Tightly Packed Tries: How to Fit Large Models into Memory,
and Make them Load Fast, Too

Ulrich Germann
University of Toronto and
National Research Council Canada
ger mann@s. t or ont 0. edu

Eric Joanis

National Research Council Canada

Samuel Larkin
National Research Cdbacada

Eric.Joani s@nrc-nrc.gc.ca Sanuel.Larkin@nrc-nrc.gc.ca

Abstract

We presentTightly Packed TriegTPTs), a
compact implementation of read-only, com-
pressed trie structures with fast on-demand
paging and short load times.

We demonstrate the benefits of TPTs for stor-
ing n-gram back-off language models and
phrase tables for statistical machine transla-
tion. Encoded as TPTSs, these databases re-
quire less space than flat text file representa-
tions of the same data compressed with the
gzip utility. At the same time, they can be
mapped into memory quickly and be searched
directly in time linear in the length of the key,
without the need to decompress the entire file.
The overhead for local decompression during
search is marginal.

organize these models so that we can swap informa-
tion in and out of memory as needed, and as quickly
as possible?

This paper presentBightly Packed TriegTPTSs),

a compact and fast-loading implementation of read-
only trie structures for NLP databases that store
information associated with token sequences, such
as language models,-gram count databases, and
phrase tables for SMT.

In the following section, we first recapitulate
some basic data structures and encoding techniques
that are the foundations of TPTs. We then lay out
the organization of TPTs. Section 3 discusses com-
pression of node values (i.e., the information asso-
ciated with each key). Related work is discussed in
Section 4. In Section 5, we report empirical results

from run-time tests of TPTs in comparison to other

) implementations. Section 6 concludes the paper.
1 Introduction

The amount of data available for data-driven Nat2 Fundamental data structures and

ural Language Processing (NLP) continues to grow. €ncoding techniques

For some languages, language models (LM) are no¥vl Tri

being trained on many billions of words, and par- res

allel corpora available for building statistical ma-Tries (Fredkin, 1960), also known psefix treesare

chine translation (SMT) systems can run into tena well-established data structure for compactly stor-

of millions of sentence pairs. This wealth of datang sets of strings that have common prefixes. Each

allows the construction of bigger, more comprehenstring is represented by a single node in a tree struc-

sive models, often without changes to the fundamenure with labeled arcs so that the sequence of arc la-

tal model design, for example by simply increasindels from the root node to the respective node “spells

then-gram size in language modeling or the phraseut” the token sequence in question. If we augment

length in phrase tables for SMT. the trie nodes with additional information, tries can
The large sizes of the resulting models pose an ebe used as indexing structures for databases that rely

gineering challenge. They are often too large to fibn token sequences as search keys. For the remain-

entirely in main memory. What is the best way toder of this paper, we will refer to such additional

31

Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 31-39,
Boulder, Colorado, June 2009. (©)2009 Association for Computational Linguistics

13 | offset of root node
total count| 20 node value ofaa’
al 13 size of index to child nodes @fa’ in bytes
aa| 10 node value ofab’
ab| 3 size of index to child nodes @b’ in bytes
b|7 node value ofa’

size of index to child nodes of ‘a’ in bytes
index key forfaa’ coming fronfa’

relative offset of nod@a’ (5 —4 =1)
index key forab’ coming from'a’

relative offset of nod&ab’ (5 — 2 = 3)
node value ofo’

© 0 N O O e W (N = (o

(a) Count table (b) Trie representation

=
(=)

[
[,

) I =
Njo| oo MNlo~|N o M| & Elo|jw ol

field 32-bit 64-bit 12 size of index to child nodes @f in bytes
index entry: token ID 4 4 13 root node value
index entry: pointer 4 8 14 size of index to child nodes of root in bytes
start of index (pointer) 4 8 15 index key fora’ coming from root
overhead of index structute 16 relative offset of nod&’ (13 — 8 = 5)
node value m Y 17 index key forb’ coming from root
total (in bytes) 124z 20+y 18 relative offset of nod#’ (13 — 2 = 11)
(c) Memory footprint per node in an implemen- (d) Trie representation in a contiguous byte array.
tation using memory pointers In practice, each field may vary in length.

