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Introduction

We are pleased to present the proceedings of the Workshop on Integer Linear Programming for Natural
Language Processing, held at NAACL HLT 2009 in Boulder, Colorado.

Integer Linear Programming (ILP) has recently attracted much attention within the NLP community.
Formulating problems using ILP has several advantages. It allows us to focus on the modelling of
problems, rather than engineering new search algorithms; provides the opportunity to incorporate
generic global constraints; and guarantees exact inference. This and the availability of off-the-shelf
solvers has led to a large variety of natural language processing tasks being formulated in the ILP
framework, including semantic role labelling, syntactic parsing, summarisation and joint information
extraction.

The use of ILP brings many benefits and opportunities but there are still challenges for the community;
these include: formulations of new applications, dealing with large-scale problems and understanding
the interaction between learning and inference at training and decision time. The purpose of this
workshop was to bring together researchers interested in exploiting ILP for NLP applications and
tackling the issues involved. We solicited full length papers, short papers and two-page abstracts with
the purpose of providing a discussion on many topics.

We are grateful to the program committee for providing thoughtful and helpful reviews of the submitted
papers. We also thank our invited speakers, Dan Roth, Andre Martins and Noah Smith for presenting
their noteworthy work to the community.

We hope that you enjoy the workshop and these proceedings.

James Clarke
Sebastian Riedel
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Summarization with a Joint Model
for Sentence Extraction and Compression

André F. T. Martins*' and Noah A. Smith*
*School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
fInstituto de Telecomunic@es, Instituto Superior&cnico, Lisboa, Portugal
{afm,nasmith }@cs.cmu.edu

Abstract

Text summarization is one of the oldest prob-
lems in natural language processing. Popu-
lar approaches rely on extracting relevant sen-
tences from the original documents. As a side
effect, sentences that are too long but partly
relevant are doomed to either not appear in the
final summary, or prevent inclusion of other
relevant sentences. Sentence compression is a
recent framework that aims to select the short-
est subsequence of words that yields an infor-
mative and grammatical sentence. This work
proposes a one-step approach for document
summarization that jointly performs sentence
extraction and compression by solving an in-

a promising framework with applications, for exam-
ple, in headline generation (Dorr et al., 2003; Jin,
2003), little work has been done to include it as a
module in document summarization systems. Most
existing approaches (with some exceptions, like the
vine-growth model of Daui, 2006) use a two-stage
architecture, either by first extracting a certain num-
ber of salient sentences and then feeding them into
a sentence compressor, or by first compressing all
sentences and extracting later. However, regardless
of which operation is performed first—compression
or extraction—two-step “pipeline” approaches may
fail to find overall-optimal solutions; often the sum-
maries are not better that the ones produced by ex-

tractive summarization. On the other hand, a pilot

study carried out by Lin (2003) suggests that sum-

marization systems that perform sentence compres-
sion have the potential to beat pure extractive sys-
tems if they model cross-sentence effects.

A . ation d back h In this work, we address this issue by merging the
1gé%matlz ;Z)gosu[mr?anlzggghg atesd |aC19t508'tE? sks of sentence extraction and sentence compres-
s an s (Luhn, » baxencale, ' —sjon into aglobal optimization problem. A careful

mundson, 1969). Today, the proliferation of dlgltald

. . . esign of the objective function encourages “sparse
information makes research on summarization tec@’olutions " i.e., solutions that involve only a small

nologies more impqrtant than ever before. In the Ia?1tumber of sentences whose compressions are to be
two decade_s, machl_ne learning t_ech_mques have beﬁ‘l@luded in the summary. Our contributions are:
employed inextractive summarization of single

documents (Kupiec et al., 1995; Aone et al., 1999 e cast joint sentence extraction and compression
Osborne, 2002) and multiple documents (Radev and 55 an integer linear program (ILP);

McKeown, 1998; Carbonell and Goldstein, 1998; ] )

Radev et al., 2000). Most of this work aims only® V& Provide a new formulation of sentence com-

to extractrelevant sentences from the original doc- Pression using dependency parsing information
uments and present them as the summary: this sim-that only requires a linear number of variables,

plification of the problem yields scalable solutions. 2"d combine it with a bigram model;

Some attention has been devoted by the NLP We show how the full model can be trained in a
community to the related problem séntence com-  max-margin framework. Since a dataset of sum-
pression (Knight and Marcu, 2000): given a long maries comprised of extracted, compressed sen-
sentence, how to maximalbpmpresst into a gram- tences is unavailable, we present a procedure that
matical sentence that still preserves all the rele- trains the compression and extraction models sep-
vant information? While sentence compression is arately and tunes a parameter to interpolate the

teger linear program. We report favorable ex-
perimental results on newswire data.

1 Introduction

1
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two models. Maximal Marginal Relevance (MMR). For long

Th , del and the ful ‘ documents or large collections, it becomes impor-
€ compression model and the TUT System arg, .+, penalize theedundancyamong the extracted
compared with state-of-the-art baselines in standa

) , : , ntences. Carbonell and Goldstein (1998) proposed
newswire datasets. This paper is organized as fol-

reedily adding sentences to the summgutg max-
lows: §2—3 provide an overview of our two building y g i

: imize, at each step, a score of the form
blocks, sentence extraction and sentence compres-

sion. §4 describes our method to perform one-step ). scorge(t;) — (1 — \) - SCorged(ti,S),  (2)
sentence compression and extractigh.shows ex-
periments in newswire data. Finallye concludes where scorg|(¢;) is as in Eg. 1 and scogg(ti, S)

the paper and suggests future work. accounts for theedundancybetweery; and the cur-
. o rent summarys. In our experiments, redundancy is
2 Extractive summarization the 1-gram cosine similarity between the sentence

Extractive summarization builds a summary by exti @nd the current summary. The trade-off be-

tracting a few informative sentences from the docuiveen relevance and redundancy is controlled by
ments. LetD 2 {t1,...,ty} be a set of sentences,? € [0, 1], which is tuned on development data. .
contained in a single or in multiple related docu- McDonald (2007) proposed a non-greedy variant

mentst The goal is to extract the best sequence dif MMR that takes into account the redundancy be-
sentencest;,, ..., ) that summarize) whose tween each pair Qf c:_:mdldate ser.1tences. This is cast
total length does not exceed a fixed budgetjof S & global optimization problem:
words. We describe some well-known approaches
; ) . S = A Scoreeq|(t;) —
that wil serve as our experimental baselines. arg mgx Lies e(t:)
. 1-X)- SCorgeq(t;, ti), (3
Extract the leading sentences (Lead). For ( ) Lvigyes Bedltis15), (3)
single-document summarization, the simplest A T A
: ) . . Where scorg|(t;) = 0O o frel(t;), SCOrgeq(t;, t;) =
method consists of greedily extracting the leadingt Rit:) refrel() Fedltis 1)
sentences while they fit into the summary. A sen-mdfred(ti’tj ), andfrei(t;) andfred(t;, ¢;) are feature
. . e . ) vectors with corresponding learned weight vectors
tence is sklpped if |ts_|nclu5|oQ exceeds the budge 1aNd@,eq. He has shown how the relevance-based
and the next is examined. This performs extremel%ethod and the MMR framework (in the non-greedy
well in newswire articles, due to the journalisticform of Eq. 3) can be cast as an ILP. By introducing
convention of summarizing the article first. indicator v.ariableswi),-ﬂ o and </'W>ij71 y
Rank by relevance (Rel). This method ranks sen- with the meanings
tences by a relevance score, and then extracts the top
ones that can fit into the summary. The score is typ- ;,, =

ically a linear function of feature values:
SCOrgei(t;) £ 6T £(t:) = S, bafa(ts), (1) @

Here, eachfy(t;) is a feature extracted from sen-one can reformulate Eq. 3 as an ILP with{)/?)
tencet;, andd, is the corresponding weight. In our variables and constraints:
experiments, relevance features include (i) the recip-

1 if ¢; is to be extracted
0 otherwise
{ 1 if ¢; andt; are both to be extracted

Fig =\ 0 otherwise

rocal position in the document, (ii) a binary feature max A= oM piscorgei(t;) — (5)
indicating whether the sentence is the first one, anél”’" s
(iii) the 1-gram and 2-gram cosine similarity with (1= A) - 22501 221 HijSCOrgeq(ti, t5),

the headline and with the full document. . : .

—_— subject to binary constrainis;, u;; € {0,1}, the
1 ]\/[ . . . 1

and multi-document summarization, although they may requirleength ConStramEiﬂ M?Nz < J (whereN; is the

specialized strategies. Here we experiment only with singiddumber of words of théth sentence), and the fol-

document summarization and assume.., tr are ordered. lowing “agreement constraints” farj = 1,... , M

For simplicity, we describe a unified framework for single



(that impose the logical relatiogn;; = p; A 115): 2000; Daung and Marcu, 2002), heuristic methods
that parse the sentence and then trim constituents ac-

pig < iy pij < gy, g = i+ — 10 (6)  cording to linguistic criteria (Dorr et al., 2003; Zajic

. . et al., 2006), a pure discriminative model (McDon-
Let us provide a compact representation of the pro-

gram in Eqg. 5 that will be used later. Define ourvecgld’ 2006), and an ILP formulation (Clarke and La-

tor of parameters @2 [ABrel, —(1—\)Bred. Pack- pata, 2008). We next give an overview of the two
Iegter approaches.

ing all the featurfe vectors (one fo_r each senFence, an McDonald (2006) uses the outputs of two parsers
one for each pair of sentences) into a maKix
(a phrase-based and a dependency parser) as fea-
pa|Fe O tures in a discriminative model that decomposes
- [ 0 Freq ] ’ (7) over pairs of consecutive words. Formally, given a
sentence = (wy, ..., wy), the score of a compres-
with Freg £ [fa(ti)i<i<ir and Freq = sionc = (wj,,...,w;, ) decomposes as:
[fred(ts, tj)]1<i<j<m, and packing all the variables
w; andy;; into a vectoru, the program in Eq. 5 can scordc;t) = EILZQ O f(t, ji—1,51) 9
be compactly written as
wheref(¢, 5;_1,7;) are feature vectors that depend
max 0" Fpu, (8) on the original sentenaeand consecutive positions
ji—1 andj;, and@ is a learned weight vector. The
subject to binary and linear constraints gn This factorization in Eq. 9 allows exact decoding with dy-
formulation requiresO(M?) variables and con- namic programming.
straints. If we do not penalize sentence redundancy, Clarke and Lapata (2008) cast the problem as an
the redundancy term may be dropped; in this simplaLP. In their formulation, Eq. 9 may be expressed as:
caseF = F, the vectoru only contains the vari-
ables<pi>,. and the program _in Eqg. 8 only requires ' B N - '
O(M) variables and constraints. Our method (to be ~ SCOT&c;t) = > i £(t,0,0) +
presented iG4) will build on this latter formulation. =1

N
. T .
3 Sentence Compression > BiOTE(tin+1)+
=1
Despite its simplicity, extractive summarization has N-1 N
a few shortcomings: for example, if the original sen- Z Z %je—rf(t,@',j)’ (10)
tences are too long or embed several clauses, there i=1 j=it1

is no way of preventing lengthy sentences from ap-

pearing in the final summary. Thsentence com- Whereai, ﬂi- and’)/ij are additional binary variables
pressionframework (Knight and Marcu, 2000) aims With the following meanings:

to select the bessubsequencef words that still
yields a short, informative and grammatical sen?
tence. Such a sentence compressor is given a seng; = 1 iff word w; ends the compression;

«; = 1 iff word w; starts the compression;

tencet = (wy, ..., wy) asAinput and outputs a sub-, .. . _ 1 iff words w; andw, appear consecutively
sequence of lengtll, ¢ = (wj,,...,w;,), with in the compression;
1 <41 < ... <jr < N. We may represent

this output as a binary vecterof length N, where  and subject to the following agreement constraints:
sj = 1 iff word wj; is included in the compression.

Note that there ar®(2") possible subsequences. SN ;g =1
N _
3.1 Related Work Ymi B =1
- . J=1,..
Past approaches to sentence compression include sj = aj+ 3 %
a noisy channel formulation (Knight and Marcu, si = Bi+ Z;V:Hl Vij- (11)



This framework also allows the inclusion of con-Consider feature vectofs, (¢, 7), fio(¢, 7), fo1(¢, 7),
straints to enforce grammaticality. andfy(t, j), that look at the surface sentence and at
To compress a sentence, one needs to maximittee status of the worgland its headr(;); these fea-

the score in Eg. 10 subject to the constraints itures have corresponding weight vectérs, 61,

Eqg. 11. Representing the variables through 691, andByy. The score ot is written as:
N .
va <Oz1,. .oan, B, ... ,ﬁN,’yH,. . -;7NN> SCOI’QC; t) = Zj:l Za,bE{O,l} Vjabet—lrbfab(t7j)
. . _(12) = Za,be{o,l} HIbFabVab
and packing the feature vectors into a maffixwe _ oTF 15
obtain the ILP = Y, (15)
max 6 ' Fv (13) where Fupy 2 [£u(t,1), ..., Fup(t, N)], vap

s,V

A
_ _ _ _ (Viab)j=1,...N» 0 = (011,010,6001,6000), andF £
subject to linear and integer constraints on the varpjag(F,,, F1, For, Foo) (@ block-diagonal matrix).
abless andv. This particular formulation requires e have reached in Eq. 15 an ILP isomorphic to
O(N?) variables and constraints. the one in Eqg. 13, but only witid(N) variables.
There are some agreement constraints between the

3.2 Proposed Method variablesv ands that reflect the logical relations in
We propose an alternative model for sentence corfeg. 14; these may be written as linear inequalities
pression that may be formulated as an ILP, as itcf. EQ. 6), yieldingO(N) constraints.
Eqg. 13, but with onlyO(N) variables and con-  Given this proposal and3.1, it is also straight-
straints. This formulation is based on the output of forward to extend this model to include bigram fea-
dependency parser. tures as in Eq. 10; the combination of dependency

