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Abstract

Psycholinguistic studies of metaphor process-
ing must control their stimuli not just for
word frequency but also for the frequency
with which a term is used metaphorically.
Thus, we consider the task of metaphor fre-
quency estimation, which predicts how often
target words will be used metaphorically. We
develop metaphor classifiers which represent
metaphorical domains through Latent Dirich-
let Allocation, and apply these classifiers to
the target words, aggregating their decisions to
estimate the metaphorical frequencies. Train-
ing on only 400 sentences, our models are able
to achieve 61.3% accuracy on metaphor clas-
sification and 77.8% accuracy on HIGH vs.
LOW metaphorical frequency estimation.

1 Introduction

Psycholinguistic studies of metaphor try to under-
stand metaphorical language comprehension by pre-
senting subjects with linguistic stimuli and observ-
ing their responses. Recent work has observed such
responses at the electrophysiological level, measur-
ing brain electrical activity as the stimuli are read
(Coulson and Petten, 2002; Tartter et al., 2002; Iaki-
mova et al., 2005; Arzouan et al., 2007; Lai et al.,
2007). All these studies have attempted to make
comparisons across different types of stimuli (e.g.
literal vs. metaphorical) by holding the frequen-
cies of the target words constant across experimental
conditions. For example, Tartter et al. (2002) com-
pared the metaphorical and literal sentences his face
was contorted by an angry cloud and his face was

contorted by an angry frown, where the two sen-
tences end in different words, but where the final
words cloud and frown had similar word frequen-
cies. As another example, Lai et al. (2007) com-
pared the metaphorical and literal sentences Their
theories have collapsed and The old building has
collapsed, where the two sentences end in exactly
the same words, so the target word frequencies
across conditions were perfectly matched. In both
designs, controlling for word frequency allowed the
researchers to attribute the differences in experimen-
tal conditions to interesting factors, like figurativity,
rather than simple word frequency.

However, word frequency is not the only type of
frequency relevant to such experiments. In particu-
lar, metaphorical frequency, that is, how inherently
metaphorical one word is as compared to another,
may also play an important role in explaining the
psycholinguistic results. For example, if collapsed
is usually used literally, a greater processing effort
may be observed when a metaphorical instance of
collapsed is presented. Likewise, if collapsed is
usually used metaphorically, greater effort may be
observed when a literal instance is presented. Psy-
cholinguistic studies of metaphor have not, to date,
controlled for such metaphorical frequency because
there were no corpora or algorithms which could
provide the needed metaphorical frequencies.

The present study aims to address this deficiency
by producing models which can automatically esti-
mate how often a word is used metaphorically. We
build these models using only 50 examples each of
a small number of target words (< 10), rather than
requiring 50 or more examples of every target word
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(100+) in the stimuli, as would be required by stan-
dard corpus linguistics methods. Our approach is
also novel in that it combines metaphor classifica-
tion with statistical topic models. Topic models are
intuitively promising for our task because they pro-
duce topics that seem to translate well to the theory
of conceptual domains, which suggests that, for ex-
ample, conceptual domains such as THEORIES and
BUILDINGS are used to understand Their theories
have collapsed. These topic models also show some
promise for distinguishing conventional metaphors
from novel metaphors.

2 Prior Work

Two types of prior research inform our current
study: corpus analyses investigating metaphor fre-
quency by hand, and machine learning models that
classify text as either literal or metaphorical. The
latter could be used to estimate metaphor frequen-
cies by applying the classifier to a corpus and aggre-
gating the classifications.

2.1 Metaphor Frequency

Researchers have manually estimated several differ-
ent kinds of metaphor frequency. Pollio et al. (1990)
looked at overall metaphorical frequency, perform-
ing an exhaustive analysis of a variety of texts, and
concluding that there were about five metaphors for
every 100 words of text. Martin (1994) looked at
the frequency of different types of metaphor, us-
ing a sample of 600 sentences from the Wall Street
Journal (WSJ), and concluded among other things
that the most frequent type of WSJ metaphor was
VALUE is LOCATION, e.g. Spain Fund tumbled
23%. Martin (2006) looked at conditional probabil-
ities of metaphor, for example noting that in 2400
WSJ sentences, the probability of seeing an instance
of a metaphor was greatly increased after a first in-
stance had already been observed. However, none of
these studies provided the metaphorical frequencies
of individual words needed for our research.