Figure 1: A count table (a) stored in a trie structure (b) amgltrie’s sequential representation in a file (d). As the
size of the count table increases, the trie-based storageres more efficient, provided that the keys have common
prefixes. (c) shows the memory footprint per trie node whertitie is implemented as a mutable structure using direct
memory pointers.

information as thenode value Figure 1b shows a from hundreds of thousands to several million dis-
count table (Figure 1a) represented as a trie. tinct items, 32-bit integers are the data type of choice
Tries offer two main advantages over other indexto store token IDS.

ing structures, e.g., binary search trees. First, they This type of implementation offers flexibility and
are more compact because overlapping prefixes diast lookup but has two major drawbacks. First, load
stored only once. And second, unless the set of keyisnes are significant (cf. Tables 1 and 3). Since each
is extremely small, lookup is faster than with binarynode is created individually, the entire trie must be
search trees. While the latter need time logarithmitraversed at load time. In addition, all the informa-
in the number of keys, trie-based search is linear ition contained in the database must be copied ex-

the length of the search key. plicitly from the OS-level file cache into the current
_ o process’s memory.
2.2 Representing tries in memory Second, these implementations waste memory,

Mutable trie implementations usually represent triegspecially on 64-bit machines. Depending on the
as collections of fixed-size records containing th@rchitecture, memory pointers require 4 or 8 byes
node value and a pointer or reference to an index@f memory. In theory, a 64-bit pointer allows us to
ing structure (hencefortinde® that maps from arc address 16 exabytes (16 million terabytes) of mem-
or token labels to the respective child nodes. Link8ry. In practice, 20 to 30 bits per 64-bit pointer will
to child nodes are represented by object referencé&main unused on most state-of-the-art computing
or C-style memory pointers. To simplify the discus-€quipment.

sion, we assume in the following that the code con- The use of 32-bit integers to represent token IDs
sistently uses pointers. Since integers are faster 8s0 wastes memory. Even for large corpora, the size

compare and require less space to store than ch "116 bits have been used occasionally in the past (Clarkson

acter strings, token labels are best represented &g rosenfeld, 1997; Whittaker and Raj, 2001) but limit the
integer IDs. With typical vocabulary sizes rangingvocabulary ca. 64 K tokens.

32

of the token vocabulary is on the order of severaing subsequent bytes/digits by looking at the flag
million distinct items or below. The Google 1T webbit.?
n-gram database (Brants and Franz, 2006), for ex- TPTs use two variants of this variable-length in-
ample, has a vocabulary of only ca. 13 million disteger encoding, with different interpretations of the
tinct items, which can be represented in 24 bits, leflag bit. For “stand-alone” values (node values, if
ting 8 bits go to waste if IDs are represented as 32-bihey are integers, and the size of the index), the flag
integers. bit is set to 1 on the last digit of each number, and to
An alternative is to represent the trie in a singlé@ otherwise. When compressing node indices (i.e.,
contiguous byte array as shown in Figure 1d. Fathe lists of child nodes and the respective arc labels),
each node, we store the node value, the size of thee use the flag bit on each byte to indicate whether
index, and the actual index as a list of alternating tathe byte belongs to a key (token ID) or to a value
ken IDs and byte offsets. Byte offsets are computetbyte offset).
as the distance (in bytes) between the first byte of
the child node and the first byte of its parent. Th&-4 Binary search in compressed indices

trie is represented in post-order because this is thg binary search in a sorted list of key-value pairs,

most efficient way to write it out to a file during we recursively cut the search range in half by choos-
construction. For each node, we need to store thgg the midpoint of the current range as the new

byte offsets of its children. When we write tries tojower or upper bound, depending on whether the
filein post-order, this information is available by thekey at that point is less or greater than the search
time we need it. The only exception is the root nodecey. The recursion terminates when the search key
whose offset is stored at the beginning of the file ifis found or it has been determined that it is not in the
a fixed-length field and updated at the very end. |jst.

