
Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 1–4,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Building Test Suites for UIMA Components

Philip V. Ogren Steven J. Bethard

Center for Computational Pharmacology Department of Computer Science

University of Colorado Denver Stanford University

Denver, CO 80217, USA Stanford, CA 94305, USA
philip@ogren.info bethard@stanford.edu

Abstract

We summarize our experiences building a

comprehensive suite of tests for a statistical

natural language processing toolkit, ClearTK.

We describe some of the challenges we en-

countered, introduce a software project that

emerged from these efforts, summarize our re-

sulting test suite, and discuss some of the les-

sons learned.

1 Introduction

We are actively developing a software toolkit for

statistical natural processing called ClearTK (Og-

ren et al., 2008)
 1

, which is built on top of the Un-

structured Information Management Architecture

(UIMA) (Ferrucci and Lally, 2004). From the be-

ginning of the project, we have built and main-

tained a comprehensive test suite for the ClearTK

components. This test suite has proved to be inva-

luable as our APIs and implementations have

evolved and matured. As is common with early-

stage software projects, our code has undergone

number of significant refactoring changes and such

changes invariably break code that was previously

working. We have found that our test suite has

made it much easier to identify problems intro-

duced by refactoring in addition to preemptively

discovering bugs that are present in new code. We

have also observed anecdotally that code that is

1 http://cleartk.googlecode.com

more thoroughly tested as measured by code cov-

erage has proven to be more reliable and easier to

maintain.

While this test suite has been an indispensable

resource for our project, we have found creating

tests for our UIMA components to be challenging

for a number of reasons. In a typical UIMA

processing pipeline, components created by devel-

opers are instantiated by a UIMA container called

the Collection Processing Manager (CPM) which

decides at runtime how to instantiate components

and what order they should run via configuration

information provided in descriptor files. This pat-

tern is typical of programming frameworks: the

developer creates components that satisfy some

API specification and then these components are

managed by the framework. This means that the

developer rarely directly instantiates the compo-

nents that are developed and simple programs con-

sisting of e.g. a main method are uncommon and

can be awkward to create. This is indeed consistent

with our experiences with UIMA. While this is

generally a favorable approach for system devel-

opment and deployment, it presents challenges to

the developer that wants to isolate specific compo-

nents (or classes that support them) for unit or

functional testing purposes.

2 Testing UIMA Components

UIMA coordinates data generated and consumed

by different components using a data structure

called the Common Analysis Structure (CAS). The

1

CAS represents the current state of analysis that

has been performed on the data being analyzed. As

a simple example, a UIMA component that per-

forms tokenization on text would add token anno-

tations to the CAS. A subsequent component such

as a part-of-speech tagger would read the token

annotations from the CAS and update them with

part-of-speech labels. We have found that many of

our tests involve making assertions on the contents

of the CAS after a component or series of compo-

nents has been executed for a given set of configu-

ration parameters and input data. As such, the test

must obtain an instance of a CAS after it has been

passed through the components relevant to the

tests.

For very simple scenarios a single descriptor file

can be written which specifies all the configuration

parameters necessary to instantiate a UIMA com-

ponent, create a CAS instance, and process the

CAS with the component. Creating and processing

a CAS from such a descriptor file takes 5-10 lines

of Java code, plus 30-50 lines of XML for the de-

scriptor file. This is not a large overhead if there is

a single test per component, however, testing a

variety of parameter settings for each component

results in a proliferation of descriptor files. These

descriptor files can be difficult to maintain in an

evolving codebase because they are tightly coupled

with the Java components they describe, yet most

code refactoring tools fail to update the XML de-

scriptor when they modify the Java code. As a re-

sult, the test suite can become unreliable unless

substantial manual effort is applied to maintain the

descriptor files.

Thus, for ease of refactoring and to minimize the

number of additional files required, it made sense

to put most of the testing code in Java instead of

XML. But the UIMA framework does not make it

easy to instantiate components or create CAS ob-

jects without an XML descriptor, so even for rela-

tively simple scenarios we found ourselves writing

dozens of lines of setup code before we could even

start to make assertions about the expected con-

tents of a CAS. Fortunately, much of this code was

similar across test cases, so as the ClearTK test

suite grew, we consolidated the common testing

code. The end result was a number of utility

classes which allow UIMA components to be in-

stantiated and run over CAS objects in just 5-10

lines of Java code. We decided that these utilities

could also ease testing for projects other than

ClearTK, so we created the UUTUC project, which

provides our UIMA unit test utility code.

