Transliteration based Search Engine for Multilingual Information Access

Anand Arokia Raj
Speech and Language Technology Lab
Bhrigus Software (I) Pvt Ltd
Hyderabad, India

rayar.aerdddrigus.aam

Abstract

Most of the Internet data for Indian languages
exist in various encodings, causing difficul-
ties in searching for the information through
search engines. In the Indian scenario, ma-
jority web pages are not searchable or the in-
tended information is not efficiently retrieved
by the search engines due to the following:
(1) Multiple text-encodings are used while
authoring websites. (2) Inspite of Indian
languages sharing common phonetic nature,
common words like loan words (borrowed
from other languages like Sanskrit, Urdu or
English), transliterated terms, pronouns etc.,
can not be searched across languages. (3) Fi-
nally the query input mechanism is another
major problem. Most of the users hardly know
how to type in their native language and pre-
fer to access the information through English
based transliteration. This paper addresses all
these problems and presents a transliteration
based search engine (inSearch) which is ca-
pable of searching 10 multi-script and multi-
encoded Indian languages content on the web.

1 Introduction

India is a multi-language and multi-script coun-
try with 23 official languages and 11 written script
forms. About a billion people in India use these lan-
guages as their first language. About 5% of the pop-
ulation (usually the educated class) can understand
English as their second language. Hindi is spoken
by about 30% (G. E. Burkhart, S. E. Goodman, A.
Mehta and L. Press, 1998) of the population, but it is
concentrated in urban areas and north-central India,

12

Harikrishna Maganti
Speech and Language Technology Lab
Bhrigus Software (I) Pvt Ltd
Hyderabad, India

hrecantiddrigus.can

and is still not only foreign, but often unpopular in
many other regions.

Though considerable amount of Indic content is
available on the World Wide Web (WWW), we can
observe that search development is very less when
compared to the official languages of the United Na-
tions (UN). The primary reason for this can be at-
tributed for much delayed standards and lack of sup-
port from operating systems and browsers in ren-
dering Indic scripts. This caused web publishers to
develop their own proprietory encodings/fonts, who
are now hesitant to use available standards such as
Unicode/ISCII. This creates a major hinderance in
accessing Indian content through existing search en-
gines.

Most of the search engines support Indic search
in Unicode data only. But, considerable amount
of content is available in ASCII based font encod-
ings which is much larger (more dynamic also) than
Unicode (Unicode Consortium - Universal Code
Standard, 1991) or ISCII (ISCII - Indian Stan-
dard Code for Information Interchange, 1983) for-
mats. Apart from this, language independent infor-
mation like loan words, transliterated words, pro-
nouns etc., are also not accessible across Indian lan-
guages. Most users are familiar with English key-
board typing than any Indian language, and would
be interested to query through English translitera-
tion. So, a meta standard transliteration scheme
(IT3 sec3.1) has to be commonly defined across all
the Indian languages, and the web content has to
be appropriately converted. Also, the web pages
need to be indexed using phonetic features like
(diphone/triphones/syllables), which will be conve-

Proceedings of CLIAWS3, Third International Cross Lingual Information Access Workshop, pages 12-20,
Boulder, Colorado, June 2009. (©)2009 Association for Computational Linguistics

nient to retrieve and rank the pages. In this paper,
we incorporate all these aspects to make search en-
gine as the meaningful searching tool for Indian lan-
guages.

The paper is organized into six sections. The
first section explains the nature of Indic scripts.
The second section details the various major en-
coding formats and transliteration scheme used to
store and render Indic data. In section three, novel
approaches for preprocessing Indic data like font-
encoding identification and font-data conversion are
explained. In section four, the experiments regard-
ing stemming and grapheme-to-phoneme (G2P) for
Indian-English using Classification and Regression
Tree (CART) are described and stop words identifi-
cation is also explained. The fifth section discusses
the issues in developing a multi-lingual search en-
gine for Indian languages. The sixth section explains
the three possible ways to devlope a cross-lingual
search engine. Finally the report and summary are
included with conclusion.