Sardinha (2008) performed what is probably clos-
est to the type of analysis we are interested in.
Using a corpus of Portuguese conference calls,
Berber Sardinha identified 432 terms that were used
metaphorically. He then took 100 instances of each
of these terms in a general Brazilian corpus and

manually annotated them as being either literal or
metaphorical. Berber Sardinha found that on aver-
age these terms were used metaphorically 70% of
the time, and provided analysis of the metaphor-
ical frequencies of a number of individual terms.
While it is exactly these kinds of individual term
frequencies that we are after, we cannot use Berber
Sardinha’s data because his corpus was in Por-
tuguese while we are interested in English. This
brings out one of the main drawbacks of the corpus
annotation approach: moving to a new language (or
even a new genre) requires an extensive manual an-
notation project. Our goal is to avoid such costs by
taking advantage of machine learning techniques for
automatically identifying metaphorical text.

2.2 Metaphor Classification
Recent years have seen a rising interest in metaphor
classification systems. Birke and Sarkar (2006) took
a semi-supervised approach, collecting noisy exam-
ples of literal and non-literal sentences from both
WordNet and metaphor dictionaries, and using a
word-based measure of sentence similarity to group
sentences into literal and non-literal clusters. They
evaluated on hand-annotated sentences for 25 target
words and reported an F-score of 0.538, a substantial
improvement over the 0.294 majority class baseline.

Gedigian et al. (2006) approached metaphor
identification as supervised classification, annotat-
ing around 4000 WSJ motion words as literal or
metaphorical, and training a maximum entropy clas-
sifier using as features based on named entities,
WordNet and semantic roles. They achieved an ac-
curacy of 95.1%, a decent improvement over the
very high majority class baseline of 93.8%.

Krishnakumaran and Zhu (2007) focused on three
syntactically constrained sub-types of metaphors:
nouns joined by be, nouns following verbs, and
nouns following adjectives. They combined Word-
Net hypernym information with bigram statistics
and a threshold, and evaluated their algorithm on
the Berkeley Master Metaphor List (Lakoff, 1994),
achieving an accuracy of around 46%.

All of these approaches produced models which
could be applied to new text to identify metaphors,
but each has some drawbacks for our task. The
WSJ study of Gedigian et al. (2006) found 94% of
their target words to be metaphorical, a vastly differ-
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Target L M M%
attacked 32 18 36%
born 45 5 10%
budding 16 34 68%
collapsed 10 40 80%
digest 7 43 86%
drifted 16 34 68%
floating 25 25 50%
sank 31 19 38%
spoke 47 3 6%
Total 229 221 49%

Table 1: Metaphorical (M) and literal (L) counts, and
metaphorical percentage (M%), for the annotated verbs.

ent number from the 49% for our target words (see
Section 3). Krishnakumaran and Zhu (2007) con-
sidered only a few different syntactic constructions,
but we need to consider all the ways a metaphor
may be expressed to evaulate overall metaphor fre-
quency. Birke and Sarkar (2006) did consider a va-
riety of target words in unrestricted text, but relied
on large scale language resources like WordNet and
metaphor dictionaries, while we are interested in ap-
proaches that are less resource intensive.

Thus, rather than basing our models on these prior
systems, we develop a novel approach to metaphor
frequency estimation based on using topic models to
operationalize metaphorical domains.

3 Data

The first step in building models of metaphorical
frequency is obtaining data for training and evalu-
ation. In one of the post-hoc analyses of the Lai et
al. (2007) experiment, 50 sentences from the British
National Corpus (BNC, 2007) were gathered for
each of nine of their target words. They annotated
each instance as either literal or metaphorical, and
then used these annotations to calculate metaphori-
cal frequencies for analysis.

This data served as our starting point for exploring
computational approaches to estimating metaphor-
ical frequency. Table 1 shows the nine verbs and
their metaphorical frequencies. Table 2 shows some
examples. Some verbs, such as digest, are almost al-
ways used metaphorically (86% of the time), while
other verbs, such as spoke, are almost always used

L Aye, that’s where I was born and reared.
M VATman threatens our budding entrepreneurs.
M Suddenly all her bravado collapsed.
L This makes it easier for us to digest the wheat.
L Gulls drifted lethargically on the swell.
M My heart sank as I looked around.

Table 2: Examples of sentences with metaphorical (M)
and literal (L) target words.

