
Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 31–39,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Tightly Packed Tries: How to Fit Large Models into Memory,
and Make them Load Fast, Too

Ulrich Germann
University of Toronto and

National Research Council Canada
germann@cs.toronto.edu

Eric Joanis Samuel Larkin
National Research Council Canada National Research Council Canada

Eric.Joanis@cnrc-nrc.gc.ca Samuel.Larkin@cnrc-nrc.gc.ca

Abstract

We presentTightly Packed Tries(TPTs), a
compact implementation of read-only, com-
pressed trie structures with fast on-demand
paging and short load times.

We demonstrate the benefits of TPTs for stor-
ing n-gram back-off language models and
phrase tables for statistical machine transla-
tion. Encoded as TPTs, these databases re-
quire less space than flat text file representa-
tions of the same data compressed with the
gzip utility. At the same time, they can be
mapped into memory quickly and be searched
directly in time linear in the length of the key,
without the need to decompress the entire file.
The overhead for local decompression during
search is marginal.

1 Introduction

The amount of data available for data-driven Nat-
ural Language Processing (NLP) continues to grow.
For some languages, language models (LM) are now
being trained on many billions of words, and par-
allel corpora available for building statistical ma-
chine translation (SMT) systems can run into tens
of millions of sentence pairs. This wealth of data
allows the construction of bigger, more comprehen-
sive models, often without changes to the fundamen-
tal model design, for example by simply increasing
then-gram size in language modeling or the phrase
length in phrase tables for SMT.

The large sizes of the resulting models pose an en-
gineering challenge. They are often too large to fit
entirely in main memory. What is the best way to

organize these models so that we can swap informa-
tion in and out of memory as needed, and as quickly
as possible?

This paper presentsTightly Packed Tries(TPTs),
a compact and fast-loading implementation of read-
only trie structures for NLP databases that store
information associated with token sequences, such
as language models,n-gram count databases, and
phrase tables for SMT.

In the following section, we first recapitulate
some basic data structures and encoding techniques
that are the foundations of TPTs. We then lay out
the organization of TPTs. Section 3 discusses com-
pression of node values (i.e., the information asso-
ciated with each key). Related work is discussed in
Section 4. In Section 5, we report empirical results
from run-time tests of TPTs in comparison to other
implementations. Section 6 concludes the paper.

2 Fundamental data structures and
encoding techniques

2.1 Tries

Tries (Fredkin, 1960), also known asprefix trees, are
a well-established data structure for compactly stor-
ing sets of strings that have common prefixes. Each
string is represented by a single node in a tree struc-
ture with labeled arcs so that the sequence of arc la-
bels from the root node to the respective node “spells
out” the token sequence in question. If we augment
the trie nodes with additional information, tries can
be used as indexing structures for databases that rely
on token sequences as search keys. For the remain-
der of this paper, we will refer to such additional

31

total count 20
a 13

aa 10
ab 3
b 7

20

13 7

10 3

a b

a b

(a) Count table (b) Trie representation

field 32-bit 64-bit
index entry: token ID 4 4
index entry: pointer 4 8
start of index (pointer) 4 8
overhead of index structure
node value

}
x y

total (in bytes) 12 + x 20 + y

0 13 offset of root node

1 10 node value of‘aa’
2 0 size of index to child nodes of‘aa’ in bytes
3 3 node value of‘ab’
4 0 size of index to child nodes of‘ab’ in bytes
5 13 node value of‘a’
6 4 size of index to child nodes of ‘a’ in bytes
7 a index key for‘aa’ coming from‘a’
8 4 relative offset of node‘aa’ (5 − 4 = 1)
9 b index key for‘ab’ coming from‘a’

10 2 relative offset of node‘ab’ (5 − 2 = 3)
11 7 node value of‘b’
12 0 size of index to child nodes of‘b’ in bytes
13 20 root node value
14 4 size of index to child nodes of root in bytes
15 a index key for‘a’ coming from root
16 8 relative offset of node‘a’ (13 − 8 = 5)
17 b index key for‘b’ coming from root
18 2 relative offset of node‘b’ (13 − 2 = 11)

(c) Memory footprint per node in an implemen-
tation using memory pointers

(d) Trie representation in a contiguous byte array.
In practice, each field may vary in length.