3 UUTUC

UUTUC
2
 provides a number of convenience

classes for instantiating, running, and testing

UIMA components without the overhead of the

typical UIMA processing pipeline and without the

need to provide XML descriptor files.

Note that UUTUC cannot isolate components

entirely from UIMA – it is still necessary, for ex-

ample, to create AnalysisEngine objects, JCas ob-

jects, Annotation objects, etc. Even if it were

possible to isolate components entirely from

UIMA, this would generally be undesirable as it

would result in testing components in a different

environment from that of their expected runtime.

Instead, UUTUC makes it easier to create UIMA

objects entirely in Java code, without having to

create the various XML descriptor files that are

usually required by UIMA.

Figure 1 provides a complete code listing for a

test of a UIMA component we wrote that provides

a simple wrapper around the widely used Snowball

stemmer
3
. A complete understanding of this code

would require detailed UIMA background that is

outside the scope this paper. In short, however, the

code creates a UIMA component from the Snow-

ballStemmer class, fills a CAS with text and to-

kens, processes this CAS with the stemmer, and

checks that the tokens were stemmed as expected.

Here are some of the highlights of how UUTUC

made this easier:

Line 3 uses TypeSystemDescriptionFactory

to create a TypeSystemDescription from the

user-defined annotation classes Token and Sen-

tence. Without this factory, a 10 line XML de-

scriptor would have been required.

Line 5 uses AnalysisEngineFactory to create

an AnalysisEngine component from the user-

defined annotator class SnowballStemmer and

the type system description, setting the stemmer

name parameter to "English". Without this

factory, a 40-50 line XML descriptor would

have been required (and near duplicate descrip-

2 http://uutuc.googlecode.com – provided under BSD license
3 http://snowball.tartarus.org

2

tor files would have been required for each ad-

ditional parameter setting tested).

Line 11 uses TokenFactory to set the text of

the CAS object and to populate it with Token

and Sentence annotations. Creating these anno-

tations and adding them to the CAS manually

would have taken about 20 lines of Java code,

including many character offsets that would

have to be manually adjusted any time the test

case was changed.

While a Python programmer might not be im-

pressed with the brevity of this code, anyone who

has written Java test code for UIMA components

will appreciate the simplicity of this test over an

approach that does not make use of the UUTUC

utility classes.

4 Results

The test suite we created for ClearTK was built

using UUTUC and JUnit version 4
4
 and consists of

92 class definitions (i.e. files that end in .java) con-

taining 258 tests (i.e. methods with the marked

with the annotation @Test). These tests contain a

total of 1,943 individual assertions. To measure

code coverage of our unit tests we use EclEmma
5
,

a lightweight analysis tool available for the Eclipse

development environment, which counts the num-

ber of lines that are executed (or not) when a suite

of unit tests are executed. While this approach pro-

4 http://junit.org
5 http://www.eclemma.org

vides only a rough approximation of how well the

unit tests “cover” the source code, we have found

anecdotally that code with higher coverage re-

ported by EclEmma proves to be more reliable and

easier to maintain. Overall, our test suite provides

74.3% code coverage of ClearTK (5,391 lines cov-

ered out of 7,252) after factoring out automatically

generated code created by JCasGen. Much of the

uncovered code corresponds to the blocks catching

rare exceptions. While it is important to test that

code throws exceptions when it is expected to,

forcing test code to throw all exceptions that are

explicitly caught can be tedious and sometimes

technically quite difficult.

