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Abstract

Most cross-lingual speech retrieval assumes
intensive knowledge about all involved lan-
guages. However, such resource may not ex-
ist for some less popular languages. Some
applications call for speech retrieval in un-
known languages. In this work, we lever-
age on a quasi-language-independent subword
recognizer trained on multiple languages, to
obtain an abstracted representation of speech
data in an unknown language. Language-
independent query expansion is achieved ei-
ther by allowing a wide lattice output for an
audio query, or by taking advantage of dis-
tinctive features in speech articulation to pro-
pose subwords most similar to the given sub-
words in a query. We propose using a re-
trieval model based on finite state machines
for fuzzy matching of speech sound patterns,
and further for speech retrieval. A pilot study
of speech retrieval in unknown languages is
presented, using English, Spanish and Russian
as training languages, and Croatian as the un-
known target language.

Previous work on cross-lingual speech retrieval
mostly leverages on intensive knowledge about all
the languages involved. Most reported work inves-
tigates retrieval in a target language, in response to
audio or text queries given in a different source lan-
guage (Meng et al., 2000; Virga and Khudanpur,
2003). Usually, the speech media in the target lan-
guage, and the audio queries in the source language,
are converted to speech recognition transcripts us-
ing large-vocabulary automatic speech recognizers
(LVASR) trained for the target language and the
source language respectively. The text queries, or
transcribed audio queries, are translated to the tar-
get language. Text retrieval techniques are applied
to retrieve speech, by retrieving the correspond-
ing LVASR transcription in the target language. In
such systems, a large-vocabulary speech recognizer
trained on the target language is essential, which
requires the existence of a dictionary and labeled
acoustic training data in that language.

LVASR currently do not exist for most of the 6000
languages on Earth. In some situations, knowledge
about the target language is limited, and definitely
not sufficient to enable training LVASR. Imagine

1 Introduction . .
an audio database in a target language unknown to

Dramatic increase in recorded speech media calls faruser, who needs to retrieve spoken content rel-
efficient retrieval of audio files. Accessing speeclevant to some audible query in this unknown lan-
media of a foreign language is a particularly imporguage. For example, the user knows how the name
tant and challenging task, often referred to as cros¥9bama” is pronounced in the target language, and
lingual speech retrieval or cross-lingual spoken doawvants to retrieve all spoken documents that contain
ument retrieval. the query word, from a database in this unknown
" “This research is funded by NSF grants 0534106 anIéat_nguage. _A linguist might find_ himself/herself in
0703624. The authors would like to thank Su-Youn Yoon foltiS scenario when he or she tries to collect a large
inspiring discussion? The student authors contribute equally. number of utterances containing some particular
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phrases in an unknown language. Similarly, an in- [ previously N— New
. . . ssimilauon
formation analyst might wish to leverage on speech | Stored Info ‘:‘> <‘;' Info

retrieval in unknown languages to organize critical
|_nformat|on _before engaging |IFIQUIS'[IFI experts for o — o
finer analysis. We refer to such retrieval tasks as| therracoustic [:> L <::| e /

distribution in independent ASR

speech retrieval in unknown languagé@swhich lit- known languages Language

tle knowledge about the target language is assumed. _ _ _
. . . Figure 1: Automatic speech retrieval in an unknown lan-
A human linguist attempting to manually per-

; i guage (below) is modeled as a special case of the cogni-
form speech retrieval in an unknown languagg, process called assimilation (above).

would necessarily map the perceived speech (both

database and query) into some cognitive abstraction .