Figure 1: A count table (a) stored in a trie structure (b) and the trie’s sequential representation in a file (d). As the
size of the count table increases, the trie-based storage becomes more efficient, provided that the keys have common
prefixes. (c) shows the memory footprint per trie node when the trie is implemented as a mutable structure using direct
memory pointers.

information as thenode value. Figure 1b shows a
count table (Figure 1a) represented as a trie.

Tries offer two main advantages over other index-
ing structures, e.g., binary search trees. First, they
are more compact because overlapping prefixes are
stored only once. And second, unless the set of keys
is extremely small, lookup is faster than with binary
search trees. While the latter need time logarithmic
in the number of keys, trie-based search is linear in
the length of the search key.

2.2 Representing tries in memory

Mutable trie implementations usually represent tries
as collections of fixed-size records containing the
node value and a pointer or reference to an index-
ing structure (henceforth:index) that maps from arc
or token labels to the respective child nodes. Links
to child nodes are represented by object references
or C-style memory pointers. To simplify the discus-
sion, we assume in the following that the code con-
sistently uses pointers. Since integers are faster to
compare and require less space to store than char-
acter strings, token labels are best represented as
integer IDs. With typical vocabulary sizes ranging

from hundreds of thousands to several million dis-
tinct items, 32-bit integers are the data type of choice
to store token IDs.1

This type of implementation offers flexibility and
fast lookup but has two major drawbacks. First, load
times are significant (cf. Tables 1 and 3). Since each
node is created individually, the entire trie must be
traversed at load time. In addition, all the informa-
tion contained in the database must be copied ex-
plicitly from the OS-level file cache into the current
process’s memory.

Second, these implementations waste memory,
especially on 64-bit machines. Depending on the
architecture, memory pointers require 4 or 8 byes
of memory. In theory, a 64-bit pointer allows us to
address 16 exabytes (16 million terabytes) of mem-
ory. In practice, 20 to 30 bits per 64-bit pointer will
remain unused on most state-of-the-art computing
equipment.

The use of 32-bit integers to represent token IDs
also wastes memory. Even for large corpora, the size

116 bits have been used occasionally in the past (Clarkson
and Rosenfeld, 1997; Whittaker and Raj, 2001) but limit the
vocabulary ca. 64 K tokens.

32

of the token vocabulary is on the order of several
million distinct items or below. The Google 1T web
n-gram database (Brants and Franz, 2006), for ex-
ample, has a vocabulary of only ca. 13 million dis-
tinct items, which can be represented in 24 bits, let-
ting 8 bits go to waste if IDs are represented as 32-bit
integers.

An alternative is to represent the trie in a single
contiguous byte array as shown in Figure 1d. For
each node, we store the node value, the size of the
index, and the actual index as a list of alternating to-
ken IDs and byte offsets. Byte offsets are computed
as the distance (in bytes) between the first byte of
the child node and the first byte of its parent. The
trie is represented in post-order because this is the
most efficient way to write it out to a file during
construction. For each node, we need to store the
byte offsets of its children. When we write tries to
file in post-order, this information is available by the
time we need it. The only exception is the root node,
whose offset is stored at the beginning of the file in
a fixed-length field and updated at the very end.

This representation scheme has two advantages.
First, since node references are represented as rela-
tive offsets within the array, the entire structure can
be loaded or mapped (cf. Section 2.5) into memory
without an explicit traversal. And secondly, it al-
lows symbol-level compression of the structure with
local, on-the-fly decompression as needed.