2 Nature of Indic Scripts

The scripts in Indian languages have originated from
the ancient Brahmi script. The basic units of the
writing system are referred to as Aksharas. The
properties of Aksharas are as follows: (1) An Ak-
shara is an orthographic representation of a speech
sound (2) Aksharas are syllabic in nature (3) The
typical forms of Akshara are V, CV, CCV and
CCCYV, thus have a generalized form of C*V. The
shape of an Akshara depends on its composition of
consonants and the vowel, and sequence of the con-
sonants. In defining the shape of an Akshara, one
of the consonant symbols acts as pivotal symbol (re-
ferred to as semi-full form). Depending on the con-
text, an Akshara can have a complex shape with
other consonant and vowel symbols being placed on
top, below, before, after or sometimes surrounding
the pivotal symbol (referred to as half-form).

Thus to render an Akshara electronically, a set of
semi-full or half-forms have to be rendered, which
are in turn rendered using a set of basic shapes
referred to as glyphs. Often a semi-full form or
half-form is rendered using two or more glyphs,
thus there is no one-to-one correspondence between
glyphs of a font and semi-full or half-forms.

13

2.1 Convergence and Divergence

All Indian languages except English and Urdu share
a common phonetic base, i.e., they share a com-
mon set of speech sounds. While all of these lan-
guages share a common phonetic base, some of the
languages such as Hindi, Marathi and Nepali also
share a common script known as Devanagari. But
languages such as Telugu, Kannada and Tamil have
their own scripts. The property which distinguishes
these languages can be attributed to the phonotactics
in each of these languages rather than the scripts and
speech sounds. Phonotactics is the permissible com-
bination of phones that can co-occur in a language.

This knowledge helps us in designing a common
transliteration scheme, and also in identifying and
converting different text encodings.

3 Indic Data Formats

Another aspect involved in the diversity of electronic
content of Indian languages is their format of digi-
tal storage. Storage formats like ASCII (American
Standard Code for Information Interchange) based
fonts, ISCII (Indian Standard code for Information
Interchange), Unicode and phonetic based translit-
eration schemes are often used to store the digital
text data in Indian languages. Most of the text is
rendered using some fonts of these formats.

3.1 Phonetic Transliteration Schemes

Transliteration is a mapping from one system of
writing into another, word by word, or ideally let-
ter by letter. It is the practice of transcribing a word
or text written in one writing system into another
writing system. Transliterations in the narrow sense
are used in situations where the original script is
not available to write down a word in that script,
while still high precision is required. One instance
of transliteration is the use of an English computer
keyboard to type in a language that uses a different
alphabet, such as Russian, Hindi etc. Transliterated
texts are often used in emails, blogs, and electronic
correspondence where non-Latin keyboards are un-
available, is sometimes referred to by special com-
posite terms that demonstrate the combination of
English characters and the original non-Latin word
pronunciation: Ruglish, Hebrish, Greeklish, Ara-
bish or Hinlish.

To handle diversified storage formats of scripts of
Indian languages such as ASCII based fonts, ISCII
and Unicode etc., it is useful and becomes essen-
tial to use a meta-storage format. ISO 15919 stan-
dards (Transliteration of Indic Scripts: How to use
ISO 15919,) describes development of translitera-
tion for Indic scripts. A transliteration scheme maps
the Aksharas of Indian languages onto English al-
phabets and it could serve as meta-storage format
for text-data. Since Aksharas in Indian languages
are orthographic representation of speech sound, and
they have a common phonetic base, it is suggested to
have a phonetic transliteration scheme such as IT3
(Ganapathiraju M., Balakrishnan M., Balakrishnan
N. and Reddy R., 2005) (Prahallad Lavanya, Pra-
hallad Kishore and GanapathiRaju Madhavi, 2005).
Thus, when the font-data is converted into I'T3, it es-
sentially turns the whole effort into font-to-Akshara
conversion. Thus IT3 transliteration is used as com-
mon representation scheme for all Indic data for-
mats. The same is used to get the input from the
user also.