Directed arcs in a dependency tree link pairs ofelation features and bigram features yields a model
words, namely &eadto its modifier A dependency thatis more powerful than both models in Eq. 15 and
parse tree is characterized by a set of labeled arEgl- 10. Such a model is expressible as an ILP with
of the form (head, modifier, label); see Fig.1 for arQ(N?) variables and constraints, making use of the
example. Given a sentent¢e= (wy,...,wy), we Variabless, v, a, 8 and~. In §5, we compare the
write i = 7(j) to denote that théth word is the performance of this model (called “Bigram”) and the
head (the “parent”) of thgth word; if j is the root, modelin Eq. 15 (called “NoBigram’j.

we write 7(j) = 0. Lets be the binary vector de- _ _ i
4 Joint Compression and Extraction

PUNC

We next describe our joint model for sentence com-

ROOT

ne on pression and extraction. Lé? = {t;,... ¢y} be
NMOD  SBJ Ve pp m a set of sentences as §@, each expressed as a se-
f\/\/\ NN quence of wordst; = (w;1, ..., w;y,). Following
$ Mr. Tomash will remain as a director emeritus . B .
83, we represent@ompressiomnf ¢; as a binary vec-
. . tors; = (s;1,...,s;n. ), wheres;; = 1 iff word w;;
Figure 1: A dependency parse for an English sentence; "' (it sivi) " "
example from McDonald and Satta (2007). 2It should be noted that more efficient decoders are possible

that do not require solving an ILP. In particular, inference in the

scribing a possible compressierfor the sentence NoBigram variant can performed in polynomial time with dy-

. . . namic programming algorithms that propagate messages along
t. For each worg, we consider four possible CaseSyye dependency parse tree; for the Bigram variant, dynamic pro-

accounting for the inclusion or not gfand=(j) in gramming can still be employed with some additional storage.
the compression. We introduce (mutually exclusiveur ILP formulation, however, is more suited to the final goal
binary variables;11, vj10, vjo1, andv;oo to indicate of performing document summarization (of which our sentence

. compression model will be a component); furthermore, it also
each of these cases, i.e., tob € {0’ 1}' allows the straightforward inclusion of global linguistic con-

straints, which, as shown by Clarke and Lapata (2008), can
Vjab = s;j=al Sr(j) = b. (14) greatly improve the grammaticality of the compressions.



is included in the compression. Now, definsuan- which states, for each sentengethatt; should be
maryof D as a set of sentences obtaineddsjract- ignored or have at leaptV; words extracted. We fix
ing andcompressingentences fronD. More pre- p = 0.8, enforcing compression rates below 86%.
cisely, letyuy, ..., uar be binary variables, one for  To learn the model parametefis= (6., 6..), we
each sentencg in D; definey; = 1 iff a compres- can use a max-margin discriminative learning al-
sion of sentence; is used in the summary. A sum- gorithm like MIRA (Crammer and Singer, 2003),
mary of D is then represented by the binary variwhich is quite effective and scalable. However, there
ables(u1, ..., 1, s1,-..,s0). Notice that these is not (to our knowledge) a single dataset of ex-
variables are redundant: tractedand compressed sentences. Instead, as will
) be described in Sec. 5.1, there are separate datasets
pi=0 & Viefl.. . Ni} s =0, (16) ¢ o iracted sentences, and datasets of compressed
i.e., an empty compression means that the senterggntences. Therefore, instead of globally learning
is not to be extracted. In the sequel, it will becoméhe model parameter8,= (0., 6..), we propose the
clear why this redundancy is convenient. following strategy to learn them separately:
Most approaches up to now are concerned with ei-
ther extractionor compressionnot both at the same ® Learné; using a corpus of extracted sentences,
time. We will combine the extraction scores in Eq & Learn@’c using a Corpus Of Compressed Sentence81
and the compression scores in Eg. 15 to obtain a sin- L
gle, global optimization proble:we rename the ® TUn€7 so thatd = (8., n8.) has good perfor-
extraction features and parameter&toandg, and ~ Mance on development data. (This is necessary
the compression features and parameteiB tand since each set of weights is learned up to scaling.)
o.: .
I,?B’é BQTFeu n Zij\il GCTFciui, (17) 5 Experiments
subject to agreement constraints on the variables
ands; (see Egs. 11 and 14), and new agreement coRer our experiments, two datasets were used:
straints on the variablgs andss, . . ., sj; to enforce
the relation in Eq. 16:

5.1 Datasets, Evaluation and Environment

The DUC 2002 dataset. This is a collection of

newswire articles, comprised of 59 document clus-
sij < i, Vi=1,... . M,Vj=1,...,N; ters. Each document within the collections (out of
pi < Zévil sij, Vi=1,...,M a total of 567 documents) has one or two manually

(18) created abstracts with approximately 100 words.
The constraint that the length of the summary cannot

exceed/ words is encoded as: Clarke’s dataset for sentence compression. This
M N is the dataset used by Clarke and Lapata (2008). It
>im1 Zjél sij < J. (19)  contains manually created compressions of 82 news-

wddaper articles (1,433 sentences) from the British Na-

All variables are further restricted to be binary. : :
tional Corpus and the American News Text corpus.

also want to avoid picking just a few words from
many sentences, which typically leads to ungram-

matical summaries. Hence it is desirable to obtain TO evaluate the sentence compressor alone, we
“sparse” solutions with only a few sentences exteasured the compression rate and the precision,
tracted and compressed (and most componengs ofrecall, and F;i-measure (both macro and micro-

are zero) To do so, we add the constraint averaged) with respect to the “gold” compressed
ij:il Sij > wipN;, 1=1,..., M, (20) “There are alternative ways to achieve “sparseness,” either

in a soft way, by adding a termA ). u; to the objective, or
%In what follows, we use the formulation in Eq.\8ith-  using a different hard constraint, liRe, u; < K, to limit the

out the redundancy terms; however these can be included irumber of sentences from which to pick words.

a straightforward way, naturally increasing the number of vari-  *http:/duc.nist.gov

ables/constraints. Shttp://homepages.inf.ed.ac.uk/s0460084/data



Compression Micro-Av. Macro-Av.

Ratio P R Fy P R F
HedgeTrimmer | 57.64% 0.7099 0.5925 0.6459 0.7195 0.6547 0.6367
McDonald (2006)| 71.40% 0.7444 0.7697 0.7568 0.7711 0.7852 0.7696
NoBigram 71.20% 0.7399 0.7626 0.7510 0.7645 0.7730 0.7604
Bigram 71.35% 0.7472 0.7720 0.7594 0.7737 0.7848 0.7710

Table 1: Results for sentence compression in the Clarke’s test dataset (441 sentences) for our implementation of the
baseline systemdigedgeTrimmeand the system described in McDonald, 2006), and the two variants of our model,
NoBigram and Bigram. The compression ratio associated with the reference compressed sentences in this dataset is
69.06%. In the rightmost column, the statistically indistinguishable best results are emboldened, based on a paired
t-test applied to the sequencelof measuresy < 0.01).

sentences, calculated on unigrams. tive model described by McDonald (2006), which
To evaluate the full system, we used Roule- captures “soft syntactic evidence” (we reproduced

(Lin and Hovy, 2002), a populan-gram recall- the same set of features). Both systems require

based automatic evaluation measure. This scosephrase-structure parser; we used Collins’ parser

compares the summary produced by a system wif€ollins, 1999)° the latter system also derives fea-

one or more valid reference summaries. tures from a dependency parser; we used the MST-
All our experiments were conducted on a PC wittParser (McDonald et al., 200%).

a Intel dual-core processor with 2.66 GHz and 2 Gb We implemented the two variants of our compres-

RAM memory. We used ILOG CPLEX, a commer-sor described if§3.2.

cial integer programming solver. The interface wit

CPLEX was coded in Java. r]\IoB|gram. This variant factors the compression

score as a sum over individual scores, each depend-
5.2 Sentence Compression ing on the inclusion or not of each word and its head
in the compression (see Eq. 15). An upper bound of

We split Clgrlke’s dataset into two partitions, N 006 was placed on the compression ratio. As stated
used for training (1,188 sentences) and the other f% §3.2, inference amounts to solving an ILP with

testing (441 sentences). This dataset includes o N) variables and constraintsy being the sen-

manual compression for. each sentence, that we l_*(%eﬁce length. We also used MSTParser to obtain the
as reference for evaluation purposes. Compress"a'%pendency parse trees

ratio, i.e., the fraction of words included in the com-

pressed sentences, is 69.32% (micro-averaged owgram. This variantincludes an extra term stand-

the training partition). ing for abigram score which factors as a sum over
For comparison, two baselines were implepairs of consecutive words. As in McDonald (2006),

mented: a simple compressor based on Hedge Triwe include features that depend on the “in-between”

mer, the headline generation system of Dorr et awords in the original sentence that are to be omitted

(2003) and Zajic et al. (2008)and the discrimina- in the compressioh! As stated in§3.2, inference

through this model can be done by solving an ILP

7 i i i i - . -
Notice that thl_s e\_/aluatlon score is nc_)t a.ble_to_properly CaRyith O(NQ) variables and constraints.
ture the grammaticality of the compression; this is a known is-

sue that typically is addressed by requiring human judgmentsstep of the algorithm) already provides significant compression,
8Hedge Trimmer applies a deterministic compression proceys illustrated in Table 1.

dure whose first step is to identify the lowest leftm8stode in ®http://ipeople.csail.mit.edu/meollins/code.

the parse tree that containdN®and aVP; this node is taken as html

the root of the compressed sentence (i.e., all words that are not'°nttp://sourceforge.net/projects/mstparser

spanned by this node are discarded). Further steps described'The major difference between this variant and model of

by Dorr et al. (2003) include removal of low content units, andvicDonald (2006) is that the latter employs “soft syntactic ev-

an “iterative shortening” loop that keeps removing constituentglence” asnput features, while we make the dependency rela-

until a desired compression ratio is achieved. The best resulisns part of theoutputfeatures. All the non-syntactic features

were obtained without iterative shortening, which is explainedre the same. Apart from this, notice that our variant does not

by the fact that the selection of the lowest leftm8stode (first employ a phrase-structure parser.



For both variants, we used MSTParser to obtain . gggi‘ilo - 0R1°7”79f§ -
ea . . . .

the dependepcy parse t_ree's. 'Th_e model parameter | 0.880+ 0.074 0.178% 0.080

are Iearne_d in a pure discriminative way through a pvr ) = 0.25 0.392+ 0.071 0.178+ 0.077

max-margin approach. We used the 1-best MIRA Pipeline 0.380+ 0.073  0.173+ 0.073

algorithm (Crammer and Singer, 2003; McDonald Rel+ NoBigrn =1.5 | 0.403+0.080 0.18Gt 0.082

et al., 2005) for training; this is a fast online algo- _R€' *Bigrn =40 | 0403+ 0.076 0.18G+ 0.076

rithm that requires SOl\_l'ng the inference problem_ a'{’able 2: Results for sentence extraction in the DUC2002
each step. Although inference amounts t0 solVingataset (140 documents). Bold indicates the best results
an ILP, which in the worst case scales exponentiallyith statistical significance, according to a pairetst
with the size of the sentence, training the model i§ < 0.01); Rouge-2 scores of all systems except Pipeline
in practice very fast for the NoBigram model (a feware indistinguishable according to the same test, with
minutes in the environment described§h.1) and 0.05.

fast enough for the Bigram model (a couple of hours

using the same equipment). This is explained by t%"’ram compression mode]3.2) and (ii) the Bigram
fact that sentences don't usually exceed a few t€Rgriant. Each variant was trained with the proce-
of words, and because of the structure of the ILP$y,re described 4. To keep tractability, the in-
whose constraint matrices are very sparse. ference ILP problem was relaxed (the binary con-
Table 1 depicts the micro- and macro-averagegraints were relaxed to unit interval constraints) and
precision, recall and;-measure. We can see thatyon.integer solution values were rounded to produce
both variants outperform the Hedge Trimmer basey y/gjiqg summary, both for training and testiy.
line by a great margin, and are in line with the sysyyhenever this procedure yielded a summary longer
tem of McDonald (2006); however, none of our varithan100 words, we truncated it to fit the word limit.
ants employ a phrase-structure parser. We also 0b-rapie 5 depicts the results of each of the above

serve that our simpler NoBigram variant, which USeSystems in terms of Rouge-1 and Rouge-2 scores.
a linear-sized ILP, achieves results similar to thesgs can see that both variants of our system are able

two systems. to achieve the best results in terms of Rouge-1 and
Rouge-2 scores. The suboptimality of extracting and

o _ compressing in separate stages is clear from the ta-
For the summarization task, we split the DUC 200%|e’ as Pipeline performs worse than the pure ex-

dataset into a training partition (427 documents) anlactive systems. We also note that the configuration
a testing partition (140 documents). The trainingye| + Bigram is not able to outperform Rel + No-
partition was further split into a training and a de'Bigram, despite being computationally more expen-
velopment set. We evaluated the performance Qye (about 25 minutes to process the whole test set,
Lead, Rel, and MMR as baselines (all are describeghainst the 7 minutes taken by the Rel + NoBigram

in §2). Weights ;or Rel were learned via the SVM-yaiant). Fig. 2 exemplifies the summaries produced
Rank algorithm’? to create a gold-standard rankingp oyr system. We see that both variants were able

we sorted the sentences by Rouge—z_s]c”c(mith '€~ toinclude new pieces of information in the summary
spect to the human created summaries). We includg@nout sacrificing grammaticality.

a Pipeline baseline as well, which ranks all sentences 1 .ca results suggest that our system, being capa-
_by releva_nce, then_ mclude_s their compressions (UBTe of performing joint sentence extraction and com-
ing the Bigram variant) while they fit into the sum-Ioression to summarize a document, offers a power-
mary. q ] ¢ o del ful alternative to pure extractive systems. Finally, we

 We tested two variants of our joint model, COM-, 4 that ng labeled datasets currently exist on which
bining the Rel extraction model with (i) the NoBi- - 1| model could have been trained with super-

25vMRank is implemented in the SV toolkit Vision; therefore, although inference is performed
(Joachims, 1999nttp://svmlight.joachims.org .

13A similar system was implemented that optimizes the “See Martins et al. (2009) for a study concerning the impact
Rouge-1 score instead, but it led to inferior performance. of LP relaxations in the learning problem.