2.3 Trie compression by variable-length coding

Variable-length coding is a common technique for
lossless compression of information. It exploits the
uneven distribution of token frequencies in the un-
derlying data, using short codes for frequently oc-
curring symbols and long codes for infrequent sym-
bols. Natural language data with its Zipfian distri-
bution of token frequencies lends itself very well to
variable-length coding. Instead of using more elab-
orate schemes such as Huffman (1952) coding, we
simply assign token IDs in decreasing order of fre-
quency. Each integer value is encoded as a sequence
of digits in base-128 representation. Since the pos-
sible values of each digit (0–127) fit into 7 bits, the
eighth bit in each byte is available as a flag bit to
indicate whether or not more digits need to be read.
Given the address of the first byte of a compressed
integer representation, we know when to stop read-

ing subsequent bytes/digits by looking at the flag
bit.2

TPTs use two variants of this variable-length in-
teger encoding, with different interpretations of the
flag bit. For “stand-alone” values (node values, if
they are integers, and the size of the index), the flag
bit is set to 1 on the last digit of each number, and to
0 otherwise. When compressing node indices (i.e.,
the lists of child nodes and the respective arc labels),
we use the flag bit on each byte to indicate whether
the byte belongs to a key (token ID) or to a value
(byte offset).

2.4 Binary search in compressed indices

In binary search in a sorted list of key-value pairs,
we recursively cut the search range in half by choos-
ing the midpoint of the current range as the new
lower or upper bound, depending on whether the
key at that point is less or greater than the search
key. The recursion terminates when the search key
is found or it has been determined that it is not in the
list.

With compressed indices, it is not possible to de-
termine the midpoint of the list precisely, because
of the variable-length encoding of keys and values.
However, the alternation of flag bits between keys
and values in the index encoding allows us to rec-
ognize each byte in the index as either a ‘key byte’
or a ‘value byte’. During search, we jumpapprox-
imately to the middle of the search range and then
scan bytes backwards until we encounter the begin-
ning of a key, which will either be the byte at the
very start of the index range or a byte with the flag
bit set to ‘1’ immediately preceded by a byte with
the flag bit set to ‘0’. We then read the respective
key and compare it against the search key.

2.5 Memory mapping

Memory mapping is a technique to provide fast
file access through the OS-level paging mechanism.
Memory mapping establishes a direct mapping be-
tween a file on disk and a region of virtual memory,

2This is a common technique for compact representation
of non-negative integers. In the Perl world it is know as
BER (Binary Encoded Representation) compressed integer for-
mat (see the chapterperlpacktut in the Perl documenta-
tion). Apache Lucene and Hadoop, among many other software
projects, also define variable-length encoded integer types.

33

often by providing direct access to the kernel’s file
cache. Transfer from disk to memory and vice versa
is then handled by the virtual memory manager; the
program itself can access the file as if it was mem-
ory. There are several libraries that provide mem-
ory mapping interfaces; we used theBoost Iostreams
C++ library.3 One nice side-effect of memory map-
ping the entire structure is that we can relegate the
decision as to when to fall back on disk to the oper-
ating system, without having to design and code our
own page management system. As long as RAM
is available, the data will reside in the kernel’s file
cache; as memory gets sparse, the kernel will start
dropping pages and re-loading them from disk as
needed. In a computer network, we can furthermore
rely on the file server’s file cache in addition to the
individual host’s file cache to speed up access.

2.6 Additional tweaks

In order to keep the trie representation as small as
possible, we shift key values in the indices two bits
to the left and pad them with two binary flags. One
indicates whether or not a node value is actually
stored on the respective child node. If this flag is
set to 0, the node is assumed to have an externally
defined default value. This is particularly useful for
storing sequence counts. Due to the Zipfian distri-
bution of frequencies in natural language data, the
lower the count, the more frequent it is. If we de-
fine the threshold for storing counts as the default
value, we don’t need to store that value for all the
sequences that barely meet the threshold.

The second flag indicates whether the node is ter-
minal or whether it has children. Terminal nodes
have no index, so we don’t need to store the index
size of 0 on these nodes. In fact, if the value of ter-
minal nodes can be represented as an integer, we can
store the node’s value directly in the index of its par-
ent and set the flag accordingly.

At search time, these flags are interpreted and
the value shifted back prior to comparison with the
search key.

To speed up search at the top level, the index at
the root of the trie is implemented as an array of file
offsets and flags, providing constant time access to
top-level trie nodes.

3Available athttp://www.boost.org.

3 Encoding node values

Information associated with each token sequence is
stored directly in a compact format “on the node”
in the TPT representation. Special reader functions
convert the packed node value into whatever struc-
ture best represents the node value in memory. In
this section, we discuss the encoding of node values
for various sequence-based NLP databases, namely
sequence count tables, language models, and phrase
tables for SMT.