: . a translated spoken word/phrase retrieval task us-
or schema, representing, perhaps, the phonetic dis- . .
L . Ing target language LVASR transcripts, as in most
tinctions that he or she has been trained to hea}:rfoss lingual speech retrieval systems. The quasi
Matching and retrieval of speech would then be per- 9 P y . q

formed based on such an abstraction. Two co language-independent subword recognizer is trained
i %n speech data other than the target language, and

nitive processes, assimilation and accommodatiogh . L
. erefore generates much noisier recognition results,
take place when human brains are to process new .

information (Bernstein et al., 2007), such as spee %wmg to potential mismatch between acoustic distri-

. . . butions, lack of dictionary and lack of a word-level
in an unknown language. In accommodation, the Iqénguage model

ternal stored knowledge adapts to new information -
9 P To manage the extra difficulty, we adopt a sub-

with which it is confronted. In assimilation, the new . . .

. . . word lattice representation to encode a wide hypoth-

information, e.g., speech in an unknown language, IS . : )
: ) . esis space of recognized speech in the target lan-

mapped to previously stored information, e.g., sub-

words (phones) as defined by knowledge about e age. Lapguage—mdep(_endent query expansion 1s
. achieved either by allowing a wide lattice output
languages known to the listener.

i . . for an audio query, or by taking advantage of dis-
This paper models speech retrieval in unknow

finctive features in speech articulation to propose

languages using a machine learning model of ph Juasi-language-independent subwords most similar

netic assimilatiqn. A qu'asi-language-independeq the given subwords in a query. Finite state ma-
subword recognizer is trained to capture sallentsulgwhines (FSM) constructed from the speech lattices
words and their acoustic distribution in multiple .. \;sed to allow for fuzzy matching of speech

languages. This recognizer is applied on an Uround patterns, and further for retrieval in unknown

known language, therefore mapping segments of ﬂ?&nguages
unknown speech to subwords in the known lan- We carry out a pilot study of speech retrieval

guages. Through this_ma_chine cognitive PrOCESH; uinknown languages, using English, Spanish and
the database and queries in the unknowq I"’mguafa{%ssian as training languages, and Croatian as the
are represented as sequences of qtj_as"la,nguagﬁknown target language. To explain the effect of
independent subwords. Speech' retrlgval IS' P€Ldditional knowledge about the target language, we
formed based on such_repr(-::sentanon. Figure 1 IIIufj'emonstrate the improvements in retrieval perfor-
trates that speech retrieval in an unknown Ianganﬁance that result by incrementally making available

can b_e modelgd as a special case of §53|mllathn. subword sequence models and acoustic models for
This task differs from the more widely studiediye target language.

known-language speech retrieval task, in that no lin-

guistic knowledge of the target language is assumefl. Quasi-L anguage-1 ndependent subword

We can only leverage on knowledge that can be Models

applied by assimilation to the multiple known lan- .

guages. Therefore, this task is more like a cros&l Derivingasubword set

lingual sound pattern retrieval task, leveraged oBased on the assumption that an audible phrase in an
guasi-language-independent subwords, rather thanknown language can be represented as a sequence
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of subwords, the question is to find an appropriate’/hereq;; is the transition probability to hidden state
set of subword symbols. Schultz and Waibel (2001), and b; and »; are the observation distribution
reported that a global unit set for the sourcend steady-state probability for hidden state~or
languages based on International Phonetic Alphaingle-Gaussian distributiod, (b : b)) can be ap-
bet (IPA) symbols outperforms language-dependeproximated by,

phonetic units in cross-lingual word recognition

tasks, whereas language-dependent phonetic un}'t(%U YY) = 1 | =Y
are better models for multilingual word recognition™ * ¢ "~ "¢ /T 2[ 8 ‘zﬂ
(in which the target language is also one of the U V-1 -1
source languages). A multilingual task might ben- + o (21' <(EZ ) o (Ei ) ))
efit from partitioning the feature space according to v\—1l /U vy (, U T
) S . + i (% A Ui A Ui :
language identity, i.e., to have different subsets of (( ) H ) (M a ) ”

models aiming at different languages. By contrast, _ . - . .
a cross-lingual task calls for one consistent set of Third, we use the Affinity Propagation algorithm

models with language-independent properties in OFFreyfarrl]d Duegk, 2307) :ﬁ conduct .palr,:N:jS?(Ehé.Ster_
der to maximize portability into the new language. INg of phones based on the approximate ver-

