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Abstract

We introduce a supervised approach for ex-
tracting bio-molecular events by using linguis-
tic features that represent the contexts of the
candidate event triggers and participants. We
use Support Vector Machines as our learning
algorithm and train separate models for event
types that are described with a single theme
participant, multiple theme participants, or a
theme and a cause participant. We perform ex-
periments with linear kernel and edit-distance
based kernel and report our results on the
BioNLP’09 Shared Task test data set.

1 Introduction

Most previous work on biomedical information ex-
traction focuses on identifying relationships among
biomedical entities (e.g. protein-protein interac-
tions). Unlike relationships, which are in general
characterized with a pair of entities, events can be
characterized with event types and multiple entities
in varying roles. The BioNLP’09 Shared Task ad-
dresses the extraction of bio-molecular events from
the biomedical literature (Kim et al., 2009). We par-
ticipated in the “Event Detection and Characteriza-
tion” task (Task 1). The goal was to recognize the
events concerning the given proteins by detecting
the event triggers, determining the event types, and
identifying the event participants.

In this study, we approach the problem as a su-
pervised classification task. We group the event
types into three general classes based on the num-
ber and types of participants that they involve. The
first class includes the event types that are described

with a single theme participant. The second class in-
cludes the event types that are described with one or
more theme participants. The third class includes
the events that are described with a theme and/or
a cause participant. We learn support vector ma-
chine (SVM) models for each class of events to clas-
sify each candidate event trigger/participant pair as
a real trigger/participant pair or not. We use vari-
ous types of linguistic features such as lexical, posi-
tional, and dependency relation features that repre-
sent the contexts of the candidate trigger/participant
pairs. The results that we submitted to the shared
task were based on using a linear kernel function. In
this paper, we also report our results based on using
an edit-distance based kernel defined on the shortest
dependency relation type paths between a candidate
trigger/participant pair.

2 System Description

2.1 Event Type Classes

We grouped the nine event types targeted at the
BioNLP’09 Shared Task into three general event
classes based on the number and types of partici-
pants that they involve.

Class 1 Events: Events that involve a single theme participant
(Gene expression, Transcription, Protein catabolism, Lo-
calization, and Phosphorylation event types).

Class 2 Events: Events that can involve one or more theme
participants (Binding event type).

Class 3 Events: Events that can be described with a theme

and/or a cause participant (Regulation, Positive regula-

tion, and Negative regulation event types). Unlike Class 1
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and Class 2 events, where the participants are proteins, the

participants of Class 3 events can be proteins or events.

Since the event types in each class are similar to
each other based on the number and roles of par-
ticipants that they involve and different from the
event types in the other classes, we learned sepa-
rate classification models for each class. We for-
mulated the classification task as the classification
of trigger/participant pairs. We extracted positive
and negative training instances (trigger/participant
pairs) from the training data for each class of events.
We considered only the pairs that appear in the
same sentence. We used the tokenized and sentence
split abstracts provided by the shared task organiz-
ers1. Consider the sentence “The phosphorylation of
TRAF2 inhibits binding to the CD40 cytoplasmic do-
main”. This sentence describes the following three
events:

1. Event1: Type: Phosphorylation Trigger: phosphorylation
Theme: TRAF2

2. Event2: Type: Binding Trigger: binding Theme1:
TRAF2 Theme2: CD40

3. Event3: Type: Negative regulation Trigger: inhibits

Theme: Event2 Cause: Event1

Event1 belongs to Class 1. The trigger/participant
pair (phosphorylation, TRAF2) is a positive instance
for Class 1. Event2 belongs to Class 2. It has
two theme participants. The instances for Class 2
events are created by decomposing the events into
trigger/theme pairs. The two positive instances ex-
tracted from the decomposition of Event2 are (bind-
ing, TRAF2) and (binding, CD40). Event3 belongs
to Class 3. It consists of two semantically differ-
ent participants, namely a theme and a cause. We
trained two separate models for Class 3 events, i.e.,
one model to classify the themes and another model
to classify the causes. Another distinguishing char-
acteristic of Class 3 events is that a participant of
an event can be a protein or an event. We repre-
sent the participants that are events with their cor-
responding event triggers. We decompose Event3
into its theme and cause and represent its cause
Event1 with its trigger word “phosphorylation” and

