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Abstract 

We propose an efficient text summarization 
technique that involves two basic opera-
tions. The first operation involves finding 
coherent chunks in the document and the 
second operation involves ranking the text 
in the individual coherent chunks and pick-
ing the sentences that rank above a given 
threshold. The coherent chunks are formed 
by exploiting the lexical relationship be-
tween adjacent sentences in the document. 
Occurrence of words through repetition or 
relatedness by sense relation plays a major 
role in forming a cohesive tie. The pro-
posed text ranking approach is based on a 
graph theoretic ranking model applied to 
text summarization task. 

1 Introduction 

Automated summarization is an important area in 
NLP research. A variety of automated summariza-
tion schemes have been proposed recently. NeATS 
(Lin and Hovy, 2002) is a sentence position, term 
frequency, topic signature and term clustering 
based approach and MEAD (Radev et al., 2004) is 
a centroid based approach. Iterative graph based 
Ranking algorithms, such as Kleinberg’s HITS 
algorithm (Kleinberg, 1999) and Google’s Page-
Rank (Brin and Page, 1998) have been traditionally 
and successfully used in web-link analysis, social 

networks and more recently in text processing ap-
plications (Mihalcea and Tarau, 2004), (Mihalcea 
et al., 2004), (Erkan and Radev, 2004) and (Mihal-
cea, 2004). These iterative approaches have a high 
time complexity and are practically slow in dy-
namic summarization. Proposals are also made for 
coherence based automated summarization system 
(Silber and McCoy, 2000). 

We propose a novel text summarization tech-
nique that involves two basic operations, namely 
finding coherent chunks in the document and rank-
ing the text in the individual coherent chunks 
formed. 
For finding coherent chunks in the document, we 
propose a set of rules that identifies the connection 
between adjacent sentences in the document. The 
connected sentences that are picked based on the 
rules form coherent chunks in the document.  For 
text ranking, we propose an automatic and unsu-
pervised graph based ranking algorithm that gives 
improved results when compared to other ranking 
algorithms. The formation of coherent chunks 
greatly improves the amount of information of the 
text picked for subsequent ranking and hence the 
quality of text summarization.  
The proposed text ranking technique employs a 
hybrid approach involving two phases; the first 
phase employs word frequency statistics and the 
second phase involves a word position and string 
pattern based weighing algorithm to find the 
weight of the sentence. A fast running time is 
achieved by using a compression hash on each sen-
tence.  
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This paper is organized as follows: section 2 
discusses lexical cohesion, section 3 discusses the 
text ranking algorithm and section 4 describes the 
summarization by combining lexical cohesion and 
summarization. 

2 Lexical Cohesion 

Coherence in linguistics makes the text semantical-
ly meaningful. It is achieved through semantic fea-
tures such as the use of deictic (a deictic is an 
expression which shows the direction. ex: that, 
this.), anaphoric (a referent which requires an ante-
cedent in front. ex: he, she, it.), cataphoric (a refe-
rent which requires an antecedent at the back.), 
lexical relation and proper noun repeating elements 
(Morris and Hirst, 1991). Robert De Beaugrande 
and Wolfgang U. Dressler define coherence as a 
“continuity of senses” and “the mutual access and 
relevance within a configuration of concepts and 
relations” (Beaugrande and Dressler, 1981). Thus a 
text gives meaning as a result of union of meaning 
or senses in the text.  

The coherence cues present in a sentence are di-
rectly visible when we go through the flow of the 
document. Our approach aims to achieve this ob-
jective with linguistic and heuristic information.  
The identification of semantic neighborhood, oc-
currence of words through repetition or relatedness 
by sense relation namely synonyms, hyponyms and 
hypernym, plays a major role in forming a cohesive 
tie (Miller et al., 1990). 

2.1 Rules for finding Coherent chunks 

When parsing through a document, the relationship 
among adjacent sentences is determined by the 
continuity that exists between them.  

We define the following set of rules to find co-
herent chunks in the document. 
 
Rule 1 
 
The presence of connectives (such as accordingly, 
again, also, besides) in present sentence indicates 
the connectedness of the present sentence with the 
previous sentence. When such connectives are 
found, the adjacent sentences form coherent 
chunks. 