This representation scheme has two advantages.\jth compressed indices, it is not possible to de-
First, since node references are represented as rel@rmine the midpoint of the list precisely, because
tive offsets within the array, the entire structure canyf the variable-length encoding of keys and values.
be loaded or mapped (cf. Section 2.5) into memoryowever, the alternation of flag bits between keys
without an explicit traversal. And secondly, it al-a3nd values in the index encoding allows us to rec-
lows symbol-level compression of the structure Witrbgnize each byte in the index as either a ‘key byte’
local, on-the-fly decompression as needed. or a ‘value byte’. During search, we jumapprox-
imatelyto the middle of the search range and then
scan bytes backwards until we encounter the begin-
Variable-length coding is a common technique foping of a key, which will either be the byte at the
lossless compression of information. It exploits th@/ery start of the index range or a byte with the flag
uneven distribution of token frequencies in the unpjt set to ‘1’ immediately preceded by a byte with
derlying data, using short codes for frequently octhe flag bit set to ‘0. We then read the respective

curring symbols and long codes for infrequent SYMkey and compare it against the search key.
bols. Natural language data with its Zipfian distri-

bution of token frequencies lends itself very well to2.5 Memory mapping

variable-length coding. Instead of using more elabMemory mapping is a technique to provide fast
orate schemes such as Huffman (1952) coding, Wge 5ccess through the OS-level paging mechanism.

simply assign token IDs in decreasing order of freMemory mapping establishes a direct mapping be-

quency. Each integer value is encoded as a sequenge o, 4 file on disk and a region of virtual memory,
of digits in base-128 representation. Since the pos-

sible values of each digit (0-127) fit into 7 bits, the 2This is a common technique for compact representation
eighth bit in each byte is available as a flag bit t®f non-negative integers. In the Perl world it is know as

r . ER (Binary Encoded Representation) compressed integer fo
indicate whether or not more digits need to be rea(fﬁat (see the chaptgrer | packt ut in the Perl documenta-

Given the address of the first byte of a compressegn). Apache Lucene and Hadoop, among many other software
integer representation, we know when to stop reagbrojects, also define variable-length encoded integerstype

2.3 Trie compression by variable-length coding

33

often by providing direct access to the kernel's file3 Encoding node values

cache. Transfer from disk to memory and vice vers
"y ﬁ]formatlon associated with each token sequence is

is then handled by the virtual memory manager; the) : - .,
. : o stored directly in a compact format “on the node
program itself can access the file as if it was mem- . . .
. . . In the TPT representation. Special reader functions

ory. There are several libraries that provide mem-

o i convert the packed node value into whatever struc-
ory mapping interfaces; we used tBeost lostreams

. S r represents the n value in memory. In
C++ library2 One nice side-effect of memory map-tu e best represents the node value emory

. . . this section, we discuss the encoding of node values
ping the entire structure is that we can relegate t .

- : or various sequence-based NLP databases, namely
decision as to when to fall back on disk to the oper-

ating system, without having to design and code o sequence count tables, language models, and phrase

S
own page management system. As long as RALI\{/’f‘bIes for SMT.

is available, the data will reside in the kernel's file3.1 Count tables

ccjache_; as memory gets Iszrse’ tt:: N kefrnel V;,'IlkSt%e representation of count tables is straightfor-
rop:jplgglpages ant re- ota m|? em r?mth ISK 8 ard: we represent the count as a compressed inte-
needed. inacompu e1r NELWorK, we can 1ur ermor(gaer_ For representing sequence co-occurrence counts
rely on the file server’s file cache in addition to the(e 9., bilingual phrase co-occurrences), we concate-
individual host's file cache to speed up access. nate the two sequences with a special marker (an ex-

26 Additional tweaks tra token) at the concatenation point.

In order to keep the trie representation as small a2 Back-off language models

possible, we shift key values in the indices two bit8ack-off language models (Katz, 1987) of order
to the left and pad them with two binary flags. One: define the conditional probabilit}? (w; ’w§:111+1)
indicates whether or not a node value is actualljecursively as follows.

stored on the respective child node. If this flag is P(w; |wi},,)

set to 0, the node is assumed to have an externally]:’(wv/ Wil) tfound
defined default value. This is particularly useful for — ¢l Mol _

storing sequence counts. Due to the Zipfian distri- { Bwi—) - Plwi|w;=),,) otherwise

bution of frequencies in natural language data, the _ i1))
lower the count, the more frequent it is. If we de-Here: P(w; |wi_,,,) is a smoothed estimate
fine the threshold for storing counts as the defauf P(wi|w; ,.)), B(w",.,) is the back-off
value, we don't need to store that value for all theveight (a kind of normalization constant), and
sequences that barely meet the threshold. w;_,4, IS @ compact notation for the sequence

