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Introduction

The need for automatic processing of the rapidly increasing body of publications describing results in
molecular biology continues to drive efforts in Biomedical natural language processing (BioNLP). Until
recently, domain efforts have largely concentrated on foundational tasks such as entity recognition and
relatively simple information extraction targets such as interacting entity pairs. By contrast, biological
research increasingly aims to create detailed descriptions of complex processes in biological systems.
To respond to the needs of such research, it is necessary to develop BioNLP methods that are able to
process more fine-grained representations. The BioNLP’09 Shared Task is the first community-wide
step in this direction.

Shared tasks have a strong tradition in the BioNLP community. The TREC Genomics, KDD cup,
JNLBPA, LLL and BioCreative tasks have focused the efforts of the community on timely challenges
in the domain, both establishing the capabilities and problem points of current systems as well as
advancing the state of the art in various areas of biomedical text mining. These are also the goals of
the present shared task. The focus on a rich representation of extracted information in the BioNLP’09
Shared Task can also be seen as natural continuation of the succession of previous tasks.

The BioNLP’09 Shared Task targets event extraction following a model similar to those currently
applied in the wider IE community. Corpus resources supporting this type of representation have only
recently become available in the domain, and the task thus represents a novel challenge to much of the
community. Despite its novelty and relatively complex task settings, the BioNLP’09 Shared Task met
with an enthusiastic response from the community: more than 40 teams registered their preliminary
interest, and 24 teams submitted final results. Thanks to the efforts of the participants and the shared
task program committee in reviewing, we have the pleasure of presenting these proceedings of 19
manuscripts accepted for presentation at the shared task session of the workshop.
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Mariana Neves, José-Marı́a Carazo and Alberto Pascual-Montano . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Biomedical Event Annotation with CRFs and Precision Grammars
Andrew MacKinlay, David Martinez and Timothy Baldwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Molecular event extraction from Link Grammar parse trees
Jörg Hakenberg, Illes Solt, Domonkos Tikk, Luis Tari, Astrid Rheinländer, Nguyen Quang Long,

Graciela Gonzalez and Ulf Leser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Tunable Domain-Independent Event Extraction in the MIRA Framework
Georgi Georgiev, Kuzman Ganchev, Vassil Momchev, Deyan Peychev, Preslav Nakov and Angus

Roberts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

BioEve: Bio-Molecular Event Extraction from Text Using Semantic Classification and Dependency
Parsing

Syed Toufeeq Ahmed, Radhika Nair, Chintan Patel and Hasan Davulcu . . . . . . . . . . . . . . . . . . . . . 99

From Protein-Protein Interaction to Molecular Event Extraction
Rune Sætre, Makoto Miwa, Kazuhiro Yoshida and Jun’ichi Tsujii . . . . . . . . . . . . . . . . . . . . . . . . . 103

vii



A Multi-Phase Approach to Biomedical Event Extraction
Hyoung-Gyu Lee, Han-Cheol Cho, Min-Jeong Kim, Joo-Young Lee, Gumwon Hong and Hae-

Chang Rim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Supervised Classification for Extracting Biomedical Events
Arzucan Ozgur and Dragomir Radev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Biomedical Event Detection using Rules, Conditional Random Fields and Parse Tree Distances
Farzaneh Sarafraz, James Eales, Reza Mohammadi, Jonathan Dickerson, David Robertson and

Goran Nenadic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

Syntactic Dependency Based Heuristics for Biological Event Extraction
Halil Kilicoglu and Sabine Bergler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Analyzing text in search of bio-molecular events: a high-precision machine learning framework
Sofie Van Landeghem, Yvan Saeys, Bernard De Baets and Yves Van de Peer . . . . . . . . . . . . . . . 128

Exploring ways beyond the simple supervised learning approach for biological event extraction
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Abstract

The paper presents the design and implemen-
tation of the BioNLP’09 Shared Task, and
reports the final results with analysis. The
shared task consists of three sub-tasks, each of
which addresses bio-molecular event extrac-
tion at a different level of specificity. The data
was developed based on the GENIA event cor-
pus. The shared task was run over 12 weeks,
drawing initial interest from 42 teams. Of
these teams, 24 submitted final results. The
evaluation results are encouraging, indicating
that state-of-the-art performance is approach-
ing a practically applicable level and revealing
some remaining challenges.

1 Introduction

The history of text mining (TM) shows that shared
tasks based on carefully curated resources, such
as those organized in the MUC (Chinchor, 1998),
TREC (Voorhees, 2007) and ACE (Strassel et al.,
2008) events, have significantly contributed to the
progress of their respective fields. This has also been
the case inbio-TM. Examples include the TREC Ge-
nomics track (Hersh et al., 2007), JNLPBA (Kim et
al., 2004), LLL (Ńedellec, 2005), and BioCreative
(Hirschman et al., 2007). While the first two ad-
dressedbio-IR (information retrieval) andbio-NER
(named entity recognition), respectively, the last two
focused onbio-IE (information extraction), seeking
relations between bio-molecules. With the emer-
gence of NER systems with performance capable of
supporting practical applications, the recent interest
of the bio-TM community is shifting toward IE.

Similarly to LLL and BioCreative, the
BioNLP’09 Shared Task (the BioNLP task, here-
after) also addresses bio-IE, but takes a definitive
step further toward finer-grained IE. While LLL and
BioCreative focus on a rather simple representation
of relations of bio-molecules, i.e. protein-protein
interactions (PPI), the BioNLP task concerns the
detailed behavior of bio-molecules, characterized as
bio-molecular events (bio-events). The difference in
focus is motivated in part by different applications
envisioned as being supported by the IE methods.
For example, BioCreative aims to support curation
of PPI databases such as MINT (Chatr-aryamontri
et al., 2007), for a long time one of the primary tasks
of bioinformatics. The BioNLP task aims to support
the development of more detailed and structured
databases, e.g. pathway (Bader et al., 2006) or Gene
Ontology Annotation (GOA) (Camon et al., 2004)
databases, which are gaining increasing interest
in bioinformatics research in response to recent
advances in molecular biology.

As the first shared task of its type, the BioNLP
task aimed to define a bounded, well-defined bio-
event extraction task, considering both the actual
needs and the state of the art inbio-TM technology
and to pursue it as a community-wide effort. The
key challenge was in finding a good balance between
the utility and the feasibility of the task, which was
also limited by the resources available. Special con-
sideration was given to providing evaluation at di-
verse levels and aspects, so that the results can drive
continuous efforts in relevant directions. The pa-
per discusses the design and implementation of the
BioNLP task, and reports the results with analysis.
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Type Primary Args. Second. Args.
Geneexpression T(P)
Transcription T(P)
Proteincatabolism T(P)
Phosphorylation T(P) Site
Localization T(P) AtLoc, ToLoc
Binding T(P)+ Site+
Regulation T(P/Ev), C(P/Ev) Site, CSite
Positiveregulation T(P/Ev), C(P/Ev) Site, CSite
Negativeregulation T(P/Ev), C(P/Ev) Site, CSite

Table 1: Event types and their arguments. The type of the
filler entity is specified in parenthesis. The filler entity
of the secondary arguments are all ofEntity type which
represents any entity but proteins: T=Theme, C=Cause,
P=Protein, Ev=Event.

2 Task setting

To focus efforts on the novel aspects of the event
extraction task, is was assumed that named entity
recognition has already been performed and the task
was begun with a given set of gold protein anno-
tation. This is the only feature of the task setting
that notably detracts from its realism. However,
given that state-of-the-art protein annotation meth-
ods show a practically applicable level of perfor-
mance, i.e. 88% F-score (Wilbur et al., 2007), we
believe the choice is reasonable and has several ad-
vantages, including focus on event extraction and ef-
fective evaluation and analysis.

2.1 Target event types

Table 1 shows the event types addressed in the
BioNLP task. The event types were selected from
the GENIA ontology, with consideration given to
their importance and the number of annotated in-
stances in the GENIA corpus. The selected event
types all concern protein biology, implying that they
take proteins as their theme. The first three types
concern protein metabolism, i.e. protein production
and breakdown. Phosphorylation is a representa-
tive protein modification event, and Localization and
Binding are representative fundamental molecular
events. Regulation (including its sub-types, Posi-
tive and Negativeregulation) represents regulatory
events and causal relations. The last five are uni-
versal but frequently occur on proteins. For the bio-
logical interpretation of the event types, readers are
referred to Gene Ontology (GO) and the GENIA on-
tology.

The failure of p65 translocation to the nucleus . . .
T3 (Protein, 40-46)
T2 (Localization, 19-32)
E1 (Type:T2, Theme:T3, ToLoc:T1)
T1 (Entity, 15-18)
M1 (Negation E1)

Figure 1: Example event annotation. The protein an-
notation T3 is given as a starting point. The extraction
of annotation in bold is required for Task 1, T1 and the
ToLoc:T1 argument for Task 2, and M1 for Task 3.

As shown in Table 1, the theme or themes of all
events are considered primary arguments, that is, ar-
guments that are critical to identifying the event. For
regulation events, the entity or event stated as the
causeof the regulation is also regarded as a primary
argument. For some event types, other arguments
detailing of the events are also defined (Secondary
Args. in Table 1).

From a computational point of view, the event
types represent different levels of complexity. When
only primary arguments are considered, the first five
event types require only unary arguments, and the
task can be cast as relation extraction between a
predicate (event trigger) and an argument (Protein).
The Binding type is more complex in requiring the
detection of an arbitrary number of arguments. Reg-
ulation events always take a Theme argument and,
when expressed, also a Cause argument. Note that a
Regulation event may take another event as its theme
or cause, a unique feature of the BioNLP task com-
pared to other event extraction tasks, e.g. ACE.

2.2 Representation

In the BioNLP task, events are expressed using three
different types of entities.Text-bound entities(t-
entitieshereafter) are represented as text spans with
associated class information. The t-entities include
event triggers (Localization, Binding, etc), protein
references (Protein) and references to other entities
(Entity). A t-entity is represented by a pair, (entity-
type, text-span), and assigned an id with the pre-
fix “T”, e.g. T1–T3 in Figure 1. Aneventis ex-
pressed as ann-tuple of typed t-entities, and has
a id with prefix “E”, e.g. E1. Anevent modifi-
cation is expressed by a pair, (predicate-negation-
or-speculation, event-id), and has an id with prefix
“M”, e.g. M1.
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Item Training Devel. Test
Abstract 800 150 260
Sentence 7,449 1,450 2,447

Word 176,146 33,937 57,367
Event 8,597 / 8,615 1,809 / 1,815 3,182 / 3,193

Table 2: Statistics of the data sets. For events,
Task1/Task2 shown separately as secondary arguments
may introduce additional differentiation of events.

2.3 Subtasks

The BioNLP task targets semantically rich event ex-
traction, involving the extraction of several different
classes of information. To facilitate evaluation on
different aspects of the overall task, the task is di-
vided to three sub-tasks addressing event extraction
at different levels of specificity.

Task 1. Core event detection detection of typed,
text-bound events and assignment of given pro-
teins as their primary arguments.

Task 2. Event enrichment recognition of sec-
ondary arguments that further specify the
events extracted in Task 1.

Task 3. Negation/Speculation detection detection
of negations and speculation statements
concerning extracted events.

Task 1 serves as the backbone of the shared task and
is mandatory for all participants. Task 2 involves the
recognition ofEntity type t-entities and assignment
of those as secondary event arguments. Task 3 ad-
dresses the recognition of negated or speculatively
expressed events without specific binding to text. An
example is given in Fig. 1.

3 Data preparation

The BioNLP task data were prepared based on the
GENIA event corpus. The data for the training and
development sets were derived from the publicly
available event corpus (Kim et al., 2008), and the
data for the test set from an unpublished portion of
the corpus. Table 2 shows statistics of the data sets.

For data preparation, in addition to filtering out
irrelevant annotations from the original GENIA cor-
pus, some new types of annotation were added to
make the event annotation more appropriate for the
purposes of the shared task. The following sections
describe the key changes to the corpus.

3.1 Gene-or-gene-product annotation

The named entity (NE) annotation of the GENIA
corpus has been somewhat controversial due to dif-
ferences in annotation principles compared to other
biomedical NE corpora. For instance, the NE an-
notation in the widely applied GENETAG corpus
(Tanabe et al., 2005) does not differentiate proteins
from genes, while GENIA annotation does. Such
differences have caused significant inconsistency in
methods and resources following different annota-
tion schemes. To remove or reduce the inconsis-
tency, GENETAG-style NE annotation, which we
term gene-or-gene-product (GGP) annotation, has
been added to the GENIA corpus, with appropriate
revision of the original annotation. For details, we
refer to (Ohta et al., 2009). The NE annotation used
in the BioNLP task data is based on this annotation.

3.2 Argument revision

The GENIA event annotation was made based on
the GENIA event ontology, which uses a loose typ-
ing system for the arguments of each event class.
For example, in Figure 2(a), it is expressed that
the binding event involves two proteins, TRAF2
and CD40, and that, in the case of CD40, its cy-
toplasmic domain takes part in the binding. With-
out constraints on the type of theme arguments,
the following two annotations are both legitimate:

(Type:Binding, Theme:TRAF2, Theme:CD40)
(Type:Binding, Theme:TRAF2,

Theme:CD40 cytoplasmic domain)

The two can be seen as specifying the same event
at different levels of specificity1. Although both al-
ternatives are reasonable, the need to have consis-
tent training and evaluation data requires a consis-
tent choice to be made for the shared task.

Thus, we fix the types of all non-event
primary arguments to be proteins (specifically
GGPs). For GENIA event annotations involving
themes other than proteins, additional argument
types were introduced, for example, as follows:

1In the GENIA event annotation guidelines, annotators are
instructed to choose the more specific alternative, thus the sec-
ond alternative for the example case in Fig. 2(a).
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(a)

TRAF2 is a … which bindsto the CD40 cytoplasmic domain
GGP GGP PDR

(b)
HMG-I bindsto GATA motifs
GGP DDR

(c)
alpha B2 boundthe PEBP2 site within the GM-CSF promoter
GGP GGPDDR DDR

Figure 2: Entity annotation to example sentences
from (a) PMID10080948, (b) PMID7575565, and (c)
PMID7605990 (simplified).

(a)
Ah receptor recognizes the B cell transcription factor, BSAP

(b)
Grf40 binds to linker for activation of T cells (LAT)

(c)
expression of p21(WAF1/CIP1) and p27(KIP1)

(d)
included both p50/p50 and p50/p65 dimers

(e)
IL-4 Stat, also known as Stat6

Figure 3: Equivalent entities in example sentences from
(a) PMID7541987 (simplified), (b) PMID10224278, (c)
PMID10090931, (d) PMID9243743, (e) PMID7635985.

(Type:Binding, Theme1:TRAF2, Theme2:CD40,
Site2:cytoplasmic domain)

Note that the protein, CD40, and its domain, cyto-
plasmic domain, are associated by argument num-
bering. To resolve issues related to the mapping
between proteins and related entities systematically,
we introduced partial static relation annotation for
relations such as Part-Whole, drawing in part on
similar annotation of the BioInfer corpus (Pyysalo
et al., 2007). For details of this part of the revision
process, we refer to (Pyysalo et al., 2009).

Figure 2 shows some challenging cases. In (b),
the siteGATA motifsis not identified as an argument
of the binding event, because the protein containing
it is not stated. In (c), among the two sites (PEBP2
site and promoter) of the geneGM-CSF, only the
more specific one,PEBP2, is annotated.

