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Abstract

When faced with the task of building machine
learning or NLP models, it is often worthwhile
to turn to active learning to obtain human an-
notations at minimal costs. Traditional active
learning schemes query a human for labels of
intelligently chosen examples. However, hu-
man effort can also be expended in collecting
alternative forms of annotations. For example,
one may attempt to learn a text classifier by
labeling class-indicating words, instead of, or
in addition to, documents. Learning from two
different kinds of supervision brings a new,
unexplored dimension to the problem of ac-
tive learning. In this paper, we demonstrate
the value of such active dual supervision in
the context of sentiment analysis. We show
how interleaving queries for both documents
and words significantly reduces human effort
– more than what is possible through tradi-
tional one-dimensional active learning, or by
passive combinations of supervisory inputs.

1 Introduction

As a canonical running example for the theme of
this paper, consider the problem ofsentiment anal-
ysis(Pang and Lee, 2008). Given a piece of text as
input, the desired output is apolarity scorethat indi-
cates whether this text expresses a positive or nega-
tive opinion towards a topic of interest. From a ma-
chine learning viewpoint, this problem may be posed
as a typical binary text classification task. Senti-
ment, however, is often conveyed with subtle lin-
guistic mechanisms such as sarcasm, negation and
the use of highly domain-specific and contextual

cues. This brings a multi-disciplinary flavor to the
problem, drawing interest from both Natural Lan-
guage Processing and Machine Learning communi-
ties.

Many methodologies proposed in these disci-
plines share a common limitation that their perfor-
mance is bounded by the amount and quality of la-
beled data. However, they differ conceptually in
the type of human effort they require. On one
hand, supervised machine learning techniques re-
quire human effort in acquiringlabeled examples,
which requires reading documents and annotating
them with their aggregate sentiment. On the other
hand, dictionary-based NLP systems require human
effort in collecting labeled features: for example,
in the domain of movie reviews, words that evoke
positive sentiment (e.g., “mesmerizing”, “thrilling”
etc) may be labeled positive, while words that evoke
negative sentiment (e.g., “boring”,“disappointing”)
may be labeled negative. This kind of annotation
requires a human to condense prior linguistic expe-
rience with a word into a sentiment label that reflects
the net emotion that the word evokes.

We refer to the general setting of learning from
both labels on examples and features asdual super-
vision. This setting arises more broadly in tasks
where in addition to labeled documents, it is fre-
quently possible to provide domain knowledge in the
form of words, or phrases (Zaidan and Eisner, 2008)
or even more sophisticated linguistic features, that
associate strongly with a class. Recent work (Druck
et al., 2008; Sindhwani and Melville, 2008) has
demonstrated that the presence of word supervision
can greatly reduce the number of labeled documents
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required to build high quality text classifiers.
In general, these two sources of supervision are

not mutually redundant, and have different annota-
tion costs, human response quality, and degrees of
utility towards learning a dual supervision model.
This leads naturally to the problem ofactive dual
supervision, or, how to optimally query a human or-
acle to simultaneously collect documentandfeature
annotations, with the objective of building the high-
est quality model with the lowest cost. Much of the
machine learning literature on active learning has
focused on one-sided example-only annotation for
classification problems. Less attention has been de-
voted to simultaneously acquiring alternative forms
of supervisory domain knowledge, such as the kind
routinely encountered in NLP. Our contribution may
be viewed as a step in this direction.

2 Dual supervision

Most work in supervised learning has focused on
learning from examples, each represented by a set
of feature values and a class label. In dual super-
vision we consider an additional aspect, by way of
labels of features, which convey prior knowledge on
associations of features to particular classes. Since
we deal only with text classification in this paper, all
features represent term-frequencies of words, and as
such we usefeatureandword interchangeably.

The active learning schemes we explore in this pa-
per are broadly applicable to any learner that can
support dual supervision, but here we focus on ac-
tive learning for the Pooling Multinomials classi-
fier (Melville et al., 2009) described below. In con-
current related work, we propose active dual su-
pervision schemes for a class of graph-based and
kernel-based dual supervision methods (Sindhwani
et al., 2009).