5.3 Joint Compression and Extraction



MMR baseline: encourages “sparse” summaries that involve only a
Australian novelist Peter Carey was awarded the coveted Bookefaywy sentences. Experiments in newswire data sug-
Prize for fiction Tuesday night for his love story, “Oscar and Lu- . . . .
cinda”. gest that our system is a valid alternative to exist-
A panel of five judges unanimously announced the award of theing extraction-based systems. However, it is worth
$26,250 prize after an 80-minute deliberation during a banquet atnoting that further evaluation (e g human judg—
London’s ancient Guildhall. q b ied o h i
Carey, who lives in Sydney with his wife and son, said in a brief ments) needs JFO € carried out to aSS_el't t e quality
speech that like the other five finalists he had been asked to atten®f OUr Summaries, e.g., their grammaticality, some-

with a short speech in his pocket in case he won. thing that the Rouge scores cannot fully capture.

Rel + NoBigram: Future work will address the possibility of in-
Australian novelist Peter Carey was awarded tmvetedBooker  cluding linguistic features and constraints to further
Prize for fictionTuesday nighfor his love story, “Oscar and Lu- improve the grammaticality of the produced sum-

cinda”. .
A panel of five judgesunanimouslyannounced the award of the maries.

fgﬁaZOSnQSp;‘ndei‘;“gu"ﬁgﬁéT"‘”tede"bera‘io" during a banquetat  Another straightforward extension is the inclusion
The judges made their selection from 102 books published in Britain_Of a redqnda}ncy term and a query relevance 'tel"m
in the past 12 monthand which they read in their homes. in the objective function. For redundancy, a simi-
Carey, who lives in Sydney with his wife and son, saich brief lar idea of that of McDonald (2007) can be app|ied,
speech thalike the other five finalists he had been asked to attend _ . . . 2 .
with a short speech in his pocket in case he won. ylelc_jlng a ILP_ WIthO(M + N) variables and con-

straints (\/ being the number of sentences avidhe
Rel + Bigram: total number of words). However, such model will
Australian novelist Peter Carey was awarded ttevetedBooker take into account the redundancy among the origi-
Zﬂﬁz,f"' fictionTuesday nighfor his love story, *Oscar and Lu- 4| sentences and not their compressions; to model
A panel of five judgesunanimouslyannounced the award of the th€ redundancy accross compressions, a possibil-
$26,250 prize after aBO-minutedeliberation during a banquet at ity is to consider a linear redundancy score (similar
London’s ancient Guildhall. . T . . .
He was unsuccessful in the prize competition in 1985 when histo cosine S|m|Iar|ty, but without the normallzatlon),

. . . 9

novel, “lllywhacker,” was among the final six. which would result in an ILP WIth(N + Zz Pi )
Carey called the award agteat honor” and he thanked the prize  Variables and constraints, whdfe< M is the num-

sponsors for “provokingo muchpassionate discussi@bout liter- ber of sentences in which word, occurs; this is no
ature _ perhapsthere will bemoretomorrow”. 9 ’
worse tharO(M=N).

We also intend to model discourse, which, as
Figure 2: Summaries produced by the strongest basshown by Dauré and Marcu (2002), plays an im-
line (MMR) and the two variants of our system. Deletedyortant role in document summarization. Another
words aremarked as such future direction is to extend our ILP formulations
to more sophisticated models that go beyond word

jointly, our training procedure had to learn sepadeletion, like the ones proposed by Cohn and Lapata
rately the extraction and the compression model§2008).

and to tune a scalar parameter to trade off the two
models. We conjecture that a better model coul
have been learned if a labeled dataset with extract
compressed sentences existed.

Carey was thenly non-Briton in the final six
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Abstract

We present an Integer Linear Program for
exact inference under a maximum coverage
model for automatic summarization. We com-
pare our model, which operates at the sub-
sentence or “concept’-level, to a sentence-
level model, previously solved with an ILP.
Our model scales more efficiently to larger
problems because it does not require a
guadratic number of variables to address re-
dundancy in pairs of selected sentences. We
also show how to include sentence compres-
sion in the ILP formulation, which has the
desirable property of performing compression
and sentence selection simultaneously. The
resulting system performs at least as well as
the best systems participating in the recent
Text Analysis Conference, as judged by a va-
riety of automatic and manual content-based
metrics.

Introduction

t@icsi.berkeley.edu

both relevant and non-redundant (Goldstein et al.,
2000; Nenkova and Vanderwende, 2005), some re-
cent work focuses on improved search (McDonald,
2007; Yih et al., 2007). Among them, McDonald is
the first to consider a non-approximated maximiza-
tion of an objective function through Integer Linear
Programming (ILP), which improves on a greedy
search by 4-12%. His formulation assumes that the
quality of a summary is proportional to the sum of
the relevance scores of the selected sentences, penal-
ized by the sum of the redundancy scores of all pairs
of selected sentences. Under a maximum summary
length constraint, this problem can be expressed as
a quadratic knapsack (Gallo et al., 1980) and many
methods are available to solve it (Pisinger et al.,
2005). However, McDonald reports that the method
is not scalable above 100 input sentences and dis-
cusses more practical approximations. Still, an ILP
formulation is appealing because it gives exact so-
lutions and lends itself well to extensions through
additional constraints.

Methods like McDonald’s, including the well-

Automatic summarization systems are typically exgnown Maximal Marginal Relevance (MMR) algo-
tractive or abstractive. Since abstraction is quitﬁthm (Goldstein et al., 2000), are subject to an-
hard, the most successful systems tested at the T@ther problem: Summary-level redundancy is not
Analysis Conference (TAC) and Document Undergyays well modeled by pairwise sentence-level re-
standing Conference (DUE)for example, are ex- gyndancy. Figure 1 shows an example where the
tractive. In particular, sentence sel_ectpn _repres?”&%mbination of sentences (1) and (2) overlaps com-
a reasonable trade-off between _Ilngwstlc qua“typletelywith sentence (3), a fact not captured by pair-
guaranteed by longer textual units, and summagyise redundancy measures. Redundancy, like con-
content, often improved with shorter units. tent selection, is a global problem.

Whereas the majority of approaches employ a Here, we discuss a model for sentence selection

greedy search to find a set of sentences that with a globally optimal solution that also addresses

TAC is a continuation of DUC, which ran from 2001-2007. redundancy globally. We choose to represent infor-

10
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(1) The catis in the kitchen. length constraint. A variety of choices fétel; and
(2) The cat drinks the milk. Red;; are possible, from simple word overlap met-
(3) The cat drinks the milk in the kitchen. rics to the output of feature-based classifiers trained

_ to perform information retrieval and textual entail-
Figure 1: Example of sentences redundant as a groupant.
Their redundancy is only partially captured by sentence-
level pairwise measurement.

As an alternative, we consider information and re-
dundancy at a sub-sentence, “concept” level, model-
ing the value of a summary as a function of the con-

mation at a finer granularity than sentences, witBepts it covers. While McDonald uses an explicit

concepts, and assume that the value of a summaryigdundancy term, we model redundancy implicitly:
the sum of the values of the unique concepts it corr summary only benefits from including each con-
tains. While the concepts we use in experiments agpt once. With:; an indicator for the presence of
word n-grams, we use the generic term to emphasizencept in the summary, and its weight;, the ob-
that this is just one possible definition. Only creditjective function is:

ing each concept once serves as an implicit global

constraint on redundancy. We show how the result- Zwic"

ing optimization problem can be mapped to an ILP i

that can be solved efficiently with standard software. _

We begin by comparing our model to McDonald’s We generate a summary by choosing a set of sen-

(section 2) and detail the differences between the rEENCES that maximizes this objective function, sub-
Jectto the usual length constraint.

sulting ILP formulations (section 3), showing tha . )
ours can give competitive results (section 4) and of- In summing over concept weights, we assume that

fer better scalability (section 5). Next we demon- the value of including aconcept'is not effected by the
strate how our ILP formulation can be extended t§r€Sence of any other concept in the summary. That

include efficient parse-tree-based sentence compré-Concepts are assumed to be independent. Choos-
sion (section 6). We review related work (section 7)19 @ suitable definition for concepts, and a map-

and conclude with a discussion of potential improvePNg from the input documents to concept weights,
ments to the model (section 8). is both important and difficult. Concepts could be

words, named entities, syntactic subtrees or seman-
2 Models tic relations, for example. While deeper semantics

~ make more appealing concepts, their extraction and
The model proposed by McDonald (2007) considergeighting are much more error-prone. Any error in

information and redundancy at the sentence leveloncept extraction can result in a biased objective
The score of a summary is defined as the sum @inction, leading to poor sentence selection.
the relevance scores of the sentences it contains mi-

nus the sum of the redundancy scores of each pair 8f Inference by ILP

these sentences. df is an indicator for the presence _
of sentence in the summaryRel; is its relevance Each model presented above can be formalized as an

and Red;; is its redundancy with sentengethen a Integer Linear Program, with a solution represent-

summary is scored according to: ?ng an optimal selec_tion of sentences undgr the ob-
jective function, subject to a length constraint. Mc-

Z Rel;s; — Z Red,;s;5; Donald observes that the redundancy term makes for

p 7 a quadratic objective function, which he coerces to

a linear function by introducing additional variables
Generating a summary under this model involves;; that represent the presence of both sentéacel
maximizing this objective function, subject to asentencej in the summary. Additional constraints
2Strictly speaking, exact inference for the models discusse%nsure the consistency between the sentence vari-

in this paper is NP-hard. Thus we use the term “scalable” in &0l€S &, s;) and the quadratic terms). With /;
purely practical sense. the length of sentenceand L the length limit for

11



the whole summary, the resulting ILP is: the standard task. This includes 48 topics, averag-
ing 235 input sentences (ranging from 47 to 652).

Maximize: Z Relsi — Z Redijsi Since the mean sentence length is around 25 words,
¢ 4 a typical summary consists of 4 sentences.
Subject to:lesj <L In order to facilitate comparison, we generate
J summaries from both models using a common
Sij <s; Sij < Sj Vi,j pipe”ne:

. g < 4 . .
sitsj—sy sl Vi g 1. Clean input documents. A simple set of rules

si€{0,1} Vi removes headers and formatting markup.
Sij € {07 1} VZ,]
2. Split text into sentences. We use the unsuper-
To express our concept-based modelas anILP, we  yised Punkt system (Kiss and Strunk, 2006).
maintain our notation from section 2, with an in-

dicator for the presence of conceéph the summary 3. Prune sentences shorter than 5 words.
ands; an indicator for the presence of senterice

the summary. We ad@cc;; to indicate the occur- 4. Compute parameters needed by the models.
rence of concept in sentenceg, resulting in a new

ILp- 5. Map to ILP format and solve. We use an open

source solver
Maximize: Z w;c;
p

Subjectto: l;s; < L

6. Order sentences picked by the ILP for inclusion
in the summary.

J The specifics of step 4 are described in detail in
5;0ccij < ¢;, Vi, j (1)  (McDonald, 2007) and (Gillick et al., 2008). Mc-
ZSjOCCij >¢ Vi (2) Donald's sentence relevance combines word-level

cosine similarity with the source document and the
inverse of its position (early sentences tend to be
more important). Redundancy between a pair of sen-
s €{0,1} V) tences is their cosine similarity. For senterice

Note thatOcc, like Rel andRed, is a constant pa- documentD,
rameter. The constraints formalized in equations (1) . )
and (2) ensure the logical consistency of the solu- Rel; = cosine(i, D) +1/pos(i, D)
tion: selecting a sentence necessitates selecting all Red;j = cosine(i, j)
the concepts it contains and selecting a concept is )
only possible if it is present in at least one selected !N our concept-based model, we use word bi-
sentence. Constraint (1) also prevents the inclusigfams, weighted by the number of input documents

J
c; € {0, 1} Vi

of concept-less sentences. in which they appear. While word bigrams stretch
the notion of a concept a bit thin, they are eas-
4 Performance ily extracted and matched (we use stemming to al-

low slightly more robust matching). Table 1 pro-
Here we compare both models on a common sums- S

o : vides some justification for document frequency as a
marization task. The data is part of the Text Analy;Nei hting function. Note that biarams qave consis-
sis Conference (TAC) multi-document summariza: ghting : 9 g

: . : . ently better performance than unigrams or trigrams
tion evaluation and involves generating 100-wor(§ y P g g

. . or a variety of ROUGE measures. Normalizing
summaries from 10 newswire documents, each 061

. . . .. y document frequency measured over a generic set
agen topic. While the 2008.e.d|t|on of TAC.alsogTFIDF weighting) degraded ROUGE performance.
includes an update task—additional summaries as-

suming some prior knowledge—we focus only on 3gnu.org/software/glpk
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Bigrams consisting of two stopwords are pruned, as System ROUGE-2 Pyramid

are those appearing in fewer than three documents. Baseline 0.058 0.186
We largely ignore the sentence ordering problem, McDonald 0.072 0.295
sorting the resulting sentences first by source docu- Concepts 0.110 0.345

ment date, and then by position, so that the order of

two originally adjacent sentences is preserved, fc'Hl'gble 2: Scores for both systems and a baseline on TAC

08 data (Set A) for ROUGE-2 and Pyramid evalua-

example. tions.
Doc. Freq. (D) 1 2 3 4 5 6
In Gold Set 156 48 25 15 10 7 g Scalability
Notin Gold Set 5270 448 114 42 21 1

Relevant(?)  0.03 010 018 026 033 039 \-nonald's sentence-level formulation corresponds

, _ _ to a quadratic knapsack, and he shows his particu-
Table 1: There is a strong relationship between the douljé—lr variant is NP-hard by reduction to 3-D matchin
ment frequency of input bigrams and the fraction of thos y 9-

bigrams that appear in the human generated “gold” se he concept-level formulation is similar in spirit to