To capture the necessary distinctions between digenee between acoustic models. The tendency for a

. data point (a phone) to be an exemplar of a cluster
ferent phones across languages, we first pool to- .
Is controlled by the preference value assigned to that

ether individual phone inventories for source lan- .
g P hone. The preference of a phonis set as follows

guages, each of which has its phones tagged wi .
. : o favor frequent phones to be cluster centers:
a language identity, and then performed bottom-up

clustering on the phone pool based on pairwise sim- .
ilarity between their acoustic models. Each cluster p(i) = klog(Cy), 3
represents one distinct language-independent subhereC; is the count of the phong andk is a nor-
word symbol. Since this set is still derived frommalization term to control the total number of clus-
multiple languages, we refer to these subword uniters. To discourage subwords from the same lan-
asquasi-language-independent subwordsquasi- guage to join a same cluster, pairwise distance be-
language-independent subword set is derived by theeen them are offset by an additional amount, com-
following steps: parable to the maximum pairwise distance between
First, we encode all speech in the known lanthe models.
guages using a language-dependent phone set. EaciThe resultant subword set is supposed to cap-
symbol in this set is defined by the phone identure quasi-language-independent phonetic informa-
tity and the language identity. One single-Gaussiation, and each subword unit has relatively distinctive
three-state left-to-right HMM is trained for each ofacoustic distribution. These subwords are encoded
these subword units. using the corresponding cluster exemplars as surro-
Second, similarity between the languagegates.
dependent phones is estimated by the approximated
KL divergence between corresponding acoustié.2 Recognizing subwords

models. As shown in (Vihola et al., 2002), KL on ayutomatic speech recognition (ASR) system
divergence between single-Gaussian left-to-rightye|inek, 1998) serves to recognize both queries
HMMs can be approximated in closed form byang speech database, with acoustic models for the
Equation 1, language-independent subwords derived from the
known languages as described in section 2.1. The
a% log (a% /a%)(l) front—enq featL_Jres extracted_ from_the speech data
f are 39-dimensional features including 12 Perceptual
Linear Prediction (PLP) coefficients and their en-
vl (b? : b}/) ’ ) ergy, gs well qs_the first-order and second order re-
gression coefficients.
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We create context-dependent models for eacdtubwords. Therefore, the sequential information in
subword, using the same strategy for buildthe hypothesized subwords is critical.
ing context-dependent triphone models in LVASR ) o o
(Woodland et al., 1994). A “triphone” is a subword To deal with the significant noise in the subword

with its context defined as its immediate precedinéFCOgn'tIon output, and to emphasize the sequential

and following subwords. Each triphone is relorelnformation, we use the recognizer to obtain sub-

sented by a continuous three-state left-to-right Hid¥Ord attices instead of one-best hypotheses. These
den Markov Model (HMM). Additionally, there is a lattices can be represented as weighted automata,

one-state HMM for silence, two three-state HMM&VNICh are compact representations of a large num-

for noise and unknown sound respectively. Th&€' Of alternative subword sequences, each asso-
number of Gaussian mixtures (9 to 21 Gaussians) %ated with a weight mdlcaf[lng the ungertamty of
optimized according to a development set consistin® data. Therefore, indexing speech in unknown
of speech in the known languages. A standard trefnguage can be achieved by indexing the corre-

based state tying technique is adopted for parame@#onding weighted automata with quasi-language-
sharing between subwords with similar contexts. independent subwords associated with the state tran-