The second flag indicates whether the node is tefi—n+1,- - -, Wi—1- _ ,
minal or whether it has children. Terminal nodes n order to retrieve the valub (w; |w;=,,), we
have no index, so we don't need to store the inde@ve t0 retrieve up ta values from the data base.
size of 0 on these nodes. In fact, if the value of tel the worst case, the language model contains no
minal nodes can be represented as an integer, we d3iePability valuesP(w; | contexy for any context
store the node’s value directly in the index of its parPut back-off weights for all possible contexts up to
ent and set the flag accordingly. lengthn — 1. Since the contextsyj~, ..., wi_|

At search time, these flags are interpreted ang@ve common suffixes, it is more efficient to orga-
the value shifted back prior to comparison with thd1iz€ the trie as a backwards suffix tree (Betilal,
search key. 1990), that is, to represent the context sequences in

To speed up search at the top level, the index g@ht-to-left order in the trie. On each node in the

the root of the trie is implemented as an array of fild''€: W€ store the back-off weight for the respective
offsets and flags, providing constant time access ntext, and the list of possible successor words and

top-level trie nodes. their c_ondltlona_ll probabilities. The SRI Ian.guage
modeling toolkit (Stolcke, 2002) organizes its trie
3pavailable atht t p: / / wwv. boost . or g. structure in the same way.

34

Probability values and back-off weights are storedlayer” of the trie. Instead of memory pointers, links
via value IDs that are assigned in decreasing order between nodes are represented by offsets into the
value frequency in the model and encoded as comespective array. With some additional bookkeep-
pressed integers. The list of successor words aridg, the toolkit manages to store array offsets in
their probability IDs is represented in the same wapnly 16 bits (see Whittaker and Raj (2001) for de-
as the nodes’ indices, i.e., as a sorted listwbrd tails). Quantization of probability values and back-
ID, probability value 1D pairs in compressed for- off weights is used to reduce the amount of mem-
mat. ory needed to store probability values and back-off

weights (see Section 4.4 below).
3.3 Phrase tables for SMT

Phrase tables for phrase-based SMT list for every 5 Model filtering

source phrase a number of target phrases and for

each phrase pair a number of numerical scores thitany research systems offer the option to filter the

are usually combined in a linear or log-linear modemodels at load time or offline, so that only infor-

during translation. mation pertaining to tokens that occur in a given in-
To achieve a very compact representation of targgiut is kept in memory; all other database entries are

phrases, we organize all target phrases in the tableskipped. Language model implementations that of-

a “bottom-up” trie: instead of storing on each nodder model filtering at load time include the SRILM

a list of arcs leading to children, we store the node’soolkit (Stolcke, 2002) and thBortageLM imple-

label and its parent. Each phrase can thus be repmaentation (Badret al, 2007). For translation ta-

sented by a single integer that gives the location diles, theMosessystem (Koehret al., 2007) as well

the leaf node; we can restore the respective phraas Portage offer model filtering Moses: offline;

by following the path from the leaf to the root. Portage: offline and/or at load time). Model filtering
Phrase pair scores are entropy-encoded and stonejuires that the input is known when the respective

with variable-length encoding. Since we have sewrogram is started and therefore is not feasible for

eral entropy-encoded values to store for each phraserver implementations.

pair, and several phrases for each source phrase,

we can achieve greater compression with optimally 3 on-demand loading

sized “bit blocks” instead of the octets we have used

so far. By way of a historical accident, we are curA variant of model filtering that is also viable for

rently still using indicator bits on each bit block toserver implementations is on-demand loading. In

indicate whether additional blocks need to be read;the context of SMT, Zens and Ney (2007) store the

more principled approach would have been to switchhrase table on disk, represented as a trie with rela-

to proper Huffman (1952) coding. The optimal sizegive offsets, so that sections of the trie can be loaded

of the bit blocks are calculated separately for eactnto memory without rebuilding them. During trans-

translation table prior to encoding and stored in th&tion, only those sections of the trie that actually

code book that maps from score IDs to actual scoregatch the input are loaded into memory. They re-

port that their approach is “not slower than the tradi-
4 Related work tional approach”, which has a significant load time

The challenges of managing huge models have be@¥erhead. They do not provide a comparison of pure
addressed by a number of researchers in receRfocessing speed ignoring the initial table load time
years. overhead of the “traditional approach”.

