
Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 45–46,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Grammar Engineering for CCG using Ant and XSLT∗

Scott Martin, Rajakrishnan Rajkumar, and Michael White
Ohio State University

Department of Linguistics
{scott,raja,mwhite}@ling.ohio-state.edu

Overview

Corpus conversion and grammar extraction have
traditionally been portrayed as tasks that are
performed once and never again revisited (Burke
et al., 2004). We report the successful imple-
mentation of an approach to these tasks that
facilitates the improvement of grammar engi-
neering as an evolving process. Taking the
standard version of the CCGbank (Hocken-
maier and Steedman, 2007) as input, our sys-
tem then introduces greater depth of linguis-
tic insight by augmenting it with attributes
the original corpus lacks: Propbank roles and
head lexicalization for case-marking preposi-
tions (Boxwell and White, 2008), derivational
re-structuring for punctuation analysis (White
and Rajkumar, 2008), named entity annotation
and lemmatization. Our implementation ap-
plies successive XSLT transforms controlled by
Apache Ant (http://ant.apache.org/) to an
XML translation of this corpus, finally produc-
ing an OpenCCG grammar (http://openccg.
sourceforge.net/). This design is beneficial
to grammar engineering both because of XSLT’s
unique suitability to performing arbitrary trans-
formations of XML trees and the fine-grained
control that Ant provides. The resulting system
enables state-of-the-art BLEU scores for surface
realization on section 23 of the CCGbank.

1 Design

Rather than transforming the corpus, it would
be simple to introduce several of the corpus aug-

∗This work was supported in part by NSF grant no.
IIS-0812297.

mentations that we make (e.g. punctuation re-
structuring) during grammar extraction. How-
ever, machine learning applications (e.g., real-
ization ranking) benefit when the corpus and
extracted grammar are consistent. A case in
point: annotating the corpus with named en-
tities, then using n-gram models with words re-
placed by their class labels to score realization.

Accordingly, our pipeline design starts by gen-
erating an XML version of the CCGbank us-
ing JavaCC (http://javacc.dev.java.net/)
from the original corpus. Next, conversion and
extraction transforms are applied to create a
converted corpus (also in XML) and extracted
grammar (in OpenCCG format).

We refactored our original design to separate
the grammar engineering task into several con-
figurable processes using Ant tasks. This sim-
plifies process management, speeds experiment
iterations, and facilitates the comparison of dif-
ferent grammar engineering strategies.

2 Implementation

It seemed natural to implement our pipeline pro-
cedure in XSLT since both OpenCCG grammars
and our CCGbank translation are represented in
XML. Aside from its inherent attributes, XSLT
requires no re-compilation as a result of being an
interpreted language. Also, because both con-
version and extraction use a series of transforms
in a chain, each required sub-step can be split
into as many XSLT transforms as desired.

Both the conversion and extraction steps
were implemented by extending Ant with cus-
tom tasks as configuring Ant tasks requires no

45



source editing or compilation. Ant is partic-
ularly well-suited to this process because, like
OpenCCG (whose libraries are used in the ex-
traction phase), it is written in Java. Our sys-
tem also employs the Ant-provided javacc task,
invoking the JavaCC parser to translate the
CCGbank to XML. This approach is preferable
to a direct Java implementation because it keeps
source code and configuration separate, allowing
for more rapid grammar engineering iterations.

Our particular implementation harnesses
Ant’s built-in FileSet (for specification of
groups of corpus files) and FileList (for re-
use of series of XSLT transforms) data types.
The first of our extension tasks, convert, encap-
sulates the conversion process while the second
task, extract, implements the grammar extrac-
tion procedure for a previously-converted cor-
pus.

3 Experimental Impact

Our conversion process currently supports var-
ious experiments by including only specified
transforms. We gain the ability to cre-
ate corpora with various combinations of at-
tributes, among them punctuation annotation,
semantic class information, and named entities
(lack of space precludes inclusion of examples
here; see http://www.ling.ohio-state.edu/

~scott/publications/grammareng/). In ad-
dition to extracting grammars, the extraction
task employs a constrained parser to create log-
ical forms (LFs) for surface realization and ex-
tracts SRILM training data for realization scor-
ing. This task also enables feature extraction
from LF graphs for training during supertagging
for realization (Espinosa et al., 2008).

Our design supports comprehensive experi-
mentation and has helped facilitate recent ef-
forts to investigate factors impacting surface re-
alization, such as semantic classes and named
entities. Our initial results reported in (White et
al., 2007) record 69.7% single-rooted LFs with a
BLEU score of 0.5768. But current figures stand
at 95.8% single-rooted LFs and a state-of-the
art BLEU score of 0.8506 on section 23 of the
CCGbank. (Fragmentary LFs result when at

least one semantic dependency is missing from
the LF graph.) In achieving these results, im-
provements in the grammar engineering process
have been at least as important as improvements
in the statistical models.

4 Conclusions and Future Work

We designed and implemented a system that fa-
cilitates the process of grammar engineering by
separating conversion and extraction steps into
a pipeline of XSLT transforms. Our Ant imple-
mentation is highly configurable and has posi-
tive effects on our grammar engineering efforts,
including increased process control and a short-
ened testing cycle for different grammar engi-
neering approaches. Future work will focus on
increasing the number of single-rooted LFs and
integrating this system with OpenCCG.

References

[Boxwell and White2008] Stephen Boxwell and
Michael White. 2008. Projecting Propbank roles
onto the CCGbank. In Proc. LREC-08.

[Burke et al.2004] Michael Burke, Aoife Cahill,
Mairead Mccarthy, Ruth O’Donovan, Josef
Genabith, and Andy Way. 2004. Evaluating
automatic LFG F-structure annotation for the
Penn-II treebank. Research on Language and
Computation, 2:523–547, December.

[Espinosa et al.2008] Dominic Espinosa, Michael
White, and Dennis Mehay. 2008. Hypertagging:
Supertagging for surface realization with CCG.
In Proc. ACL-08: HLT.

[Hockenmaier and Steedman2007] Julia Hockenmaier
and Mark Steedman. 2007. CCGbank: A Corpus
of CCG Derivations and Dependency Structures
Extracted from the Penn Treebank. Computa-
tional Linguistics, 33(3):355–396.

[White and Rajkumar2008] Michael White and Ra-
jakrishnan Rajkumar. 2008. A more precise
analysis of punctuation for broad-coverage sur-
face realization with CCG. In Proc. of the Work-
shop on Grammar Engineering Across Frame-
works (GEAF08).

[White et al.2007] Michael White, Rajakrishnan Ra-
jkumar, and Scott Martin. 2007. Towards broad
coverage surface realization with CCG. In Proc.
of the Workshop on Using Corpora for NLG: Lan-
guage Generation and Machine Translation (UC-
NLG+MT).

46


