webb,
1978). Keywords are underlined. All of the ex-
tracted word relationships in Table 2 were derived
from ConceptNet. Notice that i) some word pairs
may have one or more word relationships, for ex-
ample, “crane” and “lift”; while ii) some candidate
keywords may not have any relationships, i.e, the
adjective “heaviest”, thus it is not replaced with a
variable in the resulting template. This second
condition will be explored further in Section 5.

Source
Pun

Which bird can lift the heaviest weights?
The crane.

Template Which <X1> can <X3> the heaviest
<X6>? The <Y1>.

Word Re-
lationships

X1 ConceptuallyRelatedTo X6
X6 ConceptuallyRelatedTo X1
Y1 IsA X1
X6 CapableOfReceivingAction X3
Y1 CapableOf X3
Y1 UsedFor X3

Table 2. Template with Semantic Relationships
identified through ConceptNet

26

Table 3 presents another template from the pun
“What do you call a beloved mammal? A dear
deer.” (Binsted, 1996), with the SynonymOf
relationship derived from WordNet, the IsA
relationship from ConceptNet, and the SoundsLike
relationship from Unisyn. Notice the “-0” suffix in
variables Y1 and Y2. “<var>-0” is used to repre-
sent a word that is phonetically similar to <var>.

Source
Pun

What do you call a beloved mammal?
A dear deer.

Template What do you call a <X5> <X6>?
A <Y1> <Y2>.

Word Re-
lationships

X5 SynonymOf Y1
X5 SynonymOf Y2-0
Y1-0 IsA X6
Y2 IsA X6
Y1 SoundsLike Y2
Y1-0 SoundsLike Y1
Y2-0 SoundsLike Y2

Table 3. Template with Synonym Relationships and
Sounds-Like Relationships

A constituent word in a compound word (identi-

fied through the presence of a dash “-”) may also
contain additional word relationships. Thus, in
“What kind of fruit fixes taps? A plum-ber.” (Bin-
sted, 1996), T-PEG learns the template shown in
Table 4. The compound word relationship ex-
tracted is Y1 IsAWord Y2 (plum IsAWord ber). Y1
(plum), which is a constituent of the compound
word, has a relationship with another word in the
pun, X3 (fruit).

Source
Pun

What kind of fruit fixes taps?
A plum-ber.

Template What kind of <X3> <X4> taps?
A <Y1>:<Y2>.

Word Re-
lationships

Y1 IsA X3
Y1 IsAWord Y2
Y1:Y2 CapableOf X4

Table 4. Template with Compound Word

The last phase of the learning algorithm in-

volves template usability check to determine if the
extracted template has any missing link. A tem-
plate is usable if all of the word relationships form
a connected graph. If the graph contains unreach-
able node/s (that is, it has missing edges), the tem-
plate cannot be used in the pun generation phase
since not all of the variables will be filled with
possible words.

Consider a template with four variables named
X3, X4, Y1 and Y2. The word relationships X3-X4,
X4-Y1 and Y1-Y2 form a connected graph as shown
in Figure 1(a). However, if only X3-X4 and Y1-Y2
relationships are available as shown in Figure 1(b),
there is a missing edge such that if variable X3 has
an initial possible word and is the starting point for
generation, a corresponding word for variable X4
can be derived through the X3-X4 edge, but no
words can be derived for variables Y1 and Y2.

(a) Connected Graph (b) Graph with Missing Edge

Figure 1. Graphs for Word Relationships

 This condition is exemplified in Table 5, where
two disjoint subgraphs are created as a result of the
missing “house-wall” and “wall-wal” relationships.
Further discussion on this is found in Section 5.

Source
Pun

What nuts can you use to build a house?
Wal-nuts. (Binsted, 1996)

Template What <X1> can you use to <X6> a <X8>?
<Y0>-<Y1>.