3.1 Count tables

The representation of count tables is straightfor-
ward: we represent the count as a compressed inte-
ger. For representing sequence co-occurrence counts
(e.g., bilingual phrase co-occurrences), we concate-
nate the two sequences with a special marker (an ex-
tra token) at the concatenation point.

3.2 Back-off language models

Back-off language models (Katz, 1987) of order
n define the conditional probabilityP(wi |wi−1

i−n+1)
recursively as follows.

P(wi |wi−1
i−n+1)

=

{
P̄(wi |wi−1

i−n+1) if found

β(wi−1
i−n+1) · P̄(wi |wi−1

i−n+2) otherwise
(1)

Here, P̄(wi |wi−1
i−n+1) is a smoothed estimate

of P(wi |wi−1
i−n+1), β(wi−1

i−n+1) is the back-off
weight (a kind of normalization constant), and
wi−1

i−n+1 is a compact notation for the sequence
wi−n+1, . . . , wi−1.

In order to retrieve the valuēP(wi |wi−1
i−n+1), we

have to retrieve up ton values from the data base.
In the worst case, the language model contains no
probability valuesP̄(wi | context) for any context
but back-off weights for all possible contexts up to
lengthn − 1. Since the contextswi−1

i−n+1, . . . , wi−1
i−1

have common suffixes, it is more efficient to orga-
nize the trie as a backwards suffix tree (Bellet al.,
1990), that is, to represent the context sequences in
right-to-left order in the trie. On each node in the
trie, we store the back-off weight for the respective
context, and the list of possible successor words and
their conditional probabilities. The SRI language
modeling toolkit (Stolcke, 2002) organizes its trie
structure in the same way.

34

Probability values and back-off weights are stored
via value IDs that are assigned in decreasing order of
value frequency in the model and encoded as com-
pressed integers. The list of successor words and
their probability IDs is represented in the same way
as the nodes’ indices, i.e., as a sorted list of〈word
ID, probability value ID〉 pairs in compressed for-
mat.

3.3 Phrase tables for SMT

Phrase tables for phrase-based SMT list for every
source phrase a number of target phrases and for
each phrase pair a number of numerical scores that
are usually combined in a linear or log-linear model
during translation.

To achieve a very compact representation of target
phrases, we organize all target phrases in the table in
a “bottom-up” trie: instead of storing on each node
a list of arcs leading to children, we store the node’s
label and its parent. Each phrase can thus be repre-
sented by a single integer that gives the location of
the leaf node; we can restore the respective phrase
by following the path from the leaf to the root.

Phrase pair scores are entropy-encoded and stored
with variable-length encoding. Since we have sev-
eral entropy-encoded values to store for each phrase
pair, and several phrases for each source phrase,
we can achieve greater compression with optimally
sized “bit blocks” instead of the octets we have used
so far. By way of a historical accident, we are cur-
rently still using indicator bits on each bit block to
indicate whether additional blocks need to be read; a
more principled approach would have been to switch
to proper Huffman (1952) coding. The optimal sizes
of the bit blocks are calculated separately for each
translation table prior to encoding and stored in the
code book that maps from score IDs to actual scores.

4 Related work

The challenges of managing huge models have been
addressed by a number of researchers in recent
years.

4.1 Array offsets instead of memory pointers

The CMU-Cambridge language modeling toolkit
(Clarkson and Rosenfeld, 1997) represents the con-
text trie in contiguous arrays of fixed-size node
records, where each array corresponds to a certain

“layer” of the trie. Instead of memory pointers, links
between nodes are represented by offsets into the
respective array. With some additional bookkeep-
ing, the toolkit manages to store array offsets in
only 16 bits (see Whittaker and Raj (2001) for de-
tails). Quantization of probability values and back-
off weights is used to reduce the amount of mem-
ory needed to store probability values and back-off
weights (see Section 4.4 below).