The “language model” (LM), or more precisely S1O"S-

subword sequence model, should generalize from \ye adopt the weighted automata indexation algo-
the known languages to the unknown language. Othm reported in (Allauzen et al., 2004), which is
trial experiments showed that unigram statistics Qﬁptimal for searching subword sequences, as it takes
subwords and their triphones is more transferablg§me Jinear in the sum of the query size and the num-
across languages than N-gram statistics. We also sy of speech media entries where it appears. The
sume that infrequent triphones are less likely to bgytomata indexation algorithm also preserves the se-
salient units that would carry the properties of thyuential information, which is crutial for this task.
unknown language. Thus, we select the top frequegye leverage on two kinds of knowledge for query
triphones and map the rest of the triphones to theifxpansion, namely empirical phone confusion and
center phones, forming a mixed vocabulary of fregnowledge-based phone confusion. An illustration
quent triphones and context-independent subwordss oy speech retrieval system is presented in Fig-
The frequencies of these vocabulary entries are usgeb 2 \We detail the indexing approaching as well as

to estimate an unigram LM in the ASR system. Triery expansion and retrieval in this section.
phones in the ASR output are mapped back to its

center subwords before the retrieval stage.

3 Spesch Retrieval through Subword (e e - e

Sub-words

L}
| FSA Generation —|—>| T,

Indexin
g L Sub-word Lattices —_
. . Recognizer T
In many cross-lingual speech retrieval systems, tr : 1
FSM-based Indexin;
3
access to vocabulary, dictionary, word languag .
Gommik
speech recognition could give reasonable hypotl

speech media are processed by a large-vocabulz e
n —  Z3
:| FSA Generation —|—>| T |—> W
model and acoustic models for the target lan 3
S aEEEEEEEEEEEEEER EEEEEEEEmnn? F
H H H H H H T T Retrieval
esized word transcript, enabling direct applicatiol w FowTadge-bared Results
Phone confusion

Query Construction

ﬁl.llllIIIIIIIIIIIIIIIIIIIIIII n Illdl‘cef\‘
automatic speech recognizer (LVASR), which ha
—> ) - Retrieval
guage. With all these resources, state-of-the-z —» ——
of text retrieval techniques. However, this is no

Phone confusion

the case in speech retrieval in unknown languages.

Moreover, without the higher level linguistic knowl- Figure 2: Framework of speech retrieval through subword
edge, such as a word dictionary, this task aims todexing

find speech patterns that sound simjlas approxi-

mated by sequences of quasi-language-independent
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3.1 Subword Finite State M achines as Speech minized to get one single index transducer for the

Indices group. It is then feasible to expedite retrieval by
diyocessing each group index transducer in a paral-
lel fashion.

We construct a full index that can be used to sear
for a query within all the speech utterances: €
.1, ey M In particgla}r, this is achieved by cons.truct-3_2 Query Expansion
ing a weighted finite-state transducg&r mapping
each queryr to the set of speech utterances wher¥Vhile sequential information is important, ex-
it appears. Each returned speech utteranceas- 2act string match is very unplausible in this chal-
signed a score, which is the negative log of the eXenging task, even when subword lattices encode
pected count of the queryin utteranceu. many alternative recognition hypotheses. Language-
The subword lattice for speech utterangean be independent query expansion is therefore critical for
represented as a weighted finite state autordata SUCCESS in retrieval. We carry out query expansion
whose path weights correspond to the joint Ioroba{gither by allowing a wide lattice output for an audio
bility of the observed speech and the hypothesizedHery, or by taking advantage of distinctive features
subword sequence. To get an automata whose pdfhSPeech articulation to propose quasi-language-
weights correspond to desired negative log of posténdepe_ndent subwords most similar to the given sub-
rior probabilities, we simply need to apply a generaVords in a query.
weight-pushing algorithm tel; in the log semiring, ~ In particular, for a spoken query, ASR will gen-
resulting in an automat®;. In this automataB;, €rate a subword lattice instead of a one-best sub-
the probability of a given string is the sum of the word sequence hypothesis. With the lattice, the au-
probability of all paths that contains dio query is encoded by the best hypothesis from
The key point of constructing the index transducefSR and its empirical phone confusion. The lattice
T; for uttereancey; is to introduce new paths that €@n then be represented as a finite-state automata.
enable matching between a query and any portions However, when the query is given as a target
of the original paths, while properly normalizing thel@nguage subword sequence, we can no longer use
path weights. This is achieved by factor selection i€ recognizer to obtain an expanded query. Fur-
(Allauzen et al., 2004). First, null output is intro-theérmore, some target language subwords may not
duced to each transition in the automata, convertirg/en exist in the quasi-language-independent sub-
the automata into a transducer. Second, a new trafford set in the recognizer. In this case, knowledge-
sition is introduced from a new unique initial state tg°@sed phone confusion is engaged via the use of a
each existing state, with null input and output. Théet of distinctive featuresy,j < 1,..., M for hu-
weight associated with this transition is the negativ'an speech (Chomsky and Halle, 1968), including
log of the forward probability. Similarly, a new tran- labial, alveolar, post-alveolar, retroflex, voiced, as-
sition is created from each state to a new unique fingirated, front, back, etc.
state, with null input and output as the labelfthe ~ We estimate similarity from phoneto phoneb,
current utterance;. The assicated weight is the neg-Or more precisely, substitution tendency as in Equa-
ative log of the backward probability. General finitetion 4,