4 Indic Data Preprocessing

In search engine development, it is an absolute re-
quirement that the content should be in an unique
format to build a efficient index table. So, prepro-
cessing the web content is unavoidable here. Most
of the Indian language electronic data is either Uni-
code encoded or glyph based font encoded. Process-
ing Unicode data is quite straight forward because it
follows distinguished code ranges for each language
and there is a one-to-one correspondence between
glyphs (shapes) and characters. But this is not true in
the case of glyph based font encoded data. Hence, it
becomes necessary to identify the font encoding and
convert the font-data into a phonetic transliteration
sheme like IT3. The following subsections explain
the stages in detail.

4.1 Font-Encoding Identification

The problem of font-identification could be defined
as, given a set of words or sentences to identify the
font-encoding by finding the minimum distance be-
tween the input glyph codes and the models repre-
senting font-encodings. Existing works (Anil Ku-
mar Singh and Jagadeesh Gorla, 2007) addressed the

14

Table 1: Font-Type Identification for Words.

Font Name Uniglyph | Biglyph | Triglyph
Amarujala (Hindi) | 100% 100% 100%
Jagran (Hindi) 100% 100% 100%
Webdunia (Hindi) | 0.1% 100% 100%
Shree-Tel (Telugu) | 7.3% 100% 100%
Eenadu (Telugu) 0.2% 100% 100%
Vaarttha (Telugu) 29.1% 100% 100%
E-Panchali (Tamil) | 93% 100% 100%
Amudham (Tamil) | 100% 100% 100%
Shree-Tam (Tamil) | 3.7% 100% 100%
English-Text 0% 96.3% 100%

same problem but with limited success.

In this context, the proposed approach (A. A. Raj
and K. Prahallad, 2007) use vector space model
and Term Frequency - Inverse Document Frequency
(TF-IDF) for font-encoding identification. This ap-
proach is used to weigh each term in the font-data
according to its uniqueness. Thus it captures the
relevancy among term and document. Here, Term:
refers to a unit of glyph. In this work, experiments
are performed with different units such as single
glyph g; (uniglyph), two consecutive glyphs g;—1g;
(biglyph) and three consecutive glyphs g;—19:gi+1
(triglyph). Document: 1t refers to the font-data
(words and sentences) in a specific font-encoding.

To build a model for each font-encoding scheme,
we need sufficient data. So we have collected man-
ually an average of 0.12 million unique words per
type for nearly 37 different glyph based fonts. To
create a vector space model for a font-encoding, pri-
marily the term (uniglyph or biglyph or triglyph) is
extracted out of the font-data. Then TF-IDF weights
are calculated for all terms in the documents.

Identification Results: The steps involved are as
follows. Firstly, terms from the input word or sen-
tence are extracted. Then a query vector using those
terms is created. The distance between query vec-
tor and all the models of font-encoding is computed
using TF-IDF weights. The input word is said to
be originated from the model which gives a max-
imum TF-IDF value. It is typically observed that
TF-IDF weights are more sensitive to the length of
query. The accuracy increases with the increase in
the length of test data. Thus, two different types

Table 2: Font-Type Identification for Sentences.

Font Name Uniglyph | Biglyph | Triglyph
Amarujala (Hindi) | 100% 100% 100%
Jagran (Hindi) 100% 100% 100%
Webdunia (Hindi) | 100% 100% 100%
Shree-Tel (Telugu) | 100% 100% 100%
Eenadu (Telugu) 0% 100% 100%
Vaarttha (Telugu) 100% 100% 100%
E-Panchali (Tamil) | 100% 100% 100%
Amudham (Tamil) | 100% 100% 100%
Shree-Tam (Tamil) | 100% 100% 100%
English-Text 0% 100% 100%

of test data were prepared for testing. One is a set
of unique words and the other is a set of sentences.
It should also be noted that the accuracy depends
on various factors: a) The number of font-encodings
from which the identifier has to select one b) The in-
herent confusion of one font-encoding with another
and c) The type of unit used in modeling. For 1000
different number of inputs (words and sentences) we
have identified the closest models and calculated the
accuracy. It is repeatedly done for various (uniglyph,
biglyph and triglyph) categories. From Tables 1 and
2, it is clear that triglyph seems to be an appropriate
unit for a term in the identification of font-encoding.
It can also be seen that the performance at word and
sentence level is 100% with triglyph.