Word Re-
lationships

X8 CapableOfReceivingAction X6
X1 SoundsLike Y1
Y0 IsAWord Y1
Y0:Y1 IsA X1

Missing
Relations

Y0-0 PartOf X8
Y0-0 SoundsLike Y0

Table 5. Template with Missing Word Relationships
where Y0-0 is the word “wall”

4 Generating Puns from Templates

The pun generation phase, having access to the
library of learned templates and utilizing the same
set of linguistic resources as the template learning
algorithm, begins with a keyword input from the
user. For each of the usable templates in the li-
brary, the keyword is tested on each variable with
the same POS tag, except for SoundsLike and IsA-
Word relationships where tags are ignored. When a
variable has a word, it is used to populate other
variables with words that satisfy the word relation-
ships in the template.

27

T-PEG uses two approaches of populating the
variables – forward recursion and backward recur-
sion. Forward recursion involves traversing the
graph by moving from one node (variable in a
template) to the next and following the edges of
relationships. Consider the template in Table 6.

Human
Joke

How is a window like a headache?
They are both panes. (Binsted, 1996)

Template How is a <X3> like a <X6>?
They are both <Y3>.

Word Re-
lationships

Y3-0 SoundsLike Y3
X3 ConceptuallyRelatedTo Y3
Y3 ConceptuallyRelatedTo X3
Y3 PartOf X3
X6 ConceptallyRelatedTo Y3-0
X6 IsA Y3-0
Y3-0 ConceptuallyRelatedTo X6

Table 6. Sample Template for Pun Generation

Given the keyword “garbage”, one possible se-

quence of activities to locate words and populate
the variables in this template is as follows:

a. “garbage” is tried on variable X6.
b. X6 has three word relationships all of which

are with Y3-0, so it is used to find possible
words for Y3-0. ConceptNet returns an “IsA”
relationship with the word “waste”.

c. Y3-0 has only one word relationship and this
is with Y3. Unisyn returns the phonetically
similar word “waist”.

d. Y3 has two possible relationships with X3,
and ConceptNet satisfies the “PartOf” rela-
tionship with the word “trunk”.

Since two variables may have more than one
word relationships connecting them, relationship
grouping is also performed. A word relationship
group is said to be satisfied if at least one of the
word relationships in the group is satisfied. Table 7
shows the relationship grouping and the word rela-
tionship that was satisfied in each group for the
template in Table 6.

Word Relationship Filled Template
X6 ConceptallyRelatedTo Y3-0
X6 IsA Y3-0
Y3-0 ConceptuallyRelatedTo X6

garbage IsA waste

Y3-0 SoundsLike Y3 waste SoundsLike
waist

X3 ConceptuallyRelatedTo Y3
Y3 ConceptuallyRelatedTo X3
Y3 PartOf X3

waist PartOf trunk

Table 7. Relationship Groups and Filled Template

The filled template is passed to the surface real-
izer, LanguageTool (Naber, 2007), to fix gram-
matical errors, before displaying the resulting pun
“How is a trunk like a garbage? They are both
waists.” to the user.

The forward recursion approach may lead to a
situation in which a variable has been filled with
two different sets of words. This usually occurs
when the graph contains a cycle, as shown in Fig-
ure 2.

Figure 2. Graph with Cycle

Assume the process of populating the template

begins at X0. The following edges and resulting set
of possible words are retrieved in sequence:

a. X0-X1 (Words retrieved for X1  A, B)
b. X1-X2 (Words retrieved for X2  D, E, F)
c. X2-X3 (Words retrieved for X3  G, H)
d. X3-X1 (Words retrieved for X1  B, C)
When the forward recursion algorithm reaches

X3 in step (d), a second set of possible words for
X1 is generated. Since the two sets of words for X1
do not match, the algorithm gets the intersection of
(A, B) and (B, C) and assigns this to X1 (in this
case, the word “B” is assigned to X1). Backward
recursion has to be performed starting from step
(b) using the new set of words so that other vari-
ables with relationships to X1 will also be checked
for possible changes in their values.

5 Test Results

Various tests were conducted to validate the com-
pleteness of the word relationships in the learned
template, the correctness of the generation algo-
rithm, and the quality of the generated puns.

5.1 Evaluating the Learned Templates

The corpus used in training T-PEG contained 39
punning riddles derived from JAPE (Binsted,
1996) and The Crack-a-Joke Book (Webb, 1978).
Since one template is learned from each source

28

pun, the size of the corpus is not a factor in deter-
mining the quality of the generated jokes.