2.1 Pooling Multinomials

The Pooling Multinomials classifier was introduced
by Melville et al. (2009) as an approach to incorpo-
rate prior lexical knowledge into supervised learn-
ing for better sentiment detection. In the context of
sentiment analysis, lexical knowledge is available in
terms of the prior sentiment-polarity of words. From
a dual supervision point of view, this knowledge can
be seen as labeled features, since the lexicon effec-

tively provides associations of a set of words with
the positive or negative class.

Pooling Multinomials classifies unlabeled exam-
ples just as in multinomial Naı̈ve Bayes classifica-
tion (McCallum and Nigam, 1998), by predicting
the class with the maximum likelihood, given by
argmaxcjP (cj)

∏
i P (wi|cj); where P (cj) is the

prior probability of classcj , and P (wi|cj) is the
probability of wordwi appearing in a document of
classcj . In the absence of background knowledge
about the class distribution, we estimate the class
priorsP (cj) solely from the training data. However,
unlike regular Näıve Bayes, the conditional prob-
abilities P (wi|cj) are computed using both the la-
beled examples and the labeled features.

Pooling distributions is a general approach for
combining information from multiple sources or ex-
perts; where experts are typically represented in
terms of probability distributions (Clemen and Win-
kler, 1999). Here, we only consider the special case
of combining multinomial distributions from two
sources – namely, the labeled examples and labeled
features. The multinomial parameters of such mod-
els can be easily combined using thelinear opin-
ion pool (Clemen and Winkler, 1999), in which
the aggregate probability is given byP (wi|cj) =
αPe(wi|cj) + (1 − α)Pf (wi|cj); wherePe(wi|cj)
andPf (wi|cj) represent the probability assigned by
using the example labels and feature labels respec-
tively, andα is the weight for combining these dis-
tributions. The weight indicates a level of confi-
dence in each source of information, and Melville
et al. (2009) explore ways of automatically selecting
this weight. However, in order to not confound our
results with the choice of weight-selection mecha-
nism, here we make the simplifying assumption that
the two experts based on instance and feature labels
are equally valuable, and as such setα to 0.5.

To learn a model from the labeled examples we
compute conditionalsPe(wi|cj) based on observed
term frequencies, as in standard Naı̈ve Bayes classi-
fication. In addition, for Pooling Multinomials we
need to construct a multinomial model represent-
ing the labeled features in the background knowl-
edge. For this, we assume that the feature-class as-
sociations provided by labeled features are implic-
itly arrived at by human experts by examining many
positive and negative sentiment documents. So we
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attempt to select the parametersPf (wi|cj) of the
multinomial distributions that would generate such
documents. The exact values of these condition-
als are presented below. Their derivation is not di-
rectly pertinent to the subject of this paper, but can
be found in (Melville et al., 2009).
Given:
V – the vocabulary, i.e., set of words in our domain
P – set of words labeled as positive
N – set of words labeled as negative
U – set of unknown words, i.e.V − (N ∪ P)
m – size of vocabulary, i.e.|V|
p – number of positive words, i.e.|P|
n – number of negative words, i.e.|N |

All words in the vocabulary can be divided into
three categories – words with a positive label, nega-
tive label, and unknown label. We refer to the prob-
ability of any positive term appearing in a positive
document simply asPf (w+|+). Similarly, we refer
to the probability of any negative term appearing in a
negative document asPf (w−|−); and the probabil-
ity of an unknown word in a positive or negative con-
text asPf (wu|+) andPf (wu|−) respectively. The
generative model for labeled features can then be de-
fined by:

Pf (w+|+) = Pf (w−|−) =
1

p + n

Pf (w+|−) = Pf (w−|+) =
1

p + n
× 1

r

Pf (wu|+) =
n(1− 1/r)

(p + n)(m− p− n)

Pf (wu|−) =
p(1− 1/r)

(p + n)(m− p− n)

where, thepolarity level, r, is a measure of how
much more likely it is for a positive term to occur
in a positive document compared to a negative term.
The value ofr is set to100 in our experiments, as
done in (Melville et al., 2009).