state machine optimization operations (Allauzen et N
a

al., 2007) of weighted-removal, determinization DFsim(a,b) = log N 4
and minimization over the log semiring can be ap- “
plied to the resulting transducer. As shown in (Al- Where
lauzen et al., 2004), the path with input of string
and output of label has a weight corresponding to M
the negative log of the expected countwoin utter- N, = Z( Ff sz; = 1),
anceu;. =
To optimize the retrieval time, we divide all ut- M
terances into a few groups. Within (_aach group, the N, = Z(qu £0).
utterance index transducers are unioned and deter- =
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The target subword sequence is first mapped tger language for training, and 10% as a development
the derived subword set, by locating the identicatet.
or nearest member phone in the clustering and then
adopting the surrogate for that cluster. This corl--@nguage; 1D | Hours Spks Style
verted sequence of derived subwords is further ex-Croatian | hrvi - 21.31 201 Read+answers
panded by adding the most likely alternative quasj- ENglish | hubj 13.6| 406 Broadcast
language-independent subwords, parallel to eachSPanish | spg  14.6 120  Read+answers
original subword. Transitions to these alternative RUSSian | rus| 2.5| 63| Read+answers
subwords are associated with the corresponding sub-

stitution tendency based on distinctive features. 2Pl 1: Summary for data: language ID, total length,
number of speakers and speaking style for each language.

3.3 Search

An expanded query, either obtained from an audi.2 Settings

query or a subword sequence query, is representggle speech retrieval task aims to find speech utter-
as a weighted finite state automata. Searching thésices that contain a particular query. We use two
query in the utterances is achieved by composing thénds of queries: 1) subword sequence queries, tran-
query automata with the index transducer. This rescribed as a sequence of phonetic symbols in the tar-
sults in another finite state transducer, which is fuiget language; 2) audio queries, each being an audio
ther processed by projection on output, removal afegment of the speech query in the target language.
e arcs and determinization. The output is a list of Since we aim to match speech patterns that sound
retrieved speech utterances, each with the expectgigk each other, the queries used in this experiment
count of the query. are relatively short, about 3 to 5 syllables. This adds
Apparently, the precision and recall of the reto the challenge in that very limited redundant in-
trieval results vary with the width of the subwordformation is available for query-utterance matching.
lattices used for indexing as well as how much th@here are totally0 subword sequences afilaudio
query is expanded. We control the width of the subgueries, each occurs in between 18 and 38 utterances
word lattices via the number of tokens and the maxaut of a set of 576 utterances.
imum probability decrease allowed for each step in |n addition to a cross-lingual retrieval system built
the Viterbi decoding. The extend to which a subusing only the known languages, we incrementally
word sequence query is expanded is determined lyigment resource on the target language to build
the lowest allowed similarity between the originalmore knowledgeable systems.
phone and an alternative phone. These parametersAMOLMO: Both the acoustic model (AM)

are set empirically. and the language model (LM) are quasi-language-
_ independent, trained using data in multiple known
4 Experiments languages. This happens when no transcribed

speech data or a defined phone set exist for the tar-
get language. Essentially the system has no direct
The known language pool should cover as many latkknowledge about the target language.