Of the 39 resulting templates, only 27 (69.2%)
are usable. The unusable templates contain missing
word relationships that are caused by two factors.
Unisyn contains entries only for valid words and
not for syllables. Thus, in (6), the relationship be-
tween “house” and “wall” is missing in the learned
template shown in Table 5 because “wal” is not
found in Unisyn to produce “wall”. In (7), Con-
ceptNet is unable to determine the relationship be-
tween “infantry” and “army”.

(6) What nuts can you use to build a house?
Wal-nuts. (Binsted, 1996)

(7) What part of the army could a baby join?
The infant-ry. (Webb, 1978)

The generation algorithm relies heavily on the
presence of correct word relationships. 10 of the 27
usable templates were selected for manual evalua-
tion by a linguist to determine the completeness of
the extracted word relationships. A template is said
to be complete if it is able to capture the essential
word relationships in a pun. The evaluation criteria
are based on the number of incorrect relationships
as identified by the linguist, and includes missing
relationship, extra relationship, or incorrect word
pairing. A scoring system from 1 to 5 is used,
where 5 means there are no incorrect relationship,
4 means there is one incorrect relationship, and so
on.

The learning algorithm received an average
score of 4.0 out of 5, due to missing word relation-
ships in some of the templates. Again, these were
caused by limitations of the resources. For exam-
ple, in (8), the linguist noted that no relationship
between “heaviest” and “weight” (i.e., PropertyOf
heavy weight) is included in the learned template
presented in Table 2.

(8) What bird can lift the heaviest weights?
The crane. (Webb, 1978)

(9) What kind of fruit fixes taps?
The plum-ber. (Binsted, 1996)

In (9), the linguist identified a missing relation-
ship between “tap” and “plumber”, which is not
extracted by the template shown in Table 4.

The linguist also noted that the constituents of a
compound word do not always form valid words,
such as “ber” in plum-ber of pun (9), and “wal” in
wal-nuts of pun (6). This type of templates were

considered to contain incorrect relationships, and
they may cause problems during generation be-
cause similar sounding words could not be found
for the constituent of the compound word that is
not a valid word.

5.2 Evaluating the Generation Algorithm

The generation algorithm was evaluated on two
aspects. In the first test, a keyword from each of
the source puns was used as input to T-PEG to de-
termine if it can generate back the training corpus.
From the 27 usable templates, 20 (74.07%) of the
source puns were generated back. Regeneration
failed in cases where a word in the source pun has
multiple POS tags, as the case in (10), where “cut”
is tagged as a noun during learning, but verb dur-
ing generation. In the learning phase, tagging is
done at the sentence level, as opposed to a single-
word tagging in the generation phase.

(10) What do barbers study? Short-cuts.
(Webb, 1978)

Since a keyword is tried on each variable with
the same POS tag in the template, the linguistic
resources provided the generation algorithm with a
large set of possible words. Consider again the pun
in (10), using its template and given the keyword
“farmer” as an example, the system generated 122
possible puns, some of which are listed in Table 8.
Notice that only a couple of these seemed plausible
puns, i.e., #3 and #7.

1. What do farmers study? Egg - plant.
2. What do farmers study? Power - plant.
3. What do farmers study? Trans - plant.
4. What do farmers study? Battle - ground.
5. What do farmers study? Play - ground.
6. What do farmers study? Battle - field.
7. What do farmers study? Gar - field.

Table 8. Excerpt of the Generated Puns Using
“farmer” as Keyword

In order to find out how this affects the overall

performance of the system, the execution times in
locating words for the different types of word rela-
tionships were measured for the set of 20 regener-
ated human puns. Table 9 shows the summary for
the running time and the number of word relation-
ships extracted for each relationship type.

Another test was also conducted to validate the
previous finding. A threshold for the maximum

29

number of possible words to be generated was set
to 50, resulting in a shorter running time as de-
picted in Table 10. A negative outcome of using a
threshold value is that only 16 (instead of 20) hu-
man puns were regenerated. The other four cases
failed because the threshold became restrictive and
filtered out the words that should be generated.