2.2 Learning from example vs. feature labels

Dual supervision makes it possible to learn from la-
beled examples and labeled features simultaneously;
and, as in most supervised learning tasks, one would
expect more labeled data of either form to lead to
more accurate models. In this section we explore the

influence of increased number of instance labels and
feature labels independently, and also in tandem.

For these, and all subsequent experiments, we
use 10-fold cross-validation on the publicly avail-
able data of movie reviews provided by Pang et
al. (2002). This data consists of 1000 positive
and 1000 negative reviews from the Internet Movie
Database; where positive labels were assigned to re-
views that had a rating above 3.5 stars and negative
labels were assigned to ratings of 2 stars and below.
We use a bag-of-words representation of reviews,
where each review is represented by the term fre-
quencies of the 5000 most frequent words across all
reviews, excluding stop-words.

In order to study the effect of increasing number
of labels we need to simulate a human oracle label-
ing data. In the case of examples this is straight-
forward, since all examples in theMoviesdataset
have labels. However, in the case of features, we
do not have a gold-standard set of feature labels. So
in order to simulate human responses to queries for
feature labels, we construct afeature oraclein the
following manner. The information gain of words
with respect to the known true class labels in the
dataset is computed using binary feature represen-
tations. Next, out of the 5000 total words, the top
1000 as ranked by information gain are assigned a
label. This label is the class in which the word ap-
pears more frequently. The oracle returns a “dont
know” response for the remaining words. Thus, this
oracle simulates a human domain expert who is able
to recognize and label the most relevant task-specific
words, and also reject a word that falls below the rel-
evance threshold. For instance, in sentiment classi-
fication, we would expect a “don’t know” response
for non-polar words.

We ran experiments beginning with a classifier
provided with labels for 10 randomly selected in-
stances and 10 randomly selected features. We then
compare three schemes - Instances-then-features,
Features-then-instances, and Passive Interleaving.
As the name suggests,Instances-then-features, is
provided labels for randomly selected instances until
all instances have been labeled, and then switches to
labeling features. Similarly,Features-then-instances
acquires labels for randomly selected features first
and then switches to getting instance labels. In
Passive Interleavingwe probabilistically switch be-
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tween issuing queries for randomly chosen instance
and feature labels. In particular, at each step we
choose to query for an instance with probability
0.36, otherwise we query for a feature label. The
instance-query rate of0.36 is selected based on the
ratio of available instances (1800) to available fea-
tures (5000). The results of these learning curves are
presented in Fig. 1. Note that the x-axis in the figure
corresponds to the number of queries issued. As dis-
cussed earlier, in the case of features, the oracle may
respond to a query with a class label or may issue
a “don’t know” response, indicating that no label is
available. As such, the number of feature-queries
on the x-axis does not correspond to the number
of actual known feature labels. We would expect
that on average 1 in 5 feature-label queries prompts
a response from the feature oracle that results in a
known feature label being provided.

At the end of the learning curves, each method
has labels for all available instances and features;
and as such, the last points of all three curves are
identical. The results show that fixing the number
of labeled features, and increasing the number of la-
beled instances steadily improves classification ac-
curacy. This is what one would expect from tra-
ditional supervised learning curves. More interest-
ingly, the results also indicate that we can fix the
number of instances, and improve accuracy by la-
beling more features. Finally, results on Passive In-
terleaving show that, though both feature labels and
example labels are beneficial by themselves, dual su-
pervision which exploits the interaction of examples
and features does in fact benefit from acquiring both
types of labels concurrently.

