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Abstract

We describe the system of the PIKB team
for BioNLP’09 Shared Task 1, which targets
tunable domain-independent event extraction.
Our approach is based on a three-stage clas-
sification: (1) trigger word tagging, (2) sim-
ple event extraction, and (3) complex event
extraction. We use the MIRA framework for
all three stages, which allows us to trade pre-
cision for increased recall by appropriately
changing the loss function during training. We
report results for three systems focusing on re-
call (R = 28.88%), precision (P = 65.58%),
and F1-measure (F1 = 33.57%), respectively.

1 Introduction

Molecular interactions have been the focus of inten-
sive research in the development of in-silico biology.
Recent developments like the Pathway and Interac-
tion Knowledge Base (PIKB) aim to make available
to the user the large semantics of the existing molec-
ular interactions data using massive knowledge syn-
dication. PIKB is part of LinkedLifeData1, a plat-
form for semantic data integration based on RDF2

syndication and lightweight reasoning.
Our system is based on the MIRA framework

where, by appropriately changing the loss function
on training, we can achieve any desirable balance
between precision and recall. For example, low pre-
cision with high recall would be appropriate in a
search that aims to identify as many potential candi-
dates as possible to be further examined by the user,

1http://www.linkedlifedata.com
2http://www.w3.org/RDF/

while high precision might be essential when adding
relations to a knowledge base. Such a tunable sys-
tem is practical for a variety of important tasks, in-
cluding but not limited to, populating extracted facts
in PIKB and reasoning on top of new and old data.

Our system is based on a three-stage classification
process: (1) trigger word tagging using a linear se-
quence model, (2) simple event extraction, and (3)
complex event extraction. In stage (2), we generate
relations between a trigger word and one or more
proteins, while in stage (3), we look for complex in-
teractions between simple events, trigger words and
proteins. We use MIRA for all three stages with a
loss function tuned for high recall.

2 One-best MIRA and Loss Functions

In what follows, xi will denote a generic input sen-
tence, and yi will be the “gold” labeling of xi. For
each pair of a sentence xi and a labeling y, we com-
pute a vector-valued feature representation f(xi, y).
Given a weight vector w, the dot-product w · f(x, y)
ranks the possible labelings y of x; we will denote
the top scoring labeling as yw(x). As with hidden
Markov models (Rabiner, 1989), yw(x) can be com-
puted efficiently for suitable feature functions using
dynamic programming.

The learning portion of our method requires find-
ing a weight vector w that scores the correct labeling
of the training data higher than any incorrect label-
ing. We used a one-best version of MIRA (Cram-
mer, 2004; McDonald et al., 2005) to choose w.
MIRA is an online learning algorithm that updates
the weight vector w for each training sentence xi

according to the following rule:
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wnew = arg min
w

‖w − wold‖

s.t. w · f(xi, yi)− w · f(x, ŷ) ≥ L(yi, ŷ)

where L(yi, y) is a measure of the loss of using y in-
stead of the correct labeling yi, and ŷ is a shorthand
for ywold

(xi). In case of a single constraint, this pro-
gram has a closed-form solution. The most straight-
forward and the most commonly used loss function
is the Hamming loss, which sets the loss of labeling
y with respect to the gold labeling yi as the number
of training examples where the two labelings dis-
agree. Since Hamming loss is not flexible enough
for targeted training towards recall or precision, we
use a number of task-specific loss functions (see
Sections 3 and 5 for details). We implemented one-
best MIRA and the corresponding loss functions in
an in-house toolkit called Edlin. Edlin provides gen-
eral machine learning architecture for linear models
and a framework with implementations of popular
learning algorithms including Naive Bayes, percep-
tron, maximum entropy, one-best MIRA, and condi-
tional random fields (CRF) among others.

3 Trigger Word Tagging

The training and the development abstracts were
first tokenized and split into sentences using maxi-
mum entropy models trained on the Genia3 corpora.
Subsequently, we trained several sequence taggers
in order to identify the trigger words in text. All
our experiments used the standard BIO encoding
(Ramshaw and Marcus, 1995) with different feature
sets and learning procedures. We focused on recall
since it determines the upper bound on the perfor-
mance of our final system. In our experiments, we
found that simultaneously identifying trigger words
and the event types they trigger yielded low recall;
thus, we settled on identifying trigger words in text
as one kind of entity, regardless of event types.