T# Most frequent words
00 book (4%) write (2%) read (2%) english (2%)
17 record (3%) music (2%) band (2%) play (2%)
42 social (3%) history (2%) culture (1%) society (1%)
58 film (3%) play (2%) theatre (1%) women (1%)
82 dog (9%) rabbit (2%) ferret (1%) pet (1%)

Table 3: Example topics (T#) from the BNC and their
most frequent words. Numbers in parentheses indicate
the percent of the topic each word represents.

literally (94% of the time). Annotation of just 50
instances of each of these nine verbs was time con-
suming, and yet to fully re-analyze the ERP results,
metaphorical frequencies would be needed for all of
the over 100 target words. Thus our goal was to au-
tomate this process.

4 Topic Models

Our approach to estimating metaphorical frequen-
cies was first to classify words in unrestricted text
as literal or metaphorical, and then to aggregate
those decisions to estimate a frequency. Thus, we
first needed to build a model which could iden-
tify metaphorical expressions. Our approach to this
problem was based on the theory of conceptual do-
mains, in which metaphors are seen as taking terms
from one domain (e.g. attacked) and applying them
to another domain (e.g. argument).

To operationalize these domains, we employed
statistical topic models, in particular, Latent Dirich-
let Allocation (LDA) (Blei et al., 2003). Intuitively,
LDA looks at how words co-occur in the documents
of a large corpus, and identifies topics or groups of
words that are semantically similar. For example,
Table 3 shows a few topics from the BNC. These
topics can be thought of as grouping words by their
semantic domains. For example, we might think of
topic 00 as the Book domain and topic 42 as the Soci-
ety domain. Because LDA generates topics that look
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much like the source and target domains associated
with metaphors, we expect that LDA can provide a
boost to metaphor identification models.

The LDA algorithm is usually presented as a gen-
erative model, that is, as an imagined process that
someone might go through when writing a text. This
generative process looks something like:

1. Decide what topics you want to write about.
2. Pick one of those topics.
3. Think of words used to discuss that topic.
4. Pick one of those words.
5. To generate the next word, go back to 2.

This is a somewhat unrealistic description of the
writing process, but it gets at the idea that the words
in a document are topically coherent. Formally, the
process above can be described as:

1. For each document d select a topic distribution
θd ∼ Dir(α)

2. Select a topic z ∼ θd
3. For each topic select a word distribution
φz ∼ Dir(β)

4. Select a word w ∼ φz

The goal of the LDA learning algorithm then is to
maximize the likelihood of our documents, where
for one document p(d|α, β) =

∏N
i=1 p(wi|α, β). Es-

timating these probabilities can be done in a few dif-
ferent ways, but in this paper we use Gibbs sampling
as it has been widely implemented and was available
in the LingPipe toolkit (Alias-i, 2008).

Gibbs sampling starts by randomly assigning top-
ics to all words in the corpus. Then the word-topic
distributions and document-topic distributions are
estimated using the following equations:

P (zi|zi−, wi, di, wi−, di−, α, β) =
φijθjd∑T
t=1 φitθtd

φij =
Cwordij

+β∑W

k=1
Cwordkj

+Wβ
θjd =

Cdocdj
+α∑T

k=1
Cdocdk

+Tα

Cwordij
is the number of times word i was assigned

topic j, Cdocdj
is the number of times topic j ap-

pears in document d, W is the total number of
unique words in the corpus, and T is the number
of topics requested. In essence, we count the num-
ber of times that a word is assigned a topic and
the number of times a topic appears in a document,
and we use these numbers to estimate word-topic

and document-topic probabilities. Once topics have
been assigned and distributions have been calcu-
lated, Gibbs sampling repeats the process, this time
selecting a new topic for each word by looking at
the calculated probabilities. The process is repeated
until the distributions become stable or a set number
of iterations is reached.

We ran LDA over the documents in the BNC, ex-
tracting 100 topics after 2000 iterations of Gibbs
sampling. We left the α and β parameters at their
LingPipe defaults of 0.1 and 0.01, respectively. Ta-
ble 3 shows some of the resulting topics.

5 Metaphor Frequency

Our primary goal was to use the topics produced by
LDA to help characterize words in terms of their
metaphorical frequency. We approached this prob-
lem by first training metaphor classifiers based on
LDA topics to identify target words in text as lit-
eral or metaphorical. Then we ran these classifiers
over unseen data, and aggregated the individual de-
cisions. The result is an approximate metaphorical
frequency for each word. The following sections de-
tail this process and discuss our preliminary results.

