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Abstract

This document describes the methods and re-
sults for our participation in the BioNLP’09
Shared Task #1 on Event Extraction. It also
contains some error analysis and a brief dis-
cussion of the results. Previous shared tasks in
the BioNLP community have focused on ex-
tractinggene and protein names, and on find-
ing (direct) protein-protein interactions (PPI).
This year’s task was slightly different, since
the protein names were already manually an-
notated in the text. The new challenge was
to extract biologicalevents involving these
given gene and gene products. We modi-
fied a publicly available system (AkanePPI)
to apply it to this new, but similar, protein
interaction task. AkanePPI has previously
achieved state-of-the-art performance on all
existing public PPI corpora, and only small
changes were needed to achieve competitive
results on this event extraction task. Our of-
ficial result was an F-score of 36.9%, which
was ranked as number six among submissions
from 24 different groups. We later balanced
the recall/precision by including more predic-
tions than just the most confident one in am-
biguous cases, and this raised the F-score on
the test-set to 42.6%. The new Akane program
can be used freely for academic purposes.

1 Introduction

With the increasing number of publications report-
ing on protein interactions, there is also a steadily
increasing interest in extracting information from
Biomedical articles by using Natural Language Pro-
cessing (BioNLP). There has been severalshared

tasksarranged by the BioNLP community to com-
pare different ways of doing such Information Ex-
traction (IE), as reviewed in Krallinger et al.(2008).

Earlier shared tasks have dealt with Protein-
Protein Interaction (PPI) in general, but this
task focuses on more specific molecular events,
such as Geneexpression, Transcription, Pro-
tein catabolism, Localization and Binding, plus
(Positive or Negative) Regulationof proteins or
other events. Most of these events are related to PPI,
so our hypothesis was that one of the best perform-
ing PPI systems would perform well also on this
new event extraction task. We decided to modify a
publicly available system with flexible configuration
scripting (Miwa et al., 2008). Some adjustments had
to be made to the existing system, like adding new
types of Named Entities (NE) to represent theevents
mentioned above. The modified AkaneRE (for Re-
lation Extraction) can be freely used in academia1.

2 Material and Methods

The event extraction system is implemented in a
pipeline fashion (Fig. 1).

2.1 Tokenization and Sentence Boundary
Detection

The text was split into single sentences by a sim-
ple sentence detection program, and then each sen-
tence was split into words (tokens). The tokeniza-
tion was done by using white-space as the token-
separator, but since all protein names are known dur-
ing both training and testing, some extra tokeniza-
tion rules were applied. For example, the protein

1http://www-tsujii.is.s.u-tokyo.ac.jp/∼satre/akane/
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Figure 1: System Overview

name “T cell factor 1” is treated as a single token,
“T cell factor 1”, and composite tokens including a
protein name, like “(Tcell factor 1)”, are split into
several tokens, like ’(’, ’Tcell factor 1’ and ’)’, by
adding space around all given protein names. Also,
punctuation (commas, periodsetc.) were treated as
separate tokens.

2.2 POS-tagging and Parsing

We used Enju2 and GDep3 to parse the text. These
parsers have their own built-in Part-of-Speech (POS)
taggers, and Enju also provides a normalized lemma
form for each token.

2.3 Event Clue-word tagging

Event clue-word detection was performed by a Ma-
chine Learning (ML) sequence labeling program.
This named-entity tagger program is based on a first
order Maximum Entropy Markov Model (MEMM)
and is described in Yoshida and Tsujii (2007). The
clue-word annotation of the shared-task training set
was converted into BIO format, and used to train the

2http://www-tsujii.is.s.u-tokyo.ac.jp/enju/
3http://www.cs.cmu.edu/∼sagae/parser/gdep/

MEMM model. The features used in the MEMM
model was extracted from surface strings and POS
information of the words corresponding to (or ad-
jacent to) the target BIO tags. The clue-word tag-
ger was applied to the development and test sets to
obtain the marginal probability that each word is a
clue-word of a certain category. The probabilities
were obtained by marginalizing the n-best output of
the MEMM tagger. We later also created clue-word
probability annotation of the training set, to enable
the template extraction program to access clue-word
probability information in the training phase.

2.4 Event Template Extraction

The training data was used to determine which
events to extract. As input to the system, a list of
Named Entity(NE) types and theRoles they can
play were provided. The roles can be thought of as
slots for arguments in event-frames, and in this task
the roles wereEvent (clue), ThemeandCause. In
the original AkanePPI (based on the AIMed corpus),
the only NE type wasProtein, and the only role was
Theme(p1 and p2). All the (PPI) events were pair-
wise interactions, and there was no explicitevent-
clue role. This means that all the events could be
represented with the single template shown first in
Table 1.

The BioNLP shared task used eight other NE
types, in addition to manually annotatedProteins,
namely Binding, Geneexpression, Localization,
Protein catabolism, Transcription, Regulation, Pos-
itive RegulationandNegativeRegulation. The first
five events have onlyThemeslots, which can only
be filled byProteins, while the last three regulation
events are very diverse. They also have oneTheme
slot, but they can have aCauseslot as well, and each
role/slot can be filled with eitherProteins, or other
Events. See the first half of Table 1.