1http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA
/SharedTask/tools.html

its theme Event2 with its trigger word “binding”. As
a result, (inhibits, binding) and (inhibits, phosphory-
lation) are included as positive instances to the Class
3 theme and Class 3 cause training sets, respectively.
Negative instances for Class 1 and Class 2 are cre-
ated by including all the trigger/protein pairs which
are not among the positive instances of that class.
Negative instances for Class 3 theme and Class 3
cause are created by including all the trigger/protein
and trigger1/trigger2 pairs which are not among the
positive instances of that class. For example, (phos-
phorylation, CD40) is a negative instance for Class
1 and (inhibits, TRAF2) is a negative instance for
Class 3 theme and Class 3 cause.

2.2 Feature Extraction

2.2.1 Lexical and Part-of-Speech Features
We used the candidate trigger and its part-of-

speech, which was obtained by using the Stanford
Parser, as features, based on our observation that dif-
ferent candidate triggers might have different likeli-
hoods of being a real trigger for a certain event. For
example, “transcription” is a trigger for the Tran-
scription event 277 times in the training set and has
not been used as a trigger for other types of events.
On the other hand, “concentration” is used only
once as a trigger for a Transcription event and three
times as a trigger for Regulation events.

2.2.2 Positional Features
We used two features to represent the relative po-

sition of the participant with regard to the trigger
in the sentence. The first feature has two values,
namely “before” (the participant appears before the
trigger) or “after” (the participant appears after the
trigger). The second feature encodes the distance
between the trigger and the participant. Distance is
measured as the number of tokens between the trig-
ger and the participant. Our intuition is that, if a
candidate trigger and participant are far away from
each other, it is less likely that they characterize an
event.

2.2.3 Dependency Relation Features
A dependency parse tree captures the semantic

predicate-argument dependencies among the words
of a sentence. Dependency tree paths between pro-
tein pairs have successfully been used to identify
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protein interactions (Bunescu and Mooney, 2007;
Erkan et al., 2007). In this paper, we use the
dependency paths to extract events. For a given
trigger/participant pair, we extract the shortest path
from the trigger to the participant, from the depen-
dency parse of the sentence. We use the McClosky-
Charniak parses which are converted to the Stan-
ford Typed Dependencies format and provided to the
participants by the shared task organizers. Previous
approaches use both the words and the dependency
relation types to represent the paths (Bunescu and
Mooney, 2007; Erkan et al., 2007). Consider the de-
pendency tree in Figure 1. The path from “phospho-
rylation” to “CD40” is “nsubj inhibits acomp bind-
ing prep to domain num”. Due to the large num-
ber of possible words, using the words on the paths
might lead to data sparsity problems and to poor
generalization. Suppose we have a sentence with
similar semantics, where the synonym word “pre-
vents” is used instead of “inhibits”. If we use the
words on the path to represent the path feature, we
end up with two different paths for the two sen-
tences that have similar semantics. Therefore, in
this study we use only the dependency relation types
among the words to represent the paths. For ex-
ample, the path feature extracted for the (phospho-
rylation, CD40) negative trigger/participant pair is
“nsubj acomp prep to num” and the path feature ex-
tracted for the (phosphorylation, TRAF2) positive
trigger/participant pair is “prep of”.

inhibits

phosphorylation
binding

TRAF2 domain

cytoplasmic CD40 the

acomp

prep_of prep_to

amod
detnum

nsubj

Figure 1: The dependency tree of the sentence “The phos-
phorylation of TRAF2 inhibits binding to the CD40 cyto-
plasmic domain.”

2.3 Classification
We used the SV M light library (Joachims, 1999)
with two different kernel functions and feature sets
for learning the classification models. Our first ap-
proach is based on using linear SVM with the fea-
tures described in Section 2.2. In this approach
the path feature is used as a nominal feature. Our
second approach is based on integrating to SVM a
kernel function based on the word-based edit dis-
tance between the dependency relation paths, where
each dependency relation type on the path is treated
as a word. For example, the word-based edit dis-
tance between the paths “prep of” and “prep of
prep with” is 1, since 1 insertion operation (i.e., in-
serting “prep with” to the first path) is sufficient to
transform the first path to the second one. The edit-
distance based similarity between two paths pi and
pj and the corresponding kernel function are defined
as follows (Erkan et al., 2007).

edit sim(pi, pj) = e−γ(edit distance(pi,pj)) (1)

3 Experimental Results

The data provided for the shared task is prepared
from the GENIA corpus (Kim et al., 2008). We used
the training and the development sets for training.