5.1 Metaphor Classification

Our data is composed of 50 sentences for each of
nine target words, with each sentence annotated as
either metaphorical or literal. We treated this as a
classification task, where the classifier took as input
a sentence containing a target word, and produced as
output either LITERAL or METAPHORICAL.

We trained support vector machine (SVM) clas-
sifiers on this data, using LDA topics as features.
For each of the sentences in our data, we used the
LDA topic models to assign topic probability distri-
butions to each of the words in the sentence. We then
summed the topic distributions over all the words in
the sentence to produce a sentence-wide topic dis-
tribution. The result was that for each sentence we
could say something like “this sentence was com-
posed of 5% topic 00, 2% topic 01, 8% topic 02,
etc.” We used these sentence-level topic probabil-
ity distributions as features for an SVM classifier, in
particular, SVMperf (Joachims, 2005).

We compared this SVM-LDA model against two
baselines. The first was the standard majority class
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classifier, which simply assigns all instances in the
test data whichever label (metaphorical or literal)
was most comon in the training data.

The second baseline was an SVM based on TF-
IDF features, a well known document classification
model (Joachims, 1998; Sebastiani, 2002; Lewis et
al., 2004). Under this approach, there is a numeric
feature for each of the 3000+ words in the training
data, and each word feature is assigned the weight:

|{w ∈ doc : w = word}|
|{w ∈ doc}| ·log

|{d ∈ docs}|
|{d ∈ docs : w ∈ d}|

Essentially, this formula means that the weight in-
creases with the number of times the word occurs
in the document, and decreases with the number of
documents in the corpus that contain that word. The
vectors of TF-IDF features are then normalized to
have Euclidean length 1.0, using the formula:

weight(word) =
tf-idf(word)√ ∑

word′
tf-idf(word′)2

To evaluate our model against both the majority
class and the TF-IDF baselines, we ran nine-fold
cross-validations, where each fold corresponded to
a single target word. Note that this means that we
trained our models on the sentences of eight target
words, and tested on the sentences of the ninth tar-
get word. This is a harder evaluation than a strat-
ified cross-validation where all target words would
have been observed during training. But it is a much
more realistic evaluation for our task, where we want
to learn enough about metaphors from nine target
words that we can automatically classify instances
of the remaining 95.

Table 4 compares the performance of our SVM-
LDA model and the baseline models1. The major-
ity class classifier performs poorly, achieving only
26.4% accuracy2. The TF-IDF based model per-
forms much better, at 50.7% accuracy. However, our
SVM based on LDA features outperforms both base-
line models, achieving 54.9% accuracy.

1For all models, hyper parameters (the cost parameter, the
loss function, etc.) were set using only the training data of each
fold by running an inner eight-fold cross validation.

2This might be initially surprising since our corpus was 49%
metaphorical. Consider, however, that during cross validation,
holding out a more metaphorical target word for testing means
that our training data is more literal, and vice versa.

Model Accuracy
Majority Class 26.4%
SVM + TF-IDF 50.7%
SVM + LDA topics 54.9%
SVM + LDA topics + LDA groups 61.3%

Table 4: Model performance on the literal vs. metaphor-
ical classification task.

Type Most frequent words
CONCRETE book write read english novel
ABSTRACT god church christian jesus spirit
MIXED sleep dream earth theory moon
OTHER many time only number large

Table 5: Examples of annotated topics.

5.2 Annotating Topics
The metaphor classification results showed the ben-
efit of operationalizing metaphor domains as LDA
topics. But metaphors are typically viewed as map-
ping a concrete source domain onto an abstract tar-
get domain, and our LDA topics had no direct notion
of this concrete/abstract distinction. To try to repre-
sent this distinction, we manually annotated3 the 100
LDA topics with one of four labels: CONCRETE,
ABSTRACT, MIXED or OTHER. Table 5 shows ex-
amples of the annotated topics.