3.3 Equivalent entity references

Alternative names for the same object are fre-
quently introduced in biomedical texts, typically
through apposition. This is illustrated in Figure 3(a),
where the two expressionsB cell transcription fac-
tor and BSAP are in apposition and refer to the

same protein. Consequently, in this case the fol-
lowing two annotations represent the same event:

(Type:Binding, Theme:Ah receptor,
Theme:B cell transcription factor)

(Type:Binding, Theme:Ah receptor, Theme:BSAP)

In the GENIA event corpus only one of these is an-
notated, with preference given to shorter names over
longer descriptive ones. Thus of the above exam-
ple events, the latter would be annotated. How-
ever, as both express the same event, in the shared
task evaluation either alternative was accepted as
correct extraction of the event. In order to im-
plement this aspect of the evaluation, expressions
of equivalent entities were annotated as follows:

Eq (B cell transcription factor, BSAP)

The equivalent entity annotation in the revised GE-
NIA corpus covers also cases other than simple ap-
position, illustrated in Figure 3. A frequent case in
biomedical literature involves use of the slash sym-
bol (“/”) to state synonyms. The slash symbol is
ambiguous as it is used also to indicate dimerized
proteins. In the case ofp50/p50, the twop50 are
annotated as equivalent because they represent the
same proteins at the same state. Note that although
rare, also explicitly introduced aliases are annotated,
as in Figure 3(e).

4 Evaluation

For the evaluation, the participants were given the
test data with gold annotation only for proteins. The
evaluation was then carried out by comparing the
annotation predicted by each participant to the gold
annotation. For the comparison, equality of anno-
tations is defined as described in Section 4.1. The
evaluation results are reported using the standard
recall/precision/f-score metrics, under different cri-
teria defined through the equalities.

4.1 Equalities and Strict matching

Equality of events is defined as follows:

Event Equality equality holds between any two
events when (1) the event types are the same,
(2) the event triggers are the same, and (3) the
arguments are fully matched.

4



A full matching of arguments between two events
means there is a perfect 1-to-1 mapping between the
two sets of arguments. Equality of individual argu-
ments is defined as follows:

Argument Equality equality holds between any
two arguments when (1) the role types are the
same, and (2-1) both are t-entities and equality
holds between them, or (2-2) both are events
and equality holds between them.

Due to the condition (2-2), event equality is defined
recursively for events referring to events. Equality
of t-entities is defined as follows:

T-entity Equality equality holds between any two
t-entities when (1) the entity types are the same,
and (2) the spans are the same.

Any two text spans(beg1, end1) and(beg2, end2),
are the same iffbeg1 = beg2 and end1 = end2.
Note that the event triggers are also t-entities thus
their equality is defined by the t-entity equality.

4.2 Evaluation modes

Various evaluation modes can be defined by varying
equivalence criteria. In the following, we describe
three fundamental variants applied in the evaluation.
Strict matching Thestrict matchingmode requires
exact equality, as defined in section 4.1. As some
of its requirements may be viewed as unnecessarily
precise, practically motivated relaxed variants, de-
scribed in the following, are also applied.
Approximate span matching The approximate
span matchingmode is defined by relaxing the
requirement for text span matching for t-entities.
Specifically, a given span is equivalent to a gold
span if it is entirely contained within an extension
of the gold span by one word both to the left and
to the right, that is,beg1 ≥ ebeg2 and end1 ≤
eend2, where(beg1, end1) is the given span and
(ebeg2, eend2) is the extended gold span.
Approximate recursive matching In strict match-
ing, for a regulation event to be correct, the events it
refers to as theme or cause must also be be strictly
correct. Theapproximate recursive matchingmode
is defined by relaxing the requirement for recursive
event matching, so that an event can match even
if the events it refers to are only partially correct.

Event Release date
Announcement Dec 8
Sample data Dec 15
Training data Jan 19→ 21, Feb 2 (rev1), Feb 10 (rev2)
Devel. data Feb 7
Test data Feb 22→Mar 2
Submission Mar 2→Mar 9

Table 3: Shared task schedule. The arrows indicate a
change of schedule.

Specifically, for partial matching, only Theme argu-
ments are considered: events can match even if re-
ferred events differ in non-Theme arguments.

5 Schedule

The BioNLP task was held for 12 weeks, from the
sample data release to the final submission. It in-
cluded 5 weeks ofsystem design periodwith sam-
ple data, 6 weeks ofsystem development periodwith
training and development data, and a 1 weektest pe-
riod. The system development period was originally
planned for 5 weeks but extended by 1 week due to
the delay of the training data release and the revi-
sion. Table 3 shows key dates of the schedule.

6 Supporting Resources

To allow participants to focus development efforts
on novel aspects of event extraction, we prepared
publicly available BioNLP resources readily avail-
able for the shared task. Several fundamental
BioNLP tools were provided through U-Compare
(Kano et al., 2009)2, which included tools for to-
kenization, sentence segmentation, part-of-speech
tagging, chunking and syntactic parsing.

Participants were also provided with the syntactic
analyses created by a selection of parsers. We ap-
plied two mainstream Penn Treebank (PTB) phrase
structure parsers: the Bikel parser3, implementing
Collins’ parsing model (Bikel, 2004) and trained
on PTB, and the reranking parser of (Charniak
and Johnson, 2005) with the self-trained biomed-
ical parsing model of (McClosky and Charniak,
2008)4. We also applied the GDep5, native de-
pendency parser trained on the GENIA Treebank

2http://u-compare.org/
3http://www.cis.upenn.edu/∼dbikel/software.html
4http://www.cs.brown.edu/∼dmcc/biomedical.html
5http://www.cs.cmu.edu/∼sagae/parser/gdep/
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NLP Task
Team Task Org Word Chunking Parsing Trigger Argument Ext. Resources

UTurku 1-- 3C+2BI Porter MC SVM SVM (SVMlight)
JULIELab 1-- 1C+2L+2B OpenNLP OpenNLP GDep Dict+Stat SVM(libSVM) UniProt, Mesh,

Porter ME(Mallet) GOA, UMLS
ConcordU 1-3 3C Stanford Stanford Dict+Stat Rules WordNet, VerbNet,

UMLS
UT+DBCLS 12- 2C Porter MC Dict MLN(thebeast)

CCG
VIBGhent 1-3 2C+1B Porter, Stanford Dict SVM(libSVM)
UTokyo 1-- 3C GTag GDep, Dict ME(liblinear) UIMA

Enju
UNSW 1-- 1C+1B GDep CRF Rules WordNet, MetaMap
UZurich 1-- 3C LingPipe, LTChunk Pro3Gres Dict Rules

Morpha
ASU+HU+BU 123 6C+2BI Porter BioLG, Dict Rules Lucene

Charniak Rules
Cam 1-- 3C Porter RASP Dict Rules

UAntwerp 12- 3C GTag GDep MBL MBL(TiMBL)
Rules

UNIMAN 1-- 4C+2BI Porter GDep Dict, CRF SVM MeSH, GO
GTag Rules

SCAI 1-- 1C Rules
UAveiro 1-- 1C+1L NooJ NooJ Rules BioLexicon
USzeged 1-3 3C+1B GTag Dict, VSM C4.5(WEKA) BioScope

Rules
NICTA 1-3 4C GTag ERG CRF(CRF++) Rules JULIE

CNBMadrid 12- 2C+1B Porter, GTag CBR
GTag Rules

CCP-BTMG 123 7C LingPipe LingPipe OpenDMAP LingPipe, CM Rules GO, SO, MIO,
UIMA

CIPS-ASU 1-- 3C MontyTagger Custom Stanford CRF(ABNER) Rules,
NB(WEKA)

UMich 1-- 2C Stanford MC Dict SVM(SVMlight)
PIKB 1-- 5C+2B MIRA MIRA

KoreaU 1-- 5C GTag GDep Rules, ME ME WSJ

Table 4: Profiles of the participants: GTag=GENIAtagger, MLN=Markov Logic Network, UMLS=UMLS SPE-
CIALIST Lexicon/tools, MC=McClosky-Charniak, GDep=Genia Dependency Parser, Stanford=Stanford Parser,
CBR=Case-Based Reasoning, CM=ConceptMapper.

(Tateisi et al., 2005), and a version of the C&C CCG
deep parser6 adapted to biomedical text (Rimell and
Clark, 2008).

The text of all documents was segmented and to-
kenized using the GENIA Sentence Splitter and the
GENIA Tagger, provided by U-Compare. The same
segmentation was enforced for all parsers, which
were run using default settings. Both the native out-
put of each parser and a representation in the popular
Stanford Dependency (SD) format (de Marneffe et
al., 2006) were provided. The SD representation was
created using the Stanford tools7 to convert from the
PTB scheme, the custom conversion introduced by
(Rimell and Clark, 2008) for the C&C CCG parser,
and a simple format-only conversion for GDep.

7 Results and Discussion

7.1 Participation

In total, 42 teams showed interest in the shared task
and registered for participation, and 24 teams sub-

6http://svn.ask.it.usyd.edu.au/trac/candc/wiki
7http://nlp.stanford.edu/software/lex-parser.shtml

mitted final results. All 24 teams participated in the
obligatory Task 1, six in each of Tasks 2 and 3, and
two teams completed all the three tasks.

Table 4 shows a profile of the 22 final teams,
excepting two who wished to remain anonymous.
A brief examination on the team organization (the
Org column) shows a computer science background
(C) to be most frequent among participants, with
less frequent participation from bioinformaticians
(BI), biologists (B) and liguists (L). This may be
attributed in part to the fact that the event extrac-
tion task required complex computational modeling.
The role of computer scientists may be emphasized
in part due to the fact that the task was novel to most
participants, requiring particular efforts in frame-
work design and implementation and computational
resources. This also suggests there is room for im-
provement from more input from biologists.

7.2 Evaluation results

The final evaluation results of Task 1 are shown in
Table 5. The results on the five event types involv-
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Team Simple Event Binding Regulation All
UTurku 64.21 / 77.45 / 70.21 40.06 / 49.82 / 44.41 35.63 / 45.87 / 40.11 46.73 / 58.48 / 51.95

JULIELab 59.81 / 79.80 / 68.38 49.57 / 35.25 / 41.20 35.03 / 34.18 / 34.60 45.82 / 47.52 / 46.66
ConcordU 49.75 / 81.44 / 61.76 20.46 / 40.57 / 27.20 27.47 / 49.89 / 35.43 34.98 / 61.59 / 44.62

UT+DBCLS 55.75 / 72.74 / 63.12 23.05 / 48.19 / 31.19 26.32 / 41.81 / 32.30 36.90 / 55.59 / 44.35
VIBGhent 54.48 / 79.31 / 64.59 38.04 / 38.60 / 38.32 17.36 / 31.61 / 22.41 33.41 / 51.55 / 40.54
UTokyo 45.69 / 72.19 / 55.96 34.58 / 50.63 / 41.10 14.22 / 34.26 / 20.09 28.13 / 53.56 / 36.88
UNSW 45.85 / 69.94 / 55.39 23.63 / 37.27 / 28.92 16.58 / 28.27 / 20.90 28.22 / 45.78 / 34.92
UZurich 44.92 / 66.62 / 53.66 30.84 / 37.28 / 33.75 14.82 / 30.21/ 19.89 27.75 / 46.60 / 34.78

ASU+HU+BU 45.09 / 76.80 / 56.82 19.88 / 44.52 / 27.49 05.20 / 33.46 / 09.01 21.62 / 62.21 / 32.09
Cam 39.17 / 76.40 / 51.79 12.68 / 31.88 / 18.14 09.98 / 37.76 / 15.79 21.12 / 56.90 / 30.80

UAntwerp 41.29 / 65.68 / 50.70 12.97 / 31.03 / 18.29 11.07 / 29.85 / 16.15 22.50 / 47.70 / 30.58
UNIMAN 50.00 / 63.21 / 55.83 12.68 / 40.37 / 19.30 04.05 / 16.75/ 06.53 22.06 / 48.61 / 30.35

SCAI 43.74 / 70.73 / 54.05 28.82 / 35.21 / 31.70 12.64 / 16.55 / 14.33 25.96 / 36.26 / 30.26
UAveiro 43.57 / 71.63 / 54.18 13.54 / 34.06 / 19.38 06.29 / 21.05/ 09.69 20.93 / 49.30 / 29.38
Team 24 41.29 / 64.72 / 50.41 22.77 / 35.43 / 27.72 09.38 / 19.23/ 12.61 22.69 / 40.55 / 29.10
USzeged 47.63 / 44.44 / 45.98 15.27 / 25.73 / 19.17 04.17 / 18.21 / 06.79 21.53 / 36.99 / 27.21
NICTA 31.13 / 77.31 / 44.39 16.71 / 29.00 / 21.21 07.80 / 18.12 /10.91 17.44 / 39.99 / 24.29

CNBMadrid 50.25 / 46.59 / 48.35 33.14 / 20.54 / 25.36 12.22 / 07.99 / 09.67 28.63 / 20.88 / 24.15
CCP-BTMG 28.17 / 87.63 / 42.64 12.68 / 40.00 / 19.26 03.09 / 48.11 / 05.80 13.45 / 71.81 / 22.66
CIPS-ASU 39.68 / 38.60 / 39.13 17.29 / 31.58 / 22.35 11.86 / 08.15 / 09.66 22.78 / 19.03 / 20.74

UMich 52.71 / 25.89 / 34.73 31.70 / 12.61 / 18.05 14.22 / 06.56 / 08.98 30.42 / 14.11 / 19.28
PIKB 26.65 / 75.72 / 39.42 07.20 / 39.68 / 12.20 01.09 / 30.51 / 02.10 11.25 / 66.54 / 19.25

Team 09 27.16 / 43.61 / 33.47 03.17 / 09.82 / 04.79 02.42 / 11.90/ 04.02 11.69 / 31.42 / 17.04
KoreaU 20.56 / 66.39 / 31.40 12.97 / 50.00 / 20.59 00.67 / 37.93/ 01.31 09.40 / 61.65 / 16.31

Table 5: Evaluation results of Task 1 (recall / precision / f-score).

Team All Site for Phospho.(56) AtLoc & ToLoc (65) All Second Args.
UT+DBCLS 35.86 / 54.08 / 43.12 71.43 / 71.43 / 71.43 23.08 / 88.24 / 36.59 32.14 / 72.41 / 44.52
UAntwerp 21.52 / 45.77 / 29.27 00.00 / 00.00 / 00.00 01.54 /100.00 / 03.03 06.63 / 52.00 / 11.76

ASU+HU+BU 19.70 / 56.87 / 29.26 00.00 / 00.00 / 00.00 00.00 / 00.00 / 00.00 00.00 / 00.00 / 00.00
Team 24 22.08 / 38.28 / 28.01 55.36 / 93.94 / 69.66 21.54 / 66.67 / 32.56 30.10 / 76.62 / 43.22

CCP-BTMG 13.25 / 70.97 / 22.33 30.36 /100.00 / 46.58 00.00 / 00.00 / 00.00 08.67 /100.00 / 15.96
CNBMadrid 25.02 / 18.32 / 21.15 85.71 / 57.14 / 68.57 32.31 / 47.73 / 38.53 50.00 / 09.71 / 16.27

Table 6: Evaluation results for Task 2.

ing only a single primary theme argument are shown
in one merged class, “Simple Event”. The broad per-
formance range (31% – 70%) indicates even the ex-
traction of simple events is not a trivial task. How-
ever, the top-ranked systems show encouraging per-
formance, achieving or approaching 70% f-score.