For all results above, we are selecting instances
and/or features to be labeled uniformly at random.
Based on previous work in active learning one would
expect that we can select instances to be labeled
more efficiently, by having the learner decide which
instances it is most likely to benefit from. The results
in this section suggests that actively selecting fea-
tures to be labeled may also be beneficial. Further-
more, the Passive Interleaving results suggest that an
ideal active dual supervision scheme would actively
select both instances and features for labeling. We
begin by exploring active learning for feature labels
in the next section, and then consider the simultane-
ous selection of instances and features in Sec. 4.
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Figure 1: Comparing the effect of instance and feature
label acquisition in dual supervision.

3 Acquiring feature labels

Traditional active learning has primarily focused on
selecting unlabeledinstancesto be labeled. The
dual-supervision setting now provides us with an ad-
ditional dimension to active learning, where labels
may also be acquired for features. In this section
we look at the novel task of active learning applied
only to feature-label acquisition. In Section 4 we
study the more general task of active dual supervi-
sion, where both instance and feature labels may be
acquired concurrently.

3.1 Feature uncertainty vs. certainty

A very common approach to active learning for in-
stances is Uncertainty Sampling (Lewis and Catlett,
1994). In this approach we acquire labels for in-
stances that the current model is most uncertain
about. Uncertainty Sampling is founded on the
heuristic that uncertain instances are close to the cur-
rent classification boundary, and acquiring the cor-
rect labels for them are likely to help refine the loca-
tion of this boundary. Despite its simplicity, Uncer-
tainty Sampling is usually quite effective in practice;
which raises the question of whether one can apply
the same principle to feature-label acquisition. In
this case, we want to select unlabeled features that
the current model is most uncertain about.

Much like instance uncertainty, feature uncer-
tainty can be measured in different ways, depend-
ing on the underlying method used for dual super-
vision. For instance, if the learner produces a lin-
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ear classifier as in (Sindhwani and Melville, 2008),
we could use the magnitude of the weights on the
features as a measure of uncertainty – where lower
weights indicate less certainty. Since Pooling Multi-
nomials builds a multinomial Naı̈ve Bayes model,
we can directly use the model’s conditional proba-
bilities of each word (feature) given a class.

For ease of exposition we refer to the two classes
in binary classification aspostive(+) andnegative
(-), without loss of generality. Given the probabili-
ties of wordf belonging to the positive and negative
class,P (f |+) and P (f |−), we can determine the
uncertainty of a feature using the absolute value of
the log-odds ratio, i.e.,

abs

(
log

(
P (f |+)
P (f |−)

))
(1)

The smaller this value, the more uncertain the model
is about the feature’s class association. In every it-
eration of active learning we can select the features
with the lowest certainty scores. We refer to this ap-
proach asFeature Uncertainty.

Though Uncertainty Sampling for features seems
like an appealing notion, it may not lead to better
models. If a classifier is uncertain about a feature,
it may have insufficient information about this fea-
ture and may indeed benefit from learning its la-
bel. However, it is also quite likely that a feature
has a low certainty score because it does not carry
much discriminative information about the classes.
In the context of sentiment detection, one would ex-
pect that neutral/non-polar words will appear to be
uncertain words. For example, words such as “the”
which are unlikely to help in discriminating between
classes, are also likely to be considered the most un-
certain. As we shortly report, on the movies dataset,
Feature Uncertainty ends up wasting queries on such
words ending up with performance inferior to ran-
dom feature queries. What works significantly bet-
ter is an alternative strategy which acquires labels
for features in the descending order of the score in
Eq 1. We refer to this approach asFeature Certainty.

3.2 Expected feature utility

The intuition underlying the feature certainty heuris-
tic is that it serves to confirm or correct the orienta-
tion of model probabilities on different words during

the active learning process. One can argue that fea-
ture certainty is also suboptimal in that queries may
be wasted simply confirming confident predictions,
which is of limited utility to the model. An alterna-
tive to using a certainty-based heuristic, is to directly
estimate the expected value of acquiring each fea-
ture label. Such Expected Utility (Estimated Risk
Minimization) approaches have been applied suc-
cessfully to traditional active learning (Roy and Mc-
Callum, 2001), and to active feature-value acquisi-
tion (Melville et al., 2005). In this section we de-
scribe how this Expected Utility framework can be
adapted for feature-label acquisition.