Let d; be document frequendyandyp; be the percent of the classical maximum coverage problem: Given a
input bigrams withd; that are actually in the gold set. Set of itemsX, a set of subsetS of X, and an in-
Then the correlatiop(D, P) = 0.95 for DUC 2007 and tegerk, the goal is to pick at most subsets from
0.97 for DUC 2006. Data here averaged over all prob:S that maximizes the size of their union. Maximum

lems in DUC 2007. coverage is known to be NP-hard by reduction to the

The summaries produced by the two syster=Et COVer problem (Hochbaum, 1996).
have been evaluated automatically with ROUGE and Perhaps the simplest way to show that our formu-
manually with the Pyramid metric. In particular,!ation is NP-hard is by reduction to the knapsack
ROUGE-2 is the recall in bigrams with a set ofProblem (Karp, 1972). Consider the special case
human-written abstractive summaries (Lin, 2004)Vvhere sentences do not share any overlapping con-
The Pyramid score arises from a manual alignme§€Pts. Then, the value of each sentence to the sum-
of basic facts from the reference summaries, calle®ary is independent of every other sentence. This is
Summary Content Units (SCUs), in a hypothesi§ knapsack problem: trying to maximize the value
summary (Nenkova and Passonneau, 2004). Wvia a container of limited size. Given a solver for our
used the SCUs provided by the TAC evaluation. Problem, we could solve all knapsack problem in-

Table 2 compares these results, alongside a baséances, so our problem must also be NP-hard.
line that uses the first 100 words of the most re- With n input sentences angh concepts, both
cent document. All the scores are significantlformulations generate a quadratic number of con-
different, showing that according to both humarstraints. However, McDonald’s ha&3(n?) variables
and automatic content evaluation, the concepwhile ours hasO(n + m). In practice, scalability
based model outperforms McDonald’'s sentencés largely determined by the sparsity of the redun-
based model, which in turn outperforms the baseglancy matrixRed and the sentence-concept matrix
line. Of course, the relevance and redundancy fun€Xcc. Efficient solutions thus depend heavily on the
tions used for McDonald’s formulation in this exper-choice of redundancy measure in McDonald's for-
iment are rather primitive, and results would likelymulation and the choice of concepts in ours. Prun-
improve with better relevance features as used iRg to reduce complexity involves removing low-
many TAC systems. Nonetheless, our system basgglevance sentences or ignoring low redundancy val-
on word bigram concepts, similarly primitive, per-ues in the former, and corresponds to removing low-
formed at least as well as any in the TAC evaluationyeight concepts in the latter. Note that pruning con-
according to two-tailed t-tests comparing ROUGE¢epts may be more desirable: Pruned sentences are
Pyramid, and manually evaluated “content resporitretrievable, but pruned concepts may well appear
siveness” (Dang and Owczarzak, 2008) of our sydn the selected sentences through co-occurrence.
tem and the highest scoring system in each category.Figure 2 compares ILP run-times for the two
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formulations, using a set of 25 topics from DUC °[ ~ 1

2007, each of which have at least 500 input sen-_ 7} © 100 word summaries 1
tences. These are very similar to the TAC 2008 - 250 word summaries
topics, but more input documents are provided fof8 °|
each topic, which allowed us to extend the analysi% sl ]
to larger problems. While the ILP solver finds opti-$
mal solutions efficiently for our concept-based for-3 *[
mulation, run-time for McDonald’s approach grows§3, ,
very rapidly. The plot includes timing results for &
250-word summaries as well, showing that our apg'ﬂ’ 2

+ 100 word summaries (McDonald)

proach is fast even for much more complex prob< ,| + %
lems: A rough estimate for the number of possible on OO @@ @% ﬁ] % @ % % %
summaries ha’(") = 2.6 x 10? for 100-word SUM-  ° o o 1o 0 0 w0 w0 a0 o o0
maries and’)) = 2.5 x 102 for 250 words sum- Number of Sentences

maries.

) . . . Figure 2: A comparison of ILP run-times (on an AMD
While exact solutions are theoretically appealing; gch; desktop machine) of McDonald's sentence-based

they are only useful in practice if fast approximaformulation and our concept-based formulation with an
tions are inferior. A greedy approximation of ourincreasing number of input sentences.

objective function gives 10% lower ROUGE scores

than the exact solution, a gap that separates the hi P" '
est scoring systems from the middle of the pack |gR oy some redundancy removal on the final selec-
gsy P tion (Madnani et al., 2007).

the TAC evaluation. The greedy solution (linear in We adapt this approach to fit the ILP formulations

the number of sentences, assuming a constant susrg)- that the optimization procedure decides which

mary length) marks an upper bound on speed ancompressed alternatives to pick. Formally, each

a lower bound on performance; The ILP solution . .
compression candidate belongs to a grgpgorre-

marks an upper bound on performance but is subject . . -
. ) . ) sponding to its original sentence. We can then craft
to the perils of exponential scaling. While we have .
: . a constraint to ensure that at most one sentence can
not experimented with much larger documents, a

proximate methods will likely be valuable in bridg-pgﬁgsis:;f:ted from group, which also includes the

ing the performance gap for complex problems. Pre-
Iimina_try ex.peri_ments with local search methods are Z s; < 1,
promising in this regard. o
6 Extensions Assuming that all the compressed candidates are
themselves well-formed, meaningful sentences, we
Here we describe how our ILP formulation canwould expect this approach to generate higher qual-
be extended with additional constraints to incority summaries. In general, however, compression
porate sentence compression. In particular, wagorithms can generate an exponential number of
are interested in creating compressed alternativeandidates. Within McDonald’s framework, this
for the original sentence by manipulating its parsean increase the number of variables and constraints
tree (Knight and Marcu, 2000). This idea has beetremendously. Thus, we seek a compact representa-
applied with some success to summarization (Turnéion for compression in our concept framework.
and Charniak, 2005; Hovy et al., 2005; Nenkova, Specifically, we assume that compression in-
2008) with the goal of removing irrelevant or redun-olves some combination of three basic operations
dant details, thus freeing space for more relevant iron sentences: extraction, removal, and substitution.
formation. One way to achieve this end is to genk extraction, a sub-sentence (perhaps the content of
erate compressed candidates for each sentence, @euotation) may be used independently, and the rest
ating an expanded pool of input sentences, and erof the sentence is dropped. In removal, a substring
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is dropped (a temporal clause, for example) that prédtion group); eq. (6) ensures that if a child node is
serves the grammaticality of the sentence. In sulselected, its parent is also selected unless the child is
stitution, one substring is replaced by another (U&n extraction node (that can be used as a root).
replaces United States, for example). Each node is associated with the words and the
Arbitrary combinations of these operations ar&oncepts it contains directly (which are not con-
too general to be represented efficiently in an ILRained by a child node) in order to compute the new
In particular, we need to compute the length of &&ngth constraints and activate concepts in the ob-
sentence and the concepts it covers for all comprejgective function. We seDcc;, to represent the oc-
sion candidates. Thus, we insist that the operatiorsirrence of concept in nodex as a direct child.
can only affect non-overlapping spans of text, antlet /, be the length contributed to nodeas direct
end up with a tree representation of each sentenaghildren. The resulting ILP for performing sentence
Nodes correspond to compression operations amdmpression jointly with sentence selection is:
leaves map to the words. Each node holds the length Maximize: Z wies
it contributes to the sentence recursively, as the sum LT
of the lengths of its children. Similarly, the concepts !

covered by a node are the union of the concepts cov-  SUbjectto: Z long < L

ered by its children. When a node is activated in the J
ILP, we consider that the text attached to it is present nzOcciz < ¢, Vi,
in the summary and update the length constraint and Z nyOcciy > ¢; Vi
concept selection accordingly. Figure 3 gives an ex- - B
ample of this tree representation for a sentence from idem constraints (3) to (6)
the TAC data, showing the derivations of some com- .

, ¢ €{0,1} Vi
pressed candidates.

ng € {0,1} Vzx

For a given sentencg let IV; be the set of nodes
in its compression treefy; C N; be the set of  While this framework can be used to imple-
nodes that can be extracted (used as independemént a wide range of compression techniques, we
sentences)?; C N; be the set of nodes that canchoose to derive the compression tree from the
be removed, and; C N; be the set of substitu- sentence’s parse tree, extracted with the Berkeley
tion group nodes. Let andy be nodes fromV;; we parser (Petrov and Klein, 2007), and use a set of
create binary variables, andn,, to representthe in- rules to label parse tree nodes with compression op-
clusion ofz or y in the summary. Let - y denote erations. For example, declarative clauses contain-
the fact thatr € N, is a direct parent of € N;. ing a subject and a verb are labeled with the extract
The constraints corresponding to the compressiqE) operation; adverbial clauses and non-mandatory
tree are: prepositional clauses are labeled with the remove

, (R) operation; Acronyms can be replaced by their

2 ne <1 Vj (3) full form by using substitution (S) operations and a

veb; primitive form of co-reference resolution is used to

Z ny=n; VreS; Vj (4) allowthe substitution of noun phrases by their refer-

Ty ent.
Ny 2 Ny V(y TNz ¢ {RJ U Sj}) V] (5) System R-2 pyr. LQ
ne <ny V(y-azAxz¢{E;US;}H) Vi (6) Nocomp. 0.110 0.345 2.479

Eqg. (3) enforces that only one sub-sentence is ex- Comp. 0111 0.323 2.021
tracted from the original sentence; eq. (4) enforcefype 3: Scores of the system with and without sentence
that one child of a substitution group is selected iEompression included in the ILP (TAC'08 Set A data).
and only if the substitution node is selected; eq. (5)
ensures that a child node is selected when its parentWhen implemented in the system presented in
is selected unless the child is removable (or a subssection 4, this approach gives a slight improvement
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(1):E
e Original: A number of Countries

are already planning to hold the

(2): (3):S 4):R ; : _
the magazine quoted hief Wilm Disenberg euro as part of their fore_lgn cur
rency reserves, the magazine quoted
(ECB | European Central Bank)  as saying European Central Bank chief Wim
(5): (6):R ———(7):R Duisenberg as saying.
countries are lanning to hold the euro .
/O\ /O{ g (8): e [1,2,5,3a]:A number of countries are
A number of already as part ost planning to hold the euro, the maga-
zine quoted ECB chief Wim Duisen
foreign currency berg.

Node Len. Concepts .
e [2,5,6,7,8]: A number of countries

(1):E 6  {themagazine, magazinguoted, chiefWilm, Wilm _Disenberg )

(2):E 7  {countriesare, planningo, to_hold, holdthe, theeurc} are already planning to hold the euro
(3):S 0 0 as part of their foreign currency re-
3a) 1 (ECB} serves.

(3b) 3 {EuropeanCentral, CentraBank} e [2,7,8]: Countries are planning to
4R 2 {assaying hold the euro as part of their foreign
(5):R 3  {anumber, numbeof} currency reserves.

@R 1 {} e [2]: Countries are planning to hold
(MR 5 {aspart, partof, reserve$ the euro.

(8):R 2 {foreigncurrency}

Figure 3: A compression tree for an example sentence. E-nodes (diamonds) can be extracted and used as an indepen-
dent sentences, R-nodes (circles) can be removed, and S-nodes (squares) contain substitution alternatives. The table
shows the word bigram concepts covered by each node and the length it contributes to the summary. Examples of
resulting compression candidates are given on the right side, with the list of nodes activated in their derivations.

in ROUGE-2 score (see Table 3), but a reduction idetermined by its cosine similarity to the collection
Pyramid score. An analysis of the resulting sumef input documents. Though this idea is only imple-
maries showed that the rules used for implementingiented with approximate methods, it is similar in
sentence compression fail to ensure that all conspirit to our concept-based model since it relies on
pression candidates are valid sentences, and abagights for individual summary words rather than
60% of the summaries contain ungrammatical sersentences.
tences. This is confirmed by the linguistic qual- Using a maximum coverage model for summa-
ity score drop for this system. The poor qualityization is not new. Filatova (2004) formalizes the
of the compressed sentences explains the reductigiea, discussing its similarity to the classical NP-
in Pyramid scores: Human judges tend to not givRard problem, but in the end uses a greedy approxi-
credit to ungrammatical sentences because they abation to generate summaries. More recently, Yih et
scure the SCUs. al. (2007) employ a similar model and uses a stack
We have shown in this section how sentence conttecoder to improve on a greedy search. Globally
pression can be implemented in a more scalable waytimal summaries are also discussed by Liu (2006)
under the concept-based model, but it remains to ked Jaoua Kallel (2004) who apply genetic algo-
shown that such a technique can improve summarithms for finding selections of sentences that maxi-

quality. mize summary-level metrics. Hassel (2006) uses hill
climbing to build summaries that maximize a global
7 Related work information criterion based on random indexing.

In addition to proposing an ILP for the sentence- The g_ene_zral _idea Olf co(:rlwgeptr;level scoripg for

level model, McDonald (2007) discusses a kind Oi;ummarlzitlon is employed in the SumBasic Eysh

summary-level model: The score of a summary iem (Nenkova and Vandgrwende, _2005)’ whic
chooses sentences greedily according to the sum

4As measured according to the TAC'08 guidelines. of their word values (values are derived from fre-
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guency). Conroy (2006) describes a bag-of-wordgush the resulting summaries in the right direction,
model, with the goal of approximating the distribu-as opposed to the individual concept values.

tion of words from the input documents in the sum- Third, our rule-based sentence compression is
mary. Others, like (Yih et al., 2007) train a model tomore of a proof of concept, showing that joint com-
learn the value of each word from a set of featuregression and optimal selection is feasible. Better
including frequency and position. Filatova’s modektatistical methods have been developed for produc-
is most theoretically similar to ours, though the coning high quality compression candidates (McDon-

cepts she chooses are “events”. ald, 2006), that maintain linguistic quality, some re-
centwork even uses ILPs for exact inference (Clarke
8 Conclusion and Future Work and Lapata, 2008). The addition of compressed sen-

_ _ tences tends to yield less coherent summaries, mak-
We have synthesized a number of ideas fromyg sentence ordering more important. We would

the field of automatic summarization, includingjike to add constraints on sentence ordering to the
concept-level weighting, a maximum  coverag§| p formulation to address this issue.
model to minimize redundancy globally, and sen-
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Bounding and Comparing Methods for Correlation Clustering Beyond ILP
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Abstract tasks, text topic clustering and chat disentangle-
ment, where typical datasets are too large for ILP
We evaluate several heuristic solvers for corre- to find a solution. We show, as in previous work
|§-tIOI’.1 Clusge”t”g' Ehg NP-hard _prOb]L?thf pt:)ar- on consensus clustering (Goder and Filkov, 2008),
tioning a dataset given painwise atlinities be- 4, ot jocal search can improve the solutions found by
tween all points. We experiment on two prac- | d hods. We i . h |
tical tasks, document clustering and chat dis- ~ €OMMONly-use methoas. Ve mvgsﬂgate the rela-
entanglement, to which ILP does not scale.  tionship between the clustering objective and exter-
On these datasets, we show that the cluster- nal evaluation metrics such as F-score and one-to-
ing objective often, but not always, correlates one overlap, showing that optimizing the objective
with external metrics, and that local search al-  is usually a reasonable aim, but that other measure-
ways improves over greedy solutions. We use  ments like number of clusters found should some-
semi-definite programming (SDP) toprovidea  i,64 he ysed to reject pathological solutions. We
tighter bound, showing that simple algorithms that the best heuristi ite cl ¢
are already close to optimality. prove a.\ € eg gurls Ics are _qu' € close 1o Qp-
timal, using the first implementation of the semi-

definite programming (SDP) relaxation to provide
1 Introduction tighter bounds.