The performance ranges for Binding (5% – 44%)
and Regulation (1% – 40%) events show their ex-
traction to be clearly more challenging. It is in-
teresting that while most systems show better per-
formance for binding over regulation events, the
systems [ConcordU] and [UT+DBCLS] are better
for regulation, showing somewhat reduced perfor-
mance for Binding events. This is in particular con-
trast to the following two systems, [ViBGhent] and
[UTokyo], which show far better performance for
Binding than Regulation events. As one possible

explanation, we find that the latter two differentiate
binding events by their number of themes, while the
former two give no specific treatment to multi-theme
binding events. Such observations and comparisons
are a clear benefit of a community-wide shared task.

Table 6 shows the evaluation results for the teams
who participated in Task 2. The “All” column shows
the overall performance of the systems for Task 2,
while the “All Second Args.” column shows the
performance of finding only the secondary argu-
ments. The evaluation results show considerable
differences between the criteria. For example, the
system [Team 24] shows performance comparable
to the top ranked system in finding secondary argu-
ments, although its overall performance for Task 2
is more limited. Table 6 also shows the three sys-
tems, [UT+DBCLS], [Team 24] and [CNBMadrid],
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Team Negation Speculation
ConcordU 14.98 / 50.75 / 23.13 16.83 / 50.72 / 25.27
VIBGhent 10.57 / 45.10 / 17.13 08.65 / 15.79 / 11.18

ASU+HU+BU 03.96 / 27.27 / 06.92 06.25 / 28.26 / 10.24
NICTA 05.29 / 34.48 / 09.17 04.81 / 30.30 / 08.30

USzeged 05.29 / 01.94 / 02.84 12.02 / 03.88 / 05.87
CCP-BTMG 01.76 / 05.26 / 02.64 06.73 / 13.33 / 08.95

Table 7: Evaluation results for Task 3.
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Figure 4: Scatterplot of the evaluation results on the de-
velopment data during the system development period.

show performance at a practical level in particular in
finding specific sites of phosphorylation.

As shown in Table 7, the performance range for
Task 3 is very low although the representation of the
task is as simple as the simple events. We attribute
the reason to the fact that Task 3 is the only task of
which the annotation is not bound to textual clue,
thus no text-bound annotation was provided.

Figure 4 shows a scatter plot of the performance
of the participating systems during the system devel-
opment period. The performance evaluation comes
from the log of the online evaluation system on the
development data. It shows the best performance
and the average performance of the participating
systems were trending upwards up until the dead-
line of final submission, which indicates there is still
much potential for improvement.

7.3 Ensemble

Table 8 shows experimental results of a system en-
semble using the final submissions. For the ex-
periments, the top 3–10 systems were chosen, and
the output of each system treated as a weighted
vote8. Three weighting schemes were used; “Equal”
weights each vote equally; “Averaged” weights each

8We used the ‘ensemble’ function of U-Compare.

Ensemble Equal Averaged Event Type
Top 3 53.19 53.19 54.08
Top 4 54.34 54.34 55.21
Top 5 54.77 55.03 55.10
Top 6 55.13 55.77 55.96
Top 7 54.33 55.45 55.73
Top 10 52.79 54.63 55.18

Table 8: Experimental results of system ensemble.

vote by the overall f-score of the system; “Event
Type” weights each vote by the f-score of the sys-
tem for the specific event type. The best score,
55.96%, was obtained by the “Event Type” weight-
ing scheme, showing a 4% unit improvement over
the best individual system. While using the final
scores for weighting uses data that would not be
available in practice, similar weighting could likely
be obtained e.g. using performance on the devel-
opment data. The experiment demonstrates that an
f-score better than 55% can be achieved simply by
combining the strengths of the systems.

8 Conclusion

Meeting with the community-wide participation, the
BioNLP Shared Task was successful in introducing
fine-grained event extraction to the domain. The
evaluation results of the final submissions from the
participants are both promising and encouraging for
the future of this approach to IE. It has been revealed
that state-of-the-art performance in event extraction
is approaching a practically applicable level for sim-
ple events, and also that there are many remain-
ing challenges in the extraction of complex events.
A brief analysis suggests that the submitted data
together with the system descriptions are rich re-
sources for finding directions for improvements. Fi-
nally, the experience of the shared task participants
provides an invaluable basis for cooperation in fac-
ing further challenges.

Acknowledgments

This work was partially supported by Grant-in-Aid
for Specially Promoted Research (MEXT, Japan)
and Genome Network Project (MEXT, Japan).

8



References

Gary D. Bader, Michael P. Cary, and Chris Sander. 2006.
Pathguide: a Pathway Resource List.Nucleic Acids
Research., 34(suppl1):D504–506.

Daniel M. Bikel. 2004. Intricacies of Collins’ Parsing
Model. Computational Linguistics, 30(4):479–511.

Evelyn Camon, Michele Magrane, Daniel Barrell, Vi-
vian Lee, Emily Dimmer, John Maslen, David Binns,
Nicola Harte, Rodrigo Lopez, and Rolf Apweiler.
2004. The Gene Ontology Annotation (GOA)
Database: sharing knowledge in Uniprot with Gene
Ontology.Nucl. Acids Res., 32(suppl 1):D262–266.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-Fine n-Best Parsing and MaxEnt Discriminative
Reranking. InProceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL’05), pages 173–180.

Andrew Chatr-aryamontri, Arnaud Ceol, Luisa Montec-
chi Palazzi, Giuliano Nardelli, Maria Victoria Schnei-
der, Luisa Castagnoli, and Gianni Cesareni. 2007.
MINT: the Molecular INTeraction database.Nucleic
Acids Research, 35(suppl 1):D572–574.

Nancy Chinchor. 1998. Overview of MUC-7/MET-2.
In Message Understanding Conference (MUC-7) Pro-
ceedings.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating Typed
Dependency Parses from Phrase Structure Parses. In
Proceedings of the Fifth International Conference
on Language Resources and Evaluation (LREC’06),
pages 449–454.

William Hersh, Aaron Cohen, Ruslenm Lynn, , and
Phoebe Roberts. 2007. TREC 2007 Genomics track
overview. In Proceeding of the Sixteenth Text RE-
trieval Conference.

Lynette Hirschman, Martin Krallinger, and Alfonso Va-
lencia, editors. 2007. Proceedings of the Second
BioCreative Challenge Evaluation Workshop. CNIO
Centro Nacional de Investigaciones Oncológicas.

Yoshinobu Kano, William Baumgartner, Luke McCro-
hon, Sophia Ananiadou, Kevin Cohen, Larry Hunter,
and Jun’ichi Tsujii. 2009. U-Compare: share and
compare text mining tools with UIMA.Bioinformat-
ics. To appear.

Jin-Dong Kim, Tomoko Ohta, Yoshimasa Tsuruoka,
Yuka Tateisi, and Nigel Collier. 2004. Introduction
to the bio-entity recognition task at JNLPBA. InPro-
ceedings of the International Joint Workshop on Nat-
ural Language Processing in Biomedicine and its Ap-
plications (JNLPBA), pages 70–75.

Jin-Dong Kim, Tomoko Ohta, and Jun’ichi Tsujii. 2008.
Corpus annotation for mining biomedical events from
lterature.BMC Bioinformatics, 9(1):10.

David McClosky and Eugene Charniak. 2008. Self-
Training for Biomedical Parsing. InProceedings of
the 46th Annual Meeting of the Association for Com-
putational Linguistics - Human Language Technolo-
gies (ACL-HLT’08), pages 101–104.
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Abstract

We describe a system for extracting com-
plex events among genes and proteins from
biomedical literature, developed in context of
the BioNLP’09 Shared Task on Event Extrac-
tion. For each event, its text trigger, class, and
arguments are extracted. In contrast to the pre-
vailing approaches in the domain, events can
be arguments of other events, resulting in a
nested structure that better captures the under-
lying biological statements. We divide the task
into independent steps which we approach as
machine learning problems. We define a wide
array of features and in particular make ex-
tensive use of dependency parse graphs. A
rule-based post-processing step is used to re-
fine the output in accordance with the restric-
tions of the extraction task. In the shared task
evaluation, the system achieved an F-score of
51.95% on the primary task, the best perfor-
mance among the participants.

1 Introduction

In this paper, we present the best-performing system
in the primary task of the BioNLP’09 Shared Task
on Event Extraction (Kim et al., 2009).1 The pur-
pose of this shared task was to competitively eval-
uate information extraction systems targeting com-
plex events in the biomedical domain. Such an eval-
uation helps to establish the relative merits of com-
peting approaches, allowing direct comparability of
results in a controlled setting. The shared task was

1http://www-tsujii.is.s.u-tokyo.ac.jp/
GENIA/SharedTask

the first competitive evaluation of its kind in the
BioNLP field as the extraction of complex events
became possible only recently with the introduction
of corpora containing the necessary annotation: the
GENIA event corpus (Kim et al., 2008a) and the
BioInfer corpus (Pyysalo et al., 2007).

The objective of the primary task (Task 1) was
to detect biologically relevant events such as pro-
tein binding and phosphorylation, given only anno-
tation of named entities. For each event, its class,
trigger expression in the text, and arguments need to
be extracted. The task follows the recent movement
in BioNLP towards the extraction of semantically
typed, complex events the arguments of which can
also be other events. This results in a nested struc-
ture that captures the underlying biological state-
ments more accurately compared to the prevailing
approach of merely detecting binary interactions of
pairs of biological entities.

Our system is characterized by heavy reliance
on efficient, state-of-the-art machine learning tech-
niques and a wide array of features derived from
a full dependency analysis of each sentence. The
system is a pipeline of three major processing steps:
trigger recognition, argument detection and seman-
tic post-processing. By separating trigger recog-
nition from argument detection, we can use meth-
ods familiar from named entity recognition to tag
words as event triggers. Event argument detection
then becomes the task of predicting for each trigger–
trigger or trigger–named entity pair whether it cor-
responds to an actual instantiation of an event argu-
ment. Both steps can thus be approached as classi-
fication tasks. In contrast, semantic post-processing
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Figure 1: The main components of the system.

is rule-based, directly implementing argument type
constraints following from the definition of the task.

In the following sections, we present the imple-
mentation of the three stages of our information ex-
traction system in detail, and provide insights into
why we chose the approach we did. We also discuss
alternate directions we followed but that did not im-
prove performance. Finally, we analyze the overall
performance of our system in the shared task as well
as evaluate its components individually.

2 The system description

The overall architecture of the system is shown
in Figure 1. All steps in the system process one
sentence at a time. Since 95% of all annotated
events are fully contained within a single sentence,
this does not incur a large performance penalty but
greatly reduces the size and complexity of the ma-
chine learning problems.

2.1 Graph representation

We represent the extraction target in terms of seman-
tic networks, graphs where the nodes correspond
to named entities and events, and the edges corre-
spond to event arguments. The shared task can then
be viewed as the problem of finding the nodes and
edges of this graph. For instance, nested events are
naturally represented through edges connecting two
event nodes. The graph representation of an exam-

ple sentence is illustrated in Figure 2D.
We have previously used this graph representa-

tion for information extraction (Heimonen et al.,
2008; Björne et al., 2009) as well as for establishing
the connection between events and syntactic depen-
dency parses in the Stanford scheme of de Marneffe
and Manning (2008) (Björne et al., 2008).

2.2 Trigger detection
We cast trigger detection as a token labeling prob-
lem, that is, each token is assigned to an event class,
or a negative class if it does not belong to a trig-
ger. Triggers are then formed based on the predicted
classes of the individual tokens. Since 92% of all
triggers in the data consist of a single token, adjacent
tokens with the same class prediction form a single
trigger only in case that the resulting string occurs
as a trigger in the training data. An event node is
created for each detected trigger (Figure 2B).

In rare cases, the triggers of events of different
class share a token, thus the token belongs to sev-
eral separate classes. To be able to approach trigger
detection as a multi-class classification task where
each token is given a single prediction, we intro-
duce combined classes as needed. For instance the
class gene expression/positive regulation denotes to-
kens that act as a trigger to two events of the two
respective classes. Note that this implies that the
trigger detection step produces at most one event
node per class for any detected trigger. In the shared
task, however, multiple events of the same class can
share the same trigger. For instance, the trigger in-
volves in Figure 2 corresponds to two separate regu-
lation events. A separate post-processing step is in-
troduced after event argument detection to duplicate
event nodes as necessary (see Section 2.4).

Due to the nature of the GENIA event annota-
tion principles, trigger detection cannot be easily re-
duced to a simple dictionary lookup of trigger ex-
pressions for two main reasons. First, a number of
common textual expressions act as event triggers in
some cases, but not in other cases. For example,
only 28% of the instances of the expression activates
are triggers for a positive regulation event while the
remaining 72% are not triggers for any event. Sec-
ond, a single expression may be associated with var-
ious event classes. For example, the instances of the
token overexpression are evenly distributed among
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Figure 2: An example sentence from Shared Task document 10069428 (simplified). A) Named entities are given.
B) Triggers are detected and corresponding event nodes are created. C) Event argument edges are predicted between
nodes. The result is a sentence-level semantic network. D) One node may denote multiple events of the same class,
therefore nodes are duplicated in the semantic post-processing step. E) The resulting graph can be losslessly trans-
formed into the Shared Task event annotation. Training data for the trigger recognizer includes named entity annotation
(A) and for the edge detector the semantic network with no node duplication (C).

gene expression, positive regulation, and the nega-
tive class. In light of these properties, we address
trigger detection with a multi-class support vector
machine (SVM) classifier that assigns event classes
to individual tokens, one at a time. This is in con-
trast to sequence labeling problems such as named
entity recognition, where a sequential model is typ-
ically employed. The classifier is trained on gold-
standard triggers from the training data and incorpo-
rates a wide array of features capturing the proper-
ties of the token to be classified, both its linear and
dependency context, and the named entities within
the sentence.

Token features include binary tests for capital-
ization, presence of punctuation or numeric charac-
ters, stem using the Porter stemmer (Porter, 1980),
character bigrams and trigrams, and presence of the

token in a gazetteer of known trigger expressions
and their classes, extracted from the training data.
Token features are generated not only for the token
to be classified, but also for tokens in the immediate
linear context and dependency context (tokens that
govern or depend on the token to be classified).

Frequency features include the number of
named entities in the sentence and in a linear win-
dow around the token in question as well as bag-of-
word counts of token texts in the sentence.

Dependency chains up to depth of three are
constructed, starting from the token to be classified.
At each depth, both token features and dependency
type are included, as well as the sequence of depen-
dency types in the chain.

The trigger detector used in the shared task is
in fact a weighted combination of two indepen-
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dent SVM trigger detectors, both based on the same
multi-class classification principle and somewhat
different feature sets.2 The predictions of the two
trigger detectors are combined as follows. For each
trigger detector and each token, the classifier confi-
dence scores of the top five classes are re-normalized
into the [0, 1] interval. The renormalized confidence
scores of the two detectors are then linearly inter-
polated using a parameter λ, 0 ≤ λ ≤ 1, whose
value is set experimentally on the development set,
as discussed below.

Setting the correct precision–recall trade-off in
trigger detection is very important. On one hand,
any trigger left undetected directly implies a false
negative event. On the other hand, the edge detec-
tor is trained on gold standard data where there are
no event nodes without arguments, which creates a
bias toward predicting edges for any event node the
edge detector is presented with. On the develop-
ment set, essentially all predicted event nodes are
given at least one argument edge. We optimize the
precision–recall trade-off explicitly by introducing a
parameter β, 0 ≤ β, that multiplies the classifier
confidence score given to the negative class, that is,
the “no trigger” class. When β < 1, the confidence
of the negative class is decreased, thus increasing
the possibility of a given token forming a trigger,
and consequently increasing the recall of the trigger
detector (naturally, at the expense of its precision).