 
 
 

Rule 2 
 
A 3rd person pronominal in a given sentence refers 
to the antecedent in the previous sentence, in such 
a way that the given sentence gives the complete 
meaning with respect to the previous sentence. 
When such adjacent sentences are found, they form 
coherent chunks.  

 
Rule 3 
 
 The reappearance of NERs in adjacent sentences 
is an indication of connectedness. When such adja-
cent sentences are found, they form coherent 
chunks. 
 
Rule 4 
 
An ontology relationship between words across 
sentences can be used to find semantically related 
words across adjacent sentences that appear in the 
document. The appearance of related words is an 
indication of its coherence and hence forms cohe-
rent chunks. 
All the above rules are applied incrementally to 
achieve the complete set of coherent chunks. 

2.1.1 Connecting Word 

The ACE Corpus was used for studying the cohe-
rence patterns between adjacent sentences of the 
document. From our analysis, we picked out a set 
of keywords such that, the appearance of these 
keywords at the beginning of the sentence provide 
a strong lexical tie with the previous sentence. 
The appearance of the keywords “accordingly, 
again, also, besides, hence, henceforth, however, 
incidentally, meanwhile, moreover, namely, never-
theless, otherwise, that is, then, therefore, thus, 
and, but, or, yet, so, once, so that, than, that, till, 
whenever, whereas and wherever”, at the begin-
ning of the present sentence was found to be highly 
coherent with the previous sentence.  

Linguistically a sentence cannot start with the 
above words without any related introduction in 
the previous sentence.   

Furthermore, the appearance of the keywords 
“consequently, finally, furthermore”, at the begin-
ning or middle of the present sentence was found 
to be highly cohesive with the previous sentence.  
Example 1 
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1. a The train was late. 
1. b However I managed to reach the wedding 

on time. 
 
In Example 1, the connecting word however binds 
with the situation of the train being late. 
Example 2 

1. a The cab driver was late. 
1. b The bike tyre was punctured.  
1. c The train was late. 
1 .d Finally, I managed to arrive at the wed-
ding on time by calling a cab. 

Example 3 
1. a The cab driver was late. 
1. b The bike tyre was punctured.  
1. c The train was late. 
1. d I could not wait any more; I finally ma-
naged to reach the wedding on time by calling a 
cab. 

 
In Example 2, the connecting word finally binds 
with the situation of him being delayed. Similarly, 
in Example 3, the connecting word finally, though 
it comes in the middle of the sentence, it still binds 
with the situation of him being delayed. 

2.1.2 Pronominals 

In this approach we have a set of pronominals 
which establishes coherence in the text. From our 
analysis, it was observed that if the pronominals 
“he, she, it, they, her, his, hers, its, their, theirs”, 
appear in the present sentence; its antecedent may 
be in the same or previous sentence.  

It is also found that if the pronominal is not pos-
sessive (i.e. the antecedent appears in the previous 
sentence or previous clause), then the present sen-
tence and the previous sentences are connected. 
However, if the pronominal is possessive then it 
behaves like reflexives such as “himself”, “herself” 
which has subject as its antecedent. Hence the pos-
sibility of connecting it with the previous sentence 
is very unlikely. Though pronominal resolution 
cannot be done at a window size of 2 alone, still 
we are looking at window size 2 alone to pick 
guaranteed connected sentences. 
 
Example 4 

1. a Ravi is a good boy. 
1. b He always speaks the truth. 
 

In Example 4, the pronominal he in the second sen-
tence refers to the antecedent Ravi in the first sen-
tence. 

 
Example 5 

1. a He is the one who got the first prize. 
 

In example 5 the pronominal he is possessive and 
it doesn’t need an antecedent to convey the mean-
ing. 

2.1.3 NERs Reappearance 

Two adjacent sentences are said to be coherent 
when both the sentences contain one or more reap-
pearing nouns. 
 
Example 6 

1. a Ravi is a good boy. 
1. b Ravi scored good marks in exams. 