IRSTLM (Federico and Cettolo, 2007) offers the
option to use a custom page manager that relegates
The CMU-Cambridge language modeling toolkitpart of the structure to disk via memory-mapped
(Clarkson and Rosenfeld, 1997) represents the cofiles. The difference with our use of memory map-
text trie in contiguous arrays of fixed-size nodeping is that IRSTLM still builds the structure in
records, where each array corresponds to a certaimemory and then swaps part of it out to disk.

4.1 Array offsets instead of memory pointers

35

4.4 Lossy compression and pruning gram model that combines Stolcke (1998) pruning

ith Golomb (1966) coding of inter-arrival times in

Large models can also be reduced in size by Iosé’% ¢ hash val d by th
compression. Both SRILM and IRSTLM offer tools 1" (sparsg) range ot nash vaiues compu"te y the
hash function. One major drawback of their method

for language model pruning (Stolcke, 1998): if prob- . o .
guag P g(): 1t f storage is that search is linear in the total num-

ability values for long contexts can be approximate f K in th ¢ I diated b

well by the back-off computation, the respective en €' OT KEYS I Ihe worst case (usua_t y mediated by

tries are dropped. auxiliary data structures that cache information).
Another form of lossy compression is the quan- Slncr:e hbash-gasel_g O:rr;plbe mentatlonﬁ gf n:[to k?nr

tization of probability values and back-off weights.Seque ce-based alabases usually dont store

. . . .~ _.._the search keys, it is not possible to iterate through

Whittaker and Raj (2001) use pruning, quantization h datab

and difference encoding to store language model pgyc atabases.

rameters in as Ii'ttle as 4 bits per va_llue, rgd_ucing lary 6 Distributed implementations

guage model sizes by to 60% with “minimal loss))

in recognition performance.” Federico and BertoldPrantset al. (2007) present an LM implementation

(2006) show that the performance of an SMT systerWat distributes very large language models over a

does not suffer if LM parameters are quantized int§€Work of language model servers. The delay due
256 distinct classes (8 bits per value). to network latency makes it inefficient to issue indi-

Johnsonet al. (2007) use significance tests tovidual lookup requests to distributed language mod-

eliminate poor candidates from phrase tables fo‘?ls' As Brantt gl.point OUE "Onboard memory s
SMT. They are able to eliminate 90% of the phrasélround 10,000 times faster” than access via the net-

table entries without an adverse effect on translatiof - I_nstead, requests are batched and sent to the
quality, server in chunks of 1,000 or 10,000 requests.

Pruning and lossy compression are orthogonal 8
the approach taken in TPTs. The two approaches
can be combined to achieve even more compact lawe present here the results of empirical evalua-

Experiments

guage models and phrase tables. tions of the effectiveness of TPTs for encoding
_ gram language models and phrase tables for SMT.
4.5 Hash functions We have also used TPTs to encodgram count

An obvious alternative to the use of trie structure§latabases such as the Google 1T weigram
is the use of hash functions that map frergrams database (Brants and Franz, 2006), but are not able
to slots containing associated information. WitHO Provide detailed results within the space limita-
hash-based implementations, the keys are usuafpns of this pape.
not stored at all in the database; hash collisions aqgi
therefore lookup errors are the price to be paid for’
compact storage. This risk can be controlled by
the design of the hash function. Talbot and Brant¥/e compared the performance of TPT-encoded lan-
(2008) show that Bloomier filters (Chazel al, guage models against three other language model
2004) can be used to create perfect hash functioti®plementations: the SRIlanguage modeling toolkit
for language models. This guarantees that there af&tolcke, 2002), IRSTLM (Federico and Cettolo,
no collisions between existing entries in the databas#007), and the language model implementation cur-
but does not eliminate the risk of false positives forently used in thd>ortageSMT system (Badet al,,
items that are not in the database. 2007), which uses a pointer-based implementation
For situations where space is at a premium anlut is able to perform fast LM filtering at load time.
speed negotiable (e.g., in interactive context-basekhe task was to compute the perplexity of a text of

spelling correction, where the number of lookups is “Bottom line: the entire Google 1T web-gram data base

not in the range of thousands or millions per seCis into about 16 GB (file/virtual memory), compared to 24 GB
ond), Churchet al. (2007) present a compressed tri-asgzip-compressed text files (file only).