Relationship Type Running Time # Relationships

Synonym 2 seconds 2
IsAWord 875 seconds 5
Semantic 1,699 seconds 82

SoundsLike 979 seconds 8
Table 9. Running Time of the Generation Algorithm

Relationship Type Running Time # Relationships

Synonym 2 seconds 2
IsAWord 321 seconds 4
Semantic 315 seconds 57

SoundsLike 273 seconds 8
Table 10. Running Time of the Generation Algorithm

with Threshold = 50 Possible Words

5.3 Evaluating the Generated Puns

Common words, such as man, farmer, cow, gar-
bage, and computer, were fed to T-PEG so that the
chances of these keywords being covered by the
resources (specifically ConceptNet) are higher. An
exception to this is the use of keywords with pos-
sible homonyms (i.e., whole and hole) to increase
the possibility of generating puns with SoundsLike
relationships.

As previously stated, the linguistic resources
provided the generation algorithm with various
words that generated a large set of puns. The pro-
ponents manually went through this set, identifying
which of the output seemed humorous, resulting in
the subjective selection of eight puns that were
then forwarded for user feedback.

User feedback was gathered from 40 people to
compare if the puns of T-PEG are as funny as their
source human puns. 15 puns (7 pairs of human-T-
PEG puns, with the last pair containing 1 human
and 2 T-PEG puns) were rated from a scale of 0 to
5, with 5 being the funniest. This rating system
was based on the joke judging process used in
(Binsted, 1996), where 0 means it is not a joke, 1 is
a pathetic joke, 2 is a “not-so-bad” joke, 3 means
average, 4 is quite funny, and 5 is really funny.

T-PEG puns received an average score of 2.13
while the corresponding source puns received an

average score of 2.70. Table 11 shows the scores
of four pairs of punning riddles that were evalu-
ated, with the input keyword used in generating the
T-PEG puns enclosed in parentheses. Pun evalua-
tion is very subjective and depends on the prior
knowledge of the reader. Most of the users in-
volved in the survey, for example, did not under-
stand the relationship between elephant and
memory1, accounting for its low feedback score.

Training Pun T-Peg Generated Pun

What keys are furry?
Mon-keys.
(Webb, 1978)
(2.93)

What verses are endless?
Uni-verses.
(Keyword: verses)
(2.73)

What part of a fish weighs
the most? The scales.
(Webb, 1978)
(3.00)

What part of a man
lengthens the most? The
shadow.
(Keyword: man)
(2.43)

What do you call a lizard
on the wall? A rep-tile.
(Binsted, 1996)
(2.33)

What do you call a fire on
the floor? A fire-wood.
(Keyword: fire)
(1.90)

How is a car like an ele-
phant? They both have
trunks.
(Binsted, 1996)
(2.50)

How is a person like an
elephant? They both have
memory.
(Keyword: elephant)
(1.50)

Table 11. Sample Puns and User Feedback Scores

Although the generated puns of T-PEG did not
receive scores that are as high as the puns in the
training corpus, with an average difference rating
of 0.57, this work is able to show that the available
linguistic resources can be used to train computers
to extract word relationships in human puns and to
use these learned templates to automatically gener-
ate their own puns.

6 Conclusions

Puns have syntactic structures and semantic pat-
terns that can be analyzed and represented in com-
putational models. T-PEG has shown that these
computational models or templates can be auto-
matically extracted from training examples of hu-
man puns with the use of available linguistic
resources. The word relationships extracted are

1 Elephant characters in children’s stories are usually por-
trayed to have good memories, with the common phrase “An
elephant never forgets.”

30

synonyms, is-a-word, sounds-like, and semantic
relationships. User feedback further showed that
the resulting puns are of a standard comparable to
their source puns.

A template is learned for each new joke fed to
the T-PEG system. However, the quantity of the
learned templates does not necessarily improve the
quality of the generated puns. Future work for T-
PEG involves exploring template refinement or
merging, where a newly learned template may up-
date previously learned templates to improve their
quality.