 
Example 7 

1. a The car race starts at noon. 
1. b Any car is allowed to participate. 

 
Example 6 and Example 7 demonstrates the cohe-
rence between the two sentences through reappear-
ing nouns. 

2.1.4 Thesaurus Relationships 

WordNet covers most of the sense relationships. 
To find the semantic neighborhood between adja-
cent sentences, most of the lexical relationships 
such as synonyms, hyponyms, hypernyms, mero-
nyms, holonyms and gradation can be used (Fell-
baum 1998). Hence, semantically related terms are 
captured through this process.  

 
Example 8 

1. a The bicycle has two wheels. 
1. b The wheels provide speed and stability. 

 
In Example 8, bicycle and wheels are related 
through bicycle is the holonym of wheels. 
 
2.2 Coherence Finding Algorithm 
 
The algorithm is carried out in four phases. Initial-
ly, each of the 4 cohesion rules is individually ap-
plied over the given document to give coherent 
chunks. Next, the coherent chunks obtained in each 
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phases are merged together to give the global cohe-
rent chunks in the document. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
. 
 
 
 
 
 

 
Figure 1: Flow of Coherence chunker 

 
Figure 1, shows the flow and rule positions in the 
coherence chunk identification module. 
 
2.3 Evaluation 
 
One way to evaluate the coherence finding algo-
rithm is to compare against human judgments 
made by readers, evaluating against text pre 
marked by authors and to see the improved result 
in the computational task. In this paper we will see 
the computational method to see the improved re-
sult. 

3 Text Ranking 

The proposed graph based text ranking algorithm 
consists of three steps: (1) Word Frequency Analy-
sis; (2) A word positional and string pattern based 
weight calculation algorithm; (3) Ranking the sen-
tences by normalizing the results of step (1) and 
(2).  

The algorithm is carried out in two phases. The 
weight metric obtained at the end of each phase is 

averaged to obtain the final weight metric. Sen-
tences are sorted in non ascending order of weight. 

3.1 Graph 

Let G (V, E) be a weighted undirected complete 
graph, where V is set of vertices and E is set of 
weighted edges.  

S1

S2

S3

S6

S5

S4  
 

Figure 2: A complete undirected graph 
 

In figure 2, the vertices in graph G represent the set 
of all sentences in the given document. Each sen-
tence in G is related to every other sentence 
through the set of weighted edges in the complete 
graph. 

3.2 Phase 1 

Let the set of all sentences in document S= {si | 1 ≤ 
i ≤ n}, where n is the number of sentences in S. 
The sentence weight (SW) for each sentence is cal-
culated by average affinity weight of words in it. 
For a sentence si= {wj | 1 ≤ j ≤ mi} where mi is the 
number of words in sentence si, (1 ≤ i ≤ n) the af-
finity weight AW of a word wj is calculated as fol-
lows:  

 
( , )

( )
( )

j k

k
j

IsEqual w w
w SAW w

WC S
∀ ∈=
∑

           (1) 

where S is the set of all sentences in the given 
document, wk is a word in S, WC (S) is the total 
number of words in S and function IsEqual(x, y) 
returns an integer count 1 if x and y are equal else 
integer count 0 is returned by the function. 

Input Text 

Connecting Word 

Possessive Pronoun 

Noun Reappearance 

Coherent Chunks 

Thesaurus Relationships 
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Next, we find the sentence weight SW (si) of 
each sentence si (1 ≤ i ≤ n) as follows: 

 
1( ) ( )i j

i j i

SW s AW w
m w s

=
∀ ∈
∑                       (2) 

 
At the end of phase 1, the graph vertices hold 

the sentence weight as illustrated in figure 4.  
 

 
 

Figure 2: Sample text taken for the ranking 
process. 