1 Perplexity computation with 5-gram
language models

36

Table 1: Memory use and runtimes of different LM implemeiatas on a perplexity computation task.

file/mem. size (GB) 1st run (times in sec.) 2nd run (times in sec.)
file virt. real bing! | ttfr?2 wall usr sys cpul ttfr wall usr sys cpu
3 SRILM 3 52 16.3 15.3 42.2 940 1136 217 31 21% 846 1047 215 30 239
2 SRILM-C* | 5.2 13.0 12.9 33.9 230 232 215 14 98% 227 229 213 14 98%
2| IRST 51 55 54 14.2| 614 615 545 13 90% 553 555 544 11 1009
g IRST-m°® 51 55 1.6 14.2| 548 744 545 8 749 547 549 544 5 100%
g IRST-QS 3.1 3.5 34 9.1| 588 589 545 9 93% 551 553 544 8 100%
= IRST-Qm 3.1 35 1.4 9.1| 548 674 546 7 819% 548 549 544 5 99%
| Portage 8.0 105 10.5 27.20 120 122 90 15 85%| 110 112 90 14 92%
TPT 2.9 34 1.4 7.5 2 127 2 2 2% 1 2 1 1 98%
‘5| SRILM 5.2 6.0 5.9 111 112 90 12 91% 99 99 90 9 99%
% SRILM-C 5.2 4.6 4.5 112 113 93 11 919% 100 105 93 8 99%
=| Portage 8.0 4.5 4.4 120 122 75 11 70% 80 81 74 7 99%

Notes: * Bytes pem-gram (Amount of virtual memory used divided by total numbeme§rams).? Time to first response
(first value returned). This was measured in a separate iexpet, so the times reported sometimes do not match tho$ein t
other columns exactly’> Node indices stored in hashe$.“Compact” mode: node indices stored in sorted arrays inlstéa
hashes?® Uses a custom paging mechanism to reduce memory requirsrfiéfalues are quantized into 256 discrete classes,
so that each value can be stored in 1 bytModels filtered on evaluation text at load time.

hashes to access child nodes in the underlying trie

Table 2: Language model statistics. . .
guag implementation, the other one (SRILM-C) sorted

: Gigaword Hansard arrays. The “faster” hash-based implementation
Eim?a:ranrzs 43'123’?23 4%%’%?2 pushes the architecture beyond its limitations: the
trigrams 116 206.275 6.531 550 System starts thrashing and is therefore the slowest
4-grams 123,297,762 9,776,573 by a wide margin.
fSi[Srs?;S(ARPA format) 120’1213'46‘;2 9’1112'5' 4 The most significant bottleneck in the TPT im-
file size (ARPA .gz) 3'7 GB 22'5 M plementation is disk access delay. Notice the huge

difference in run-time between the first and the sec-

10,000 lines (275,000 tokens) with a 5-gram Ian9nd run. In the first run, CPU utilization is merely
guage model trained on the English Gigaword cor2%o: the program is idle most of the time, waiting for

pus (Graff, 2003). Some language model statistidhe data from disk. In the second run, the file is still
are given i’n Table 2 completely in the system’s file cache and is avail-

We measured memory use and total run time iﬁble immediately. When processing large amounts

two runs: the first run was with an empty OS-IevePf da:ctla o parallg:ltz)n a (;_I:Jsltler, cach:cr][ﬁ on the ctl_us-
file cache, forcing the system to read all data fronglerfj Ile Serverwi " erlwe "a uiersg) © respe(; |\(;ef
the hard disk. The second run was immediately afl'0d€!, once a particu’ar page has been requested for

ter the first run, utilizing whatever information wasthe firsttime by any of them.

still cached by the operating system. All experi- Another nice feature of the TPT implementation
ments were run successively on the same 64-bit mas-the short delay between starting the program and
chine with 16 GB of physical memoPfyln order to being able to perform the first lookup: the finst
eliminate distortions by variances in the network angram probability is available after only 2 seconds.