At every step of active learning for features, the
next best feature to label is one that will result in
the highest improvement in classifier performance.
Since the true label of the unlabeled features are
unknown prior to acquisition, it is necessary to es-
timate the potential impact of every feature query
for all possible outcomes.1 Hence, the decision-
theoretic optimal policy is to ask for feature labels
which, once incorporated into the data, will result in
the highest increase in classification performance in
expectation.

If fj is the label of thej-th feature, andqj is the
query for this feature’s label, then the Expected Util-
ity of a feature queryqj can be computed as:

EU(qj) =
K∑

k=1

P (fj = ck)U(fj = ck) (2)

WhereP (fj = ck) is the probability thatfj will be
labeled with classck, andU(fj = ck) is the util-
ity to the model of knowing thatfj has the label
ck. In practice, the true values of these two quan-
tities are unknown, and the main challenge of any
Expected Utility approach is to accurately estimate
these quantities from the data currently available.

A direct way to estimate the utility of a feature la-
bel to classification, is to measure classification ac-
curacy on the training set of a model built using this
feature label. However, small changes in the model
that may result from a acquiring a single additional
feature label may not be reflected by a change in ac-
curacy. As such, we use a more fine-grained mea-
sure of classifier performance, Log Gain, which is

1In the case of binary polarity classification, the possible
outcomes are apositiveor negativelabel for a queried feature.
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computed as follows. For a model induced from a
training setT , let P̂ (ck|xi) be the probability es-
timated by the model that instancexi belongs to
classck; and I is an indicator function such that
I(ck, xi) = 1 if ck is the correct class forxi and
I(ck, xi) = 0, otherwise. Log Gain is then defined
as:

LG(xi) = −
K∑

k=1

I(ck)P̂ (ck|xi) (3)

Then the utility of a classifier,U , can be measured
by summing the Log Gain for all instances in the
training setT . A lower value of Log Gain indi-
cates a better classifier performance. For a deeper
discussion of this measure see (Saar-Tsechansky et
al., 2008).

In Eq. 2, apart from the measure of utility, we
also do not know the true probability distribution
of labels for the feature under consideration. This
too can be estimated from the training data, by see-
ing how frequently the word appears in documents
of each class. In a multinomial Naı̈ve Bayes model
we already collect these statistics in order to deter-
mine the conditional probability of a class given a
word, i.e. P (fj |ck). We can use these probabilities
to get an estimate of the feature label distribution,
P̂ (fj = ck) = P (fj |ck)∑K

k=1 P (fj |ck)
.

Given the estimated values of the feature-label
distribution and the utility of a particular feature
query outcome, we can now estimate the Expected
Utility of each unknown feature, and select the fea-
tures with the highest Expected Utility to modeling.

Though theoretically appealing, this approach is
quite computationally intensive if applied to evalu-
ate all unknown features. In the worst case it re-
quires building and evaluating models for each pos-
sible outcome of each unlabeled feature query. If
you havem features andK classes, this approach
requires trainingO(mK) classifiers. However, the
complexity of the approach can be significantly al-
leviated by only applying Expected Utility evalua-
tion to a sub-sample of all unlabeled features. Given
the large number of features with no true class la-
bels, selecting a sample of available features uni-
formly at random may be sub-optimal. Instead we
select a sample of features based on Feature Cer-
tainty. In particular we select the top 100 unknown

features that the current model is most certain about,
and identify the features in this pool with the highest
Expected Utility. We refer to this approach asEx-
pected Feature Utility. We use Feature Certainty to
sub-sample the available feature queries, since this
approach is more likely to select features for which
the label is known by the Oracle.

3.3 Active learning with feature labels

We ran experiments comparing the three different
active learning approaches described above. In
these, and all subsequent experiments, we begin
with a model trained on 10 labeled features and 100
labeled instances, which were randomly selected.
From our prior efforts of manually labeling such
data, we find this to be a reasonable initial setting.

