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1

The aim of the BioNLP'09 shared task 1 was t
characterise molecular events being reported in
Medline abstract by identifying the textual trigger
event type and participating entities (Kim et al
2009). Nine event types were considergdne

sarafraf@cs.man.ac.uk, g.nenadic@manchester.ac.uk

Abstract

This paper reports on a system developed for
the BioNLP'09 shared task on detection and
characterisation of biomedical events. Event
triggers and types were recognised using a
conditional random field classifier and a set of
rules, while event participants were identified
using a rule-based system that relied on rela-
tive distances between candidate entities and
the trigger in the associated parse tree. The re-
sults on previously unseen test data were en-
couraging: for non-regulatory events, the F-
score was almost 50% (with precision above
60%), with the overall F-score of around 30%
(49% precision). The performance on more
complex regulatory events was poor
(F-measure of 7%). Among the 24 teams
submitting the test results, our results were
ranked 12 for the overall F-score and"§or

the F-score of non-regulation events.

I ntroduction

expression transcription protein catabolismlo-
calisation phosporylation binding regulation
positive regulation and negative regulation De-

pending on the event type, the task included t

identification of either one (for the first five ent
types mentioned above) or more (e.g. dording

participating proteins. Information requested for

The organisers have distributed a training
dataset of 800 abstracts, with gene and gene prod-
uct mentions pre-annotated in text. In addition, a
development set (150 abstracts) was provided to
assess the quality of the extractions during the
training and development phases.

2 Methods

The system developed for the challenge consists of
three main modules: (1) event trigger and type de-
tection, (2) event participant detection, and
(3) post-processing of the results.

2.1 Event Trigger and Type Detection

Our view of the event trigger and type detection
subtask was that each token in a sentence needed
to be tagged either as a trigger for one of the nin
event types, or as a non-trigger/event token. We
therefore decided to identify event types and trig-
gers in a single step by training a conditional ran
dom field (CRF) classifier that assigned one of ten
nine types plus non-trigger) tags to each token.
aRFs have been shown to be particularly suitable
for tagging sequential data such as natural lan-
guage text, because they take into account features
and tags of neighbouring tokens when evaluating
the probability of a tag for a given token.

Tokens and their part-of-speech (POS) tags
were recognised using the Genia Tagger (Tsuruoka

ﬁeé al. 2005). Each stemmed token was represented

using a feature vector consisting of the following
features:

A binary feature indicating whether the to-
ken is a protein;

regulatory events was more complex: in addition to
one theme (a protein or another event), these ®
events could also have a cause (a protein or an-
other event) that needed to be identified.

A binary feature indicating whether the to-
ken is a known protein-protein interaction
word (we used a pre-complied dictionary of
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such words collected from previous studieanalysis demonstrated that it was more likely for a

(Fu et al. 2008; Yang et al. 2008); theme to appear in the sub-tree of the correspond-
* The token's POS tag; ing trigger, with 70% of all single theme events
« The log-frequencies of the token being &aving a theme which appeared in the sub-tree of

trigger for each event type in the traininghe trigger. Furthermore, specific analyses of the

data (nine features); parse trees associated to bieding events (which
e The number of proteins in the given sentan have more than one theme) suggested a linear
tence. relationship between the parse tree distance and

Other features (e.g. separating the known intepinding event participant number (participarg
action words according to the nine event typedhie nearest, participaris the second nearest, etc.).
were explored during the development phase, bt

were not included in the final feature list sinbey 2 x —o— Single Theme

increased the sparseness of the data and did "% Binding Theme 2
improve the overall results. The CRF paramete e
were adjusted for maximum performance, incluc < _ f V" Regulaton Cause

ing the choice of training algorithms, the numbe
of training steps, the size of the window withir
which the tokens can affect any certain token, ar
the number of training abstracts used in each-traig

ing step. It was interesting to notice that theszav

no significant improvements in the performanc
after training on 100, 400 or 800 abstracts from tt < |
training set (data not shown).