Both trigger detection parameters, the interpola-
tion weight λ and the precision–recall trade-off pa-
rameter β, are set experimentally using a grid search
to find the globally optimal performance of the en-
tire system on the development set, using the shared
task performance metric. The parameters are thus
not set to optimize the performance of trigger detec-
tion in isolation; they are rather set to optimize the
performance of the whole system.

2.3 Edge detection
After trigger detection, edge detection is used to pre-
dict the edges of the semantic graph, thus extracting
event arguments. Like the trigger detector, the edge
detector is based on a multi-class SVM classifier.
We generate examples for all potential edges, which

2This design should be considered an artifact of the time-
constrained, experiment-driven development of the system
rather than a principled design choice.
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Figure 3: The distribution of event argument edge lengths
measured as the number of dependencies on the shortest
dependency path between the edge terminal nodes, con-
trasted with edge lengths measured as the linear token
distance.

are always directed from an event node to another
event node (event nesting) or from an event node to
a named entity node. Each example is then classified
as theme, cause, or a negative denoting the absence
of an edge between the two nodes in the given di-
rection. It should be noted that even though event
nodes often require multiple outgoing edges corre-
sponding to multiple event arguments, all edges are
predicted independently and are not affected by pos-
itive or negative classifications of other edges.

The feature set makes extensive use of syntac-
tic dependencies, in line with many recent stud-
ies in biomedical information extraction (see, e.g.
(Kim et al., 2008b; Miwa et al., 2008; Airola et al.,
2008; Van Landeghem et al., 2008; Katrenko and
Adriaans, 2008)). The central concept in generat-
ing features of potential event argument edges is the
shortest undirected path of syntactic dependencies
in the Stanford scheme parse of the sentence which
we assume to accurately capture the relationship ex-
pressed by the edge. In Figure 3, we show that the
distances among event and named entity nodes in
terms of shortest dependency path length are con-
siderably shorter than in terms of their linear order in
the sentence. The end points of the path are the syn-
tactic head tokens of the two named entities or event
triggers. The head tokens are identified using a sim-
ple heuristic. Where multiple shortest paths exist,
all are considered. Most features are built by com-
bining the attributes of multiple tokens (token text,
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POS tag and entity or event class, such as protein or
binding) or dependencies (type such as subject and
direction relative to surrounding tokens).

N-grams are generated by merging the at-
tributes of 2–4 consecutive tokens. N-grams are also
built for consecutive dependencies. Additional tri-
grams are built for each token and its two flank-
ing dependencies, as well as for each dependency
and its two flanking tokens. These N-grams are de-
fined in the direction of the potential event argument
edge. To take into account the varying directions
of the dependencies, each pair of consecutive tokens
forms an additional bigram defining their governor-
dependent relationship.

Individual component features are defined for
each token and edge in a path based on their
attributes which are also combined with the to-
ken/edge position at either the interior or the end of
the path. Edge attributes are combined with their di-
rection relative to the path.

Semantic node features are built by directly
combining the attributes of the two terminal
event/entity nodes of the potential event argument
edge. These features concatenate both the specific
types of the nodes (e.g. protein or binding) as well
as their categories (event or named entity). Finally,
if the events/entities have the same head token, this
self-loop is explicitly defined as a feature.

Frequency features include the length of the
shortest path as an integer-valued feature as well as
an explicit binary feature for each length. The num-
ber of named entities and event nodes, per type, in
the sentence are defined for each example.

We have used this type of edge detector with a
largely similar feature set previously (Björne et al.,
2009). Also, many of these features are standard
in relation extraction studies (see, e.g., Buyko et al.
(2008)).

2.4 Semantic post-processing
The semantic graph produced by the trigger and
edge detection steps is not final. In particular, it
may contain event nodes with an improper combi-
nation of arguments, or no arguments whatsoever.
Additionally, as discussed in Section 2.2, if there are
events of the same class with the same trigger, they
are represented by a single node. Therefore, we in-
troduce a rule-based post-processing step to refine

Figure 4: Example of event duplication. A) All theme–
cause combinations are generated for regulation events.
B) A heuristic is applied to decide how theme arguments
of binding events should be grouped.

the graph, using the restrictions on event argument
types and combinations defined in the shared task.

In Task 1, the allowed argument edges in the
graph are 1) theme from an event to a named en-
tity, 2) theme or cause from a regulation event (or its
subclasses) to an event or a named entity. Edges cor-
responding to invalid arguments are removed. Also,
directed cycles are broken by removing the edge
with the weakest classification confidence score.

After pruning invalid edges, event nodes are du-
plicated so that all events have a valid combination
of arguments. For example, the regulation event in-
volves in Figure 2C has two cause arguments and
therefore represents two distinct events. We thus
duplicate the event node, obtaining one regulation
event for each of the cause arguments (Figure 2D).

Events of type gene expression, transcription,
translation, protein catabolism, localization, and
phosphorylation must have exactly one theme argu-
ment, which makes the duplication process trivial:
duplicate events are created, one for each of the ar-
guments. Regulation events must have one theme
and can additionally have one cause argument. For
these classes we use a heuristic, generating a new
event for each theme–cause combination of outgo-
ing edges (Figure 4A). Binding is the only event
class that can have multiple theme arguments. There
is thus no simple way of determining how multi-
ple outgoing theme edges should be grouped (Fig-
ure 4B). We apply a heuristic that first groups the ar-
guments by their syntactic role, defined here as xthe
first dependency in the shortest path from the event
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to the argument. It then generates an event for each
pair of arguments that are in different groups. In the
case of only one group, all single-argument events
are generated.

Finally, all events with no arguments as well as
regulation events without a theme argument are iter-
atively removed until no such event remains. The
resulting graph is the output of our event extrac-
tion system and can be losslessly converted into the
shared task format (Figure 2D&E).

2.5 Alternative directions
We now briefly describe some of the alternative di-
rections explored during the system development,
which however did not result in increased perfor-
mance, and were thus not included in the final sys-
tem. Whether the reason was due to the considered
approaches being inadequate for the extraction task,
or simply a result of the tight time constraints en-
forced by the shared task is a question only further
research can shed light on.

For the purpose of dividing the extraction prob-
lem into manageable subproblems, we make strong
independence assumptions. This is particularly the
case in the edge detection phase where each edge
is considered in isolation from other edges, some
of which may actually be associated with the same
event. Similar assumptions are made in the trigger
detection phase, where the classifications of individ-
ual tokens are independent.

A common way to relax independence assump-
tions is to use N -best re-ranking where N most-
likely candidates are re-ranked using global features
that model data dependencies that could not be mod-
elled in the candidate generation step. The best can-
didate with respect to this re-ranked order is then
the final prediction of the system. N -best re-ranking
has been successfully applied for example in statisti-
cal parsing (Charniak and Johnson, 2005). We gen-
erated the ten most likely candidate graphs, as de-
termined by the confidence scores of the individual
edges given by the multi-class SVM. A perfect re-
ranking of these ten candidates would lead to 11.5
percentage point improvement in the overall system
F-score on the development set. While we were un-
able to produce a re-ranker sufficiently accurate to
improve the system performance in the time given,
the large potential gain warrants further research.

In trigger word detection, we experimented with
a structural SVM incorporating Hidden Markov
Model type of sequential dependencies (Altun et al.,
2003; Tsochantaridis et al., 2004), which allow con-
ditioning classification decisions on decisions made
for previous tokens as well as with a conditional ran-
dom field (CRF) sequence classifier (Lafferty et al.,
2001). Neither of these experiments led to a perfor-
mance gain over the multiclass SVM classifier.

As discussed previously, 4.8% of all annotated
events cross sentence boundaries. This problem
could be approached using coreference resolution
techniques, however, the necessary explicit corefer-
ence annotation to train a coreference resolution sys-
tem is not present in the data. Instead, we attempted
to build a machine-learning based system to detect
cross-sentence event arguments directly, rather than
via their referring expression, but were unable to im-
prove the system performance.

3 Tools and resources

3.1 Multi-class SVM
We use a support vector machine (SVM) multi-class
classifier which has been shown to have state-of-
the-art classification performance (see e.g. (Cram-
mer and Singer, 2002; Tsochantaridis et al., 2004)).
Namely, we use the SVMmulticlass implementa-
tion3 which is one of the fastest multi-class SVM
implementations currently available. Analogously
to the binary SVMs, multi-class SVMs have a reg-
ularization parameter that determines the trade-off
between the training error and the complexity of the
learned concept. We select the value of the parame-
ter on the development set. Multi-class SVMs scale
linearly with respect to both the amount of training
data and the average number of nonzero features per
training example, making them an especially suit-
able learning method for our purposes. They also
provide a real-valued prediction for each example
to be classified which is used as a confidence score
in trigger detection precision–recall trade-off adjust-
ment and event argument edge cycle breaking in se-
mantic post-processing. We use the linear kernel,
the only practical choice to train the classifier with
the large training sets available. For example, the

3http://svmlight.joachims.org/svm_
multiclass.html
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Figure 5: Performance of the 24 systems that participated
in Task 1, together with an F-score contour plot for refer-
ence. Our system is marked with a full circle.

final training data of the edge detector (8932 sen-
tences) consists of 31792 training examples with
295034 unique features. Training with even this
amount of data is computationally feasible, typically
taking less than an hour.

All classifiers used in the system are trained as
follows. First we optimize the regularization param-
eter C by training on the shared task training set and
testing on the shared task development set. We then
re-train the final classifier on the union of the train-
ing and development sets, using the best value of C
in the previous step. The same protocol is followed
for the λ and β parameters in trigger detection.

3.2 Dependency parses

Both trigger detection and edge prediction rely on
a wide array of features derived from full depen-
dency parses of the sentence. We use the McClosky-
Charniak domain-adapted parser (McClosky and
Charniak, 2008) which is among the best perform-
ing parsers trained on the GENIA Treebank corpus.
The native constituency output of the parser is trans-
formed to the “collapsed” form of the Stanford de-
pendency scheme (de Marneffe and Manning, 2008)
using the Stanford parser tools.4 The parses were
provided by the shared task organizers.

4 Results and discussion

The final evaluation of the system was performed by
the shared task organizers using a test set whose an-

4http://nlp.stanford.edu/software/

notation was at no point available to the task partici-
pants. By the main criterion of Task 1, approximate
span matching with approximate recursive match-
ing, our system achieved an F-score of 51.95%. Fig-
ure 5 shows the performance of all systems partic-
ipating in Task 1. The per-class results in Table 1
show that regulation events (including positive and
negative regulation) as well as binding events are the
hardest to extract. These classes have F-scores in
the 31–44% range, while the other classes fall into
the 50–78% range. This is not particularly surpris-
ing since binding and regulation are the only classes
in which events can have multiple arguments, which
means that for an event to be detected correctly, the
edge detector often must make several correct pre-
dictions. Additionally, these classes have the lowest
trigger recognition performance on the development
set. It is interesting to note that the per-class perfor-
mance in Table 1 shows no clear correlation between
the number of events of a class and its F-score.

Table 2 shows the performance of the system us-
ing various other evaluation criteria defined in the
shared task. The most interesting of these is the
strict matching criterion, which, in order to consider
an event correctly extracted, requires exact trigger
span as well as all its nested events to be recursively
correct. The performance of the system with respect
to the strict criterion is 47.41% F-score, only 4.5 per-
centage points lower than the relaxed primary mea-
sure. As seen in Table 2, this difference is almost
exclusively due to triggers with incorrect span.

To evaluate the performance impact of each sys-
tem component individually, we report in Table 3
overall system performance on the development set,
obtained by progressively replacing the processing
steps with gold-standard data. The results show that
the errors of the system are almost evenly distributed
between the trigger and edge detectors. For instance,
a perfect trigger detector would decrease the overall
system error of 46.5% by 18.58 percentage points,
a relative decrease of 40%. A perfect edge detec-
tor would, in combination with a perfect trigger de-
tector, lead to system performance of 94.69%. The
improvement that could be gained by further devel-
opment of the semantic post-processing step is thus
limited, indicating that the strict argument combina-
tion restrictions of Task 1 are sufficient to resolve the
majority of post-processing cases.
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Event Class # R P F
Protein catabolism 14 42.86 66.67 52.17
Phosphorylation 135 80.74 74.66 77.58
Transcription 137 39.42 69.23 50.23
Localization 174 49.43 81.90 61.65
Regulation 291 25.43 38.14 30.52
Binding 347 40.06 49.82 44.41
Negative regulation 379 35.36 43.46 38.99
Gene expression 722 69.81 78.50 73.90
Positive regulation 983 38.76 48.72 43.17
Total 3182 46.73 58.48 51.95

Table 1: Per-class performance in terms of Recall, Preci-
sion, and F-score on the test set (3182 events) using ap-
proximate span and recursive matching, the primary eval-
uation criterion of Task 1.

Matching R P F
Strict 42.65 53.38 47.41

Approx. Span 46.51 58.24 51.72
Approx. Span&Recursive 46.73 58.48 51.95

Table 2: Performance of our system on the test set (3182
events) with respect to other evaluation measures in the
shared task.

5 Conclusions

We have described a system for extracting complex,
typed events from biomedical literature, only assum-
ing named entities as given knowledge. The high
rank achieved in the BioNLP’09 Shared Task com-
petitive evaluation validates the approach taken in
building the system. While the performance is cur-
rently the highest achieved on this data, the F-score
of 51.95% indicates that there remains considerable
room for further development and improvement.

We use a unified graph representation of the data
in which the individual processing steps can be for-
mulated as simple graph transformations: adding or
removing nodes and edges. It is our experience that
such a representation makes handling the data fast,
easy and consistent. The choice of graph representa-
tion is further motivated by the close correlation of
these graphs with dependency parses. As we are go-
ing to explore the interpretation and applications of
these graphs in the future, the graph representation
will likely provide a flexible base to build on.

Dividing the task of event extraction into multi-
ple subtasks that can be approached by well-studied

Trig Edge PP R P F ∆F
pred pred pred 51.54 55.62 53.50
GS pred pred 71.66 72.51 72.08 18.58
GS GS pred 97.21 92.30 94.69 22.61
GS GS GS 100.0 100.0 100.0 5.31

Table 3: Effect of the trigger detector (Trig), edge detec-
tor (Edge), and post-processing (PP) on performance on
the development set (1789 events). The ∆F column in-
dicates the effect of replacing the predictions (pred) of
a component with the corresponding gold standard data
(GS), i.e. the maximal possible performance gain obtain-
able from further development of that component.

methods proved to be an effective approach in de-
veloping our system. We relied on state-of-the-art
machine learning techniques that scale up to the task
and allow the use of a considerable number of fea-
tures. We also carefully optimized the various pa-
rameters, a vital step when using machine learning
methods, to fine-tune the performance of the system.

In Section 2.5, we discussed alternative directions
pursued during the development of the current sys-
tem, indicating possible future research directions.
To support this future work as well as complement
the description of the system in this paper we intend
to publish our system under an open-source license.

This shared task represents the first competi-
tive evaluation of complex event extraction in the
biomedical domain. The prior research has largely
focused on binary interaction extraction, achieving
after a substantial research effort F-scores of slightly
over 60% (see, e.g., Miwa et al. (2008)) on AIMed,
the de facto standard corpus for this task. Even if
a direct comparison of these results is difficult, they
suggest that 52% F-score in complex event extrac-
tion is a non-trivial achievement, especially consid-
ering the more detailed semantics of the extracted
events. Further, complex event extraction is still a
new problem — relevant corpora having been avail-
able for only a few years.
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Abstract

We describe the approach to event extrac-
tion which the JULIELab Team from FSU
Jena (Germany) pursued to solve Task 1 in
the “BioNLP’09 Shared Task on Event Ex-
traction”. We incorporate manually curated
dictionaries and machine learning method-
ologies to sort out associated event triggers
and arguments on trimmed dependency graph
structures. Trimming combines pruning ir-
relevant lexical material from a dependency
graph and decorating particularly relevant lex-
ical material from that graph with more ab-
stract conceptual class information. Given
that methodological framework, the JULIELab
Team scored on 2nd rank among 24 competing
teams, with 45.8% precision, 47.5% recall and
46.7% F1-score on all 3,182 events.