Correlation clustering is a powerful technique for The specific algorithms we investigate are, of
discovering structure in data. It operates on th&OUrse, only a subset of the large numbe'r of pos-
pairwise relationships between datapoints, partitior?—Ible solutions, or even of those proposed in the_ lit-
ing the graph to minimize the number of unrelaterature- We chose to test a few common, efficient

pairs that are clustered together, plus the numb@gorlghgws trlja_‘t are easily |mplem(;nted. (d)ur use Ofd
of related pairs that are separated. Unfortunatel ’goo ounding strategy means that we do not nee

this minimization problem is NP-hard (Ailon et al., 0 perform an exhaustive comparison; we will show

2008). Practical work has adopted one of thre@at’ though the methods we describe are not per-

strategies for solving it. For a few specific tasks, onEeCt’ the remaining improvements possible with any

can restrict the problem so that it is efficiently solv—algor'thm are relatively small.

able. I'n most cases, hpwever, this is impossible. Irz Previous Work

teger linear programming (ILP) can be used to solve

the general problem optimally, but only when theCorrelation clustering was first introduced by Ben-

number of data points is small. Beyond a few hunbor et al. (1999) to cluster gene expression pat-

dred points, the only available solutions are heuristiterns. The correlation clustering approach has sev-

or approximate. eral strengths. It does not require users to specify
In this paper, we evaluate a variety of solu-a parametric form for the clusters, nor to pick the

tions for correlation clustering on two realistic NLPnumber of clusters. Unlike fully unsupervised clus-
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tering methods, it can use training data to optimizenetrics!

the pairwise classifier, but unlike classification, it A variety of approximation algorithms for corre-
does not require samples from the specific clustetation clustering with worst-case theoretical guar-
found in the test data. For instance, it can use meantees have been proposed: (Bansal et al., 2004;
sages about cars to learn a similarity function thahilon et al., 2008; Demaine et al., 2006; Charikar
can then be applied to messages about atheism. et al., 2005; Giotis and Guruswami, 2006). Re-

Correlation clustering is a standard method forearchers including (Ben-Dor et al., 1999; Joachims
coreference resolution. It was introduced to th&"d Hopcroft, 2005, Mathieu and Schudy, 2008)
area by Soon et al. (2001), who describe the firsf—tUdy _correlatlon clustering theoretlcally_ when the
link heuristic method for solving it. Ng and Cardie/NPut is generated by ran(;iomly perturbing an un-
(2002) extend this work with better features, and dek"oWwn ground truth clustering.
velop the best-link heuristic, which finds better solu -
tions. McCallum and Wellner (2004) explicitly de—3 Algorithms
scribe the problem as correlation clustering and us&’e begin with some notation and a formal definition
an approximate technique (Bansal et al., 2004) tof the problem. Our input is a complete, undirected
enforce transitivity. Recently Finkel and ManninggraphG with n nodes; each edge in the graph has
(2008) show that the optimal ILP solution outper-a probabilityp;; reflecting our belief as to whether
forms the first and best-link methods. Cohen andodesi and;j come from the same cluster. Our goal
Richman (2002) experiment with various heuristids to find a clustering, defined as a new gragh
solutions for the cross-document coreference task wfith edgesz;; € {0,1}, where ifz;; = 1, nodes
grouping references to named entities. 1 and j are assigned to the same cluster. To make
correlation clustering has proven useful irfhis consistent, the edges must define an equivalence

Finally, . . oo
g;latlonshlp:xii = landxz;; = xj, = 1implies

several discourse tasks. Barzilay and Lapata (200
use it for content aggregation in a generation systemyis = “ik- , _ _

In Malioutov and Barzilay (2006), it is used for topic  OUr Objective is to find a clustering as consistent
segmentation—since segments must be contiguo® POssible with our beliefs—edges with high proba-
the problem can be solved in polynomial time. El_bl_hty should not _c_ross cluster bounda_lrles, and edges
sner and Charniak (2008) address the related proith low probability should. We defm:q;;} as the
lem of disentanglement (which we explore in SecS0St of cutting an edge whose probabilitypig and

tion 5.3), doing inference with the voting greedy al-i; S the cost of keeping it. Mathematically, this
objective can be written (Ailon et al., 2008; Finkel

gorithm. .
, ) ] and Manning, 2008) as:
Bertolacci and Wirth (2007), Goder and Filkov
(2008) and Gionis et al. (2007) conduct experiments min Z wijwy; + (1 - xij)w;;- @)

on the closely related problem obnsensus cluster-
ing, often solved by reduction to correlation cluster-
ing. The input to this problem is a set of clusteringsThere are two plausible definitions for the costs

the output is a “median” clustering which minimizesandw ™, both of which have gained some support in
the sum of (Rand) distance to the inputs. Althouglthe literature. We can takezg = pij andw;; =
these papers investigate some of the same algorithrhs- p;; (additive weights) as in (Ailon et al., 2008)
we use, they use an unrealistic lower bound, and snd others, onwg = log(pij), w;; = log(1l — pij)
cannot convincingly evaluate absolute performancglogarithmic weights) as in (Finkel and Manning,
Gionis et al. (2007) give an external evaluation 02008). The logarithmic scheme has a tenuous math-
some UCI datasets, but this is somewhat unconvine@matical justification, since it selects a maximum-
ing since their metric, thémpurity index which is likelihood clustering under the assumption that the
essentially preC|§|on 'ghoring rec?”’ gives a perfeCtmand Wirth (2007) gave normalized mutual infor-
score to the all-singletons clustering. The other tWeation for one algorithm and data set, but almost all of their
papers are based on objective values, not externasults study objective value only.

15:9<J
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pi; are independent and identically distributed given
the status of the edgg in the true clustering. If
we obtain thep;; using a classifier, however, this as-
sumption is obviously untrue—some nodes will be
easy to link, while others will be hard—so we eval-
uate the different weighting schemes empirically.

3.1 Greedy Methods

We use four greedy methods drawn from the lit-
erature; they are both fast and easy to implement.
All of them make decisions based on thet weight
wl?g = w;; — Wy

These algorithms step through the nodes of the
graph according to a permutatian We try 100 ran-
dom permutations for each algorithm and report the

run which attains the best objective value (typically

k < 0 // number of clusters created so far
fore=1...ndo

forc=1...kdo
if BESTthen
Quality. < max;ecy( wl-j;-
eseif FIRST then
Quality,. «— max
dseif VOTE then
Qualitye — 3 icc wiij
c* « argmaxi<.<j Quality.
if Quality.~ > 0then
Clc*] < Cle*] U {i}
else
Clk++] < {i} /l form a new cluster

jEC[c}:w$>0 J

Figure 1: BEST/FIRST/VOTE algorithms

this is slightly better than the average run; we dis-
cuss this more in the experimental sections). To sim-
plify the pseudocode we label the verticeg, ... n
in the order specified byt. After this relabeling
(1) = i sow need not appear explicitly in the al-
gorithms.

Three of the algorithms are given in Figure 1. All
three algorithms start with the empty clustering and Figure 2: RVOT algorithm by Ailon et al. (2008)
add the vertices one by one. The&®r algorithm
adds each vertekto the cluster with the strongest _
w* connecting ta, or to a new singleton if none of (2008). The allowedone element movesonsist
thew* are positive. The RsT algorithm adds each of re_mO\_/ing one vertex from a cluster an_d either
vertexi to the cluster containing the most recentlyoVing it to another cluster or to a new singleton
considered vertex with wiﬂ; > 0. The VOTE algo- clugter. The best one element move (B_OEM) al-
rithm adds each vertex to the cluster that minimize80rithm repeatedly makes the most profitable best
the correlation clustering objective, i.e. to the clustePN€ €lement move until a local optimum is reached.

maximizing the total net weight or to a singleton ifSimulated AnnealingSA) makes a random single-
no total is positive. element move, with probability related to the dif-

Ailon et al. (2008) introduced the PoT algo- ference in objective i't causes and. the current tem-
rithm, given in Figure 2, and proved that it is a 5-Perature. Our annealing schedule is exponential and
approximation ifw;; +wy; = 1foralli,j and q§§|g_ned to attemp000n moves f_orn nodes. We
7 is chosen randomly. Unlike BT, VOTE and initialize the local search elther.W|th all nodes clus-
FIRST, which build clusters vertex by vertex, thel€red together, or at the clustering produced by one
PIvoT algorithm creates each new cluster in its fiOf our greedy algorithms (in our tables, the latter is
nal form. This algorithm repeatedly takes an unclug?ritien, eg. RvoT/BOEM, if the greedy algorithm
tered pivot vertex and creates a new cluster contai® Pivor).
ing 'that vertex and all unclustered neighbors Wltf}1 Bounding with SDP
positive weight.

k < 0 /[ number of clusters created so far
fori=1...ndo
P «— Uj<.< Clc] Il Vertices already placed
if i ¢ Pthen
Clk++]  —  {i} U {i<j<n
j ¢ Pandw;; >0}

Although comparing different algorithms to one an-
3.2 Local Search other gives a good picture of relative performance, it
We use the straightforward local search previouslis natural to wonder how well they do in an absolute
used by Gionis et al. (2007) and Goder and Filkogense—how they compare to the optimal solution.
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For very small instances, we can actually find thand Schudy, 2008)):
optimum using ILP, but since this does not scale be-

yond a few hundred points (see Section 5.1), for re- ming 33, ey iy + (1= zig)w)
alistic instances we must instead bound the optimal Ty =1 Vi
value. Bounds are usually obtained by solvinga st 25 >0 Vi, j
laxation of the original problem: a simpler problem X = {w;;}i; PSD

with the same objective but fewer constraints. This SDP has been studied theoretically by a
‘The bound used in previous work (Goder anty mper of authors; we mention just two here.
F|I_kov, 2008; qunls et al., 200?; _Bertolacm_andCharikar et al. (2005) give an approximation al-
Wirth, 2007), which we call therivial bound, is gorithm based on rounding the SDP which is a
obtained by ignoring the transitivity constraints eng 7664 approximation for the problem of maximiz-
tirely. To optimize, we link ¢;; = 1) all the pairs  jng agreements. Mathieu and Schudy (2008) show
wh_erewg is larger thanw,;; since this solution is hat if the input is generated by corrupting the

quite far from pelng a clustering, the bound tend%dges of a ground truth clusteririgindependently,
not to be very tight. then the SDP relaxation value is within an additive

To get a better idea of how good a real clustering)(n./n) of the optimum clustering. They further
can be, we use a semi-definite programming (SDRhow that using the IROT algorithm to round the
relaxation to provide a better bound. Here we motiSDP yields a clustering with value at ma@gtn./n)
vate and define this relaxation. more than optimal.

One can picture a clustering geometrically by asé E .
sociating clusterc with the standard basis vector Xperiments
ec = (0,0,...,0,1,0,...,0) € R". If objectiis 51 Scalability

——— S——

: el 0 onec . Using synthetic data, we investigate the scalability
in clusterc then it 1S n_atural t(.) assomatamth '_[he of the linear programming solver and SDP bound.
vectorr; — Ce Thls gves ,a nlcg_geometnc IOICtureTo find optimal solutions, we pass the completedLP
ofa_clusterlng,_wnh objectsandy in the same clus- to CPLEX. This is reasonable for 100 points and
ter if and only ifr; = r;. Note that the dot product g, 110 o 200; beyond this point it cannot be
ri o 7; 1S 1if i andj are in the same cluster and Oc 0 16 1o memory exhaustion. As noted below,
otherwise. Th_ese ideas yleld a5|mp!e reformulatloaespite our inability to compute the LP bound on
of the correlation clustering problem: large instances, we can sometimes prove that they
must be worse than SDP bounds, so we do not in-
min, Y, o (rierj)w; +(L—rje rj)w;; vestigate LP-solving techniques further.
stVi Je:r = e, The SDP has fewer constraints than the ILP
(O(n?) vs O(n?)), but this is still more than many
SDP solvers can handle. For our experiments we
To get an efficiently computable lower-bound weysed one of the few SDP solvers that can handle such
relax the constraints that thes are standard basisa|arge number of constraints: Christoph Helmberg's
vectors, replacing them with two sets of constraintsgnicBundle library (Helmberg, 2009; Helmberg,
rier; =1foralliandr; er; > 0foralli,j. 2000). This solver can handle several thousand data-
Since ther; only appear as dot products, we carpoints. It produces loose lower-bounds (off by a few
rewrite in terms ofz;; = r; e r;. However, we percent) quickly but converges to optimality quite
must now constrain the;; to be the dot products slowly; we err on the side of inefficiency by run-
of some set of vectors iR™. This is true if and ning for up to 60 hours. Of course, the SDP solver
only if the symmetric matrixX = {x;;};; is posi- is only necessary to bound algorithm performance;
tive semi-definite We now have the standard semi-our solvers themselves scale much better.
definite programming (SDP) relaxation of correla-  2consisting of the objective plus constraifts< zi; < 1
tion clustering (e.g. (Charikar et al., 2005; Mathieland triangle inequality (Ailon et al., 2008).
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5.2 Twenty Newsgroups Logarithmic Weights

Obj | Rand| F | 1-1
SDP bound 51.1%| - - -
VoTE/BOEM | 55.8%] 93.80| 33 | 41
56.3% | 93.56 | 31| 36
PivoT/BOEM | 56.6% | 93.63| 32 | 39
BESTTBOEM | 57.6% | 93.57| 31 | 38