The experiments in this section focus only on the
selection offeaturesto be labeled. So, in each itera-
tion of active learning we select the next 10 feature-
label queries, based on Feature Uncertainty, Feature
Certainty, or Expected Feature Utility. As a baseline,
we also compare to the performance of a model that
selects features uniformly at random. Our results are
presented in Fig. 2.
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Figure 2: Comparing different active learning approaches
for acquiring feature labels.

The results show that Feature Uncertainty, which
is a direct analog of Uncertainty Sampling, actu-
ally performs worse than random sampling. Many
uncertain features may actually not be very useful
in discriminating between the classes, and selecting
them can be systematically worse than selecting uni-
formly at random. However, the converse approach
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of Feature Certainty does remarkably well. This
may be because polarized words are better for learn-
ing, but it is also likely that querying for such words
increases the likelihood of selecting one whose label
is known to the oracle.

The results on Expected Feature Utility show that
estimating the expected impact of potential labels
for features does in fact perform much better than
feature certainty. The results confirm that despite
our crude estimations in Eq. 2, Expected Feature
Utility is an effective approach to active learning of
feature labels. Furthermore, we demonstrate that by
applying the approach to only a small sub-sample of
certain features, we are able to make this method
computationally feasible to use in practice. In-
creasing the size of the sample of candidate feature
queries is likely to improve performance, at the cost
of increased time in selecting queries.

4 Active dual supervision

In the previous section we demonstrated that ac-
tively selecting informative features to be labeled is
significantly better than random selection. In this
section, we look at the complementary task of se-
lecting instances to be labeled, and combined active
learning for both forms of supervision.

Selecting unlabeled examples for learning has
been a well-studied problem, and we use Uncer-
tainty Sampling (Lewis and Catlett, 1994), which
has been shown to be a computationally efficient
and effective approach in the literature. In particular
we select unlabeled examples to be labeled in order
of decreasing uncertainty, where uncertainty is mea-
sured in terms of the margin, as done in (Melville
and Mooney, 2004). The margin on an unlabeled ex-
ample is defined as the absolute difference between
the class probabilities predicted by the classifier for
the given example, i.e.,|P (+|x)− P (−|x)|. We re-
fer to the selection of instances based on this uncer-
tainty as Instance Uncertainty, in order to distinguish
it from Feature Uncertainty.

We ran experiments as before, comparing selec-
tion of instances using Instance Uncertainty and se-
lection of features using Expected Feature Utility.
In addition, we also combine these to methods by
interleaving feature and instance selection. In par-
ticular, we first order instances in decreasing order

of uncertainty, and features in terms of decreasing
Expected Feature Utility. We then probabilistically
select instances or features from the top of these
lists, where, as before, the probability of selecting
an instance is0.36. Recall that this probability cor-
responds to the ratio of available instances (1800)
and features (5000). We refer to this approach as Ac-
tive Interleaving, in contrast to Passive Interleaving,
which we also present as a baseline. Recall that Pas-
sive Interleaving corresponds to probabilistically in-
terleaving queries for randomly chosen, not actively
chosen, examples and features. Our results are pre-
sented in Fig. 3.

We observe that, Instance Uncertainty performs
better than Passive Interleaving, which in turn is bet-
ter than random selection of only instances or fea-
tures – as seen in Fig. 1. However, effectively se-
lecting features labels, via Expected Feature Util-
ity, does even better than actively selecting only in-
stances. Finally, selecting instance and features si-
multaneously via Active Interleaving performs bet-
ter than active learning of features or instances sep-
arately. Active Interleaving is indeed very effective,
reaching an accuracy of77% with only 500 queries,
while Passive Interleaving requires more than 4000
queries to reach the same performance – as evi-
denced by Fig. 1
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Figure 3: Comparing Active Interleaving to alternative
label acquisition strategies.