4.2 Model filtering

Many research systems offer the option to filter the
models at load time or offline, so that only infor-
mation pertaining to tokens that occur in a given in-
put is kept in memory; all other database entries are
skipped. Language model implementations that of-
fer model filtering at load time include the SRILM
toolkit (Stolcke, 2002) and thePortageLM imple-
mentation (Badret al., 2007). For translation ta-
bles, theMosessystem (Koehnet al., 2007) as well
as Portage offer model filtering (Moses: offline;
Portage:offline and/or at load time). Model filtering
requires that the input is known when the respective
program is started and therefore is not feasible for
server implementations.

4.3 On-demand loading

A variant of model filtering that is also viable for
server implementations is on-demand loading. In
the context of SMT, Zens and Ney (2007) store the
phrase table on disk, represented as a trie with rela-
tive offsets, so that sections of the trie can be loaded
into memory without rebuilding them. During trans-
lation, only those sections of the trie that actually
match the input are loaded into memory. They re-
port that their approach is “not slower than the tradi-
tional approach”, which has a significant load time
overhead. They do not provide a comparison of pure
processing speed ignoring the initial table load time
overhead of the “traditional approach”.

IRSTLM (Federico and Cettolo, 2007) offers the
option to use a custom page manager that relegates
part of the structure to disk via memory-mapped
files. The difference with our use of memory map-
ping is that IRSTLM still builds the structure in
memory and then swaps part of it out to disk.

35

4.4 Lossy compression and pruning

Large models can also be reduced in size by lossy
compression. Both SRILM and IRSTLM offer tools
for language model pruning (Stolcke, 1998): if prob-
ability values for long contexts can be approximated
well by the back-off computation, the respective en-
tries are dropped.

Another form of lossy compression is the quan-
tization of probability values and back-off weights.
Whittaker and Raj (2001) use pruning, quantization
and difference encoding to store language model pa-
rameters in as little as 4 bits per value, reducing lan-
guage model sizes by to 60% with “minimal loss
in recognition performance.” Federico and Bertoldi
(2006) show that the performance of an SMT system
does not suffer if LM parameters are quantized into
256 distinct classes (8 bits per value).

Johnsonet al. (2007) use significance tests to
eliminate poor candidates from phrase tables for
SMT. They are able to eliminate 90% of the phrase
table entries without an adverse effect on translation
quality.

Pruning and lossy compression are orthogonal to
the approach taken in TPTs. The two approaches
can be combined to achieve even more compact lan-
guage models and phrase tables.

4.5 Hash functions

An obvious alternative to the use of trie structures
is the use of hash functions that map fromn-grams
to slots containing associated information. With
hash-based implementations, the keys are usually
not stored at all in the database; hash collisions and
therefore lookup errors are the price to be paid for
compact storage. This risk can be controlled by
the design of the hash function. Talbot and Brants
(2008) show that Bloomier filters (Chazelleet al.,
2004) can be used to create perfect hash functions
for language models. This guarantees that there are
no collisions between existing entries in the database
but does not eliminate the risk of false positives for
items that are not in the database.

For situations where space is at a premium and
speed negotiable (e.g., in interactive context-based
spelling correction, where the number of lookups is
not in the range of thousands or millions per sec-
ond), Churchet al. (2007) present a compressed tri-

gram model that combines Stolcke (1998) pruning
with Golomb (1966) coding of inter-arrival times in
the (sparse) range of hash values computed by the
hash function. One major drawback of their method
of storage is that search is linear in the total num-
ber of keys in the worst case (usually mediated by
auxiliary data structures that cache information).

Since hash-based implementations of token
sequence-based NLP databases usually don’t store
the search keys, it is not possible to iterate through
such databases.

4.6 Distributed implementations

Brantset al. (2007) present an LM implementation
that distributes very large language models over a
network of language model servers. The delay due
to network latency makes it inefficient to issue indi-
vidual lookup requests to distributed language mod-
els. As Brantset al. point out: “Onboard memory is
around 10,000 times faster” than access via the net-
work. Instead, requests are batched and sent to the
server in chunks of 1,000 or 10,000 requests.