bability
04

2.2 Locating Event Themes g4

After detecting potential triggers and associate
event types, the next task was to locate possit.._ - _ _ _
participants (i.e. ‘themes’ and ‘causes’) for each Figure 1: Proba_blllty density functlon_ of the dista
event. It was obvious that participants did notehay €tWeen the trigger and the theme in the parse tree
to be the nearest to the trigger on the surfacg,lev (ignoring the tokens that are not proteins)

so our approach was based on distances within thgye ysed this distributional analysis (derived
parse trees associated with the sentences contaifin the training data) to design a rule-based

ing candidate events. Parse tree distances hfﬁ{@thod for the identification of participating

been studied previously in clustering and automalifiomes The rules were manually derived for each
translation tasks (Emms 2008), so we hypothesisgiha nine event classes by defining:

that we could use them to identify the most likely a threshold for the maximum distance to the
participants. The training data was analysed fer th trigger in the sub-tree for the given event
proximities between the triggers and the (correct) type:

event participants in the parse tree of the seetenc . a2 th’reshold for the difference between the
Figure 1 gives a detailed density function of these maximum distance in the whole tree and the

distances (ignoring non-protein nodes). The analy- iven sub-tree for the given event tvpe-
sis showed that a theme was usually amongst the 9 9 >Nt Lype,
» the number of nearest proteins to be re-

nearest proteins to the trigger in terms of pamse t .
distances: for example, in 60% of all single theme ported for each trigger.
events (e.glocalisation phosphorylationthe cor- Al entities that satisfied a distance-based rule
rect protein participant was the trigger's neamest for a given trigger were selected as the correspond
second nearest protein in the parse tree. A furth@g theme(s). For example, if the event type is
binding then up to the second closest protein in the
sub-tree, and the first closest protein in the oést
the tree are reported as themes.

Relative Distance

! The parse trees were produced by the GDep p&aga¢
and Tsujii, 2007) and supplied by the challengewigers.
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Figure 2 provides an example of the method a
plied to a sentence with multiple everRegulates
andsecretionare correctly identified as triggers for ,/ \
a regulation and a localization event in the firs tethering
phase. Using the rules for localization, the them / l \
for two localization events are correctly recogdise
as proteinsT2 and T3, whereasT1l was ignored  Momoeyte by factor-alpha (T3)
since it did not appear in the trigger's sub-tree. / / l \
Engineering and applying rules for non- . . _
regulatory events was relatively straightforwarg ~— eecm(™)  peoent@@ o end o umor(T3) - necros(Ta)
However, regulatory events can have differer / \
kinds of participants (a protein or an event).Ha t
case of an event, we were trying to locate the-nei _
est trigger for the event (being regulated) in thEigure 2: The parse tree of senteMnocyte tethering
parse tree. For example, in Figure 2, the neare{ P-selectin regulates monocyte chemotactic petei
: . : . and tumor necrosis factor-alpha secretidime triggers
Optlon to the regulation t_rlgg_eseécretlob was the are shown in boxes, and the entities are numbered
trigger of the two localization events, and both

events should_be (correctly) reported as the th_err‘@\%nt by assigning proteins appearing in the sen-
of two regulation events. Therefore, we require fnce to them, even when no protein in the sen-

number of recursions in the application of thesulgence satisfied the theme or cause criteria destrib
to represent higher-order regulatory dependences. section 2.2. This was aimed at improving the
For the purposes of this challenge, only regulationy,remely low recall for regulatory events.

up to the second “order” were detected, allowinggina|ly “since triggers could consist of more than
other events to act as themes and causes as Welhas onsecutive token, a set of simple rules were
proteins. Attempts to find more complicated reguspplied to remove typical false-negative constitu-
latory events using this method resulted in a d@gs identified by the CRF as part of triggers .(e.g
creased precision and/or F-score. sometimes linking words appeared within triggers).

monocyte (T2)  chemotactic (T2)