5 Related work

Active learning in the context of dual supervision
models is a new area of research with very little prior
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work, to the best of our knowledge. Most prior work
has focused on pooled-based active learning, where
examples from an unlabeled pool are selected for la-
beling (Cohn et al., 1994; Tong and Koller, 2000). In
contrast, active feature-value acquisition (Melville
et al., 2005) andbudgeted learning(Lizotte et al.,
2003) focus on estimating the value of acquiring
missing features, but do not deal with the task of
learning from featurelabels. In contrast, Raghavan
and Allan (2007) and Raghavan et al. (2006) study
the problem oftandem learningwhere they combine
uncertainty sampling for instances along with co-
occurence based interactive feature selection. God-
bole et al. (2004) propose notions of feature uncer-
tainty and incorporate the acquired feature labels,
into learning by creating one-term mini-documents.

Learning from labeled examples and features via
dual supervision, is itself a new area of research.
Sindhwani et al. (2008) use a kernel-based frame-
work to build dual supervision into co-clustering
models. Sindhwani and Melville (2008) apply sim-
ilar ideas for graph-based sentiment analysis. There
have also been previous attempts at using only fea-
ture supervision, mostly along with unlabeled doc-
uments. Much of this work (Schapire et al., 2002;
Wu and Srihari, 2004; Liu et al., 2004; Dayanik
et al., 2006) has focused on using labeled features
to generatepseudo-labeled examplesthat are then
used with well-known models. In contrast, Druck
et al. (2008) constrain the outputs of a multinomial
logistic regression model to match certain reference
distributions associated with labeled features.

6 Perspectives and future work

Though Active Interleaving is a very effective ap-
proach to active dual supervision, there is still a lot
of room for improvement. Firstly, Active Interleav-
ing relies on Uncertainty Sampling for the selection
of instances. Though Uncertainty Sampling has the
advantage of being fast and effective, there exist ap-
proaches that lead to better models with fewer ex-
amples – usually at the cost of computation time.
One such method, estimating error reduction (Roy
and McCallum, 2001), is a direct analog of Ex-
pected Feature Utility applied to instance selection.
One would expect that an improvement in instance
selection, should directly improve any method that

combines instance and feature label selection. Sec-
ondly, Active Interleaving uses the simple approach
of probabilistically choosing to select an instance or
feature for each subsequent query. However, a more
intelligent active scheme should be able to assess if
an instance or feature would be more beneficial at
each step. Furthermore, we do not currently con-
sider the cost of acquiring labels. Presumably la-
beling a feature versus labeling an instance could
incur very different costs – which could be mone-
tary costs or time taken for each annotation. Fortu-
nately, the Expected Utility method is very flexible,
and allows us to address all these issues within a sin-
gle framework. We can specifically estimate the ex-
pected utility of different forms of annotation, per
unit cost. For instance, Provost et al. (2007) use
such an approach to estimate the utility of acquir-
ing class labels and feature values (not labels) per
unit cost, within one unified framework. A similar
method can be applied for a holistic approach to ac-
tive dual supervision, where the Expected Utility of
an instance or feature label queryq, can be computed
asEU(q) =

∑K
k=1 P (q = ck)

U(q=ck)
ωq

; whereωq is
cost of the queryq, and utilityU can be computed as
in Eq. 3. By evaluating instances and features on the
same scale, and by measuring utility per unit cost of
acquisition, such a framework should enable us to
handle the trade-off between the costs and benefits
of the different types of acquisitions. The primary
challenge in the success of this approach is toaccu-
ratelyandefficientlyestimate the different quantities
in the equation above, using only the training data
currently available. These are directions for future
exploration.

7 Conclusions

This paper is a preliminary foray into active dual su-
pervision. We have demonstrated that not only is
combining example and feature labels beneficial for
modeling, but that actively selecting the most infor-
mative examples and features for labeling can sig-
nificantly reduce the burden of annotating such data.
In future work, we would like to explore more effec-
tive solutions to the problem, and also to corroborate
our results on a larger number of datasets and under
different experimental settings.
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