The candidate triggers are detected by using a dic-
tionary based approach, where the dictionary is ex-
tracted from the training set. We filtered out the
noisy trigger candidates such as “with”, “+”, “:”, and
“-”, which are rarely used as real triggers and com-
monly used in other contexts. The candidate trig-
ger/participant pairs are classified by using the clas-
sifiers learned for Class 1, Class 2, and/or Class 3
depending on whether the candidate trigger matched
one of the triggers in these classes. The SVM score
is used to disambiguate the event types, if a candi-
date trigger matches a trigger in more than one of the
event classes. A trigger which is ambiguous among
the event types in the same class is assigned to the
event type for which it is most frequently used as a
trigger.

The results that we submitted to the shared task
were obtained by using the linear SVM approach
with the set of features described in Section 2.2.
After submitting the results, we noticed that we
made an error in pre-processing the data set. While
aligning the provided dependency parses with the
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sentence, we incorrectly assumed that all the sen-
tences had dependency parses and ended up using
the wrong dependency parses for most of the sen-
tences. The overall performance scores for our of-
ficial submission are 30.42% recall, 14.11% preci-
sion, and 19.28% F-measure. The results obtained
after correcting the error are reported in Table 1.
Correcting the error significantly improved the per-
formance of the system. Table 2 shows the re-
sults obtained by using SVM with dependency path
edit kernel. The two SVM models achieve similar
performances. The performance for the regulation
events is considerably lower, since errors in identi-
fying the events are carried to identifying the event
participants of a regulation event. The performances
for the events which have multiple participants, i.e.,
binding and regulation events, are lower compared
to the events with a single participant. The perfor-
mance is higher when computed by decomposing
the events (49.00 and 31.82 F-measure for binding
and regulation events, respectively). This suggests
that even when participants of events are identified
correctly, there is significant amount of error in com-
posing the events.

Event Type Recall Precision F-measure
Localization 41.95 60.83 49.66
Binding 31.41 34.94 33.08
Gene expression 61.36 69.00 64.96
Transcription 37.23 30.72 33.66
Protein catabolism 64.29 64.29 64.29
Phosphorylation 68.15 80.70 73.90
Event Total 50.82 56.80 53.64
Regulation 15.12 19.82 17.15
Positive regulation 24.21 33.33 28.05
Negative regulation 21.64 32.93 26.11
Regulation Total 22.02 30.72 25.65
All Total 35.86 44.69 39.79

Table 1: Approximate span & recursive matching results
using linear SVM with the set of features described in
Section 2.2 (after correcting the error in pre-processing
the data set).

4 Conclusion

We described a supervised approach to extract bio-
molecular events. We grouped the event types into
three general classes based on the number and types
of participants that they can involve and learned sep-
arate SVM models for each class. We used various

Event Type Recall Precision F-measure
Localization 49.43 64.18 55.84
Binding 31.70 35.03 33.28
Gene expression 66.34 69.72 67.99
Transcription 39.42 25.59 31.03
Protein catabolism 78.57 73.33 75.86
Phosphorylation 76.30 80.47 78.33
Event Total 55.13 56.62 55.86
Regulation 17.87 16.46 17.13
Positive regulation 26.45 26.03 26.24
Negative regulation 25.33 32.54 28.49
Regulation Total 24.68 25.34 25.01
All Total 39.31 40.37 39.83

Table 2: Approximate span & recursive matching results
using SVM with dependency relation path edit kernel.

types of linguistic features that represent the context
of the candidate event trigger/participant pairs. We
achieved an F-measure of 39.83% on the shared task
test data. Error analysis suggests that improving the
approach of event composition for types of events
with multiple participants and improving the strat-
egy for detecting and disambiguating triggers can
enhance the performance of the system.
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