1 Introduction

Semantic forms of text analytics for the life sciences
have long been equivalent with named entity recog-
nition and interpretation, i.e., finding instances of se-
mantic classes such as proteins, diseases, or drugs.
For a couple of years, this focus has been comple-
mented by analytics dealing with relation extraction,
i.e., finding instances of relations which link one or
more (usually two) arguments, the latter being in-
stances of semantic classes, such as the interaction
between two proteins (PPIs).

PPI extraction is a complex task since cascades
of molecular events are involved which are hard to
sort out. Many different approaches have already
been tried – pattern-based ones (e.g., by Blaschke

et al. (1999), Hakenberg et al. (2005) or Huang et
al. (2004)), rule-based ones (e.g., by Yakushiji et al.
(2001),Šaríc et al. (2004) or Fundel et al. (2007)),
and machine learning-based ones (e.g., by Katrenko
and Adriaans (2006), Sætre et al. (2007) or Airola et
al. (2008)), yet without conclusive results.

In the following, we present our approach to solve
Task 1 within the “BioNLP’09 Shared Task on Event
Extraction”.1 Task 1 “Event detection and charac-
terization” required to determine the intended rela-
tion givena priori supplied protein annotations. Our
approach considers dependency graphs as the cen-
tral data structure on which various trimming oper-
ations are performed involving syntactic simplifica-
tion but also, even more important, semantic enrich-
ment by conceptual overlays. A description of the
component subtasks is provided in Section 2, while
the methodologies intended to solve each subtask
are discussed in Section 3. The system pipeline for
event extraction reflecting the task decomposition is
described in Section 4, while Section 5 provides the
evaluation results for our approach.

2 Event Extraction Task

Event extraction is a complex task that can be sub-
divided into a number of subtasks depending on
whether the focus is on the event itself or on the ar-
guments involved:

Event trigger identification deals with the large
variety of alternative verbalizations of the same
event type, i.e., whether the event is expressed in

1http://www-tsujii.is.s.u-tokyo.ac.jp/
GENIA/SharedTask/
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a verbal or in a nominalized form (e.g., “A is ex-
pressed” and “the expression of A” both refer to the
same event type,viz. expression(A)). Since the
same trigger may stand for more than one event type,
event trigger ambiguity has to be resolved as well.

Event trigger disambiguation selects the correct
event name from the set of alternative event triggers.

Event typing, finally, deals with the semantic
classification of a disambiguated event name and the
assignment to an event type category.2

Argument identification is concerned with find-
ing all necessary participants in an event, i.e., the
arguments of the relation.

Argument typing assigns the correct semantic
category (entity class) to each of the determined par-
ticipants in an event (which can be considered as in-
stances of that class).

Argument ordering assigns each identified par-
ticipant its functional role within the event, mostly
Agent (and Patient/Theme).

The sentence “Regulation ofjun andfos gene ex-
pression in human monocytes by the macrophage
colony-stimulating factor”, e.g., contains mentions
of two Gene Expressionevents with respective
THEME arguments “jun” and “fos”, triggered in the
text by the literal phrase “gene expression”.

Task 1 of the “BioNLP’09 Shared Task on Event
Extraction” was defined in such a way as to iden-
tify a proper relation (event) name and link it with
its type, plus one or more associated arguments de-
noting proteins. To focus on relation extraction only
no automatic named entity recognition and interpre-
tation had to be performed (subtask ‘argument typ-
ing’ from above); instead candidate proteins were
already pre-tagged. The complexity of Task 1 was
raised by the condition that not only proteins were
allowed to be arguments but also were events.

3 Event Extraction Solution

Our event extraction approach is summarized in Fig-
ure 1 and consists of three major streams – first, the
detection of lexicalized event triggers (cf. Section
3.1), second, the trimming of dependency graphs
which involves pruning irrelevant and semantically
enriching relevant lexical material (cf. Section 3.2),

2In our approach, event trigger disambiguation already im-
plies event typing.

Pre-processing

Argument Identi f icat ion with

Ensemble of Classifiers

Event Detection

Post-processing

     Trimming of
Dependency Graphs

  Typing of Putative
    Event Triggers

Figure 1: General Architecture of the Event Extraction
Solution of the JULIELab Team.

and, third, the identification of arguments for the
event under scrutiny (cf. Section 3.3). Event typ-
ing results from proper event trigger identification
(see Section 3.1.2), which is interlinked with the out-
come of the argument identification. We talk about
putative triggers because we consider, in a greedy
manner, all relevant lexical items (see Section 3.1.1)
as potential event triggers which might represent an
event. Only those event triggers that can eventually
be connected to arguments, finally, represent a true
event. To achieve this goal we preprocessed both the
original training and test data such that we enrich the
original training data with automatically predicted
event triggers in order to generate more negative ex-
amples for a more effective learning of true events.3

3.1 Event Trigger Identification

Looking at the wide variety of potential lexicalized
triggers for an event, their lacking discriminative
power relative to individual event types and their
inherent potential for ambiguity,4 we decided on
a dictionary-based approach whose curation princi-
ples are described in Section 3.1.1. Our disambigua-
tion policy for the ambiguous lexicalized event trig-

3Although the training data contains cross-sentence event
descriptions, our approach to event extraction is restricted to
the sentence level only.

4Most of the triggers are neither specific for molecular event
descriptions, in general, nor for a special event type. “Induc-
tion”, e.g., occurs 417 times in the training data. In 162 of these
cases it acts as a trigger forPositiveregulation, 6 times as a
trigger for Transcription, 8 instances triggerGeneexpression,
while 241 occurrences do not trigger an event at all.
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gers assembled in this suite of dictionaries, one per
event type, is discussed in Section 3.1.2.

3.1.1 Manual Curation of the Dictionaries

We started collecting our dictionaries from the
original GENIA event corpus (Kim et al., 2008a).
The extracted event triggers were then automatically
lemmatized5 and the resulting lemmata were subse-
quently ranked by two students of biology according
to their predictive power to act as a trigger for a par-
ticular event type. This expert assessment led us to
four trigger groups (for each event type these groups
were determined separately):

(1) Triggers areimportantanddiscriminativefor
a specific event type. This group contains event trig-
gers such as “upregulate” forPositiveregulation.

(2) Triggers areimportant thoughnot fully dis-
criminativefor a particular event type; yet, this defi-
ciency can be overcome by other lexical cues within
the context of the same sentence. This group with in-
context disambiguators contains lexical items such
as “proteolyse” forProtein catabolism.

(3) Triggers arenon-discriminativefor an event
type and even cannot be disambiguated by linguistic
cues within the context of the same sentence. This
group contains lexical items such as “presence” for
LocalizationandGeneexpression.

(4) Triggers are absolutelynon-discriminativefor
an event. This group holds general lexical triggers
such as “observe”, “demonstrate” or “function”.

The final dictionaries used for the detection of
putative event triggers are a union of the first two
groups. They were further extended by biologists
with additional lexical material of the first group.
The dictionaries thus became event type-specific –
they contain all morphological forms of the original
lemma, which were automatically generated using
the Specialist NLP Tools (2008 release).

We matched the entries from the final set of dic-
tionaries with the shared task data using the Ling-
pipe Dictionary Chunker.6 After the matching pro-
cess, some cleansing had to be done.7

5We used the lemmatizer from the Specialist NLP Tools
(http://lexsrv3.nlm.nih.gov/SPECIALIST/
index.html , 2008 release).

6http://alias-i.com/lingpipe/
7Event triggers were removed which (1) were found within

sentences without any protein annotations, (2) occurred within

3.1.2 Event Trigger Disambiguation

Preliminary experiments indicated that the dis-
ambiguation of event triggers might be beneficial
for the overall event extraction results since events
tend to be expressed via highly ambiguous triggers.
Therefore, we performed a disambiguation step pre-
ceding the extraction of any argument structures.

It is based on theimportanceof an event trig-
ger ti for a particular event typeT as defined by

Imp(tTi ) := f(tTi )
P

i f(tTi )
, wheref(tTi ) is the frequency

of the event triggerti of the selected event typeT
in a training corpus divided by the total amount of
all event triggers of the selected event typeT in
that training corpus. The frequencies are measured
on stemmed event triggers. For example,Imp for
the trigger stem “depend” amounts to 0.013 for the
event typePositiveregulation, while for the event
typeRegulationit yields 0.036 . If a text span con-
tains several event triggers with the same span off-
set, the event trigger withmax(Imp) is selected and
other putative triggers are discarded. The trigger
stem “depend” remains thus only forRegulation.

3.2 Trimming Dependency Graphs

When we consider event (relation) extraction as a se-
mantic interpretation task, plain dependency graphs
as they result from deep syntactic parsing might not
be appropriate to directly extract semantic informa-
tion from. This is due to two reasons - they contain
a lot of apparently irrelevant lexical nodes (from the
semantic perspective of event extraction) and they
also contain much too specific lexical nodes that
might better be grouped and further enriched se-
mantically. Trimming dependency graphs for the
purposes of event extraction, therefore, amounts to
eliminate semantically irrelevant and to semantically
enrich relevant lexical nodes (i.e., overlay with con-
cepts). This way, we influence the final representa-
tion for the machine learners we employ (in terms of
features or kernel-based representations) — we may
avoid an overfitting of the feature or kernel spaces
with syntactic and lexical data and thus reduce struc-
tural information in a linguistically motivated way.

a longer event trigger, (3) overlapped with a longer trigger of
the same event type, (4) occurred inside an entity mention an-
notation.
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3.2.1 Syntactic Pruning

Pruning targets auxiliary and modal verbs which
govern the main verb in syntactic structures such as
passives, past or future tense. We delete the aux-
iliars/modals as govenors of the main verbs from
the dependency graph and propagate the semantics-
preserving dependency relations of these nodes di-
rectly to the main verbs. Adhering to the depen-
dency tree format and labeling conventions set up
for the 2006 and 2007 CONLL shared tasks on de-
pendency parsing main verbs are usually connected
with the auxiliar by the VC dependency relation (see
Figure 2). Accordingly, in our example, the verb
“activate” is promoted to the ROOT in the depen-
dency graph and governs all nodes that were origi-
nally governed by the modal “may”.

Figure 2: Trimming of Dependency Graphs.

3.2.2 Conceptual Decoration

Lexical nodes in the (possibly pruned) depen-
dency graphs deemed to be important for argument
extraction were then enriched with semantic class
annotations, instead of keeping the original lexical
(stem) representation (see Figure 2). The rationale
behind this decision was to generate more powerful
kernel-based or features representations (see Section
3.3.2 and 3.3.1).

The whole process is based on a three-tier task-
specific semantic hierarchy of named entity classes.
The top rank is constituted by the equivalent classes
Transcription factor, Binding site, and Promoter.
The second rank is occupied by MESH terms, and
the third tier assembles the named entity classes
GeneandProtein. Whenever a lexical item is cat-
egorized by one of these categories, the associated

node in the dependency graph is overlaid with that
category applying the ranking in cases of conflicts.

We also enriched the gene name mentions with
their respective Gene Ontology Annotations from
GOA.8 For this purpose, we first categorized GO
terms both from the “molecular function” and from
the “biological process” branch with respect to
their matching event type, e.g.,Phosphorylation
or Positiveregulation. We then mapped all gene
name mentions which occurred in the text to their
UNIPROT identifier using the gene name normalizer
GENO (Wermter et al., 2009). This identifier links a
gene with a set of (curated) GO annotations.

In addition, we inserted semantic information in
terms of the event trigger type and the experimen-
tal methods. As far as experimental methods are
concerned, we extracted all instances of them an-
notated in the GENIA event corpus. One student
of biology sorted the experimental methods relative
to the event categories under scrutiny. For example
“affinity chromatography” was assigned both to the
Geneexpressionand to theBinding category. For
our purposes, we only included those GO annota-
tions and experimental methods which matched the
event types to be identified in a sentence.

3.3 Argument Identification and Ordering

The argument identification task can be subdivided
into three complexity levels. Level (1) incorpo-
rates five event types (Geneexpression, Transcrip-
tion, Protein catabolism, Localization, Phosphory-
lation) which involve a single participant with a
THEME role only. Level (2) is concerned with one
event type (Binding) that provides an n-ary argument
structure where all arguments occupy the THEME(n)
role. Level (3) comprises three event types (Posi-
tive regulation, Negativeregulation, or an unspeci-
fied Regulation) that represent a regulatory relation
between the above-mentioned event classes or pro-
teins. These events have usually a binary structure,
with a THEME argument and a CAUSE argument.

For argument extraction, we built sentence-wise
pairs of putative triggers and their putative argu-
ment(s), the latter involving ontological informa-
tion about the event type. For Level (1), we built
pairs only with proteins, while for Level (3) we al-

8http://www.ebi.ac.uk/GOA
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lowed all events as possible arguments. For Level
(2), Binding events, we generated binary (trigger,
protein) pairs as well as triples (trigger, protein1,
protein2) to adequately represent the binding be-
tween two proteins.9 Pairs of mentions not con-
nected by a dependency path could not be detected.
For the argument extraction we chose two ma-
chine learning-based approaches, feature-based and
a kernel-based one, as described below.10

3.3.1 Feature-based Classifier

We distinguished three groups of features. First,
lexical features (covering lexical items before, af-
ter and between both mentions (of the event trigger
and an argument) as described by Zhou and Zhang
(2007)); second,chunkingfeatures (concerned with
head words of the phrases between two mentions as
described by Zhou and Zhang (2007)); third,de-
pendency parsefeatures (considering both the se-
lected dependency levels of the arguments (parents
and least common subsumer) as discussed by Ka-
trenko and Adriaans (2006), as well as a shortest de-
pendency path structure between the arguments as
used by Kim et al. (2008b) forwalk features).

For the feature-based approach, we chose the
Maximum Entropy (ME) classifier from MALLET .11

3.3.2 Graph Kernel Classifier

The graph kernel uses a converted form of depen-
dency graphs in which each dependency node is rep-
resented by a set of labels associated with that node.
The dependency edges are also represented as nodes
in the new graph such that they are connected to the
nodes adjacent in the dependency graph. Subgraphs
which represent, e.g., the linear order of the words
in the sentence can be added, if required. The entire
graph is represented in terms of an adjacency matrix
which is further processed to contain the summed
weights of paths connecting two nodes of the graph
(see Airola et al. (2008) for details).

9We did not account for the binding of more than two pro-
teins as this would have led to a combinatory explosion of pos-
sible classifications.

10In our experiments, we used full conceptual overlaying
(see Section 3.2) for the kernel-based representation and partial
overlaying for the dependency parse features (only gene/protein
annotation was exploited here). Graph representations allow for
many semantic labels to be associated with a node.

11http://mallet.cs.umass.edu/index.php/
Main_Page

Figure 3: Graph Kernel Representation for a Trimmed
Dependency Graph — (1) original representation, (2)
representation without graph dependency edge nodes
(weights (0.9, 0.3) taken from Airola et al. (2008)).