We then used the annotated topics to generate new
features for our classifiers. In addition to the original
100 topic probability features, we provided four new
probability features, one for each of our labels, cal-
culated by taking the sum of the probabilities of the
corresponding topics. For example, since topics 07,
13, 37 and 77 were identified as ABSTRACT topics,
the probability of the new ABSTRACT feature was
just the sum of the probabilities of the topic features
07, 13, 37 and 77. The last row of Table 4 shows
the performance of the SVM model trained with the
augmented feature set. This model outperforms all
our other models, achieving an accuracy of 61.3%
on the literal vs. metaphorical distinction.

These results are interesting because they show
that human analysis of LDA topics can add substan-
tial value for machine learning models at a low cost.
Annotating the entire set of 100 topics took under

3All annotation was performed by a single annotator. Future
work will measure inter-annotator agreement.
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Model Accuracy
Majority Class 0.0%
SVM + TF-IDF 22.2%
SVM + LDA topics 55.6%
SVM + LDA topics + LDA groups 77.8%

Table 6: Model performance on the HIGH vs. LOW
metaphor frequency prediction task.

an hour, and yet provided a 6% gain in model ac-
curacy. The speed of annotation suggests that LDA
topics are conceptually accessible to humans, and
the performance boost suggests that manual group-
ing of LDA topics may be a fruitful area for feature
engineering.

5.3 Predicting Metaphorical Frequencies
Having constructed successful metaphor classifica-
tion models, we return to our question of metaphor-
ical frequency. Given a target word, can we pre-
dict the frequency with which that word will be
used metaphorically? Our models are not accurate
enough that we can expect the frequencies derived
from them to be exact predictions of metaphorical
frequency. But we may be able to distinguish, for
example, words with high metaphorical frequency
from words with low metaphorical frequency.

Thus, we evaluate our models on the binary task
of assigning target words an overall metaporical fre-
quency, either HIGH (≥ 50%) or LOW (< 50%). We
can perform this evaluation using the same data and
cross validation technique as before, this time exam-
ining each testing fold (which corresponds to a sin-
gle target word) and aggregating the metaphor clas-
sifications to get a metaphorical frequency estimate
of that target. Table 6 shows how the models fared
on this task. The majority class model misclassified
all the words, and the TF-IDF model managed to get
only two of the nine correct. The LDA models per-
formed better, with the model including the grouped
topic features achieving 77.8% accuracy. This sug-
gests that our model may already be good enough
to use for analysis of the original Lai experimental
data. Of course, this evaluation was carried out only
over the nine available target words, so additional
evaluation will be necessary to confirm these trends.

To further analyze our model performance, we
looked at the metaphorical frequency estimates for

Word True Predicted Difference
attacked 36% 24% -12%
born 10% 2% -8%
budding 68% 98% +30%
collapsed 80% 98% +18%
digest 86% 40% -46%
drifted 68% 92% +24%
floating 50% 100% +50%
sank 38% 26% -12%
spoke 6% 62% +56%

Table 7: Model performance on the HIGH vs. LOW
metaphor frequency prediction task.

each target word. Table 7 shows the estimates of
our best model along with the true metaphorical fre-
quencies. The three target words with the largest dif-
ferences between true and predicted accuracies are
spoke, floating and digest, with spoke and floating
predicted to be much more metaphorical than they
actually are, and digest predicted to be much less.

We also performed some analysis of the model er-
rors. In many cases it was difficult to judge why the
model succeeded or failed in identifying a metaphor,
but a couple of things stood out. First, 70% of the
digest instances our model misclassified were Di-
gest (capitalized), e.g. Middle East Economic Di-
gest. Our topic models were trained on all lower-
cased words, so Digest and digest were not distin-
guished. Re-training the models without collaps-
ing the case distinctions might address this prob-
lem. Second, spoke seems to be an inherently harder
term to classify because it co-occurs with so many
other topics. About 40% of the spoke instances oc-
curred as spoke of or spoke about, where speaking
about a metaphorical topic caused spoke to be inter-
preted metaphorically, and speaking about a literal
topic caused spoke to be interpreted literally. Ad-
dressing this problem would probably require some
understanding of argument structure, perhaps akin
to what was done by Gedigian et al. (2006).