In this section, we test our approach on a typi-
cal benchmark clustering dataset, 20 Newsgroups
which contains posts from a variety of Usenet
newsgroups such asec. notorcycl es and
al t.athei sm Since our bounding technique
does not scale to the full dataset, we restrict our at-

tention to a subsample of 100 messaddgesm each FIRSTTBOEM | 57.9%/ 93.65| 30 | 36
newsgroup for a total of 2000—still a realistically VOTE 59.0%/ 93.411 29| 35

large-scale problem. Our goal is to cluster message OEM 60.1%| 93.51| 30 | 35
by their newsgroup of origin. We conduct exper- ~'VOT 100% | 90.85| 17 | 27
iments by holding out four newsgroups as a train- BEST 138% | 87.111 20| 29
ing set, learning a pairwise classifier, and applying it "'RST 619% | 40.97| 11| 8
to the remaining 16 newsgroups to form our affinity N _

matrix4 Additive Weights

Obj [ Rand| F [ 11
SDP bound 59.0% - - -
SA 63.5% | 93.75| 32| 39

Our pairwise classifier uses three types of fea-
tures previously found useful in document cluster-
ing. First, we bucket all wordsby their log doc-
ument frequency (for an overview of TF-IDF see VOTE/BOEM | 63.5%| 93.75| 32| 39
(Joachims, 1997)). For a pair of messages, we creat8!VOT/BOEM | 63.7%/ 93.70| 32 | 39
a feature for each bucket whose value is the proporBESTBOEM | 63.8% | 93.73| 31 | 39
tion of shared words in that bucket. Secondly, we FIRSTBOEM | 63.9% | 93.58| 31 | 37
run LSA (Deerwester et al., 1990) on the TF-IDF BOEM 64.6%) 93.65| 31 37
matrix for the dataset, and use the cosine distance/ ©TE 67.3% 93.35| 28| 34
between each message pair as a feature. Finally, wB'VOT 109% | 90.63| 17| 26
use the same type of shared words features for termBEST 165% | 87.06| 20 | 29
in message subjects. We make a training instance fof'RST 761% | 40.46| 11| 8

each pair of documents in the training set and IearFable 1: Score of the solution with best objective for each

via logistic regression. solver, averaged over newsgroups training sets, sorted by
The classifier has an average F-score of 29% amfjective.

an accuracy of 88%—not particularly good. We

should emphasize that the clustering task for 20

newsgroups is much harder than the more Conﬁpetrlcs (see Meila (2007) for an overview of cluster-

. . . ing metrics). Th ndm r nts the number
mon classification task—since our training set is ennd Me cs) gRandmeasure counts the numbe

tirely disjoint with the testing set, we can only IearnOf pairs of points for which the proposed clustering

weights on feature categories, not term weights. ogierees with .ground truth. This is Fhe _metrlc which
aim is to create realistic-looking data on which tdS mathematically closest to the objective. However,

test our clustering methods, not to motivate correl s_|?ce m'(‘;)st pmﬂtslarte n tdlffzrept cILf[ste;Tc,,hany S0-
tion clustering as a solution to this specific problem.uhIon ]:N' smal clus ers{ tﬁn sloge aﬁlfg score.
In fact, Zhong and Ghosh (2003) report better result-g_tﬁre ore V\;etatsho repor i € Inore se|n5|t ?co:e
using generative models. with respect to the minority (“same c us'er) class.
. . . \(Ve also report thene-to-onescore, which mea-
We evaluate our clusterings using three differen . ) . :
sures accuracy over single points. For this metric,
®Available asri ni _newsgr oups. t ar. gz fromthe UCI  we calculate a maximum-weight matching between

machine learning repository. proposed clusters and ground-truth clusters, then re-

p . o
trainiTnhgeS(;(spenments below are averaged over four d|510|nb0rt the overlap between the two.

SWe omit the message header, except the subject line, and_\/\/_hen presenting objective V?-'_Uesv we locate th.em
also discard word types with fewer than 3 occurrences. within the range between the trivial lower bound dis-
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cussed in Section 4 and the objective value of th o 44
singletons clusteringr(; = 0,7 # j). On this scale,
lower is better; 0% corresponds to the trivial bounc + —
and 100% corresponds to the singletons clusterin 0.42 T ]
It is possible to find values greater than 100%, sinc T I
I
I

some particularly bad clusterings have objective 0.40} T
worse than the singletons clustering. Plainly, how
ever, real clusterings will not have values as low a _El
0%, since the trivial bound is so unrealistic. 0.38

Our results are shown in Table 1. The best re I
sults are obtained using logarithmic weights witr
VOTE followed by BOEM; reasonable results are '
also found using additive weights, and annealing :
VoTE or PivoT followed by BOEM. On its own, 0.34 +
the best greedy scheme i©VE, but all of them are F
substantially improved by BOEM. First-link is by L, 4
far the worst. Our use of the SDP lower bound rathe 0.32 & ]
than the trivial lower-bound of 0% reduces the ga| O&@ ~S}</<9 QS\( “‘% o)
between the best clustering and the lower bound t
over a factor of ten. It is easy to show that the LP
relaxation can obtain a bound of at most $8%he  Figure 3: Box-and-whisker diagram (outliers a3 for
SDP beats the LP in both runtime and quality! one-to-one scores obtained by the best few solvers on a

We analyze the correlation between objective VaparticuIar_newsgroup.dataset. L means using log weights.
ues and metric values, averaging Kendall'Staver B means improved with BOEM.
the four datasets (Table 2). Over the entire dataset,

0.36

correlations are generally good (large and negative), Rand F 1-1
showing that optimizing the objective is indeed a LOg-wt | -.60 -73 -.71
useful way to find good results. We also examine TOP 10%| -.14 -22 -24
correlations for the solutions with objective values Add-wt | -.60 -.67 -.65
within the top 10%. Here the correlation is much Top 10 %/ -.13 -15 -.14

poorer; selecting the solution with the best ObJeCtlverable 2: Kendall's tau correlation between objective and

value will not necessarily optimize the metric, al-neic values, averaged over newsgroup datasets, for all
though the correspondence is slightly better for thgoutions and top 10% of solutions.

log-weights scheme. The correlations do exist, how-
ever, and so the solution with the best objective value
is typically slightly better than the median. score plot, which is similar, for space reasons.

In Figure 3, we show the distribution of one-to-
one scores obtained (for one specific dataset) by ti3 Chat Disentanglement
best solvers. From this diagram, it is clear that log-
weights and WTE/BOEM usually obtain the best In the disentanglement task, we examine data from a
scores for this metric, since the median is highe$hared discussion group where many conversations
than other solvers’ upper quartile scores. All solver@re occurring simultaneously. The task is to partition
have quite high variance, with a range of about ooghe utterances into a set of conversations. This task

between quartiles and 4% overall. We omit the Fdiffers from newsgroup clustering in that data points
- (utterances) have an inherent linear order. Ordering

6 o — 11 (= > ) for i < 4 i : ORI : : :
_ thThLePSO'U“O”fEm = 31 (wy; >wyj) fori < jis feasible g tynjcal in discourse tasks including topic segmen-
In the f . .

"The standard Pearson correlation coefficient is less robug?tlon and coreference resolution.

to outliers, which causes problems for this data. We use the annotated dataset and pairwise classi-
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fier made available by Elsner and Charniak (2008):shown in the table) are 41% one-to-one, 73% local
this study represents a competitive baseline, a&nd .44% F-scor®.Our improvement on the global
though more recently Wang and Oard (2009) havenetrics (12% relative improvement in one-to-one,
improved it. Since this classifier is ineffective atl3% in F-score) is modest, but was achieved with
linking utterances more than 129 seconds apart, vieetter inference on exactly the same input.

treat all decisions for such utterances as abstentions,Since the objective function fails to distinguish
p = .5. For utterance pairs on which it does makeyood solutions from bad ones, we examine the types
a decision, the classifier has a reported accuracy of solutions found by different methods in the hope
75% with an F-score of 71%. of explaining why some perform better than others.

As in previous work, we run experiments on thdn this setting, some methods (notably local search
800-utterance test set and average metrics over 6 tegh on its own or from a poor starting point) find far
annotations. We evaluate using the three metrics reewer clusters than others (Table 4; log weights not
ported by previous work. Two node-counting metshown but similar to additive). Since the classifier
rics measure global accuracgne-to-one matchs abstains for utterances more than 129 seconds apart,
explained above, anBhen’s F(Shen et al., 2006): the objective is unaffected if very distant utterances
F = %, ™max;(F(i,j)). Hereiis a gold con- are linked on the basis of little or no evidence; this
versation with sizen; andj is a proposed conver- is presumably how such large clusters form. (This
sation with sizen;, sharingn,; utterances;F'(i,j) raises the question of whether abstentions should
is the harmonic mean of precisioﬁ}]{) and recall be given weaker links withh < .5. We leave this
(%1). A third metric, thelocal agreementcounts for future work.) Algorithms which find reasonable
edgewise agreement for pairs of nearby utteranced/mbers of clusters (T&, PIvoT, BEST and lo-
where nearby means “within three utterances.”  cal searches based on these) all achieve good metric

In this dataset, the SDP is a more moderate inCOres, although there is still no reliable way to find
provement over the trivial lower bound, reducingth® Pest solution among this set of methods.
the gap between the best clustering and best Iowgr
bound by a factor of about 3 (Table 3).

Optimization of the objective does not correspondt is clear from these results that heuristic methods
to improvements in the global metrics (Table 3)can provide good correlation clustering solutions on
for instance, the best objectives are attained witbatasets far too large for ILP to scale. The particular
FIRST/BOEM, but VOTE/BOEM yields better one- solver chosel has a substantial impact on the qual-
to-one and F scores. Correlation between the olity of results obtained, in terms of external metrics
jective and these global metrics is extremely wealks well as objective value.

(Table 5). The local metric is somewhat correlated. For general problems, our recommendation is to
Local search does improve metric results for eachse log weights and run & e/BOEM. This algo-
particular greedy algorithm. For instance, whenithm is fast, achieves good objective values, and
BOEM is added to WTE (with log weights), one- yields good metric scores on our datasets. Although
to-one increases from 44% to 46%, local from 72%bjective values are usually only weakly correlated
to 73% and F from 48% to 50%. This represents with metrics, our results suggest that slightly bet-
moderate improvement on the inference scheme der scores can be obtained by running the algorithm
scribed in Elsner and Charniak (2008). They useany times and returning the solution with the best
voting with additive weights, but rather than per-objective. This may be worth trying even when the

forming multiple runs over random permutationsdatapoints are inherently ordered, as in chat.

they process Utt?rances n t.he qrder they oceur. ( ®The F-score metric is not used in Elsner and Charniak
experimented with prqcessmg in order; the reSUIt&OOS);we compute it ourselves on the result produced kiy the
are unclear, but there is a slight trend toward worsgware.

performance, as in this case.) Their results (also®Our C++ correlation clustering software and SDP
bounding package are available for download from
8Downloaded fronts. br own. edu/ ~nmel sner cs. brown. edu/ ~nel sner.

Conclusions
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Log Weights Num clusters

Obj 1-1 Locs ShenF Max human annotator 128

SDP bound 13.0% - - - PivoT 122
FIRST/BOEM | 19.3% 41 74 44 VOTE 99
VOTE/BOEM | 20.0% 46 73 50 PIivOoT/BOEM 89
SA 203% 42 73 45 VOTE/BOEM 86
BEST/BOEM | 21.3% 43 73 47 Mean human annotator 81
BOEM 215% 22 72 21 BEST 70
PIivOT/BOEM | 22.0% 45 72 50 FIRST 70
VOTE 26.3% 44 72 48 Elsner and Charniak (2008 63
BEST 37.1% 40 67 44 BEST/BOEM 62
PivoT 44.4% 39 66 44 SA 57
FIRST 583% 39 62 41 FIRST/BOEM 54
Min human annotator 50

Additive Weights BOEM 7

Obj 1-1 Locg ShenF
SDP bound 16.2% - - -
FIRST/BOEM | 21.7% 40 73 44

Table 4: Average number of clusters found (using addi-
tive weights) for chat test data.

BOEM 22.3% 22 73 20 1-1 Locs ShenF

BESTTBOEM | 22.7% 44 74 49 Log-wt -40 -.68 -.35

VOTE/BOEM | 23.3% 46 73 50 Top10%| .14 -.15 .15

SA 23.8% 41 72 46 Add-wt | -31 -.67 -.25

PivoT/BOEM | 24.8% 46 73 50 Top10%| -.07 -.22 .13

VOTE 30.5% 44 71 49

EC'08 _ 41 73 44 Table 5: Kendall's tau correlation between objective and
BEST 421% 43 69 47 rlnoe(;:gf\/sétlft?c:‘g;the chat test set, for all solutions and top
PivoT 48.4% 38 67 44 '

FIRST 69.0% 40 59 41

tighter varies with dataset (about 12 times smaller
Table 3: Score of the solution with best objective founggr newsgroups, 3 times for chat). This bound can
by each solver on the chat test dataset, averaged ovep ysed to evaluate the absolute performance of our
annotations, sorted by objective. solvers: the \WTE/BOEM solver whose use we rec-
ommend is within about 5% of optimality. Some of

Whatever algorithm is used to provide an initialthis 5% represents the difference between the bound
solution, we advise the use of local search as a pogtnd optimality; the rest is the difference between the
process. BOEM always improves both objectivé@ptimum and the solution found. If the bound were
and metric values over its starting point. exactly optimal, we could expect a significant im-

The objective value is not always sufficient to seprovement on our best results, but not a very large
lect a good solution (as in the chat dataset). If pogne—especially since correlation between objective
sible, experimenters should check statistics like thend metric values grows weaker for the best solu-
number of clusters found to make sure they conforrfions. While it might be useful to investigate more
roughly to expectations. Algorithms that find farsophisticated local searches in an attempt to close
too many or too few clusters, regardless of objedhe gap, we do not view this as a priority.
tive, are unlikely to be useful. This type of problem
can be especially dangerous if the pairwise C|aSSifié
abstains for many pairs of points. We thank Christoph Helmberg, Claire Mathieu and

SDP provides much tighter bounds than the triviajhree reviewers.
bound used in previous work, although how much

cknowledgements
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Abstract

We develop a new objective function for word

alignment that measures the size of the bilin- ok-voon ororok sprok

gual dictionary induced by an alignment. A
word alignment that results in a small dictio-
nary is preferred over one that results in a large
dictionary. In order to search for the align-
ment that minimizes this objective, we cast the

at-voon bichat dat

erok sprok izok hihok ghirok
totat dat arrat vat hilat

ok-drubel ok-voon anok plok sprok

problem as an integer linear program. We then
extend our objective function to align corpora
at the sub-word level, which we demonstrate
on a small Turkish-English corpus.

at-drubel at-voon pippat rrat dat

ok-voon anok drok brok jok
at-voon krat pippat sat lat

wiwok farok izok stok

1 Introduction totat jjat quat cat

Word alignment is the problem of annotating a bilin- lalok sprok izok jok stok

gual text with links connecting words that have the wat dat krat quat cat

same me'anings. !:igure 1 shows sample ,inpUt fOrlalok farok ororok lalok sprok izok enemok
a word aligner (Knight, 1997). After analyzing the ¢ jjat bichat wat dat vat encat

text, we may conclude, for example, ttsptok cor-
responds talat in the first sentence pair.