For our experiments, we tried some variants of the
original graph kernel. In the original version each
dependency graph edge is represented as a node.
That means that connections between graph token
nodes are expressed throughgraph dependency edge
nodes(see Figure 3; (1)). To represent the connec-
tions between original tokens as direct connections
in the graph, we removed the edge nodes and each
token was assigned the edge label (its dependency
label; see Figure 3; (2)). Further variants included
encodings for (1) the shortest dependency path (sp)
between two mentions (argument and trigger)12 (2)
the complete dependency graph (sp-dep), and (3) the
complete dependency graph and linear information
(sp-dep-lin) (the original configuration from Airola
et al. (2008)).

For the graph kernel, we chose the LibSVM
(Chang and Lin, 2001) Support Vector Machine as
classifier.

3.4 Postprocessing

The postprocessing step varies for the three different
Levels (see Section 3.3). For every event trigger of
Level (1) (e.g.,Geneexpression), we generate one
event per relation comprising a trigger and its argu-
ment. For Level (2) (Binding), we create aBinding
event with two arguments only for triples (trigger,
protein1, protein2). For the third Level, we create
for each event trigger and its associated arguments
e = n × m events, forn CAUSE arguments andm
THEME arguments.

12For Binding we extracted the shortest path between two
protein mentions if we encounter a triple (trigger, protein1,
protein2).
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4 Pipeline

The event extraction pipeline consists of two ma-
jor parts, a pre-processor and the dedicated event
extractor. As far as pre-processing is concerned,
we imported the sentence splitting, tokenization and
GDep parsing results (Sagae and Tsujii, 2007) as
prepared by the shared task organizers for all data
sets (training, development and test). We processed
this data with the OpenNLP POS tagger and Chun-
ker, both re-trained on the GENIA corpus (Buyko et
al., 2006). Additionally, we enhanced the original
tokenization by one which includes hyphenization
of lexical items such as in “PMA-dependent”. 13

The data was further processed with the gene nor-
malizer GENO(Wermter et al., 2009) and a num-
ber of regex- and dictionary-based entity taggers
(covering promoters, binding sites, and transcrip-
tion factors). We also enriched gene name men-
tions with their respective Gene Ontology annota-
tions (see Section 3.2.2). The MESH thesaurus (ex-
cept chemical and drugs branch) was mapped on the
data using the Lingpipe Dictionary Chunker.14

After preprocessing, event extraction was started
distinguishing between the event trigger recognition
(cf. Section 3.1), the trimming of the dependency
graphs (cf. Section 3.2), and the argument extrac-
tion proper (cf. Section 3.3).15 We determined in
our experiments on the development data the perfor-
mance of every classifier type and its variants (for
the graph kernel), and of ensembles of the most per-
formant (F-Score) graph kernel variant and an ME
model.16 We present here the argument extraction
configuration used for the official run.17 For the
prediction of Phosphorylation, Localization, Pro-
tein catabolismtypes we used the graph kernel in

13This tokenization is more advantageous for the detection
of additional event triggers as it allows to generate depen-
dency relations from hyphenated terms. For example, in “PMA-
dependent”, “ PMA” will be a child of “dependent” linked by
the AMOD dependency relation, and “dependent” receives the
original dependency relation of the “PMA-dependent” token.

14http://alias-i.com/lingpipe/
15For the final configurations of the graph kernel, we opti-

mized theC parameter in the spectrum between2−3 and23 on
the final training data for every event type separately.

16In theensembleconfiguration we built the union of positive
instances.

17We achieved with this configuration the best performance
on the development set.

its “sp without dependency-edge-nodes” configura-
tion, while for the prediction ofTranscriptionand
Geneexpressionevents we used an ensemble of the
graph kernel in its “sp with dependency-edge-nodes”
variant, and an ME model. For the prediction of
Binding we used an ensemble of the graph kernel
(“sp-dep with dependency-edge-nodes”) and an ME
model. For the prediction of regulatory events we
used ME models for each regulatory type.

5 Results

The baseline against which we compared our ap-
proach can be captured in a single rule. We extract
for every pair of a putative trigger and a putative ar-
gument the shortest dependency path between them.
If the shortest dependency path does not contain any
direction change, i.e., the argument is either a direct
child or a direct parent of the trigger, and if the path
does not contain any other intervening event trig-
gers, the argument is taken as the THEME role.

We performed evaluations on the shared task de-
velopment and test set. Our baseline achieved com-
petitive results of 36.0% precision, 34.0% recall,
35.0% F-score on the development set (see Table
1), and 30.4% precision, 35.7% recall, 32,8% F-
score on the test set (see Table 2). In particular
the one-argument events, i.e.,Geneexpression, Pro-
tein catabolism, Phosphorylationare effectively ex-
tracted with an F-score around 70.0%. More com-
plex events, in particular events of Level (3), i.e.,
(Regulation) were less properly dealt with because
of their strong internal complexity.

Event Class gold recall prec. F-score
Localization 53 75.47 30.30 43.24

Binding 248 33.47 20.80 25.66
Geneexpression 356 76.12 75.07 75.59

Transcription 82 68.29 40.58 50.91
Protein catabolism 21 76.19 66.67 71.11
Phosphorylation 47 76.60 72.00 74.23

Regulation 169 14.20 15.09 14.63
Positiveregulation 617 15.40 20.83 17.71
Negativeregulation 196 11.73 13.22 12.43

TOTAL 1789 36.00 34.02 34.98

Table 1: Baseline results on the shared task development
data. Approximate Span Matching/Approximate Recur-
sive Matching.
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Event Class gold recall prec. F-score gold recall prec. F-score
Localization 174 42.53 44.85 43.66 174 42.53 44.85 43.66

Binding 347 32.28 37.09 34.51 398 44.22 58.28 50.29
Geneexpression 722 61.36 80.55 69.65 722 61.36 80.55 69.65

Transcription 137 39.42 35.06 37.11 137 39.42 35.06 37.11
Protein catabolism 14 71.43 66.67 68.97 14 71.43 66.67 68.97
Phosphorylation 135 65.93 90.82 76.39 135 65.93 90.82 76.39

EVT-TOTAL 1529 51.14 60.90 55.60 1580 53.54 65.89 59.08

Regulation 291 9.62 11.72 10.57 338 9.17 12.97 10.75
Positiveregulation 983 10.38 11.33 10.83 1186 14.67 19.33 16.68
Negativeregulation 379 14.25 19.22 16.36 416 14.18 21.00 16.93

REG-TOTAL 1653 11.13 12.96 11.98 1940 13.61 18.59 15.71

ALL-TOTAL 3182 30.36 35.72 32.82 3520 31.53 41.05 35.67

Table 2: Baseline results on the shared task test data. Approximate Span Matching/Approximate Recursive Matching
(columns 3-5). Event decomposition, Approximate Span Matching/Approximate Recursive Matching (columns 7-9).

The event extraction approach, in its final config-
uration (see Section 4), achieved a performance of
50.4% recall, 45.8% precision and 48.0% F-score on
the development set (see Table 4), and 45.8% recall,
47.5% precision and 46.7% F-score on the test set
(see Table 3). This approach clearly outperformed
the baseline with an increase of 14 percentage points
on the test data. In particular, the events of Level (2)
and (3) were more properly dealt with than by the
baseline. In the event decomposition mode (argu-
ment detection is evaluated in a decomposed event)
we achieved a performance of 49.4% recall, 56.2%
precision, and 52.6% F-score (see Table 3).

Our experiments on the development set showed
that the combination of the feature-based and the
graph kernel-based approach can boost the results up
to 6 percentage points F-score (for theBindingevent
type). It is interesting that the combination forBind-
ing increased recall without dropping precision. The
original graph kernel approach forBinding events
performs with 38.3% recall, 27.9% precision and
32.3% F-score on the development set. The com-
bined approach comes with a remarkable increase
of 14 percentage points in recall. The combination
could also boost the recall of theGeneexpression
andTranscriptionby 15 percentage points and 5 per-
centage points, respectively, without seriously drop-
ping the precision (4 points for every type). For
the other event types, no improvements were found
when we combined both approaches.

5.1 Error Discussion

One expert biologist analyzed 30 abstracts randomly
extracted from the development error data. We de-
termined seven groups of errrors based on this anal-
ysis. The first group contains examples for which
an event should be determined, but a false argument
was found (e.g.,Binding arguments were not prop-
erly sorted, or correct and false arguments were de-
tected for the same trigger) (44 examples). The sec-
ond group comprised examples where no trigger was
found (23 examples). Group (3) stands for cases
where no events were detected although a trigger
was properly identified (14 examples). Group (4)
holds examples detected in sentences which did not
contain any events (12 examples). Group (5) lists bi-
ologically meaningful analyses, actually very close
to the gold annotation, especially for the cascaded
regulatory events (12 examples), while Group (6) in-
corporates examples of a detected event with incor-
rect type (1 example). Group (7) gathers misleading
gold annotations (10 examples).

This assessment clearly indicates that a major
source of errors can be traced to the level of argu-
ment identification, in particular forBindingevents.
The second major source has its offspring at the
level of trigger detection (we ignored, for exam-
ple, triggers such as “in the presence of”, “ when”,
“normal”). About 10% of the errors are due to a
slight difference between extracted events and gold
events. For example, in the phrase “role for NF-
kappaB in the regulation of FasL expression” we
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Event Class gold recall prec. F-score gold recall prec. F-score
Localization 174 43.68 77.55 55.88 174 43.68 77.55 55.88

Binding 347 49.57 35.25 41.20 398 63.57 54.88 58.91
Geneexpression 722 64.82 80.27 71.72 722 64.82 80.27 71.72

Transcription 137 35.77 62.03 45.37 137 35.77 62.03 45.37
Protein catabolism 14 78.57 84.62 81.48 14 78.57 84.62 81.48
Phosphorylation 135 76.30 91.15 83.06 135 76.30 91.15 83.06

EVT-TOTAL 1529 57.49 63.97 60.56 1580 60.76 71.27 65.60

Regulation 291 31.27 30.13 30.69 338 35.21 37.54 36.34
Positiveregulation 983 34.08 37.18 35.56 1186 40.64 49.33 44.57
Negativeregulation 379 40.37 31.16 35.17 416 42.31 39.11 40.65

REG-TOTAL 1653 35.03 34.18 34.60 1940 40.05 44.55 42.18

ALL-TOTAL 3182 45.82 47.52 46.66 3520 49.35 56.20 52.55

Table 3: Offical Event Extraction results on the shared task test data of the JULIELab Team. Approximate
Span Matching/Approximate Recursive Matching (columns 3-5). Event decomposition, Approximate Span Match-
ing/Approximate Recursive Matching (columns 7-9).

could not extract the gold eventRegulationof Regu-
lation (Geneexpression (FasL))associated with the
trigger “role”, but we were able to find the (inside)
eventRegulation (Geneexpression (FasL))associ-
ated with the trigger “regulation”. Interestingly, the
typing of events is not an error source in spite of
the simple disambiguation approach. Still, our dis-
ambiguation strategy is not appropriate for the anal-
ysis of double-annotatedtriggers such as “overex-
pression”, “transfection”, etc., which are annotated
asGeneexpressionandPositiveregulationand are
a major source of errors in Group (2). As Group
(6) is an insignificant source of errors in our ran-
domly selected data, we focused our error analysis
on the especially ambiguous event typeTranscrip-
tion. We found from 34 errors that 14 of them were
due to the disambiguation strategy (in particular for
triggers “(gene) expression” and “induction”).

6 Conclusion

Our approach to event extraction incorporates man-
ually curated dictionaries and machine learning
methodologies to sort out associated event triggers
and arguments on trimmed dependency graph struc-
tures. Trimming combines pruning irrelevant lexi-
cal material from a dependency graph and decorat-
ing particularly relevant lexical material from that
graph with more abstract conceptual class informa-
tion. Given that methodological framework, the
JULIELab Team scored on 2nd rank among 24 com-

Event Class gold recall prec. F-score
Localization 53 71.70 74.51 73.08

Binding 248 52.42 29.08 37.41
Geneexpression 356 75.28 81.46 78.25

Transcription 82 60.98 73.53 66.67
Protein catabolism 21 90.48 79.17 84.44
Phosphorylation 47 82.98 84.78 83.87

Regulation 169 37.87 36.78 37.32
Positiveregulation 617 34.36 35.99 35.16
Negativeregulation 196 41.33 33.61 37.07

TOTAL 1789 50.36 45.76 47.95

Table 4: Event extraction results on the shared task
development data of the official run of the JULIELab
Team. Approximate Span Matching/Approximate Recur-
sive Matching.

peting teams, with 45.8% precision, 47.5% recall
and 46.7% F1-score on all 3,182 events.
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Abstract

We describe a biological event detection
method implemented for the BioNLP 2009
Shared Task 1. The method relies entirely on
the chunk and syntactic dependency relations
provided by a general NLP pipeline which was
not adapted in any way for the purposes of
the shared task. The method maps the syn-
tactic relations to event structures while be-
ing guided by the probabilities of the syntactic
features of events which were automatically
learned from the training data. Our method
achieved a recall of 26% and a precision of
44% in the official test run, under “strict equal-
ity” of events.

1 Introduction

This paper describes the adaptation of an existing
text mining system to the BioNLP shared task. The
system has been originally created for participation
in the BioCreative1 protein-protein interaction task
(Rinaldi et al., 2008) and further developed for an
internal project based on the IntAct dataset of pro-
tein interactions (Kerrien et al., 2006). We decided
to participate only in Task 1 of the BioNLP shared
task, mainly because of lack of time and resources.

Our event annotation method relied on various
preprocessing steps and an existing state of the art
dependency parser, which provided the input to the
event annotator. As all the linguistic processing was
performed by the preprocessor and the parser, the
ideas implemented for the event annotator could re-
main simple while still producing reasonable results.
∗Corresponding author
1http://www.biocreative.org/

Thus, the event annotator performed a straightfor-
ward rewriting of syntactic structures to event struc-
tures, guided by the information on the syntactic
nature of events that we obtained from the train-
ing data. In this sense our system can be used as
a reference for a comparison to other systems that
rely completely on a dependency parser delivered
analysis that is rewritten into event structures using
knowledge gained from the training data.

Our system consists of a preprocessing phase that
uses a pipeline of NLP tools, described in section 2
of this paper. Linguistic resources are learned auto-
matically from the preprocessed training data (sec-
tion 3). A Prolog-implemented event generator is
applied directly to the preprocessing results and is
guided by the relative frequencies of syntactic fea-
tures provided in the resources (section 4). This
is followed by a postprocessing step that removes
some unlikely event structures, makes sure that all
events that violate the well-formedness rules are fil-
tered out, and finally serializes the event structures
into the requested output format. In section 5 we
present an illustrative example of the events gener-
ated by this approach and discuss some implications
of the event model adopted in the shared task. In
section 6, we describe the evaluation that we per-
formed during the training period, the final official
results on the test data, and some alternative evalu-
ations performed in parallel to the official one. In
section 7 we draw conclusions and describe future
work.

2 Preprocessing

Aside from a format conversion step necessary to
deal with the data provided by the shared task, the
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preprocessing phase is largely based on an existing
pipeline of NLP tools, that we have developed in the
OntoGene project2 (Rinaldi et al., 2006; Rinaldi et
al., 2008).

2.1 Tokenization, sentence splitting,
part-of-speech tagging

For tokenization, sentence splitting, and part-of-
speech (POS) tagging we used LingPipe3. Ling-
Pipe produces very granular tokens by default, e.g.
a character sequence from abstract 10395645

caspase-3-like (CPP32/Yama/apopain)

which contains multiple hyphens and slashes (as
usual for biomedical texts) is split into 12 (rather
than just 4) tokens

caspase, -, 3, -, like, (, CPP32, /, Yama, /,
apopain, )

allowing a more detailed detection of terms
(shown in boldface in the examples) and trigger-
words which would stay token-internal if a less gran-
ular tokenization was used.