In our initial experiments, we used a CRF-
based sequence tagger (Lafferty et al., 2001), which
yielded R=43.51%. We further tried feature induc-
tion (McCallum, 2003) and second-order Markov
assumptions for the CRF, achieving 44.72% and
49.64% recall, respectively.

3http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/home/wiki.cgi

Feature Set R P F1

Baseline (current word) 44.82 2.86 05.38
+ POS & char 3-gram 77.41 27.96 41.09
+ previous POS tag 79.77 29.32 42.88
+ lexicon (final tagger) 80.44 29.65 43.33

Table 1: Recall (R), precision (P), and F1-measure for the
trigger words tagger (in %s) on the development dataset
for different feature sets using MIRA training with false
negatives as a loss function.

Feature Sets
entity type of e1 and e2

words in e1 and e2

word bigrams in e1 and e2

POS of e1 and e2

words between e1 and e2

word bigrams between e1 and e2

POS between e1 and e2

distance between e1 and e2

distance between e1 and e2 in the dependency graph
steps in parse tree to get e1 and e2 in the same phrase
various combinations of the above features

Table 2: Our feature set for the MIRA classifier that pre-
dicts binary relations. Here e1 and e2 can be proteins
and/or trigger words.

Subsequently, we settled on using MIRA so that
we can trade-off precision for recall. In order to
boost recall, we defined the loss function as the num-
ber of false negative trigger chunks. Thus, a larger
loss update was made whenever the model failed to
discover a trigger word, while discovering spurious
trigger words was penalized less severely. We ex-
perimented with popular feature sets previously used
for named entity (McCallum and Li, 2003) and gene
(McDonald and Pereira, 2005) recognition including
orthographic, part-of-speech (POS), shallow parsing
and gazetteers. However, we found that only a small
number of them was really helpful; a summary is
presented in Table 1. In order to boost recall even
further, we prepared a gazetteer of trigger chunks
derived from the training data, and we extended it
with the corresponding WordNet synsets; we thus
achieved 80.44% recall for our final tagger.

4 Event Extraction

The input to our event extraction algorithm is a list
of trigger words and a list of genes or gene prod-
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ucts (e.g., proteins); the output is a set of relations
as defined for Task 1. Our algorithm works in two
stages. First, we generate events corresponding to
relations between a trigger word and one or more
proteins (simple events); then we generate events for
relations between trigger words, proteins and simple
events (complex events). The two stages differ only
in the input data; thus, below we will describe our
system for the first stage only.

For each sentence, we considered all pairs of en-
tities (trigger words and proteins), and we used an
unstructured classifier to determine the relationship
for a given pair. These relationships encoded both
the type of event (e.g., binding, regulation) and enti-
ties’ roles in that event (e.g., theme, cause); there
was also a special relationship for unrelated enti-
ties. We constructed labeled examples to train a
MIRA classifier using the training data provided by
the task organizers; n-ary relations were then recon-
structed from classifier’s predictions. The features
we used are summarized in Table 2: they are over
the words separating the two entities and their part-
of-speech tags. We further used some simple fea-
tures from syntactic phrases (OpenNLP4 parser) and
dependency parse trees (McDonald et al., 2005), ex-
tracted using parsers trained on Genia corpora.

After some initial experiments, we found that our
features were not sufficiently rich to allow us to learn
the relationships between proteins that are part of the
same event: we achieved a very low recall of about
20%. Consequently, we focused on the relationships
between a trigger word and a protein. Since the com-
petition stipulated that each trigger could be associ-
ated with only one type of event, we first chose the
event type for each trigger by selecting the protein-
label pair with the highest score. We then fixed the
event type for this trigger word, and we discarded all
proteins for which our classifier assigned a different
event type to the target trigger-protein pair. Finally,
we added to our output list all binary relations where
the role of the protein was theme.