guage families as possible so that the derived sub-AMOLMt: This setting examines the perfor-
words could better approximate language indepemance gap due to the acoustic model mismatch
dence. However, as a pilot study, this paper reportsy using a quasi-language-independent AM, but a
experiments using only languages within the Indotarget language LM. Suppose that a word dictio-
European family. Table 1 summarizes the size afary with phonetic transcription and possibly some
speech data from each language. Croatian is ustekt data from the target language are available,
as the unknown target language, and the other thréz training a target language subword LM. To find
languages are the known languages used for diie mapping between target triphones and language-
riving and training the quasi-language-independerndependent source AMs, linguistic knowledge and
subword models. We extracted 80% of all speakeghonetic symbol notation are the only information

4.1 Dataset
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we can use. First, we map each of target mondzquation 5. n is the number of ordered retrieved
phones to source phone symbols: Any source clustatterances and is the total number of relevant ut-
that contains a phonetic symbol with the same notaerances.f; is an indicator function whether thig"
tion as the target phonetic symbol becomes a surreetrieved utterance does contain the query. Precision
gate symbol for that target phone. If a target phong,, for top m retrieved utterances can be calculated
is unseen to the known languages, the most similasp,,, = % Sy f(k).
phone will be chosen first. The similarity is based on
the distinctive features, as discussed in Section 3.2.
Second, the target triphones are converted to possi-
ble source triphones for which acoustic models ex-
ist. Each target triphone not modeled in the source
language AM is replaced with the corresponding di-
phone (subword pair) if it exists, otherwise the cen-
ter phone. We uselR — MAP, andIR — M APg to denote
AMtLMO: This setting examines the perfor-the retrieval MAP for audio queries and subword se-
mance gap due to the language model mismatch lopience queries respectively.
using a quasi-language-independent source LM, but
a target language AM. For the source triphones arit’? Results
monophones that do not exist in the target AM, theyable 2 presents a few examples of the derived
are mapped to target AMs in a way similar as dequasi-language-independent subwords. As dis-
scribed above. cussed in Section 2, these subwords are obtained by
AMtLMt: Both AM and LM are trained for the bottom-up clustering of all the language-dependent
target language. This setting provides an uppdPA phones in the multiple known languages. The

bound of the performance for different settings.  same IPA symbol across languages may lie in the
same cluster, e.g/z/ in Cluster 1, or different clus-

4.3 Metrics ters, e.g./j/ in Cluster 3 and 4. Although symbols

We evaluate the performance for both subwor&vithin the same language are discouraged to be in

recognition and speech retrieval, measured as fdfn€ cluster, it still desirably happens for highly sim-
ilar pairs, e.9./i/rus and/j/ s in Cluster 4.

Q
IR — MAP = 22 Y AP(x),
r=1

n(x)

AP(z) = R(lx) S fi@)pila). (5)
=1

lows.

Recognition Accuracy: The ground truth is en- Cluster ID| Surrogaté Other phone members
coded using subwords in the target language whil 1 2] ts ' T2 omas 2] 17 s
the recognition output is encoded using quasit > T s :/tf/:b, /tf/s;
language-independent subwords in Section 2. Tp 3 i/ i/ “ P
measure the recognition accuracy, we label each  , i /}:Lb | i /‘:1:; fi/rus

quasi-language-independent subword cluster using
the mqst frequent target language SL.JbWOI’d that a‘?éble 2: Examples of quasi-language-independent sub-
pears in that cluster. The hypothesis subword S@iords, as clusters of source language IPAS.

guence is then compared against the groundtruth us-

ing a dynamic-programming-based string alignment Table 3 compares the subword recognition
procedure. The recognition accuracy is defined agd retrieval performance for the quasi-language-