 

 
 
Figure 4: Sample graph of Sentence weight calcu-
lation in phase 1 

3.3 Compression hash 

A fast compression hash function over word w is 
given as follows: 

 
H (w) = (c1ak-1+c2ak-2 +c3ak-3+...+cka0) mod p    (3) 

 
where w= {c1, c2, c3 ... ck} is the ordered set of 

ASCII equivalents of alphabets in w and k the total 
number of alphabets in w. The choice of a=2 per-
mits the exponentiations and term wise multiplica-
tions in equation 3 to be binary shift operations on 
a micro processor, thereby speeding up the hash 
computation over the text. Any lexicographically 
ordered bijective map from character to integer 
may be used to generate set w. The recommenda-
tion to use ASCII equivalents is solely for imple-
mentation convenience. Set p = 26 (for English), to 
cover the sample space of the set of alphabets un-
der consideration.  

Compute H (w) for each word in sentence si to 
obtain the hashed set  

 
1 2( ) { ( ), ( )... ( )}ii mH s H w H w H w=             (4) 

 
Next, invert each element in the set H (si) back 

to its ASCII equivalent to obtain the set 
 

1 2ˆ ˆ ˆ ˆ ˆ( ) { ( ), ( )... ( )}ii mH s H c H c H c=                (5) 

    Then, concatenate the elements in set ˆ iH(s )  to 
obtain the string ˆis ; where ˆis  is the compressed 
representation of sentence si. The hash operations 
are carried out to reduce the computational com-
plexity in phase 2, by compressing the sentences 
and at the same time retaining their structural 
properties, specifically word frequency, word posi-
tion and sentence patterns.  

3.4 Levenshtein Distance 

Levenshtein distance (LD) between two strings 
string1 and string2 is a metric that is used to find 
the number of operations required to convert 
string1 to string2 or vice versa; where the set of 
possible operations on the character is insertion, 
deletion, or substitution. 

The LD algorithm is illustrated by the following 
example 

 
LD (ROLL, ROLE) is 1 
LD (SATURDAY, SUNDAY) is 3 

[1]"The whole show is dreadful," she cried, com-
ing out of the menagerie of M. Martin. 
[2]She had just been looking at that daring specu-
lator "working with his hyena" to speak in the 
style of the program. 
[3]"By what means," she continued, "can he have 
tamed these animals to such a point as to be cer-
tain of their affection for." 
[4]"What seems to you a problem," said I, inter-
rupting, "is really quite natural." 
[5]"Oh!" she cried, letting an incredulous smile 
wander over her lips. 
[6]"You think that beasts are wholly without pas-
sions?" Quite the reverse; we can communicate to 
them all the vices arising in our own state of civi-
lization. 
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3.5 Levenshtein Similarity Weight 

Consider two strings, string1 and string2 where ls1 
is the length of string1 and ls2 be the length of 
string2. Compute MaxLen=maximum (ls1, ls2). 
Then LSW between string1 and string2 is the dif-
ference between MaxLen and LD, divided by Max-
Len. Clearly, LSW lies in the interval 0 to 1. In case 
of a perfect match between two words, its LSW is 1 
and in case of a total mismatch, its LSW is 0. In all 
other cases, 0 < LSW <1. The LSW metric is illu-
strated by the following example. 

LSW (ABC, ABC) =1 
LSW (ABC, XYZ) =0 
LSW (ABCD, EFD) =0.25 
 

Hence, to find the Levenshtein similarity 
weight, first find the Levenshtein distance LD us-
ing which LSW is calculated by the equation 

 
ˆ ˆ ˆ ˆ( , ) ( , )ˆ ˆ( , )

ˆ ˆ( , )
i j i j

i j
i j

MaxLen s s LD s sLSW s s
MaxLen s s

−=       (6) 

where, ˆis and ĵs are the concatenated string out-
puts of equation 5. 

3.6 Phase 2 

Let S = {si | 1 ≤ i ≤ n} be the set of all sentences in 
the given document; where n is the number of sen-
tences in S. Further, si = {wj | 1 ≤ j ≤ m}, where m 
is the number of words in sentence si.  
 

 
Figure 5: Sample graph for Sentence weight calcu-
lation in phase 2 

 
is S ∀ ∈ ,find 1 2ˆ ˆ ˆ ˆ ˆ( ) { ( ), ( )... ( )}ii mH s H c H c H c=  

using equation 3 and 4. Then, concatenate the ele-
ments in set ˆ iH(s )  to obtain the string ˆis ; where ˆis  
is the compressed representation of sentence si. 