4.2 Font-Data Conversion

The problem of font-data conversion could be de-
fined as a module whose input is sequence of glyph
codes and whose output is a sequence of Aksharas
(characters) of Indian languages.

Existing methods and solutions proposed by (Hi-
manshu Garg, 2005) (Khudanpur S. and Schafer C.,
Devanagari Converters, 2003) lack in, a) Framing
a generic methodology or algorithm for conversion
of font-data of all Indian languages b) Since glyph
codes are manually constructed, 100% accurate con-
version is achievable c) Existing methods requires
large amount of effort for each font-encoding d)
Large number of rules have to be written for rule
based system e) Large parallel corpora has to be pre-
pared for training f) They don’t exploit shape and
positional information of the glyphs, thus reducing

15

accuracy in conversion process.

Exploiting Position and Shape Information: (A.
A. Raj and K. Prahallad, 2007) Characters in Indian
languages change their shape where they appear
(top, bottom, left, right) in the script. In this work, an
unambiguous glyph code mapping is done by intro-
ducing a simple alphanumeric scheme where the al-
phabets denote the corresponding phoneme and the
number denotes the glyph position. We followed
IT3 phonetic notations and the position numbers as
described below. Glyphs which could be in a) piv-
otal (center) position are referred by code 0/1. b)
left position of pivotal symbol are referred by code
2. ¢) right position of pivotal symbol are referred by
code 3. d) top position of pivotal symbol are referred
by code 4. e) bottom position of pivotal symbol are
referred by code 5.

Training: First in the training, a font-encoding for
a language is selected and a glyph-map table is pre-
pared by hand-coding the relation between glyphs
(suffixed with their position and shape information)
and IT3 notations. In the second stage, a simple
set of glyph assimilation rules are defined (Multi-
Lingual Screen Reader and Processing of Font-data
in Indian Languages,). We iterated through the fol-
lowing steps until there are minimal errors on held-
out test set of words. Results are checked for errors
using human evaluation. If errors are found then the
rules are updated or redefined. The above process is
repeated for 3 different font-encodings of different
font-families of the chosen language.

Evaluation: While testing, a new font from the
same language is selected and a glyph-mapping ta-
ble is prepared. It has to be noted that for new font,
we don’t update or add any glyph assimilation rules,
and thus we use the existing rules obtained during
training phase. A random set of 500 words from
that font-data is picked-up. The conversion accuracy
is evaluated using human evaluation. We have built
converters for 10 Indian languages and 37 different
font-encodings. The evaluations results in Table 3
indicate that the font-data conversion performs con-
sistently above 99% for a new font-encoding across
languages except for Telugu. Thus in our approach
the effort of building rules is limited to three differ-
ent fonts of a language to build the converter. To add
a new font, only glyph-map table is required and no
more repetition of rule building process.

In Table 3, we can observe inferior performance
for Telugu. It is due to the number of glyphs and
their possible combinations are higher than other
languages. Also it is common for all Indian lan-
guages that the pivotal character glyph comes first
and other supporting glyphs come next in the script.
But in Telugu the supporting glyphs may come be-
fore the pivotal glyph which creates ambiguity in
forming assimilation rules.

S Experiments and Discussion

In this section, the experiments performed to build
the tools/modules are explained. Most of them used
the CART tool to train and test. These modules/tools
are integrated and used for development of the pro-
posed search engine.

5.1 CART (Classification and Regression Tree)

CART is a decision tree procedure introduced by
Breiman et al., in 1984. CART uses an exhaus-
tive, recursive partitioning routine to generate binary
splits that divide each parent node into two child
nodes by posing a series of yes-no questions. CART
searches for questions that split nodes into relatively
homogenous child nodes. As the tree evolves, the
nodes become increasingly more homogenous, iden-
tifying segments. The basic CART building algo-
rithm is a greedy algorithm which chooses the lo-
cally best discriminatory feature at each stage in the
process.