The models used for sentence splitting and POS-
tagging come with the LingPipe distribution and are
trained on the GENIA corpus (Kim et al., 2003),
thus providing a biomedical text aware sentence
splitting and POS-tagging.

2.2 Term annotation
Correctly detecting multi-word terms in the text can
substantially improve the parsing results, because
long noun sequences would be grouped together and
the parser can only focus on the heads of the groups
and ignore the rest. In this task, however, we de-
cided to keep things simple and rely on chunking as
the only means of noun grouping.

Thus, we only annotated the terms provided by
the task organizers in the a1-files (i.e. protein men-
tions). We made the assumption that terms are se-
quences of tokens as defined by the LingPipe tok-
enizer. Whereas in the vast majority of cases this co-
incides with the tokenization used by the organizers,
there are 10 cases in the training data where this as-
sumption is violated (e.g. ‘IkappaB-alphaS32/36A’

2http://www.ontogene.org/
3http://alias-i.com/lingpipe/

contains the term ‘IkappaB-alpha’ but according to
LingPipe, the tokens are ‘IkappaB’, ‘-’, ‘alphaS32’,
‘/’, ‘36A’).

As the last step of term annotation, we recon-
nected tokens which were separated by hyphens and
slashes, unless the tokens were part of terms. This
allowed for a more reliable processing with tools
which are not optimized to deal with symbols like
hyphens and slashes if these are padded with white-
space.

2.3 Lemmatization using Morpha

Lemmatization was performed using Morpha (Min-
nen et al., 2001), which provides an accurate lemma-
tization given that the input contains part-of-speech
information. We used the lemma information even-
tually only as part of the input to the dependency
parser, i.e. for the other aspects of event annotation
lemmas were ignored.

2.4 Chunking using LTCHUNK

Chunking can considerably reduce parsing com-
plexity, while hardly affecting performance (Prins,
2005). In order to group contiguous sequences of
nouns and verbs, we used LTCHUNK (Mikheev,
1997). LTCHUNK annotates all noun and verb
groups in the sentences. A chunk is an important
unit in the analysis of biomedical texts. Consider an
NP chunk like

T cell-receptor-induced FasL upregula-
tion

which contains two event triggers, amounting to a
mention of a complex event.

After applying LTCHUNK, we also detected
chunk heads, with a simple algorithm — select last
noun in noun groups, select last verb in verb groups.
This selection is done on the basis of POS-tags.

2.5 Dependency parsing using Pro3Gres

Pro3Gres (Schneider, 2008) is a robust, deep-
syntactic, broad-coverage probabilistic dependency
parser, which identifies grammatical relations be-
tween the heads of chunks, including the majority
of long-distance dependencies. The output is a hi-
erarchical structure of relations (represented as the
directed arrows in the example shown in figure 1).
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Figure 1: Dependency-syntax tree of the title of abstract 9360945: “Transcription factor NF-kappaB regulates in-
ducible Oct-2 gene expression in precursor B lymphocytes.” The dependency relations link together the heads of the
5 chunks.

The parser uses a hand-written grammar express-
ing linguistic competence, and a statistical language
model that calculates lexicalized attachment proba-
bilities, thus expressing linguistic performance. The
parser expresses distinctions that are especially im-
portant for a predicate-argument based deep syntac-
tic representation, as far as they are expressed in
the training data generated from the Penn Treebank
(Marcus et al., 1993). This includes prepositional
phrase attachments, control structures, appositions,
relative clause anaphora, participles, gerunds, and
argument/adjunct distinctions. The dependency la-
bel set is similar to the one used in the Stanford
scheme, the parser achieves state-of-the-art perfor-
mance (Haverinen et al., 2008).

We have slightly adapted Pro3Gres to the biomed-
ical domain. A class of nouns that varies consider-
ably in the biomedical domain are relational nouns.
They are syntactically marked because they can have
several prepositional phrase arguments. Biomedical
relational nouns like ‘overexpression’ or ‘transcrip-
tion’ are absent from the Penn Treebank or rare. We
have used an unsupervised approach based on (Hin-
dle, D and Rooth, M, 1991) to learn relational nouns
from Medline.

A new relation type, hyph, has been added to con-
nect tokens to hyphens and slashes, and thus better
deal with these characters in biomedical texts.

2.6 Preprocessor output

The preprocessor produces 5 Prolog-formatted files
for each abstract. Each of these files is token-
centered and affiliates a token ID with a group (ei-
ther sentence, chunk, or term) that contains this to-
ken, or maps it to a syntactically related (either as
the head or the dependent) token.

• Tokens maps each token to its lemma, POS-
tag, and character offsets

• Chunks maps each token to its containing
chunk, chunk’s type (noun or verb group), and
chunk’s head

• Terms maps each token to its containing term,
term’s type, term’s ID (assigned by the a1-file,
or the a2-file in case of processing the training
data)

• Sentences maps each sentence ID to the list of
IDs of the tokens in the sentence

• Dependencies maps each token to its imme-
diate head and dependent, and to the types of
these dependency relations

These files are the input to the resource generator
described below, and later (together with the gener-
ated resources), the input to the event annotator.

3 Resources

The 800 abstracts of the training data were used
during development for the generation of three re-
sources which are described in this section. For the
official testing we used the concatenation of training
and development data (i.e. 950 abstracts). The re-
sources were generated automatically from the a1-
and a2-files; and from the preprocessed version of
txt-, a1- and a2-files. The resulting data files include
frequencies of the total occurrence of an item (e.g.
word, syntactic configuration) and the frequency of
its occurrence in an event.

All the words in the resources were lowercased
but not lemmatized. Resources were stored as
Prolog-formatted files.
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Frequency Event type Event arguments
149 Gene expression Theme(T)
28 Transcription Theme(T)

2 Localization Theme(T), AtLoc(T)
1 Positive regulation Theme(T)
1 Positive regulation Theme(E)

Table 1: Frequency distribution of the event structures
that are triggered by the word form ‘expressed’ which in
total triggered an event 181 times in the training data. ‘T’
means that the argument is filled by a term, ‘E’ means
that the argument is filled by an event.

3.1 Words
The word frequencies file provides a simple prob-
abilistic model for excluding stopwords, as we ob-
served that many different function words some-
times triggered events in the training data. We
wanted to exclude such words to obtain a better pre-
cision. The words-resource can be queried using a
simple interface

word_to_freq(+Word, -F)

which maps every word to its frequency.

3.2 Event types and arguments
Using the training data, we created a mapping from
each candidate trigger-word to the possible event
types and the permissible event frames. A sample of
this mapping is illustrated in table 1. The arguments
have a type (e.g. Theme) but their filler is abstracted
to be either ‘T’ (for terms) or ‘E’ (for events).

This resource can be queried via the interface
eword_to_event(+EventWord,

-EventType, -EventArgs, -F1, -F2)

which maps every trigger-word to its possible
event type and arguments. The returned frequencies
show how often the event structure was triggered
by the trigger-word, and how often the trigger-word
triggered an event in total.

3.3 Domination paths between terms
The most sophisticated of the resources that we
generated recorded the syntactic paths between the
terms (from a1- and a2-files) observed in the train-
ing data, and counted how often these paths were
present in events, connecting triggers with event ar-
gument fillers. With each term, also its type (e.g.
Positive regulation, Protein) was recorded.

For the syntactic paths, we only considered dom-
ination paths where one of the terms is the head and
the other the dependent, defined as follows.

Definition 1 (Domination between chunks)
Term t1 dominates term t2 if t1 ∈ c1 and
t2 ∈ c2 and there exists a directed syntactic path
h(c1) → . . . → h(c2), where h(·) is the head of the
given chunk.

For example, in figure 1, the term ‘regulates’
dominates all the other tokens, among them the term
‘expression’ (which is the head of its chunk), and the
Protein-term ‘Oct-2’. Note that this definition does
not require the terms to be in the chunk head posi-
tion. However, this decision did not affect the results
significantly.

The chunk-internal domination relation is defined
for terms which are chunk-internal and thus “invisi-
ble” to the dependency parser because the parser ig-
nores everything but the head of the chunk. This re-
lation captures the default syntactic dependency be-
tween nouns in noun groups where the head noun
usually follows its dependents.

Definition 2 (Chunk-internal domination) Term
t1 dominates term t2 if t1, t2 ∈ c and i(t1) > i(t2),
where i(·) is the sequential index of the given term
in the chunk.

For example, in figure 1, in the 3rd chunk, the
term ‘expression’ dominates the terms ‘Oct-2’ and
‘inducible’; and furthermore, ‘Oct-2’ dominates ‘in-
ducible’.

The stored syntactic path is a list of dependency
relations from the dependent to the head, or an
empty list if both terms are in the same chunk.

Instead of domination, we also considered using
the asymmetric relation of “connectedness”, where
two terms are connected if either of the terms dom-
inates the other, or if both are dominated by some
token in the tree. This relation, however, seemed to
decrease precision much more than increase recall.

In order to query the domination resource we
designed a simple query interface that allows for
partially instantiated input. For example the query
(where the underscores denote uninstantiated parts)

?- find_path_freq(bind, ’Binding’,
_, ’Protein’,

[modpp | _ ],
F1, F2).
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asks how often there is a domination relation be-
tween the head term ‘bind’ if it has the type Bind-
ing and some dependent term with type Protein,
such that the dependency path starts with the rela-
tion modpp. The frequency counts resulting from
this query tell the frequency of this configuration in
events (F1), and in total (F2). This information al-
lows the computation of the conditional probability
of an argument of an event given the event type, the
trigger-word, the argument word, the argument type,
and the syntactic path between trigger and argument.

4 Event generation

The event generation relied fully on the syntax tree
and chunk information that was delivered by the pre-
processing module. No fall-back to a surface co-
occurrence of words was used. We only considered
words and structures seen in the training data as pos-
sible parts of events. Such a design entails relatively
good precision at lower recall.

For each of the generation steps described below,
a probability threshold decided whether to continue
the “building” of the event given the trigger-word,
the event arguments template or the argument in-
stantiation. The thresholds were set manually after
some experimentation. We did not try to automat-
ically decide the best performing thresholds. Deci-
sions are taken locally, possibly cutting some local
minima. A simple maximum-likelihood estimation
(MLE) approach was used.

4.1 Trigger generation

Trigger candidates were generated from the token
list of each sentence in the analyzed abstract. Fig-
ure 2 shows a browser-based visualization approach
that we created as a support in our work. In the case
of the training data, the annotations come the a1-
and a2-files provided by the organizers. In the case
of the development and test data, the annotations for
the triggers are those generated by the system.

We only considered one-token trigger-words be-
cause multi-token triggers were less frequent in the
training data, where only about 8% of the trigger-
word forms contained a space character. Also, many
of these multiword triggers contain a token that ex-
ists as a trigger on its own (e.g. ‘transcriptional reg-
ulation’ triggers the Regulation-event in the training

data, as does ‘regulation’), allowing us to generate a
sensible event structure even if it does not match a
gold standard event under the “strict equality”. To-
kens that had been seen to trigger an event in the
training data with probability higher than 0.12 were
considered further.

In MLE terms, we calculate the probability of a
given token to be a trigger as follows:

p(Trigger |Token) =
f(Token ∧ (Token = Trigger))

f(Token)
(1)

4.2 Event type and arguments template
generation

Next, trigger-words were mapped to event type and
argument template structures. In MLE terms, we
calculated the probability of an event structure (i.e.
the combination of event type and arguments tem-
plate) given the trigger-word.

p(EventStruct |Trigger) =
f(Trigger ∧ EventStruct)

f(Trigger)
(2)

Again, only high probability structures were con-
sidered further. We used the probability threshold of
0.25 for simple event structures (i.e. not containing
nested events), and 0.1 for complex event structures
(only regulation events in the shared task).

4.3 Event argument filling
The inclusion of a protein as an argument of an event
was based on the syntactic domination of the trigger
of the event over the term of the protein. We at-
tempted to generate simple events of all types seen
in the training data.

For complex events, the trigger-words of the main
and the embedded events had to be in a domination
relationship. We generated regulation-events with
only 1-level embedding. Although more complex
embeddings are possible (see example below), these
are not very frequent.

prevents T cell-receptor-induced FasL
upregulation

In order to flexibly deal with sparse data, we per-
formed a sequence of queries, one less instantiated
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Figure 2: Example of an annotated sentence from abstract 10080948 in the training data.

than the previous one, weighted the results accord-
ingly and calculated the weighted mean to be the fi-
nal probability for including the argument.
find_path_freq(HWord, HType, DWord, DType, Path,

C1_1, C2_1),
find_path_freq(_, HType, _, DType, Path,

C1_2, C2_2),
find_path_freq(_, HType, _, DType, _,

C1_3, C2_3)

In MLE terms, we calculate the probability that
a syntactic configuration fills an argument slot.
Syntactic configurations consist of the head word
HWord, the head event type HType, the dependent
word DWord, the dependent event type DType, and
the syntactic path Path between them.

p(Arg |HWord, HType, DWord, DType, Path) =
1

w1+w2+w3
∗ (

w1 ∗ f(HWord, HType, DWord, DType, Path∧Arg)

f(HWord, HType, DWord, DType, Path)
+

w2 ∗ f(HType, DType, Path∧Arg)

f(HType, DType, Path)
+

w3 ∗ f(HType, DType∧Arg)

f(HType, DType)
) (3)

The weigths were set as w1 = 3, w2 = 2 and
w3 = 1.2. The fact that the weights decrease ap-
proximates a back-off model. Only if the final prob-
ability was higher than 0.3 the event was further con-
sidered. For complex events, we used formula 3 as
given, but for simple events, where DWord is a pro-
tein, DWord was always left uninstantiated.

4.4 Postprocessing
During the postprocessing step some unlikely event
structures were filtered out. This filtering is delayed
until all the events have been generated, because ex-
cluding the unwanted events is difficult during cre-
ation time as sometimes extrospection is required.
Also, the postprocessing step acts as a safety net
that filters out well-formedness errors (e.g. argu-
ment sharing violations), thus making sure that the
submission to the evaluation system is not rejected
by the system. Finally, the set of generated events is
serialized into the BioNLP a2-format.

5 Example and discussion

As an example of application of our approach, con-
sider again the syntactic tree shown in figure 1.
Our approach results in the generation of the events
shown in figure 3, given that ‘regulates’, ‘inducible’,
and ‘expression’ are trigger-words, and ‘Oct-2’ is an
a1-annotated protein.

Figure 3: Visualization of two simple event structures
regulates(Oct-2) and expression(Oct-2), and a complex
structure regulates(expression(Oct-2)).

We call events like regulates(Oct-2) “shortcut
events”, as there exists an alternative and longer
path — regulates(expression) and expression(Oct-2)
— that connects the trigger to its event argument.
These “shortcut events” are filtered out in the post-
processing step as unlikely events.

It is useful to observe that the particular view of
event structures defined by the BioNLP shared task
is by no means unchallenged. Whether nested events
are necessary in a representation of biological rele-
vant relations is a question which is open to debate.
While from the linguistic perspective they do offer a
more adequate representation of the content matter
of the text, from the biological point of view these
structures are redundant in many cases. The exam-
ple used in this section is illustrative.