6 Metaphor Novelty

As a final exploration of topic models for metaphor-
ical domains, we considered metaphorical novelty,
as used in the original Lai experiment. In particular,
we were interested in how LDA topics might reflect
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Type Stimulus Sentence
LIT Every soldier in the frontline was attacked
CON Every point in my argument was attacked
NOV Every second of our time was attacked
ANOM Every drop of rain was attacked
LIT The old building has collapsed
CON Their theories have collapsed
NOV Their compromises have collapsed
ANOM The apples have collapsed

Table 8: Example stimuli: literal (LIT), conventional
metaphor (CON), novel metaphor (NOV) and anomalous
(ANOM).

more conventional or more novel metaphors. In the
Lai experiment, conventional and novel metaphors
for a particular target word shared the same source
domain (e.g. WAR) but differed in the target domain
(e.g. ARGUMENT vs. TIME). If LDA topics are
a good operationalization of such domains, then it
should be possible use LDA topics to distinguish be-
tween conventional and novel metaphors.

To explore this area, we employed the stimuli
from the Lai experiment, and looked in particular
at the conventional and novel conditions. The Lai
experiment used 104 different target words, so these
data included 104 conventional metaphors and 104
novel metaphors. Novel metaphors were generated
for the Lai experiment by considering a conventional
source-target mapping and selecting a new target
domain. For example, the conventional metaphor
Every point in my argument was attacked maps
the source domain WAR to the target domain AR-
GUMENT, while the novel metaphor Every second
of our time was attacked maps the source domain
WAR to the target domain TIME. Table 8 shows ex-
ample stimulus sentences from the Lai experiment.
Though these experimental stimuli have the draw-
back of being manually constructed, not collected
from a corpus, they have the advantage of being
already annotated with a definition of novelty that
clearly distinguishes the two types of metaphors.

We performed a simple correlational analysis us-
ing the conventional and novel metaphors from the
Lai experiment. We produced topic distributions for
each stimulus, using our topic models trained on the
BNC. We then labeled conventional metaphors as -1
and novel metaphors as +1, and identified the top-

-0.19 like house old shop door look street room
-0.18 darlington programme club said durham hall
-0.15 film play theatre women actor work perform
-0.14 area local plan develop land house rural urban
-0.14 any sale good publish custom product price

Table 9: Top 5 topics correlated with conventionality.

0.20 freud sexual sophie male joanna people female
0.17 doctor leed rory dalek fergus date subject aug
0.13 book write read english novel publish reader
0.11 lorton kirov dougal jed manville vologski celia
0.09 war british france britain french nation europe

Table 10: Top 5 topics correlated with novelty.

ics that correlated best with this distinction. Table 9
shows the most negatively correlated (conventional)
topics and Table 10 shows the most positively corre-
lated (novel) topics.

Though even the best correlations are somewhat
low, there seem to be some trends in this analysis.
Conventional metaphors seem to correspond more
to concrete terms, like house, club, play and sale.
Novel metaphors have less of a coherent theme, in-
cluding terms like freud and sexual as well as names
like Rory, Kirov and Britain. This may reflect a
real distinction in the use of conventional and novel
metaphors, or it may be an artifact of how the exper-
imental stimuli were created. A deeper investigation
into the relations between LDA topics and metaphor
novelty will probably require annotating sentences
from some naturally occuring data.

7 Conclusions

We presented a novel two-phase approach to the task
of metaphorical frequency estimation. First, exam-
ples of a target word were automatically classified
as literal or metaphorical, and then these classifi-
cations were aggregated to estimate how often the
target word was used metaphorically. Our classi-
fiers operationalized metaphorical source and target
domains using topics derived from Latent Dirichlet
Allocation. Support vector machine classifiers took
these topic probability distributions and learned to
classify sentences as literal or metaphorical. These
models achieved 61.3% accuracy on the classifiation
task, and their aggregated classifications produced
an accuracy of 77.8% on the task of distinguishing
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between target words with high and low metaphori-
cal frequencies.

Future work will perform a larger scale eval-
uation, and will use our model’s metaphorical
frequency estimates to analyze psycholinguistic
data. In particular, we will split the conventional
metaphorical sentences of Lai et al. (2007) into
low and high-frequency items. If the low and
high frequency items display significantly differ-
ent brainwave patterns, then this could suggest that
metaphorical frequency of a given word plays a crit-
ical role in metaphor comprehension.

Future work will also explore frequency effects
that consider the sentential context in the stimulus
items. For example, a context like “Their theories
have ” probably gives a higher expectation of a
metaphorical word filling in the blank than a context
like “The old building has ”. Having a measure
of how much the words in the preceding context pre-
dict an upcoming metaphor would provide another
useful stimulus control.
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