148 templates were extracted and clustered into
nine homogeneous groups which were classified
as nine separate sub-problems. The grouping was
based on whether the templates had anEventor a
Proteinin the same role-positions. This way of orga-
nizing the groups was motivated by the fact that the
Proteinsare 100% certain, while the accuracy of the
clue-word recognizer is only around 50% (estimated
on the training data). The bottom of Table 1 shows
the resulting ninegeneral interaction templates.
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2.5 Machine Learning with Maximum Entropy
Models

We integrated Maximum Entropy (ME) modeling,
also known as Logistic Regression, into AkaneRE.
This was done by using LIBLINEAR4, which han-
dles multi-class learning and prediction. Gold tem-
plates were extracted during training, and each tem-
plate was matched with all legal combinations of
Named Entities (including gold proteins/clue-words
and other recognized clue-word candidates) in each
sentence. The positive training examples were la-
beled as gold members of the template, and all other
combinations matching a given template were la-
beled as negative examples within that specific tem-
plate class. The templates were grouped into the
nine generaltemplates shown in the bottom of Ta-
ble 1. Using one-vs-rest logistic regression, we
trained one multi-class classifier for each of the nine
groups individually. The ML features are shown in
Table 2.

In the test-phase, we extracted and labeled all re-
lation candidates matching all the templates from the
training-phase. The ML component was automati-
cally run independently for each of the nine groups
listed in the bottom of Table 1. Each time, all the
candidate template-instances in the current group
were assigned a confidence score by the classifier for
that group. This score is the probability that a can-
didate is a true relation, and a value above a certain
threshold means that the extracted relation will be
predicted as a true member of its specific template.
LIBLINEAR’s C-value parameter and the prediction
threshold were selected by hand to produce a good
F-score (according to the strict matching criterion)
on the development-test set.

2.6 Filtering and recursive output of the most
confident template instances

After machine learning, all the template instances
were filtered based on their confidence score. Af-
ter tuning the threshold to the development test-set,
we ended up using 1 as our C-value, and 3.5% as
our confidence threshold. Because the prediction
of Regulation Eventswere done independent from
the sub-events (or proteins) affected by that event,
some sub-events had to be included for complete-

4http://www.csie.ntu.edu.tw/∼cjlin/liblinear/

ness, even if their confidence score was below the
threshold.

3 Results and Discussion

Our final official result was an F-score of 36.9%,
which was ranked as number six among the sub-
missions from 24 different groups. This means that
the AkanePPI system can achieve good results when
used on other PPI-related relation-extraction tasks,
such as this first BioNLP event recognition shared
task. The most common error was in predicting reg-
ulation events with other events asTheme or Cause.
The problem is that these events involve more than
one occurrence of event-trigger words, so the perfor-
mance is more negatively affected by our imperfect
clue-word detection system.

Since the recall was much lower on the test-set
than on the development test-set, we later allowed
the system to predict multiple confident alternatives
for a single event-word, and this raised our score on
the test-set from 36.9% to 42.6%. In hindsight, this
is obvious since there are many such examples in
the training data: E.g. “over-express” is both posi-
tive regulation and Geneexpression. The new sys-
tem, named AkaneRE (for Relation Extraction), can
be used freely for academic purposes.

As future work, we believe a closer integration
between the clue-word recognition and the template
prediction modules can lead to better performance.
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Freq Event Theme1 Theme2 Theme3 Theme4 Cause
- PPI Protein Protein

613 Binding Protein
213 Binding Protein Protein

3 Binding Protein Protein Protein
2 Binding Protein Protein Protein Protein

217 Regulation Protein Protein
12 Regulation Binding Protein
48 +Regulation Transcription Protein
4 +Regulation Phosphorylation Binding
5 -Regulation +Regulation Protein
... ... ... ...

Total 148 Templates
Count General Templates Theme1 Theme2 Theme3 Theme4 Cause

9 event templates Protein
1 event template Protein Protein
1 event template Protein Protein Protein
1 event template Protein Protein Protein Protein
3 event templates Protein Protein

12 event templates Protein Event
27 event templates Event
26 event templates Event Protein
68 event templates Event Event

Table 1: Interaction Templates from the training-set. Classic PPI at the top, compared to Binding and Regulation
events in the middle. 148 different templates were automatically extracted from the training data by AkaneRE. At
the bottom, the Generalized Interaction Templates are shown, with proteins distinguished from other Named Entities
(Events)

Feature Example
Text Thebinding of the most prominent factor, named TCF-1 (T cell factor 1 ),

is correlated with the proto-enhancer activity of TCEd.
BOW B The
BOW M0 -comma- -lparen- factor most named of prominent PROTEIN the
BOW A -comma- -rparen- activity correlated is of proto-enhancer the TCEd with
Enju PATH (ENTITY1 ) (<preparg12arg1) (of) (preparg12arg2>) (factor)

(<verb arg123arg2) (name) (verb arg123arg3>) (ENTITY2 )
pairs (ENTITY1 <preparg12arg1) (<preparg12arg1of) (of preparg12arg2>) ...
triples (ENTITY1 <preparg12arg1of) (<preparg12arg1of preparg12arg2>) ...
GDepPATH (ENTITY1 ) (<NMOD) (name) (<VMOD) (ENTITY2 )
pairs/triples (ENTITY1 <NMOD) (<NMOD name) ... (ENTITY1 <NMOD name) ...
Vector BOW B BOW M0...BOW M4 BOW A Enju PATH GDepPATH

Table 2: Bag-Of-Words (BOW) and shortest-path features for the machine learning. Several BOW feature groups were
created for each template, based on the position of the words in the sentence, relative to the position of the template’s
Named Entities (NE). Specifically, BOWB was made by the words from the beginning of the sentence to the first NE,
BOW A by the words between the last NE and the end of the sentence, and BOWM0 to BOW M4 was made by the
words between the main event clue-word and the NE in slot 0 through 4 respectively. The path features are made from
one, two or three neighbor nodes. We also included certain specific words, like “binding”, as features.
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