2.3 Pogt-processing Event Profiles 3 Resultsand discussion

The performance of the first two phases washe task 1 assessment was based on the output of
studied on the development dataset: we notedti&e system when applied to the test dataset of 260
number of false-positive and false-negative resulfgeviously unseen abstracts. An event was counted
that were mostly due to a set of recurring triggeras a true positive if its type, trigger and alltjmar
We therefore decided to perform a post-processipants had been correctly identified. The overall F-
step to improve the identification of event triggerscore for our system was 30.35% with 48.61% pre-
and associated types. In the first step (improvingjsion (approximate span matching, see Table 1).
the event trigger and type detection), the outfut The best performing event types weteosphory-
the CRF was overridden in cases where the triggdesion (the best F-score and the best recall) and
appeared in a list of negatively discriminated-triggene expressiofthe best precision with a reasona-
ger words which was collected after the manualy good F-measure). While the results for non-
analysis of the false positive results on the ingn regulatory events were encouraging, they were low
and development data. Similarly, in cases whefer regulatory events. Among the 24 teams submit-
the CRF missed a highly indicative trigger (from aing the test results, our results were rankelifa
manually collected set) for a given event type, thiae overall F-score and"8or the F-score of non-
trigger was added as part of post-processing.dn thegulation events.
latter case, the sentence was then processedefor tiA preliminary analysis of the results was per-
event theme detection (as described in 2.2). formed on the development data (as the test data is
In the second step of the pre-processing phasmt available), which had around 5% higher overall
we forced highly indicative regulation triggers (ifF-score than the test data (9% for non-regulation
not previously identified) to be associated with anevents, see Table 2 for details).
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Event Class #Gold R P F-score Event Class #Gold R P F-score
Localisation 174 4483 53.06 48.60  Localisation 53 67.92 46.75 55.38
Binding 347 12.68 40.37 19.30 Binding 312 2147 6381 32.13
Gene expression 722 52.6369.34 59.84 Gene expression 356 64.61 76.33 69.98
Transcription 137 15.33 67.74 25.00  Transcription 82 53.66 89.80 67.18
Protein catabolism 14 42.86 50.00 46.15 Protein catabolism 21 90.48 67.86 77.55
Phosphorylation 135 7852 53.81 63.86 Phosphorylation 47 9149 53.09 67.19
Non-reg total 1529 4153 60.82 49.36 Non-reg total 871 50.4 68.44 58.05
Regulation 291 3.09 19.15 5.33 Regulation 172 5.23 33.33 9.05
Positive regulation 983 1.12 8.87 1.99 Positive regulation 632 3.48 21.36 5.99
Neg. regulation 379 124  20.52 15.46  Neg. regulation 201 9.45 15.08 11.62
Regulatory total 1653 405 16.75 6.53 Regulatory total 1005 498 19.53 7.93
All total 3182 22.06 48.61 30.35 All total 1876  26.07 54.46 35.26

Table 1: Evaluation of the test data (260 abstyacts
(approximate span matching; #Gold = the number of
examples in the gold standard)

Table 2: Evaluation of the development data (15€rabts)
(approximate span matching; #Gold as in Table 1)

events: first identify triggers and then link théon

In order to assess the effects of different stegwvent classes. In addition, the rules employed for
in our approach, we evaluated the performance détermining themes need to be more specific to
the event trigger and event participant detectiaeflect both event type and grammatical structure.
steps separately. The results presented in Tabldn3the case of regulatory events, however, signifi-
indicated that the performance of the CRF modul@antly better results were noticed in the trigger d
was not much better than the overall performandection part when compared to the overall scores,
of the system (an F-score of 43% vs. 35%), sugndicating that it was difficult to identify regultary
gesting that the CRF part was mostly responsibparticipants, as any of those participants could be
for the errors, by both missing triggers and falseleither a protein or another event.
reporting them. This was particularly the case with Overall, the results achieved by our system
non-regulatory events (even for binding). Consuggest that combining parse tree results, rulds an
versely, when considering only those events who§&RFs is a promising approach for the identification
triggers were correctly identified, their partiapps. of non-regulatory events in the literature, while
were also correctly recognised in most casesiore work would be needed for regulatory events.
Overall, the analysis suggested that the parse tree
distance method performed reasonable well, dReferences
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