Stop Parameter: The stop parameter specifies the
minimum number of samples necessary in the train-
ing set before a question is hypothesized to distin-
guish the group. Normally with smaller stop value
the model may become over-trained. The optional
stop value may differ for different datasets of differ-
ent languages.

Predictee: In a given feature set, the feature that
is to be predicted as the output is termed as the pre-
dictee. By default, the first feature in the feature-set
is taken as the predictee, but always the predictee
can be specified while giving the description of the
data. Some times CART is over-fit with training
data, which may reduce the performance.

Feature Selection: Many experiments were con-
ducted for different problems like grapheme to
phoneme conversion (G2P) for English (Indian-

16

Table 3: Font-Data Conversion Results (Precision Val-

ues).
Language Font Name Training / | Result
Testing
Hindi Amarujala Training 99.2%
Jagran Training 99.4%
Naidunia Training 99.8%
Webdunia Training 99.4%
Chanakya Testing 99.8%
Marathi ShreePudhari Training 100%
ShreeDev Training 99.8%
TTYogesh Training 99.6%
Shusha Testing 99.6%
Telugu Eenadu Training 93%
Vaarttha Training 92%
Hemalatha Training 93%
TeluguFont Testing 94%
Tamil ElangoValluvan | Training 100%
ShreeTam Training 99.6%
ElangoPanchali | Training 99.8%
Tboomis Testing 100%
Kannada Shree Kan Training 99.8%
TTNandi Training 99.4%
BRH Kannada | Training 99.6%
BRH Vijay Testing 99.6%
Malayalam | Revathi Training 100%
Karthika Training 99.4%
Thoolika Training 99.8%
Shree Mal Testing 99.6%
Gujarati Krishna Training 99.6%
Krishnaweb Training 99.4%
Gopika Training 99.2%
Divaya Testing 99.4%
Punjabi DrChatrikWeb | Training 99.8%
Satluj Training 100%
Bengali ShreeBan Training 97.5%
hPrPfPO1 Training 98%
Aajkaal Training 96.5%
Oriya Dharitri Training 95%
Sambad Training 97%
AkrutiOri2 Training 96%

English) and stemming. These experiments were
conducted with different possible features and stop
values. Features for English G2P conversion were
manually prepared for each letter and for stemming,
the roots were manually identified for each word.
The features vary from experiment to experiment
and consequently the dimension of the features also
vary.

Evaluation: For each experiment, we have con-
sidered "N’ number of words per language and we
have generated "M’ number of features out of them.
From the available features we have segregated "X’
number of features for training and Y’ number of
features for testing in 80:20 ratio. Using these sets,
we have evaluated the training and testing perfor-
mance for various stop values.

5.2 Stemming

Stemming is the use of linguistic analysis to get
to the root form of a word. Search engines that
use stemming compare the root forms of the search
terms to the documents in its database. For example,
if the user enters “viewer” as the query, the search
engine reduces the word to its root ("view”) and re-
turns all documents containing the root - like doc-
uments containing view, viewer, viewing, preview,
review etc. Since our training data is very small it
fails for out-of-vocabulary words. And also, it fails
for homographs (a homograph is one of a group of
words that share the same spelling but have different
meanings).

For stemming in Indian languages, inflections of
the words are formed mostly by suffixes than pre-
fixes. So considering the first 5 phones of a word
would help to predict the root of the word. But, for
English prefixes as well as suffixes are equally used
to form inflections. So prefixes are separated and
considered as a single unit like a phone here. So we
have selected the features like

o First 6 phones for English and
o First 5 phones for Indian languages

Stemming results for various languages are shown
in Table 4. It shows that sto-value 1 would be op-
timal, when we used training and testing features in
the ratio 907:227 for English, 3606:902 for Tamil
and 987:247 for Telugu.