5 Experiments

We present here the results of empirical evalua-
tions of the effectiveness of TPTs for encodingn-
gram language models and phrase tables for SMT.
We have also used TPTs to encoden-gram count
databases such as the Google 1T webn-gram
database (Brants and Franz, 2006), but are not able
to provide detailed results within the space limita-
tions of this paper.4

5.1 Perplexity computation with 5-gram
language models

We compared the performance of TPT-encoded lan-
guage models against three other language model
implementations: the SRI language modeling toolkit
(Stolcke, 2002), IRSTLM (Federico and Cettolo,
2007), and the language model implementation cur-
rently used in thePortageSMT system (Badret al.,
2007), which uses a pointer-based implementation
but is able to perform fast LM filtering at load time.
The task was to compute the perplexity of a text of

4Bottom line: the entire Google 1T webn-gram data base
fits into about 16 GB (file/virtual memory), compared to 24 GB
asgzip-compressed text files (file only).

36

Table 1: Memory use and runtimes of different LM implementations on a perplexity computation task.

file/mem. size (GB) 1st run (times in sec.) 2nd run (times in sec.)
file virt. real b/ng 1 ttfr 2 wall usr sys cpu ttfr wall usr sys cpu

fu
ll

m
od

el
lo

ad
ed SRILM 3 5.2 16.3 15.3 42.2 940 1136 217 31 21% 846 1047 215 30 23%

SRILM-C 4 5.2 13.0 12.9 33.6 230 232 215 14 98% 227 229 213 14 98%
IRST 5.1 5.5 5.4 14.2 614 615 545 13 90% 553 555 544 11 100%
IRST-m5 5.1 5.5 1.6 14.2 548 744 545 8 74% 547 549 544 5 100%
IRST-Q6 3.1 3.5 3.4 9.1 588 589 545 9 93% 551 553 544 8 100%
IRST-Qm 3.1 3.5 1.4 9.1 548 674 546 7 81% 548 549 544 5 99%
Portage 8.0 10.5 10.5 27.2 120 122 90 15 85% 110 112 90 14 92%
TPT 2.9 3.4 1.4 7.5 2 127 2 2 2% 1 2 1 1 98%

fil
te

re
d

7 SRILM 5.2 6.0 5.9 111 112 90 12 91% 99 99 90 9 99%
SRILM-C 5.2 4.6 4.5 112 113 93 11 91% 100 105 93 8 99%
Portage 8.0 4.5 4.4 120 122 75 11 70% 80 81 74 7 99%

Notes: 1 Bytes pern-gram (Amount of virtual memory used divided by total number ofn-grams). 2 Time to first response
(first value returned). This was measured in a separate experiment, so the times reported sometimes do not match those in the
other columns exactly.3 Node indices stored in hashes.4 “Compact” mode: node indices stored in sorted arrays instead of
hashes.5 Uses a custom paging mechanism to reduce memory requirements; 6 Values are quantized into 256 discrete classes,
so that each value can be stored in 1 byte.7 Models filtered on evaluation text at load time.

Table 2: Language model statistics.

Gigaword Hansard
unigrams 8,135,668 211,055
bigrams 47,159,160 4,045,363
trigrams 116,206,275 6,531,550
4-grams 123,297,762 9,776,573
5-grams 120,416,442 9,712,384
file size (ARPA format) 14.0 GB 1.1 GB
file size (ARPA .gz) 3.7 GB 225 MB

10,000 lines (275,000 tokens) with a 5-gram lan-
guage model trained on the English Gigaword cor-
pus (Graff, 2003). Some language model statistics
are given in Table 2.

We measured memory use and total run time in
two runs: the first run was with an empty OS-level
file cache, forcing the system to read all data from
the hard disk. The second run was immediately af-
ter the first run, utilizing whatever information was
still cached by the operating system. All experi-
ments were run successively on the same 64-bit ma-
chine with 16 GB of physical memory.5 In order to
eliminate distortions by variances in the network and
file server load at the time the experiments were run,
only locally mounted disks were used.

The results of the comparison are shown in Ta-
ble 1. SRILM has two modi operandi: one uses

5Linux kernel version 2.6.18 (SUSE) on an IntelR© XeonR©

2.33 GHz processor with 4 MB cache.

hashes to access child nodes in the underlying trie
implementation, the other one (SRILM-C) sorted
arrays. The “faster” hash-based implementation
pushes the architecture beyond its limitations: the
system starts thrashing and is therefore the slowest
by a wide margin.