file server load at the time the experiments were run, The slightly | i £ TPLMs (“tiahtl
only locally mounted disks were used. € sightly fonger wal ime o s (‘tightly

. . packed language models”) in comparison to the
The results of the comparison are shown in TaI_Dorta eimplementation is due to the way the data
ble 1. SRILM has two modi operandi: geimp Y

one uses., . .) .
?lle is read: Portage reads it sequentially, while
5Linux kernel version 2.6.18 (SUSE) on an IffeXeor®® 1PLMs request the pages in more or less random
2.33 GHz processor with 4 MB cache. order, resulting in slightly less efficient disk access.

37

Table 3: Model load times and translation speed for batatstetion with thePortageSMT system.

of Baseline TPPT + Baseline LM|| TPLM + Baseline PT| TPPT + TPLM
sentences| load 1 load 1 load 1 load 1
per batch | time w/s' | w/s? time | Ws w/s? time | W/s w/s? time® | WIs w/s?

47 210s| 54| 24| 16s| 5.0 461 178s| 59| 267| <1s| 55| 55
10 187s| 55| 08| 16s| 5.1 36| 170s| 56| 091 <1s| 56| 56
1 — — — || 15s| 5.0 10| 154s| 55| 0.12| <1s| 53| 52

Baseline: Portagés implementation as pointer structure with load-time filtg.

TP: Tightly packedPT: phrase tablel.M: language model

I words per second, excluding load time (pure translatiom tafter model loading)
2 words per second, including load time (bottom line transtaspeed)

5.2 TPTsin statistical machine translation 6 Conclusions

To test the usefulness of TPTs in a more realistic se\tN

ting, we integrated them into tHeortageSMT sys- e have presented Tightly Packed Tries, a compact

tem (Sadatt al, 2005) and ran large-scale transla_lmplementatlon of trie structures for NLP databases

.) Wat provide a good balance between compactness
tions in parallel batch processes on a cluster. Bot . .
and speed. They are only slightly (if at all) slower

language models and translation tables were eBht require much less memory than pointer-based
coded as TPTs and compared against the native q Y P

Portageimplementation. The system was trained Oﬁmplementatmns. Extensive use of the memory-

ca. 5.2 million parallel sentences from the Canadiafy 2PP'N9 mechanism prqwdes very short load times
nd allows memory sharing between processes. Un-

Hansard (English: 101 million tokens; French: 113 . : -
- o ike solutions that are custom-tailored to specific
million tokens). The language model statistics are

given in Table 2; the phrase table contained abOlTPOdEIS (e.g., trigram language models), TPTS pro-

60.6 million pairs of phrases up to length 8. The tes 'de a general strategy for encoding all types of NLP

hat rely on token n for indexin
corpus of 1134 sentences was translated from Engtabasest atrely on token sequences for indexing

glish into French in batches of 1, 10, and 47 or 4énformation. The novelty in our approach lies in the
centenced T compression of the indexing structure itself, not just

of the associated information. While the underlying

Translation tables were not pre-filtered a priori to

. . . : . mechanisms are well-known, we are not aware of
contain only entries matching the input. Pre-filtered

tables are smaller and therefore faster to read, whi ehny work so far that combines them to achieve fast-

. . in m nd f r res for large-
is advantageous when the same text is translated rggd g, compact and fast data structures for large

peatedly; the set-up we used more closely reserﬁgale NLP applications.
bles a system in production that has to deal with un- ¢

known input. Portagedoes, however, filter models References

at load time to reduce memory use. The total (realéadr, G. E. Joanis, S. Larkin, and R. Kuhn.
memory use for translations was between 1 and 1.2 2007

. . “Manageable phrase-based statistical ma-
GB, depending on the batch job, for all systems.

chine translation models5th Intl. Conf. on Com-

Table 3 shpws the run-time t_est results. Ignoring puter Recognition Systems (CORE®Jroclaw,
model load times, the processing speed of the cur- Poland.

rent Portageimplementation and TPTs is compara-
ble. However, when we take into account load timeBell, T. C., J. G. Cleary, and I. H. Witten. 199Text
(which must be taken into account under realistic CompressionPrentice Hall.