17

Table 4: Stemming Performance.

| Language | Stop Value | Training | Testing |
English 1 100% 99.55%
2 98.78% 96.01%
3 94.59% 90.26%
4 86.64% 82.3%
Tamil 1 93.25% 77.69%
2 84.74% 75.24%
3 80.63% 74.49%
4 77.08% 73.47%
Telugu 1 100% 93%
2 100% 92%
3 100% 93%
4 100%g 94%

5.3 English G2P Conversion

Our search uses phonetic features like syllables. In
cross-linguagl search support for English input is
neccessary. So we need a mechanism to convert the
query from its grapheme form to phoneme form. It
is very challenging since English words doesn’t fol-
low one-to-one correspondence between its letters
and its phonemes.

For G2P conversion of English words, the letters
of the word are used as features. We hypothesize
that the first and last letters of the word and previ-
ous and next letters of the current letter help much
to predict its phoneme. So we have selected the fea-
tures like

e First and Last letters of the word and Previous
and Next letters of the Current letter

The G2P conversion results for Indian-English is
shown in Table 5. It shows that stop-value 1 would
be optimal for a training feature set of 106896 and
testing feature set of 26724.

5.4 Stop Words Identification

Stop words, is the name given to the words which
are filtered out prior to, or after processing of nat-
ural language data (text). There is no definite list
of stop words which all natural language process-
ing tools incorporate. Some search engines don’t
index/record extremely common words in order to
save space or to speed up searches. The list of stop

Table 5: English G2P Conversion Performance.

| Stop Value | Training | Testing |

1 95.89% | 85.56%
2 92.15% | 85.37%
3 90.79% | 85.56%
4 89.73% | 85.53%

words for Indian languages have not been identified
yet. So, we tried to generate the list by the basic idea
that the most common words of a language might
have occurred more frequently than other words in
the corpus. We generated a list of top 500 frequently
occurred words in a language. Then stop words list
was produced with the help of a linguist who manu-
ally cleaned it.

6 inSearch - Search Engine for Indian
Languages

Most information seekers use a search engine to
begin their web activity (Prasad Pingali, Jagadeesh
Jalagarlamudi and Vasudeva Varma, 2006). In this
case, users submit a query (typically a list of key-
words) and receive a list of web pages that may be
relevant. In conventional information retrieval sys-
tems (Google, Live, Yahoo, Guruji etc.) the user
must enter a search query in the language/encoding
of the documents in order to retrieve it. This re-
striction clearly limits the amount of information to
which an user will have access.

Developing a search engine for Indian languages
faces many challenges. Some of them are, identify-
ing the text-encoding of the web content, converting
them into a transliteration scheme, developing stem-
mers and identifying the stop words etc. Also one
need to design a good mechanism/tool (A. Joshi, A.
Ganu, A. Chand, V. Parmar and G. Mathur, 2004)
to accept user’s query in transliteration scheme or
standard encoding like UTF-8 and even in English
also. inSearch is a search engine for Indian lan-
guages developed by considering all the above dis-
cussed issues and solutions. Fig 1 shows the basic
architecture and the following sub-sections explain
them further.

18

6.0.1 Web Crawling

Our web crawling is language focused. It takes a
list of identified URLs per language for which we
have converters. Then it crawls those pages and
stores the documents locally for further processing.
It maintains the same directory structure as on the
web and ordered by date.

6.0.2 Indexing

The effectiveness of any search engine mainly de-
pends on its index structure. The structure should be
capable of catering sufficient and relevant informa-
tion to the users in terms of their needs. To serve
users with the contexual information in their own
language, the system needs to index on meaning rep-
resentation and not on plain text. Also, the size of
the index should not be too large.

Conventional search engines use stemming tech-
nology to get the root of the word and index the doc-
ument about it. Thus, it will search not only for the
search terms, but also for its inflexions and similar to
some or all of those terms. But in case of Indian lan-
guages, there is no effective algorithm or tool to do
stemming. So we used phonetic features like sylla-
bles to index the pages. We extract the first two syl-
lables (since they are almost equal to the root of the
word most of the times) of the word and index about
it. Since, we have identified a method for stemming,
we used them also for indexing. The detailed exper-
iments are provided in the above section 5.2. Our
index structure includes syllables, stem, word, term-
frequency, language, date and doc-id. This struc-
ture enables efficient multi-lingual and cross-lingual
search.