The most significant bottleneck in the TPT im-
plementation is disk access delay. Notice the huge
difference in run-time between the first and the sec-
ond run. In the first run, CPU utilization is merely
2%: the program is idle most of the time, waiting for
the data from disk. In the second run, the file is still
completely in the system’s file cache and is avail-
able immediately. When processing large amounts
of data in parallel on a cluster, caching on the clus-
ter’s file server will benefit all users of the respective
model, once a particular page has been requested for
the first time by any of them.

Another nice feature of the TPT implementation
is the short delay between starting the program and
being able to perform the first lookup: the firstn-
gram probability is available after only 2 seconds.

The slightly longer wall time of TPLMs (“tightly
packed language models”) in comparison to the
Portage implementation is due to the way the data
file is read: Portage reads it sequentially, while
TPLMs request the pages in more or less random
order, resulting in slightly less efficient disk access.

37

Table 3: Model load times and translation speed for batch translation with thePortageSMT system.

of
sentences
per batch

Baseline TPPT + Baseline LM TPLM + Baseline PT TPPT + TPLM
load
time w/s1 w/s2 load

time w/s1 w/s2 load
time w/s1 w/s2 load

time3 w/s1 w/s2

47 210s 5.4 2.4 16s 5.0 4.6 178s 5.9 2.67 < 1s 5.5 5.5
10 187s 5.5 0.8 16s 5.1 3.6 170s 5.6 0.91 < 1s 5.6 5.6
1 — — — 15s 5.0 1.0 154s 5.5 0.12 < 1s 5.3 5.2

Baseline:Portage’s implementation as pointer structure with load-time filtering.
TP: Tightly packed;PT: phrase table;LM: language model
1 words per second, excluding load time (pure translation time after model loading)
2 words per second, including load time (bottom line translation speed)

5.2 TPTs in statistical machine translation

To test the usefulness of TPTs in a more realistic set-
ting, we integrated them into thePortageSMT sys-
tem (Sadatet al., 2005) and ran large-scale transla-
tions in parallel batch processes on a cluster. Both
language models and translation tables were en-
coded as TPTs and compared against the native
Portageimplementation. The system was trained on
ca. 5.2 million parallel sentences from the Canadian
Hansard (English: 101 million tokens; French: 113
million tokens). The language model statistics are
given in Table 2; the phrase table contained about
60.6 million pairs of phrases up to length 8. The test
corpus of 1134 sentences was translated from En-
glish into French in batches of 1, 10, and 47 or 48
sentences.6

Translation tables were not pre-filtered a priori to
contain only entries matching the input. Pre-filtered
tables are smaller and therefore faster to read, which
is advantageous when the same text is translated re-
peatedly; the set-up we used more closely resem-
bles a system in production that has to deal with un-
known input. Portagedoes, however, filter models
at load time to reduce memory use. The total (real)
memory use for translations was between 1 and 1.2
GB, depending on the batch job, for all systems.

Table 3 shows the run-time test results. Ignoring
model load times, the processing speed of the cur-
rent Portageimplementation and TPTs is compara-
ble. However, when we take into account load times
(which must be taken into account under realistic
conditions), the advantages of the TPT implemen-
tation become evident.

6The peculiar number 47/48 is the result of using the default
batch size used in minimum error rate training of the system in
other experiments.

6 Conclusions

We have presented Tightly Packed Tries, a compact
implementation of trie structures for NLP databases
that provide a good balance between compactness
and speed. They are only slightly (if at all) slower
but require much less memory than pointer-based
implementations. Extensive use of the memory-
mapping mechanism provides very short load times
and allows memory sharing between processes. Un-
like solutions that are custom-tailored to specific
models (e.g., trigram language models), TPTs pro-
vide a general strategy for encoding all types of NLP
databases that rely on token sequences for indexing
information. The novelty in our approach lies in the
compression of the indexing structure itself, not just
of the associated information. While the underlying
mechanisms are well-known, we are not aware of
any work so far that combines them to achieve fast-
loading, compact and fast data structures for large-
scale NLP applications.