T-PEG is also heavily reliant on the presence of
word relationships from linguistic resources. This
limitation can be addressed by adding some form
of manual intervention to address the missing word
relationships caused by limitations of the external
resources, thereby increasing the number of usable
templates. A different tagger that returns multiple
tags may also be explored to consider all possible
tags in both the learning and the generation phases.

The manual process employed by the propo-
nents in identifying which of the generated puns
are indeed humorous is very time-consuming and
subjective. Automatic humor recognition, similar
to the works of Mihalcea and Pulman (2007), may
be considered for future work.

The template-learning algorithm of T-PEG can
be applied in other NLP systems where the extrac-
tion of word relationships can be explored further
as a means of teaching vocabulary and related con-
cepts to young readers.

References
Kim Binsted. 1996. Machine Humour: An Implemented

Model of Puns. PhD Thesis, University of Edinburgh,
Scotland.

Kim Binsted, Anton Nijholt, Oliviero Stock, and Carlo
Strapparava. 2006. Computational Humor. IEEE In-
telligent Systems, 21(2):59-69.

Kim Binsted and Graeme Ritchie. 1997. Computational
Rules for Punning Riddles. HUMOR, the Interna-
tional Journal of Humor Research, 10(1):25-76.

Kim Binsted, Helen Pain, and Graeme Ritchie. 1997.
Children's Evaluation of Computer-Generated Puns.
Pragmatics and Cognition, 5(2):309-358.

Iyas Cicekli, and H. Atay Güvenir. 2003. Learning
Translation Templates from Bilingual Translation
Examples. Recent Advances in Example-Based Ma-
chine Translation, pp. 255-286, Kluwer Publishers.

Susan Fitt 2002, Unisyn Lexicon Release. Available:
http://www.cstr.ed.ac.uk/projects/unisyn/.

Kathleen Go, Manimin Morga, Vince Andrew Nunez,
Francis Veto, and Ethel Ong. 2007. Extracting and
Using Translation Templates in an Example-Based
Machine Translation System. Journal of Research in
Science, Computing, and Engineering, 4(3):17-29.

Bryan Anthony Hong and Ethel Ong. 2008. Generating
Punning Riddles from Examples. Proceedings of the
Second International Symposium on Universal Com-
munication, 347-352, Osaka, Japan.

Hugo Liu, and Push Singh, 2004. ConceptNet — A
Practical Commonsense Reasoning Tool-Kit. BT
Technology Journal, 22(4):211-226, Springer Neth-
erlands.

Ruli Manurung, Graeme Ritchie, Helen Pain, and An-
nalu Waller. 2008. Adding Phonetic Similarity Data
to a Lexical Database. Applied Artificial Intelligence,
Kluwer Academic Publishers, Netherlands.

Rada Mihalcea and Stephen Pulman. 2007. Characteriz-
ing Humour: An Exploration of Features in Humor-
ous Texts. Computational Linguistics and Intelligent
Text Processing, Lecture Notes in Computer Science,
Vol. 4394, 337-347, Springer Berlin.

Ion Muslea. 1999. Extraction Patterns for Information
Extraction Tasks: A Survey. Proceedings AAAI-99
Workshop on Machine Learning for Information Ex-
traction, American Association for Artificial In-
telligence.

Daniel Naber. 2003. A Rule-Based Style and Grammar
Checker.

Vince Andrew Nunez, Bryan Anthony Hong, and Ethel
Ong. 2008. Automatically Extracting Templates from
Examples for NLP Tasks. Proceedings of the 22nd
Pacific Asia Conference on Language, Information
and Computation, 452-459, Cebu, Philippines.

Graeme Ritchie. 2005. Computational Mechanisms for
Pun Generation. Proceedings of the 10th European
Natural Language Generation Workshop, 125-132.
Aberdeen.

Graeme Ritchie, Ruli Manurung, Helen Pain, Annalu
Waller, and D. O’Mara. 2006. The STANDUP Inter-
active Riddle Builder. IEEE Intelligent Systems
21(2):67-69.

K. Webb, The Crack-a-Joke Book, Puffin Books, Lon-
don, England, 1978.

WordNet: A Lexical Database for the English Lan-
guage. Princeton University, New Jersey, 2006.

31