conditions), the advantages of the TPT implemer]gran,[S T.and A. Franz. 2006. “Web 1T 5-gram Ver-

tation become evident. sion 1.” LDC Catalogue Number LDC2006T13.
®The peculiar number 47/48 is the result of using the default
batch size used in minimum error rate training of the system iBrants, T., A. C. Popat, P. Xu, F. J. Och, and J. Dean.

other experiments. 2007. “Large language models in machine trans-

38

lation.” EMNLP-CoNLL 2007858-867. Prague, Koehn, P., H. Hoang, A. Birch, C. Callison-Burch,
Czech Republic. M. Federico, N. Bertoldi, B. Cowan, W. Shen,

Chazelle, B., J. Kilian, R. Rubinfeld, and A. Tal, C: Moran, R. Zens, C. Dyer, O. Bojar, A. Con-
2004. “The Bloomier filter: An efficient data stantin, and E. Herbst. 2007. “Moses: Open

structure for static support lookup tablesI5th source toolkit for statistical machine translation.”

Annual ACM-SIAM Symposium on Discrete Algo- ACL 20_07 Demonstration Sessid?rague, Czech

rithms New Orleans, LA, USA. Republic.

p Sadat, F., H. Johnson, A. Agbago, G. Foster

Church, K., T. Hart, and J. Gao. 2007. “Compress- ! ' e o ’
PSS o Kuhn, J. Martin, and A. Tikuisis. 2005,

ing trigram language models with Golomb cod-]) :
ing” EMNLP-CONLL 2007 199-207. Prague, PORTA;GE. A phrase-based mac_:hl_ne translation
system.” ACL Workshop on Building and Us-

Czech Republic. ;
P ing Parallel Texts 133-136. Ann Arbor, M,
Clarkson, P. R. and R. Rosenfeld. 1997. “Statistical USA. Also available as NRC-IT pub”cation

language modeling using the CMU-Cambridge NRC-48525.
toolkit.” EUROSPEECH 1997 2707-2710.

Rhodes, Greece. Stolcke, A. 1998. Entropy-based pruning of

backoff language models.” DARPA Broadcast

Federico, M. and N. Bertoldi. 2006. “How many bits News Transcription and Understanding Work-
are needed to store probabilities for phrase-based shop 270-274. Lansdowne, VA, USA.
translation?” Workshop on Statistical Machine Stolcke, A. 2002. “SRILM — an extensible lan-

Transation 94-101. New York City. guage modeling toolkit.” Intl. Conf. on Spoken
Federico, M. and M. Cettolo. 2007. “Efficient han- Language Processingpenver, CO, USA.

dling of n-gram language models for Staﬁs'[iCaLralbot, D. and T. Brants. 2008. “Randomized

machine translation.Second Workshop on Statis- language models via perfect hash functions.”

tical Machine Translation88-95. Prague, Czech ACL 2008 505-513. Columbus, Ohio.

Republic. . .
Whittaker, E. W. D. and B. Raj. 2001.

Fredkin, E. 1960. “Trie memory.Communications «quantization-based language model com-
of the ACM 3(9):490-499. pression."EUROSPEECH 200B3-36. Aalborg,
Golomb, S. W. 1966. “Run-length encodinglEEE Denmark.
Transactions on Information Theor§2(3):399— zens, R. and H. Ney. 2007. “Efficient phrase-table

401. representation for machine translation with ap-
Graff, D. 2003. “English Gigaword.” LDC Cata- Pplications to online MT and speech translation.”
logue Number LDC2003TO05. NAACL-HLT 2007 2007 492-499. Rochester,

New York.

Huffman, D. A. 1952. “A method for the construc-
tion of minimum-redundancy codes.Proceed-
ings of the IRE40(9):1098-1102. Reprinted in
Resonancé1(2).

Johnson, H., J. Martin, G. Foster, and R. Kuhn.
2007. “Improving translation quality by discard-
ing most of the phrasetable.’EMNLP-CoNLL
2007, 967-975. Prague, Czech Republic.

Katz, S. M. 1987. “Estimation of probabilities
from sparse data for the language model com-
ponent of a speech recognizerlEEE Transac-
tions on Acoustics, Speech, and Signal Process-
ing, 35(3):400-401.

39