References

Badr, G., E. Joanis, S. Larkin, and R. Kuhn.
2007. “Manageable phrase-based statistical ma-
chine translation models.”5th Intl. Conf. on Com-
puter Recognition Systems (CORES). Wroclaw,
Poland.

Bell, T. C., J. G. Cleary, and I. H. Witten. 1990.Text
Compression. Prentice Hall.

Brants, T. and A. Franz. 2006. “Web 1T 5-gram Ver-
sion 1.” LDC Catalogue Number LDC2006T13.

Brants, T., A. C. Popat, P. Xu, F. J. Och, and J. Dean.
2007. “Large language models in machine trans-

38

lation.” EMNLP-CoNLL 2007, 858–867. Prague,
Czech Republic.

Chazelle, B., J. Kilian, R. Rubinfeld, and A. Tal.
2004. “The Bloomier filter: An efficient data
structure for static support lookup tables.”15th
Annual ACM-SIAM Symposium on Discrete Algo-
rithms. New Orleans, LA, USA.

Church, K., T. Hart, and J. Gao. 2007. “Compress-
ing trigram language models with Golomb cod-
ing.” EMNLP-CoNLL 2007, 199–207. Prague,
Czech Republic.

Clarkson, P. R. and R. Rosenfeld. 1997. “Statistical
language modeling using the CMU-Cambridge
toolkit.” EUROSPEECH 1997, 2707–2710.
Rhodes, Greece.

Federico, M. and N. Bertoldi. 2006. “How many bits
are needed to store probabilities for phrase-based
translation?” Workshop on Statistical Machine
Translation, 94–101. New York City.

Federico, M. and M. Cettolo. 2007. “Efficient han-
dling of n-gram language models for statistical
machine translation.”Second Workshop on Statis-
tical Machine Translation, 88–95. Prague, Czech
Republic.

Fredkin, E. 1960. “Trie memory.”Communications
of the ACM, 3(9):490–499.

Golomb, S. W. 1966. “Run-length encodings.”IEEE
Transactions on Information Theory, 12(3):399–
401.

Graff, D. 2003. “English Gigaword.” LDC Cata-
logue Number LDC2003T05.

Huffman, D. A. 1952. “A method for the construc-
tion of minimum-redundancy codes.”Proceed-
ings of the IRE, 40(9):1098–1102. Reprinted in
Resonance11(2).

Johnson, H., J. Martin, G. Foster, and R. Kuhn.
2007. “Improving translation quality by discard-
ing most of the phrasetable.”EMNLP-CoNLL
2007, 967–975. Prague, Czech Republic.

Katz, S. M. 1987. “Estimation of probabilities
from sparse data for the language model com-
ponent of a speech recognizer.”IEEE Transac-
tions on Acoustics, Speech, and Signal Process-
ing, 35(3):400–401.

Koehn, P., H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Con-
stantin, and E. Herbst. 2007. “Moses: Open
source toolkit for statistical machine translation.”
ACL 2007 Demonstration Session. Prague, Czech
Republic.

Sadat, F., H. Johnson, A. Agbago, G. Foster,
R. Kuhn, J. Martin, and A. Tikuisis. 2005.
“PORTAGE: A phrase-based machine translation
system.” ACL Workshop on Building and Us-
ing Parallel Texts, 133–136. Ann Arbor, MI,
USA. Also available as NRC-IIT publication
NRC-48525.

Stolcke, A. 1998. “Entropy-based pruning of
backoff language models.” DARPA Broadcast
News Transcription and Understanding Work-
shop, 270–274. Lansdowne, VA, USA.

Stolcke, A. 2002. “SRILM — an extensible lan-
guage modeling toolkit.” Intl. Conf. on Spoken
Language Processing. Denver, CO, USA.

Talbot, D. and T. Brants. 2008. “Randomized
language models via perfect hash functions.”
ACL 2008, 505–513. Columbus, Ohio.

Whittaker, E. W. D. and B. Raj. 2001.
“Quantization-based language model com-
pression.”EUROSPEECH 2001, 33–36. Aalborg,
Denmark.

Zens, R. and H. Ney. 2007. “Efficient phrase-table
representation for machine translation with ap-
plications to online MT and speech translation.”
NAACL-HLT 2007 2007, 492–499. Rochester,
New York.

39