Word alignment has several downstream con-
sumers. One is machine translation, where pro-yiwok nok izok kantok ok-yurp
grams extract translation rules from word-aligned totat nnat quat oloat at-yurp
corpora (Och and Ney, 2004; Galley et al., 2004; .

Chiang, 2007; Quirk et al., 2005). Other down- 'alok mok nok yorok ghirok clok
. = . . wat nnat gat mat bat hilat
stream processes exploit dictionaries derived by
alignment, in order to translate queries in Cross- lalok nok crrrok hihok yorok zanzanok
lingual IR (Schonhofen et al., 2008) or re-score can- Wat nnat arrat mat zanzanat
didate translation outputs (O_ch e_t al., 2004). lalok rarok nok izok hihok mok

Many methods of automatic alignment have been ¢ nnat forat arrat vat gat
proposed. Probabilistic generative models like IBM
1-5 (Brown et al., 1993), HMM (Vogel et al., 1996),
ITG (Wu, 1997), and LEAF (Fraser and Marcu,
2007) define formulas for P(fe) or P(e, f), with

lalok brok anok plok nok
iat lat pippat rrat nnat

Figure 1: Word alignment exercise (Knight, 1997).
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hidden alignment variables. EM algorithms estimate

dictionary and other probabilities in order to maxi-

mize those quantities. One can then ask for Viterbi

all'gn'me.nts that maximize P(alignmeng, f). Dis- © garcia and associates
criminative models, e.g. (Taskar et al., 2005), in- | |
stead set parameters to maximize alignment accusgarcia y asociados
racy against a hand-aligned development set. EMD _

.. . his associates are not StI‘OIlg
training (Fraser and Marcu, 2006) combines genera- ||~ <~ |
tive and discriminative elements. sus asociados no son fuertes

Low accuracy is a weakness for all systems. Most . _
practitioners still use 1990s algorithms to align their 211 garl‘“a hlas thfee ass:’“ates
data. It stands to reason that we have not yet seen, o garcia tiene tres asociados
the last word in alignment models.

In this paper, we develop a new objective function garcia has a company also

. . . . _ |
for alignment, |_nsp|red by Wgtchlng people MAaNU- . . tambien tiene una empresa
ally solve the alignment exercise of Figure 1. When
people attack this problem, we find that once they its clients are angry
create a bilingual dictionary entry, they like te- I 1'I N \fd .
use that entry as much as possible. Previous ma-™"* ¢/'entes estan enfadados
chine aligners emulate this to some degree, but theye associates are also angry
are not explicitly programmed to do so. I | << O\

We also address another weakness of currentos asociados tambien estan enfadados
allgr!ers: they only align full words. With few ex- . the clients and the associates are enemies
ceptions, e.g. (Zhang et al., 2003; Snyder and Barzi-| | L | |
lay, 2008), aligners do not operate at the sub-wordlos clientes y los asociados son enemigos
level, making them much less useful for agglutina-

. . the company has three groups
tive languages such as Turkish. o o
Our present contributions are as follows: la empresa tiene tres grupos

o We offer a simple new objective function that _
. 1ts groups are in europe

scores a corpus alignment based on how many L1 NN N

distinct bilingual word pairs it contains. SuS grupos estan en europa
e We use an integer programming solver to _

carry out optimization and corpus alignment. ~ the modemn groups sell strong pharmaceuticals
e We extend the system to perform sub- = N =

; y p los grupos modernos venden medicinas fuertes
word alignment, which we demonstrate on a
Turkish-English corpus. the groups do not sell zenzanine

o - [ R /
The results in this paper constitute a proof of con- | arupos no venden zanzanina
cept of these ideas, executed on small corpora. We

conclude by listing future directions. the small groups are not modern
| = ~ N N\

2 New Objective Function for Alignment los grupos pequenos no son modernos

We SearCh_ for the '?9""' allgnmgnt thﬂm'm'Z?St_he Figure 2. Gold alignment. The induced bilingual dic-
size of the induced bilingual dictionary. By dictio-  tjgnary has 28 distinct entries, including garcia/garcia,
nary size, we mean the number of distinct wordare/son, are/estan, not/no, hasftiene, etc.

pairs linked in the corpus alignment. We can im-

mediately investigate how different alignments stack

up, according to this objective function. Figure 2
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garcia and associates

[ I
garcia y asociados

his associates are not strong
| | >< |

sus asociados no son fuertes

carlos garcia has three associates

| [ |
carlos garcia tiene tres asociados

garcia has a company also

[

garcia tambien tiene una empresa

its clients are angry

| | AN AN
sus clientes estan enfadados

the associates are also angry

| | < O\

los asociados tambien estan enfadados

the clients and the associates are enemies
[ (| | I I
los clientes y los asociados son enemigos

the company has three groups
[ [

la empresa tiene tres grupos

its groups ard in europe

[ N\

sus grupos estdn en europa

the modern groups sell strong pharmaceuticals
| =< N S

los grupos modernos venden medicinas fuertes

the groups do not sell zenzanine

[ - A4

los grupos no venden zanzanina

the small groups are not modern
[ ~~ \

los grupos pequenos no son modernos

Figure 3: IP alignment. The induced bilingual dictionary

has 28 distinct entries.

shows the gold alignment for the corpus in Figure 1
(displayed here as English-Spanish), which results
in 28 distinct bilingual dictionary entries. By con-
trast, a monotone alignment induces 39 distinct en-
tries, due to less re-use.

Next we look at how to automatically rifle through
all legal alignments to find the one with the best
score. What is a legal alignment? For now, we con-
sider it to be one where:

e Every foreign word is aligned exactly once
(Brown et al., 1993).
e Every English word has either O or 1 align-
ments (Melamed, 1997).
We formulate our integer program (IP) as follows.
We set up two types of binary variables:

e Alignment link variables. Ifink-i-j-k = 1, that
means in sentence pairthe foreign word at
position;j aligns to the English words at posi-
tion k.

e Bilingual dictionary variables. ldict-f-e = 1,
that means word pair (f, e) is “in” the dictio-
nary.

We constrain the values o¢ink variables to sat-
isfy the two alignment conditions listed earlier. We
also require that ifink-i-j-k = 1 (i.e., we've decided
on an alignment link), theulict-f;;-e;;, should also
equal 1 (the linked words are recorded as a dictio-
nary entry): We do not require the converse—just
because a word pair is available in the dictionary, the
aligner does not have to link every instance of that
word pair. For example, if an English sentence has
two the tokens, and its Spanish translation has two
la tokens, we should not require that all four links
be active—in fact, this would conflict with the 1-1
link constraints and render the integer program un-
solvable. The IP reads as follows:

minimize:
21 dict-f-e
subject to:
Vi > link-i-j-k =1
Vi > link-i-j-k <1
vi,j,k’ Iink—i-j-k < dict-fij-eik,

On our Spanish-English corpus, thgex? solver
obtains a minimal objective function value of 28. To

1fij is thejth foreign word in theth sentence pair.
Zwww.ilog.com/products/cplex
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get the second-best alignment, we add a constraint 1 ‘
to our IP requiring the sum of the variables active
in the previous solution to be less than and we \

re-runcplex. This forcescplex to choose different  _ *°[ ) I

variable settings on the second go-round. We repeai; 0.85 1

this procedure to get an ordered list of alignmehts. § | |
We find that there are 8 distinct solutions tha ‘ég e

yield the same objective function value of 28. Fig- g2 \ .
ure 3 shows one of these. This alignment is not bad® ~ o7t \ 1
considering that word-order information is not en- § \ |
coded in the IP. We can now compare several align< %\*
ments in terms of both dictionary size and alignment
accuracy. For accuracy, we represent each alignment  oss - .
as a set of tuples 4, j, k >, wherei is the sentence
pair,j is a foreign index, and is an English index. 28 30 32 34 36 38 40 42 44
Number of bilingual dictionary entries in solution
We use these tuples to calculate a balanced f-score (objective function value)
against the gold alignment tuplés.

46

Figure 4: Relationship between IP objective (x-axis =

Method Dict size | f-score size of induced bilingual dictionary) and alignment ac-
Gold 28| 100.0 curacy (y-axis = f-score).

Monotone 39 68.9

IBM-1 (Brown et al., 1993) 30 80.3 Turkish | English

IBM-4 (Brown et al., 1993) 29 86.9 yururum | i walk

IP 28 95.9 yururler | they walk

The last line shows an average f-score over the 8 tied
IP solutions.

Figure 4 further investigates the connection be-
tween our objective function and alignment accu3 Sub-Word Alignment
racy. We sample up to 10 alignments at each
several objective function values by first adding
a constraint thadlict variables add to exactly, then

Figure 5: Two Turkish-English sentence pairs.

%e now turn to alignment at the sub-word level.
Agglutinative languages like Turkish present chal-
iterating the n-best list procedure above. We sto Nges _for many standard NLP tec_hmqueg An ag-

lutinative language can express in a single word

when we have 10 solutions, or wheplex fails to hat might . d
find another solution with value. In this figure, we _(e.g.,yurumuyoruz) what might require many words
n another language (e.gwe are not walking).

see a clear relationship between the objective fun#\i velv breaki hit Its |
tion and alignment accuracy—minimizing the for- alvely breaxing on whitespace resufts in a very
large vocabulary for Turkish, and it ignores the

mer is a good way to maximize the latter. : . .
g y multi-morpheme structure inside Turkish words.
3This method not only suppresses the IP solutions generated Consider the tiny Turkish-English corpus in Fig-
so far, but it suppresses additional solutions as well. liga ure 5. Even a non-Turkish speaker might plausi-
ular, it suppresses solutions in which latlk anddict variables ) align yurur to walk, um to I, andler to they.

have the same values as in some previous solution, but so f th | hi i
additionaldict variables are flipped to 1. We consider this a fea- owever, none o € popular machine aligners

ture rather than a bug, as it ensures that all alignmentsein thS able to do this, since they align at the whole-
n-best list are unique. For what we report in this paper, we onword level. Designers of translation systems some-
create n-best lists whose elements possess the same#jectimes employ language-specific word breakers be-

function value, so the issue does not arise. . .
4p = proportion of proposed links that are in gold fore alignment, though these are hard to build and

R = proportion of gold links that are proposed, and f-main_t"f‘in! and they are usually not O_n_ly language-
score = 2PR/(P+R). specific, but also language-pair-specific. Good un-
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supervised monolingual morpheme segmenters ai® exactly one English word token, and every En-
also available (Goldsmith, 2001; Creutz and Laguglish word aligns to 0 or 1 foreign sub-words. Our
2005), though again, these do not do joint inferencdict-f-e variables now relate Turkish sub-words to
of alignment and word segmentation. English words. The first sentence pair in Figure 5
We extend our objective function straightfor-would have previously contributed twdict vari-
wardly to sub-word alignment. To test our extenables; now it contributes 44, including things like
sion, we construct a Turkish-English corpus of 161@lict-uru-walk. We consider an alignment to be a set
sentence pairs. We first manually construct a regwf tuples< i, 51, j2, k >, wherej1 and;2 are start
lar tree grammar (RTG) (Gecseg and Steinby, 1984nd end indices into the foreign character string. We
for a fragment of English. This grammar producesreatealign-i-j1-j2-k variables that connect Turkish
English trees; it has 86 rules, 26 states, and 53 terharacter spans with English word indices. Align-
minals (English words). We then construct a tree-toment variables constrain dictionary variables as be-
string transducer (Rounds, 1970) that converts Effiere, i.e., an alignment link can only “turn on” when
glish trees into Turkisktharacter strings, including licensed by the dictionary.
space. Because it does not explicitly enumerate the We previously constrained every Turkish word to
Turkish vocabulary, this transducer can output a verglign to something. However, we do not want ev-
large number of distinct Turkish words (i.e., characery Turkish charactespan to align—only the spans
ter sequences preceded and followed by space). Tlisplicitly chosen in our word segmentation. So we
transducer has 177 rules, 18 states, and 23 ternmitroducespan-i-j1-j2 variables to indicate segmen-
nals (Turkish characters). RTG generation produceation decisions. Only whespan-i-j1-j2 = 1 do we
English trees that the transducer converts to Turkequire}, align-i-j1-j2-k = 1.
ish, both via the tree automata toolkit Tiburon (May For a coherent segmentation, the set of acjpam
and Knight, 2006). From this, we obtain a parallelvariables must cover all Turkish letter tokens in the
Turkish-English corpus. A fragment of the corpus igorpus, and no pair of spans may overlap each other.
shown in Figure 6. Because we will concentrate oo implement these constraints, we create a lattice
finding Turkish sub-words, we manually break offwhere each node represents a Turkish index, and
the English sub-wording, by rule, as seen in the each transition corresponds te@an variable. In a
last line of the figure. coherent segmentation, the sum ofsptn variables
This is a small corpus, but good for demonstratentering an lattice-internal node equals the sum of
ing our concept. By automatically tracing the inter-all span variables leaving that node. If the sum of
nal operation of the tree transducer, we also producsl variables leaving the start node equals 1, then we
a gold alignment for the corpus. We use the goldre guaranteed a left-to-right path through the lat-
alignment to tabulate the number of morphemes peice, i.e., a coherent choice of 0 and 1 valuessfian

Turkish word: variables.
n| % Turkishtypes | % Turkishtokens The IP reads as follows:
with n morphemes with n morphemeg minimize:
1 23.1% 35.5% > s dict-f-e
2 63.5% 61.6% subject to:
3 13.4% 2.9% Vi,jl,jg Zk a]lgn-l-] 1—]2—k = span-i-j 1—]2

Vik 21 42 dlign-i-jl2-k <1
Vij1,52,6 @ign-i-]1-j2-k < dict-f; ;1 j2-€; &
Vij 2o i3 Span-i-j3- =3 5 span-i-j-j3
Viw 2 s SPAN--W-j = 1
(w ranges over Turkish word start indices)

Naturally, these statistics imply that standard whole-
word aligners will fail. By inspecting the corpus, we
find that 26.8 is the maximium f-score available to
whole-word alignment methods.