Each string ˆis ; 1 ≤ i ≤ n is represented as the 
vertex of the complete graph as in figure 5 
and ˆ îS={s |1 i n}≤ ≤ . For the graph in figure 5, 
find the Levenshtein similarity weight LSW be-
tween every vertex using equation 6. Find vertex 
weight (VW) for each string îs ; 1 ≤ l ≤ n by  
 

1ˆ ˆ ˆ( ) ( , )
ˆˆ l̂

l l i

i

VW s LSW s s
n

s s S
=

∀ ≠ ∈
∑            (7) 

4 Text Ranking 

The rank of sentence si; 1 ≤ i ≤ n is computed as 
 

ˆ( ) ( )( ) ;1
2

i i
i

SW s VW sRank s i n+= ≤ ≤           (8) 

where, ( )iSW s  is calculated by equation 2 of 
phase 1 and ˆ( )iVW s  is found using equation 7 of 
phase 2. Arrange the sentences si; 1 ≤ i ≤ n, in non 
increasing order of their ranks. 

( )iSW s  in phase 1 holds the sentence affinity in 
terms of word frequency and is used to determine 
the significance of the sentence in the overall rak-
ing scheme. ˆ( )iVW s  in phase 2 helps in the overall 
ranking by determining largest common subse-
quences and other smaller subsequences then as-
signing weights to it using LSW. Further, since 
named entities are represented as strings, repeated 
occurrences are weighed efficiently by LSW, the-
reby giving it a relevant ranking position.  

5 Summarization 

Summarization is done by applying text ranking 
over the global coherent chunks in the document. 
The sentences whose weight is above the threshold 
is picked and rearranged in the order in which the 
sentences appeared in the original document. 
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6 Evaluation 

The ROUGE evaluation toolkit is employed to 
evaluate the proposed algorithm. ROUGE, an au-
tomated summarization evaluation package based 
on Ngram statistics, is found to be highly corre-
lated with human evaluations (Lin and Hovy, 
2003a).  

The evaluations are reported in ROUGE-1 me-
trics, which seeks unigram matches between the 
generated and the reference summaries. The 
ROUGE-1 metric is found to have high correlation 
with human judgments at a 95% confidence level 
and hence used for evaluation. (Mihalcea and Ta-
rau, 2004) a graph based ranking model with 
Rouge score 0.4904, (Mihalcea, 2004) Graph-
based Ranking Algorithms for Sentence Extrac-
tion, Applied to Text Summarization with Rouge 
score 0.5023.  

Table 1 shows the ROUGE Score of 567 news 
articles provided during the Document Under-
standing Evaluations 2002(DUC, 2002) using the 
proposed algorithm without the inclusion of cohe-
rence chunker module. 

 

 
 
Table 2 shows the ROUGE Score of 567 news 

articles provided during the Document Under-
standing Evaluations 2002(DUC, 2002) using the 
proposed algorithm after the inclusion of cohe-
rence chunker module. 

 
 

Comparatively Table 2, which is the the 
ROUGE score for summary including the cohe-
rence chunker module gives better result. 

7 Related Work 

Text extraction is considered to be the important 
and foremost process in summarization. Intuitive-
ly, a hash based approach to graph based ranking 
algorithm for text ranking works well on the task 
of extractive summarization. A notable study re-
port on usefulness and limitations of automatic 
sentence extraction is reported in (Lin and Hovy, 
2003b), which emphasizes the need for efficient 
algorithms for sentence ranking and summariza-
tion.  

8 Conclusions 

In this paper, we propose a coherence chunker 
module and a hash based approach to graph based 
ranking algorithm for text ranking. In specific, we 
propose a novel approach for graph based text 
ranking, with improved results comparative to ex-
isting ranking algorithms. The architecture of the 
algorithm helps the ranking process to be done in a 
time efficient way. This approach succeeds in 
grabbing the coherent sentences based on the lin-
guistic and heuristic rules; whereas other super-
vised ranking systems do this process by training 
the summary collection. This makes the proposed 
algorithm highly portable to other domains and 
languages. 
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