For some event classes – binding, regulation, pos-
itive regulation and negative regulation – the output
of the binary classifier was further transformed so
that n-ary relations can be formed. However, the
way we did this was somewhat ad-hoc. For bind-

4http://opennlp.sourceforge.net

Event Class R P F1

Localization 10.92 82.61 19.29
Binding 7.20 39.68 12.20
Gene expression 30.47 74.58 43.26
Transcription 10.95 39.47 17.14
Protein catabolism 28.57 57.14 38.10
Phosphorylation 34.07 86.79 48.94
Event Total 21.52 68.68 32.77
Regulation 1.37 26.67 2.61
Positive regulation 1.12 25.58 2.14
Negative regulation 0.26 100.00 0.53
Regulation Total 0.97 27.12 1.87
Overall 10.84 64.13 18.55

Table 3: Our official results: for an erroneous submission.

ing events, we added a 3-ary relation between the
trigger, the highest scoring protein, and the second
highest scoring protein. For regulation events, we
added a 3-ary relation between the trigger and every
pair of proteins where one was a theme and the other
one was a cause. This aggressive addition of poten-
tial matches slightly reduced the overall precision,
but helped improve the recall for the final system.

5 Results and Discussion

Unfortunately, we made an error when making our
official submission, which resulted in low scores;
Table 3 shows the results for that submission.

The rest of this section describes the results and
the implementation for the system we intended to
submit. All reported results are for exact span
matches and were obtained using the online tool pro-
vided by the task organizers.

As stated in Section 4, we used a linear model
trained using one-best MIRA with ten runs over
the data for the event extraction system. We over-
sampled the unstructured training instances that cor-
responded to a relation so that they become roughly
equal in number to those that do not correspond to a
relation. Finally, we performed parameter averaging
as described in (Freund and Schapire, 1999). These
details turned out to be very important for the system
performance.

Table 4 shows the results for three different loss
functions that gave the best results in our experi-
ments. In describing the loss functions, we define
three different types of errors: (1) if the system cor-
rectly predicted that a relation should be present,
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0-1 Loss High Recall High Precision
Event Class R P F1 R P F1 R P F1

Localization 33.33 69.05 44.96 39.08 48.23 43.17 25.86 86.54 39.82
Binding 38.33 32.60 35.23 46.97 24.51 32.21 24.50 37.95 29.77
Gene expression 57.89 65.72 61.56 64.82 53.49 58.61 47.65 76.27 58.65
Transcription 30.66 33.87 32.18 33.58 22.12 26.67 21.17 47.54 29.29
Protein catabolism 42.86 85.71 57.14 42.86 60.00 50.00 42.86 85.71 57.14
Phosphorylation 75.56 77.86 76.69 77.78 65.22 70.95 52.59 82.56 64.25
Event total 49.64 54.60 52.00 55.98 41.55 47.70 37.93 65.83 48.13
Regulation 0.00 0.00 0.00 2.41 22.58 4.35 0.00 0.00 0.00
Positive regulation 1.73 30.91 3.28 5.29 25.24 8.75 0.20 28.57 0.40
Negative regulation 0.53 40.00 1.04 1.06 23.53 2.02 0.26 100.00 0.53
Regulation Total 1.15 30.16 2.21 3.81 24.80 6.61 0.18 37.50 0.36
Overall 24.45 53.54 33.57 28.88 39.71 33.44 18.32 65.58 28.64

Table 4: Results (in %s) for one-best MIRA with different loss functions.

but guessed the wrong type, we call this a cross-
labeling; (2) a false positive occurs when the learner
guessed some relation while there should have been
none; (3) the reverse is a false negative. All loss
functions we considered had a cross-labeling loss of
1. The 0-1 loss also has a loss of 1 for false positives
and false negatives. The high-recall loss function
penalizes false positives with 0.1 and false negatives
with 5. The high-precision loss function penalizes
false negatives with 0.1 and false positives with 5.
The values 0.1 and 5 were chosen on the develop-
ment data, but were not optimized aggressively.

In conclusion, we have built three domain-
independent event extraction systems based on the
MIRA framework, each using a different loss func-
tion. Overall, they perform quite well and would
have been ranked second on precision5, and 6th on
recall, and 7th on F1-measure.

6 Future Work

After integrating domain knowledge, which should
improve the recall for complex events and should
boost the overall precision, we intend to transform
the system output into RDF and add it to the PIKB
repository. The required efforts discouraged us from
building a middle ontology between the BioNLP and
the PIKB data models, especially given the time lim-
itations for the present task competition. However,
we believe this is a promising direction, which we
plan to pursue in future work.

5Our official submission is second on precision as well.
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