6.0.3 Retrieval

At first, begining two syllables of the words of
the query are extracted. Then the words begining
with those syllables are retrieved from the database.
Hence the common words across languages are cap-
tured here. These words are ranked according to
their phonetic relativeness to the query calculated
by DTW method. The words fall under threshold
are discarded, so that the documents containing the
most related words pop-up. Then the documents are
re-ranked about their term frequency (TF) values (G.
Salton and C. Buckley, 1988) and contextual infor-
mation.

6.0.4 User Interface

Presently, there is no standard/convenient nota-
tion or keyboard layout to input the query in Indian
languages. Even with UTF-8 encoding most of the
users don’t know how to type the query. So, for
cross-lingual search we provide a phonetic mapping
table to be refered by the user to type the query in
IT3 notation. But for language specific search, we
provide a query typing tool. This tool has buttons
for characters of the selected language. By click-
ing the buttons, user can type the query in his native
script since most of the queries won’t be more than
a word/phrase. After forming the query, user can
search the web and the ranked results are displayed
much like the standard search engine’s results. Here
the cached pages for even font encoded pages are
displayed in UTF-8 encoding.

Results Display Query

1. Cached (UTF-8)

2. WWW (Font)

Results Post
grawled Web processing & Typing Tool
ages Formatting

Converted Documents Query
Pages (IT3) Ranking Preprocessing
Documents Document 'I:zgﬂjergc
Index Table Retrieval Extraction

Figure 1: Search Engine Architecture.

7 Cross-Lingual Search

The development of digital and online information
repositories has created many opportunities and new
problems in information retrieval. Online docu-
ments are available Internationally in many different
languages. This makes it possible for users to di-
rectly access previously unimagined sources of in-
formation. However in conventional information re-
trieval systems, the user must enter a search query in
the language of the documents in order to retrieve it.
This restriction clearly limits the amount and type
of information which an individual user really has
access to. Cross Language Information Retrieval

19

(CLIR) (F. Gey, N. Kando and C. Peters, 2002) (L.
S. Larkey, M. S. Connell and N. Abduljaleel, 2003)
enables users to enter queries in languages they are
fluent in, and uses language translation methods to
retrieve documents originally written in other lan-
guages.

The aim of this attempt is to extend the search ca-
pability to search across all Indian languages. The
users are ordinary Indians who master one of the In-
dian languages, but have only passive knowledge in
the other neighbour languages. This means that they
can read a text but not search for it since they do not
have active knowledge of how the different concepts
in the other languages are written or spelled. This
will also strengthen the use of the Indian languages
on the Internet and further avoid unnecessary use of
the English language. We are trying to achieve it
step-by-step by using the below mentioned methods.

1.Phonetic Relativeness Measure: In this ap-
proach the phonetic distance (how many inser-
tions/substitutions/deletions occured) between the
query words and the available words is calculated.
Then the closest words are considered as query re-
lated words and the results are produced for those
words. There are many methods to calculate the
phonetic distance and we used DTW (Dynamic
Time Warping) method to calculate the phonetic dis-
tance for our experiments. We used equal weightage
(i.e 1) for insertion, substitution and deletion here.

2.Dictionary Lookup: Here bilingual/multilingual
dictionaries are used to get the translation of the key-
words. Creating such dictionaries for all the words
of a language is time consuming process. Instead,
creating dictionaries for the stems of the words alone
will reduce the effort. Unfortunately there are no
such dictionaries available or methods to create the
stems for all Indian languages. So we developed
CART based decision trees to produce the stems. We
have created such stem based bilingual dictionaries
for 5 Indian languages. Also, we have created a mul-
tilingual dictionary (Table 6) for 8 Indian languages
by keeping English words as keys.

3.Machine Translation: This is considered as an
appropriate solution for cross-language search (Dr.
Pushpak Bhattacharyya, 2006). The query in source
language gets translated into the destination lan-
guage and the results will be produced for it. In this
context, there is a close synergy between the fields of

Table 6: Multi-lingual Dictionary.