H-1I .
REC — ACC = =g x 100%, whereH, I, and independent subwords and IPA phones. We can
N are the numbers of correct labels, insertion errors
and groundtruth labels respectively. ,

. .. . Setting REC — ACC | IR— MAP, | IR— MAPg
Retrieval Precision: The retrieval performance
. . . IPA 37.18% 17.90% 31.40%
is measured using Mean Average PrecisidoR (-
AMOLMO | 42.52% 23.24% 32.62%

M AP), defined as the mean of the Average Preci-

sion (AP) for a set of different queries. Mean Table 3: Performance of quasi-languange-independent
Average Precisionl(R — M AP) can be defined in subword and IPA.

9



Setting AMtLMt | AMtLMO | AMOLMt | AMOLMO | the most available knowledge about the target lan-
REC — ACC | 73.45% | 67.29% | 49.88% | 4252% | guage reaches MAP of 58.82% and 76.96%, for au-
IR-MAP, | 58.82% | 5238% | 28.32% | 23.24% | dio queries and subword sequence queries respec-
IR - MAPs | 76.96% | 51.86% 34.95% 32.62% | tively. We also demonstrate access to phone fre-

uency AMOLMt) and acoustic dataAMtL M 0)

th boosts retrieval performance, and the effect is
roughly additive AMtLMt).

Table 4: Performance of subword recognition and spee
retrieval.

see that on the unknown language Croatian, the de- Conclusion and Discussion

rived quasi-language-independent subwords outpeir- , ,
) o th K, t h ret I h
form the IPA symbol set in both phone recognltlonn IS WOrK, We present a speech retrieval approac

d retrieval using two kinds of . In unknown languages. This approach leverages
andrefrievai using two kinds ot queries. on speech recognition based on quasi-language-

independent subword models derived from multi-

80

a A ple known languages, and finite state machine based
e % AMOLMt fuzzy speech pattern matching and retrieval. Our
60l ‘=X AMOLMO

experiments use Croatian as the unknown language

§so Fommmnos *- and English, Russian and Spanish as the known lan-
= sl guages. Results show that the derived subwords out-
= ol B e iy S perform the IPA symbols, and access to the subword
e "o, language model and acoustic models in the unknown
0 ' * language explains the gap between this challenging
o ‘ T ‘ wide task and retrieval with knowledge about the target
Query Expansion Ianguage.

Figure 3: Speech retrieval performance for subword se- The proposed .retrleval approach on unknpwn lan-
quence queries guages can be viewed as a machine learning model

of phonetic assimiliation, in which the segments
in an unknown language are mapped to language-
independent subwords learned from the multiple

55 TSmO known languages. However, another important cog-
sof e AMOO nitive process, i.e., accomodation, is not yet mod-
2 . eled. We believe the capability to create new sub-
g0 + words unseen in the known languages would lead
E e to improved performance. In particular, speech seg-
sor o w ments that are hypothesized by the quasi-language-
% a*; ‘‘‘‘‘ - * independent subword recognizer with very low con-
il * : : "‘ : fidence scores can be clustered to form these new
o Query Expansion vide subwords, accomodating to the unknown language.

The approach in this work can be readily scaled
Figure 4: Speech retrieval performance for audio queriedP t0 much larger speech corpora. In particular,
larger corpora would make it more practical to im-
Table 4 presents the subword recognition accuplement the accomodation process discussed above.
racy and retrieval performance with optimal quer)BeSideS, that would also enable online adaptation
width. Figure 3 and Figure 4 presents speecff the model parameters of the quasi-language-
retrieval performance at varying query widths foﬂndependent subword recognizer. Both are believed
subword sequence queries and audio queries f€- promise reduced gap between retrieval perfor-
spectively. It is shown that speech retrieval ifmance in a known language and an unknown lan-
completely unknown language achieves MAP oguage, and are potential future work beyond this pa-
23.24% and 32.62% while the system trained usinge-
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