5 Discussion

We learned several lessons while building our test

suite. We started writing tests using Groovy, a dy-

namic language for the Java Virtual Machine. The

hope was to simplify testing by using a less ver-

bose language than Java. While Groovy provides a

great syntax for creating tests that are much less

verbose, we found that creating and maintaining

these unit tests was cumbersome using the Eclipse

plug-in that was available at the time (Summer

2007). In particular, refactoring tasks such as

changing class names or method names would suc-

ceed in the Java code, but the Groovy test code

would not be updated, a similar problem to that of

UIMA’s XML descriptor files. We also found that

Eclipse became less responsive because user ac-

tions would often wait for the Groovy compiler to

 1 @Test

 2 public void testSimple() throws UIMAException {

 3 TypeSystemDescription typeSystemDescription = TypeSystemDescriptionFactory

 4 .createTypeSystemDescription(Token.class, Sentence.class);

 5 AnalysisEngine engine = AnalysisEngineFactory.createAnalysisEngine(

 6 SnowballStemmer.class, typeSystemDescription,

 7 SnowballStemmer.PARAM_STEMMER_NAME, "English");

 8 JCas jCas = engine.newJCas();

 9 String text = "The brown foxes jumped quickly over the lazy dog.";

10 String tokens = "The brown foxes jumped quickly over the lazy dog .";

11 TokenFactory.createTokens(jCas, text, Token.class, Sentence.class, tokens);

12 engine.process(jCas);

13 List<String> actual = new ArrayList<String>();

14 for (Token token: AnnotationRetrieval.getAnnotations(jCas, Token.class)) {

15 actual.add(token.getStem());

16 }

17 String expected = "the brown fox jump quick over the lazi dog .";

18 Assert.assertEquals(Arrays.asList(expected.split(" ")), actual);

19 }

Figure 1: A complete test case using UUTUC.

3

complete. Additionally, Groovy tests involving

Java’s Generics would sometimes work on one

platform (Windows) and fail on another (Linux or

Mac). For these reasons we abandoned using

Groovy and converted our tests to Java. It should

be noted that the authors are novice users of

Groovy and that Groovy (and the Eclipse Groovy

plug-in) may have matured significantly in the in-

tervening two years.

Another challenge we confronted while building

our test suite was the use of licensed data. For ex-

ample, ClearTK contains a component for reading

and parsing PennTreebank formatted data. One of

our tests reads in and parses the entire PennTree-

bank corpus, but since we do not have the rights to

redistribute the PennTreeBank, we could not in-

clude this test as part of the test suite distributed

with ClearTK. So as not to lose this valuable test,

we created a sibling project of ClearTK which is

not publicly available, but from which we could

run tests on ClearTK. This sibling project now

contains all of our unit tests which use data we

cannot distribute. We are considering making this

project available separately for those who have

access to the relevant data sets.

We have begun to compile a growing list of best

practices for our test suite. These include:

Reuse JCas objects. In UIMA, creating a JCas

object is expensive. Instead of creating a new

JCas object for each test, a single JCas object

should be reused for many tests where possible.

Refer to descriptors by name, not location.
UIMA allows descriptors to be located by either

“location” (a file system path) or “name” (a Ja-

va-style dotted package name). Descriptors re-

ferred to by “name” can be found in a .jar file,

while descriptors referred to by “location” can-

not. This applies to imports of both type system

descriptions (e.g. in component descriptors) and

to imports of CAS processors (e.g. in collection

processing engine descriptors).

Test loading of descriptor files. As discussed,

XML descriptor files can become stale in an

evolving codebase. Simply loading each de-

scriptor in UIMA and verifying that the para-

meters are as expected is often enough to keep

the descriptor files working if the actual com-

ponent code is being properly checked through

other tests.

Test copyright and license statements. We

found it useful to add unit tests that search

through our source files (both Java code and

descriptor files) and verify that appropriate

copyright and license statements are present.

Such statements were a requirement of the

technology transfer office we were working

with, and were often accidentally omitted when

new source files were added to ClearTK. Add-

ing a unit test to check for this meant that we

caught such omissions much earlier.

As ClearTK has grown in size and complexity its

test suite has proven many times over to be a vital

instrument in detecting bugs introduced by extend-

ing or refactoring existing code. We have found

that the code in UUTUC has greatly decreased the

burden of maintaining and extending this test suite,

and so we have made it available for others to use.

References

Philip V. Ogren, Philipp G. Wetzler, and Steven Be-

thard. 2008. ClearTK: a UIMA toolkit for statistical

natural language processing. In UIMA for NLP

workshop at LREC.

David Ferrucci and Adam Lally. 2004. UIMA: an archi-

tectural approach to unstructured information

processing in the corporate research environment.

Natural Language Engineering, 10(3-4):327–348.

4