Language | Words |

Bengali 2028
Gujarati 6141
Hindi 22212
Kannada 22695
Malayalam | 23338
Oriya 7287
Tamil 5521
Telugu 8148
English 43185

Cross Language Information Retrieval (CLIR) and
Machine Translation (MT). But such systems for In-
dian languages are under development. We are also
focussing our effort in the same direction to use it
with our engine in the future.

8 Conclusion

In this paper we discussed the importance of be-
ing able to search the Indian language web content
and presented a multi-lingual web search engine in-
Search capable of searching 10 Indian languages.
The nature of Indic scripts, Indic data storage for-
mats and how to preprocess them efficiently are de-
tailed. It explained about how language identifica-
tion, grapheme to phoneme conversion for English
and stemming can be achieved using CART. This
shows that transcoding of proprietary encodings into
a meta standard transliteration scheme makes Indian
language web content accessible through search en-
gines.

9 Acknowledgments

We like to thank Speech and Language Technolo-
gies Lab, Bhrigus (India) Pvt Ltd, Hyderabad, In-
dia and our collegues Ms.Bhuvaneshwari, Mr.Prasad
and others for all their support and encouragement.

References

A. Joshi, A. Ganu, A. Chand, V. Parmar and G. Mathur.
2004. Keylekh: a keyboard for text entry in indic

20

scripts. CHI 04 Extended Abstract on Human Fac-
tors in Computing Systems, ACM Press.

A. A. Raj and K. Prahallad. 2007. Identification and
conversion of font-data in indian languages. In In In-
ternational Conference on Universal Digital Library
(ICUDL), Pittsburgh, USA.

A. K. Singh and J. Gorla. 2007. Identification of lan-
guages and encodings in a multilingual document. In
Proceedings of the 3rd ACL SIGWAC Workshop on
Web As Corpus, Louvain-la-Neuve, Belgium.

Dr. P. Bhattacharyya. 2006. White paper on cross lingual
search and machine translation. Proposal to Govern-
ment of India.

F. Gey, N. Kando and C. Peters. 2002. Cross language
information retrieval: A research roadmap. SIGIR Fo-
rum, 36(2):72-80.

G. E. Burkhart, S. E. Goodman, A. Mehta and L. Press.
1998. The internet in india: Better times ahead? Com-
mun. ACM, 41(11):21-26.

G. Salton and C. Buckley. 1988. Term-weighting ap-
proaches in automatic text retrieval. Information Pro-
cess. Management, 24(5):513-523.

M. Ganapathiraju , M. Balakrishnan , N. Balakrishnan
and R. Reddy 2005. Om: One tool for many (in-
dian) languages. Journal of Zhejiang University Sci-
ence, 6A(11):1348-1353.

H. Garg. 2005. Overcoming the font and script barriers
among indian languages. MS Thesis at International
Institute of Information Technology Hyderabad, India.

ISCII - Indian Standard Code for Information Inter-
change. 1983. http://tdil.mit.gov.in/standards.htm.

S.Khudanpur and C.Schafer , Devanagari Converters.
2003. http://www.cs.jhu.edu/cschafer/jhu devanagari
cvt ver2.tar.gz.

L. S. Larkey, M. S. Connell and N. Abduljaleel. 2003.
Hindi clir in thirty days. ACM Trans. on Asian Lan-
guage Information Processing (TALIP), 2(2):130-142.

P. Lavanya, P. Kishore and G. R. Madhavi. 2005. A
simple approach for building transliteration editors for
indian languages. Journal of Zhejiang University Sci-
ence, 6A(11):1354-1361.

P. Prasad , J. Jagadeesh and V. Varma. 2006. Webkhoj:
Indian language ir from multiple character encodings.
International World Wide Web Conference.

Transliteration of Indic Scripts: How to use ISO 15919.
http://homepage.ntlworld.com/stone-catend/trind.htm.

Unicode Consortium - Universal Code Standard. 1991.
http://www.unicode.org.

Multi-Lingual Screen Reader and Processing of Font-
data in Indian Languages.
http://speech.iiit.net/speech/publications/Anand-
Thesis-Final.pdf.