Now we adjust our IP formulation. We broaden
the definition of legal alignment to include breaking With our simple objective function, we obtain an
any foreign word (token) into one or more sub-word-score of 61.4 against the gold standard. Sample
(tokens). Each resulting sub-word token is alignedold and IP alignments are shown in Figure 7.
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Turkish English
onlari gordum i saw them
gidecekler they will go

onu stadyumda gordum

i saw him in the stadium

ogretmenlerim tiyatroya yurud

U my teachers walked to the theatre

cocuklar yurudu

the girls walked

babam restorana gidiyor

my fath

er is walk ing to the restaurant

Figure 6: A Turkish-English corpus produced by an Englishngmar pipelined with an English-to-Turkish tree-to-

string transducer.

Gold alignment

you go to his office

onun ofisi- -ne gider- -sin

my teachers ran to their house

ogretmenler- -im onlarin evi- -ne kostu

i saw him

onu gordu- -m

4. h3&gnt goes ta their house
ala- -m onfarin evi- -ne gider

5. we go to the theatre
tiyatro- -ya gider- -iz
6. they walked to the store

magaza- -ya yurudu- -ler

IP sub-word alignment

you go to his office

onun ofisi- -ne gider- -sin

my teachers ran to their house

ogretmenler- -im onlarin evi- -ne kostu

i saw him

onu gordu- -m

my aunt goes tq their house

al- -am orfarin eVi- -ne gider
we go to the theatre
tiyatro- -ya gider- -iz

they walked to the store

magaza- -ya yurudu- -ler

Figure 7: Sample gold and (initial) IP sub-word alignmentoar Turkish-English corpus. Dashes indicate where the
IP search has decided to break Turkish words in the proceslfggofng. For examples, the wordagazaya has been

broken intomagaza- and-ya.
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The last two incorrect alignments in the figuresystems therefore make substantial search approxi-
are instructive. The system has decided to aligmations (Brown et al., 1993).
Englishthe to the Turkish noun morphemeiyatro
andmagaza, and to leave English noutiseatreand 4 Related Work

store unaligned. This is_ a Fie—break_ decision. It iS(Zhang etal., 2003) and (Wu, 1997) tackle the prob-
equally good for the objective function to leaike lem of segmenting Chinese while aligning it to En-

unallg_ne_d |nstead—_e|ther way, there are two relegilish. (Snyder and Barzilay, 2008) use multilingual
vant dictionary entries.

data to compute segmentations of Arabic, Hebrew,
We fix this problem by introducing a special Aramaic, and English. Their method uses IBM mod-
NULL Turkish token, and by modifying the IP to re- g|s to hootstrap alignments, and they measure the re-
quire every English token to align (either to NU'—'—suIting segmentation accuracy.
or something else). This introduces a cost for fail- (Taskar et al., 2005) cast their alignment model as
ing to align an English toker to Turkish, because 5 minimum cost quadratic flow problem, for which
a newx/NULL dictionary entry will have to be cre- optimal alignments can be computed with off-the-
ated. (The NULL token itself is unconstrained inghelf optimizers. Alignment in the modified model
how many tokens it may align to.) of (Lacoste-Julien et al., 2006) can be mapped to a
Under this scheme, the last two incorrect alignguadratic assignment problem and solved with linear
ments in Figure 7 induce four relevant dictio-programming tools. In that work, linear program-
nary entriestheftiyatro, the/magaza, theatre/NULL, ming is not only used for alignment, but also for
store/NULL) while the gold alignment induces only training weights for the discriminative model. These
three ¢he/NULL, theatre/tiyatro, store/magaza), be- weights are trained on a manually-aligned subset of
causethe/NULL is re-used. The gold alignment isthe parallel data. One important “mega” feature for
therefore now preferred by the IP optimizer. Therghe discriminative model is the score assigned by an
is a rippling effect, causing the system to correclBM model, which must be separately trained on the
many other decisions as well. This revision raisefull parallel data. Our work differs in two ways: (1)
the alignment f-score from 61.4 to 83.4. our training is unsupervised, requiring no manually

The following table summarizes our alignment realigned data, and (2) we do not bootstrap off IBM
sults. In the table, “Dict” refers to the size of themodels. (DeNero and Klein, 2008) gives an integer
induced dictionary, and “Sub-words” refers to thdinear programming formulation of another align-

number of induced Turkish sub-word tokens. ment model based on phrases. There, integer pro-
gramming is used only for alignment, not for learn-

Method Dict | Sub-words| f-score ing parameter values.

Gold (sub-word) | 67 8102 | 100.0

Monotone (word) 512 4851 5.5 5 Conclusionsand Future Work

IBM-1 (word) 220 4851 21.6 o _

IBM-4 (word) 530 4851 20.3 We have presented a nove'l olgjectlve function for

IP (word) 107 4851 201 alignment, and we have applied it to vyhgle—word and

IP (sub-word, 60 7418 614 sub-word alignment problems. Prellmlnary results
initial) I(_Jok_gogd, especially given tha_t new objective func-

P (sub-word 65 8105 834 _t|on is simpler thap those previously proposed. The
revised) ' integer programming framework makes the model

easy to implement, and its optimal behavior frees us
Our search for an optimal IP solution is not fastfrom worrying about search errors.

It takes 1-5 hours to perform sub-word alignment on We believe there are good future possibilities for

the Turkish-English corpus. Of course, if we wantedhis work:

to obtain optimal alignments under IBM Model 4, e Extend legal alignments to cover n-to-m

that would also be expensive, in fact NP-complete  and discontinuous cases. While morpheme-

(Raghavendra and Maiji, 2006). Practical Model 4  to-morpheme alignment is more frequently a

34



1-to-1 affair than word-to-word alignment is, 1. D. Melamed. 1997. A word-to-word model of transla-

the 1-to-1 assumption is not justified in either  tional equivalence. IRroc. ACL.

case. F. J. Och and H. Ney. 2004. The alignment template
e Develop new components for the | P objec- approach to statistical machine translati@omputa-

tive. Our current objective function makes no tional Linguistics, 30(4).

reference to word order. so if the same word F. J. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Ya-
! mada, A. Fraser, S. Kumar, L. Shen, D. Smith, K. Eng,

appears twice in a sentence, a tie-break en- \; jain 7. Jin, and D. Radev. 2004. A smorgasbord
Sues. of features for statistical machine translation Poc.

e Establish complexity bounds for optimiz- HLT-NAACL.
ing dictionary size. We conjecture that opti- C. Quirk, A. Menezes, and C. Cherry. 2005. De-
mal alignment according to our model is NP-  pendency treelet translation: Syntactically informed
complete in the size of the corpus. phrasal SMT. IrProc. ACL.

o Develop a fast, approximate alignment al- u. RaghlaV(_etndrfa ?ntd tH. I|< Marj1i_. 2(t)06. Ith.)mpl:tlj"tgtional
gorithm for our model. complexity of statistical machine translation. Pnoc.
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1 Introduction from information extraction to machine translation
to human-computer dialog. An ambitious project

Integer linear programming (ILP) is a frameworksuch as this poses a number of questions and difficult
for solving combinatorial problems with linear con-challenges, including: a) how to declaratively repre-
straints of the formy = ciz1 + cozo + ... + cpz,  SENt the syntactic structure of sentences, b) how to
where the variables (iey, andz;s) take on only in- integrate the processing of hard constraints with soft
teger values. ILP is a special case of a larger fantprobabilistic) ones, c) how to overcome problems
ily of contraint-based solving techniques in whichof intractibility associated with large problems and
variables may take on additional types of values (edich representations in learning, inference, as well
discrete, symbolic, real, set, and structured) or iras search.

volve additional kinds of constraints (eg. logical

and non-linear, such asA y = z andy = cz™).

Constraint-based problem splving appr'oaches off%r Related Work

a more natural way of modeling many kinds of real-

world problems. Furthermore, the declarative nature

of constraint-based approaches makes them versaifigciarative and constraint-based representations
since the order in which the variables are solved ignq computation mechanisms have been the subject
not predetermined. The same program can thus B much research in the fields of both Linguistics
reused for solving different subsets of the problem’gnq Computer Science over the last 30-40 years,
variables. Additionally, in some cases, constraintyt times motivating each other but also sometimes
based approaches can solve problems more efffaveloping independently. Although there is quite
ciently or accurately than alternative approaches. 3 |arge literature on constraint-based processing in

Constraint Programming (CP) is a field of re-NLP, the notion of a constraint and the methods for
search that develops algorithms and tools fgprocessing them vary significantly from that in CP.
constraint-based problem solving. This abstract d&ee (Duchier et al., 1998; Piwek and van Deemter,
scribes work-in-progress on a project to develog006; Blache, 2000). The CP approach has been
a CP-based general-purpose broad-coverage pratesigned for a broader ranger of applications and
abilistic syntactic language processing system faests on a stronger, more general theoretical foun-
English. Because of its declarative nature, the syshation. It coherently integrates a variety of solving
tem can be used for both parsing and realization daschnigues whereas theoretical linguistic formalisms
well as their subtasks (such as tagging, chunk parkave traditionally used only a single kind of con-
ing, lexical choice, or word ordering) or hybridiza-straint solver, namely unification. In comparison,
tions (like text-to-text generation). We expect thishe 2009 ILPNLP workshop focuses on NLP pro-
tool to be useful for a wide range of applicationscessing using solely integer linear constraints.
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3 Methodology of state-of-the-art single-classifier methods, while
' running in linear time with respect to the number of
Three key elements of our approach are its syntactigtput variables or word tokens. We are not aware

representation, confidence-based beam search, angt any other approach that achieves this level of ac-
novel on-demand learning and inference algorithmgyracy in comparable algorithmic time.

The last is used to calculate probability-based fea- _
ture costs and the confidences used to heuristicafy Conclusion

guide the search for the best solution. A description, versatility and potential scalability of our ap-

of the flat featurized dependency-style syntactic re roach are its most noteworthy aspects. We ex-

resentation we use is available in (Langkilde-Geary . . it 1o pe able to handle not only a wider vari-

and Betteridge, 2006), which describes how the e 'ty of NLP tasks than existing approaches but also

tire Penn Treebank (Marcus et al., 1993) was CONG tackle harder tasks that have been intractible be-

verted to this representation. The representation hﬁﬁe now. Although ILP has the same theoretical
been designe_d _to offer finer—grgined declarativene?J%Wer as CP for efficiently solving problems, our
than other §X|st|ng representations. o approach takes advantage of several capabilities that
Our confidence-based search heuristic evaluates fers that ILP doesn’t including modeling with
the conditional likelihood of undetermined outputyq; ony linear constraints but also logical, set-based
variables (ie., word features) at each step of searghyy other kinds of constraints; customized search

and heuristically selects the case of the mostly "ke%ethodology with dynamically computed costs, and
variable/value pair as the next (or only one) t0 exgongitionally applied constraints, among others.
plore. The likelihood is contextualized by the in-

put variables and any output variables which have

already been explored and tentatively solved. AIR€ferences

though one theoretical advantage of CP (and ILR), Bjache. 2000. Constraints, linguistic theories and nat-
is the ability to calculate an overall optimal solu- ural language processintlatural Language Process-
tion through search, we unexpectedly found that ing, 1835.

our confidence-based heuristic led to the first intef®. Duchier, C. Gardent, and J. Niehren. 1998. Concur-
mediate solution typically being the optimal. This rentconstraintprogrammingin oz for natural language
allowed us to simplify the search methodology to processing. Technical report, Universitt des Saarlan-
a one-best or threshold-based beam search Wlthq.uF_angkilde-Geary and J. Betteridge. 2006. A factored

any significant loss in accuracy. The result is dra- functional dependency transformation of the english

matically improved scalability. penn treebank for probabilistic surface generation. In
We use the concurrent CP language Mozart/Oz Proc. LREC.

to implement our approach. We previously im-. Langkilde-Geary. 2005. An exploratory applica-

plemented an exploratory prototype that used raw t?on of constraintoptimization'in mozart to prgbgbilis-

frequencies instead of smoothed probabilities for UC Natural language processing. In H. Christiansen,

N . P. Skadhauge, and J. Villadsen, editéimceedings of
the feature costs and search heuristic Conf'dences'theInternational Workshop on Constraint Solving and

(Langkilde-Geary, 2005; Langkilde-Geary, 2007). Language Processing (CSLP), volume 3438. Springer-
The lack of smoothing severely limited the applica- verlag LNAI.

bility of the prototype. We are currently finishing I. Langkilde-Geary. 2007. Declarative syntactic process-
development of the before-mentioned on-demand ing of natural language using concurrent constraint
learning algorithm which will overcome that chal- Programming and probabilistic dependency modeling.
lenge and allow us to evaluate our approach’s ac- !N Proc. UCNLG. o

curacy and efficiency on a variety of NLP tasks ON. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.

test sets. Inf | limi it Building a large annotated corpus of english: the Penn
common test sets. Inftormal preliminary resuits on treebank Computational Linguistics, 19(2).

the much-studied subtask of part-of-speech tagging piwek and K. van Deemter. 2006. Constraint-based
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