From the biologist’s perspective, “A regulates the
expression of B” is a way to express that A regu-
lates B. Obviously such a short-circuit is not in all
cases possible, but the point is that the biologist
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might be interested only in the direct biological in-
teractions, and be inclined to ignore the linguistic
representation of that interaction. This is the point
of view taken for example in the Protein-Protein
Interaction task of the latest BioCreative competi-
tion (Krallinger et al., 2008). In that case, all lin-
guistic structures used to better characterize the in-
teraction are purposefully ignored, and only the bare
interaction is preserved.

Since BioCreative aimed at simulating the pro-
cess of database curation, and was based on datasets
provided by real-word interaction databases such as
IntAct (Kerrien et al., 2006) and MINT (Zanzoni et
al., 2002), there is reasonable motivation for taking
this alternative view into consideration. At the very
least, a mapping from complex events to simple in-
teractions should always be provided.

The difference in the approach towards interpre-
tation of literature fragments has a direct impact on
the resources used and the success of each approach.
Our own development in the past couple of years has
been driven by the BioCreative model (Rinaldi et al.,
2008), and therefore we tended to ignore intermedi-
ate structures in protein interactions. For example,
in (Schneider et al., 2009) we present a lexical re-
source that aims at capturing “transparent” relations,
i.e. words that express a relation that from the bio-
logical point of view can be ignored because of its
transitivity properties, such as “expression of Oct-
2” in the example above. This resource, although
certainly useful from the biological point of view,
proved to be useless in the shared task, due to the
different level of granularity in the representation of
events.

6 Official evaluation and additional
experiments

We mainly trained and evaluated using the “strict
equality” evaluation criteria as our reference. The
results on the development data are shown in table
2. With more relaxed equality definitions, the results
were always a few percentage points better. Our re-
sults in the official testrun are shown in table 3.

Good results for some event structures (notably
Phosphorylation) are due to the simple textual repre-
sentation of these events. For example, Phosphory-
lation is always triggered by a form or derivation of

‘phosphorylate’, and these forms rarely trigger any
other types of events. Furthermore, according to the
parsed training data, the probability of a Phospho-
rylation-event, given a syntactic domination relation
between a Phosphorylation-trigger and a protein is
0.92. Also, 56% of these domination paths are ei-
ther chunk-internal or over a single modpp depen-
dency relation, making them easy to detect.

In parallel to the approach used in our official sub-
mission we considered some variants, aimed at max-
imizing either recall or precision, as well as an alter-
native approach based on machine learning.

A high recall baseline method, which generates
all possible event structures in a given sentence,
achieves 81% recall on simple events, with preci-
sion dropping to 11%. One of the reasons why this
method does not reach 100% recall is the fact that
it only annotates event candidates with single-token
triggers that have been seen in the training data.

The filter described in section 4.3 has a major ef-
fect on precision. If it is removed, precision drops
by 11%, while the gain in recall is only 3% — re-
call 35.10%, precision 37.88%, F-score 36.44%. In-
stead, if we keep w1 but set w2 = w3 = 0 in formula
3, precision increases to 56%, while recall drops to
27%. Increasing the probability thresholds to further
improve precision results in the precision of 60% but
this remains the ceiling in our experiments.

Additionally, we performed separate experiments
with a machine-learning approach which considers
a more varied set of features, including surface in-
formation and syntax coming from an ensemble of
parsers. However, the limited time and resources
available to us during the competition did not al-
low us to go beyond the results achieved using the
approach described in detail in this paper. Since
our best score on the development data was 27%
(about 10% inferior to our consolidated approach),
we opted for not considering this approach in our
official submission.

The fact that this approach was based on a de-
composition of events into their arguments led us to
realize some fundamental limitations in the official
evaluation measures. In particular, none of the orig-
inally implemented measures would give credit to
the partial recognition of an event (i.e. correct trig-
ger word and at least one correct argument, but not
all). We contend that such partial recognition can be
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Event class Precision Recall F-Score True pos. False pos. False neg.
Simple events 56.71 48.20 52.11 389 297 418
Complex events 38.03 19.25 25.56 189 308 793
All events 48.86 32.31 38.90 578 605 1211

Table 2: Results on the development data of 150 abstracts, measured using “strict equality”.

Event class gold (match) answer (match) Recall Precision F-Score
Localization 174 (31) 34 (31) 17.82 91.18 29.81
Binding 347 (102) 287 (102) 29.39 35.54 32.18
Gene expression 722 (370) 515 (370) 51.25 71.84 59.82
Transcription 137 (28) 148 (28) 20.44 18.92 19.65
Protein catabolism 14 (8) 16 (8) 57.14 50.00 53.33
Phosphorylation 135 (78) 84 (78) 57.78 92.86 71.23
Simple events total 1529 (617) 1084 (617) 40.35 56.92 47.23
Regulation 291 (29) 120 (29) 9.97 24.17 14.11
Positive regulation 983 (138) 533 (138) 14.04 25.89 18.21
Negative regulation 379 (55) 158 (55) 14.51 34.81 20.48
Complex events total 1653 (222) 811 (222) 13.43 27.37 18.02
All events total 3182 (839) 1895 (839) 26.37 44.27 33.05

Table 3: Results on the test data of 260 abstracts, measured using “strict equality”, as reported by the BioNLP 2009
online evaluation system.

useful in a practical annotation task, and yet the of-
ficial scores doubly punish such an outcome (once
as a FP and once as a FN). This is a problem already
observed in previous evaluation challenges, however
we believe that a simple solution in this case consists
in decomposing the events (for evaluation purposes)
in their constituent roles and arguments. In other
words, each event is given as much “weight” as its
number of roles. The correct recognition of an event
with two roles would therefore lead to two TP, but its
partial recognition (one argument) would still lead
to one TP, which we think is a more fair evaluation
in case of partial recognition. Our suggestion was
later implemented by the organizers as an additional
scoring criteria.

7 Conclusions and future work

We have described a biological event detection
method that relies on the chunk and syntactic de-
pendency relations obtained during the preprocess-
ing stage. No fall-back strategy that is based on e.g.
surface patterns was designed for this task. This is
consistent with our approach to biomedical event de-
tection — relation extraction is entirely based on ex-
isting syntactic information about the sentences, and

can be ported easily if the definition of relations and
events is changed, as in the case of other competi-
tions which use a different notion of relations (e.g.
BioCreative).

As the chunker and the dependency parser form
a core of the described system, their limitations and
improvements have a fundamental effect on the fur-
ther processing. In parallel to a thorough error anal-
ysis which can drive further development of our con-
solidated approach, we intend to further explore the
enhanced flexibility provided by the machine learn-
ing approach briefly mentioned in section 6. In both
cases, we intend to use the BioNLP shared task eval-
uation site as a reference in order to compare them,
not only against each other, but also against the re-
sults of other participants.
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Abstract

We describe our system for the BioNLP 2009
event detection task. It is designed to be as
domain-independent and unsupervised as pos-
sible. Nevertheless, the precisions achieved
for single theme event classes range from 75%
to 92%, while maintaining reasonable recall.
The overall F-scores achieved were 36.44%
and 30.80% on the development and the test
sets respectively.

1 Introduction

In this paper we describe the system built for the
BioNLP 2009 event detection and characterization
task (Task 1). The approach is based on the output
of a syntactic parser and standard linguistic process-
ing, augmented by rules acquired from the develop-
ment data. The key idea is that a trigger connected
with an appropriate argument along a path through
the syntactic dependency graph forms an event.

The goal we set for our approach was to avoid
using training data explicitly annotated for the task
and to preserve domain independence. While we
acknowledge the utility of supervision (in the form
of annotated data) and domain knowledge, we be-
lieve it is valuable to explore an unsupervised ap-
proach. Firstly, manually annotated data is ex-
pensive to create and the annotation process itself
is difficult and unavoidably results in inconsisten-
cies, even in well-explored tasks such as named en-
tity recognition (NER). Secondly, unsupervised ap-
proaches, even if they fail to reach the performance
of supervised ones, are likely to be informative in
identifying useful features for the latter. Thirdly, ex-
ploring the potential of such a system may highlight

what domain knowledge is useful and its potential
contribution to performance. Finally, preserving do-
main independence allows us to develop and evalu-
ate a system that could be used for similar tasks with
minimal adaptation.

The overall architecture of the system is as fol-
lows. Initiallly, event triggers are identified and la-
belled with event types using seed terms. Based on
the dependency output of the parser the triggers are
connected with candidate arguments using patterns
identified in the development data. Anaphoric can-
didate arguments are then resolved. Finally, the trig-
gers connected with appropriate arguments are post-
processed to generate the final set of events. Each
of these stages are described in detail in subsequent
sections, followed by experiments and discussion.

2 Trigger identification

We perform trigger identification using the assump-
tion that events are triggered in text either by verbal
or nominal prdicates (Cohen et al., 2008).

To build a dictionary of verbs and their associ-
ated event classes we use the triggers annotated in
the training data. We lemmatize and stem the trig-
gers with the morphology component of the RASP
toolkit (Briscoe et al., 2006)1 and the Porter stem-
mer2 respectively. We sort the trigger stem - event
class pairs found according to their frequency in
the training data and we keep only those pairs that
appear at least 10 times. The trigger stems are
then mapped to verbs. This excludes some rela-
tively common triggers, which will reduce recall,
but, given that we rely exclusively on the parser for

1http://www.cogs.susx.ac.uk/lab/nlp/rasp/
2http://www.tartarus.org/˜martin/PorterStemmer
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argument extraction, such triggers would be difficult
to handle. For verbs with more than one event class
we keep only the most frequent one.

We consider the assumption that each verb de-
notes a single event class to be a reasonable one
given the restricted task domain. It hinders us from
dealing with triggers denoting multiple event classes
but it simplifies the task so that we do not need anno-
tated data. While we use the training data triggers to
obtain the list of verbs and their corresponding event
types, we believe that such lists could be obtained by
clustering (Korhonen et al., 2008) with editing and
labelling by domain experts. This is the only use of
the training data we make in our system.

During testing, using the tokenized text provided,
we attempt to match each token with one of the
verbs associated with an event type. We perform
this by relaxing the matching successively, using the
token lemma, then stem, and finally allowing a par-
tial match in order to deal with particles (so that e.g.
co-transfect matches transfect). This process returns
single-token candidate triggers which, while they do
not reproduce the trigger annotation, are likely to be
adequate for event extraction. We overgenerate trig-
gers, since not all occurrences denote an event, ei-
ther because they are not connected with appropriate
arguments or because they are found in a non-event
denoting context, but we expect to filter these at the
argument extraction stage.

3 Argument extraction

Given a set of candidate triggers, we attempt to con-
nect them with appropriate arguments using the de-
pendency graph provided by a parser. In our ex-
periments we use the domain-independent unlexi-
calized RASP parser, which generates parses over
the part-of-speech (PoS) tags of the tokens generated
by an HMM-based tagger trained on balanced En-
glish text. While we expect that a parser adapted to
the biomedical domain may perform better, we want
to preserve the domain-independence of the system
and explore its potential.

The only adjustment we make is to change the
PoS tags of tokens that are part of a protein name
to proper names tags. We consider such an adjust-
ment domain-independent given that NER is avail-
able in many domains (Lewin, 2007). Following

Haghighi et al (2005), in order to ameliorate pars-
ing errors, we use the top-10 parses and return a
set of bilexical head-dependent grammatical rela-
tions (GRs) weighted according to the proportion
and probability of the top parses supporting that GR.

The GRs produced by the parser define directed
graphs between tokens in the sentence, and a partial
event is formed when a path that connects a trigger
with an appropriate argument is identified. GR paths
that are likely to generate events are selected using
the development data, which does not contradict the
goals of our approach because we do not require an-
notated training data. Development data is always
needed in order to build and test a system, and such
supervision could be provided by a human expert,
albeit not as easily as for the list of trigger verbs.
The set of GR paths identified follow:

VERB-TRIGGER –subject– ARG
NOUN-TRIGGER –iobj– PREP –dobj– ARG
NOUN-TRIGGER –modifier– ARG
TRIGGER –modifier– PREP –obj– ARG
TRIGGER –passive subject– ARG
The final system uses three sets of GR paths:

one for Regulation events; one for Binding events;
and one for all other events. The difference be-
tween these sets is in the lexicalization of the link-
ing prepositions. For example, in Binding events
the linking preposition required lexicalization since
binds x to/with y denotes a correct event but not
binds x by y. Binding events also required additional
GR paths to capture constructions such as binding of
x to y. For Regulation events, the path set was fur-
ther augmented to differentiate between theme and
cause. When the lexicalized GR pattern sets yielded
no events we backed-off to the unlexicalized pattern
set, which is identical for all event types. In all GR
path sets, the trigger was unlexicalized and only re-
stricted by PoS tag.

4 Anaphora resolution

The events and arguments identified in the parsed
abstracts are post-processed in context to iden-
tify protein referents for event arguments that are
anaphoric (e.g., these proteins, its phosphorylation)
or too complex to be extracted directly from the
grammatical relations (phosphorylation of cellular
proteins , notably phospholipase C gamma 1). The
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anaphoric linking is performed by a set of heuris-
tic rules manually designed to capture a number of
common cases observed in the development dataset.
A further phenomenon dealt with by rules is coref-
erence between events, for example in The expres-
sion of LAL-mRNA is induced. This induction is de-
pendent on. . . where the Induction event described
by the first sentence is the same as the theme of the
Regulation event in the second and should be given
the same event index. The development of the post-
processing rules favoured precision over recall, but
the low frequency of each case considered means
that some overfitting to the development data may
have been unavoidable.

5 Event post-processing

At the event post-processing stage, we form com-
plete events considering the trigger-argument pairs
produced at the argument extraction stage whose ar-
guments are resolved (possibly using anaphora res-
olution) either to a protein name or to a candidate
trigger. The latter are considered only for regula-
tion event triggers. Furthermore, regulation event
trigger-argument pairs are tagged either as theme or
cause at the argument extraction stage.

For each non-regulation trigger-argument pair, we
generate a single event with the argument marked as
theme. Given that we are dealing only with Task
1, this approach is expected to deal adequately with
all event types except Binding, which can have mul-
tiple themes. Regulation events are formed in the
following way. Given that the cause argument is
optional, we generate regulation events for trigger-
argument pairs whose argument is a protein name or
a trigger that has a formed event. Since regulation
events can have other regulation events as themes,
we repeat this process until no more events can be
formed. Occasionally, the use of multiple parses re-
sults in cycles between regulation triggers which are
resolved using the weighted GR scores. Then, we at-
tach any cause arguments that share the same trigger
with a formed regulation event.

In the analysis performed for trigger identification
in Section 2, we observed that certain verbs were
consistently annotated with two events (namely
overexpress and transfect), a non-regulation event
and a regulation event with the former event as its

theme. For candidate triggers that were recognized
due to such verbs, we treat them as non-regulation
events until the post-processing stage where we gen-
erate two events.

6 Experiments - Discussion

We expected that our approach would achieve high
precision but relatively low recall. The evaluation
of our final submissions on the development and test
data (Table 1) confirmed this to a large extent. For
the non-regulation event classes excluding Binding,
the precisions achieved range from 75% to 92% in
both development and test data, with the exception
of Transcription in the test data. Our approach ex-
tracts Binding events with a single theme, more suit-
ably evaluated by the Event Decomposition evalua-
tion mode in which a similar high precision/low re-
call trend is observed, albeit with lower scores.

Of particular interest are the event classes for
which a single trigger verb was identified, namely
Transcription, Protein catabolism and Phosphoryla-
tion, which makes it easier to identify the strengths
and weaknesses of our approach. For the Phos-
phorylation class, almost all the triggers that were
annotated in the training data can be captured us-
ing the verb phosporylate and as a result, the per-
formances achieved by our system are 70.59% and
60.63% F-score on the development and test data re-
spectively. The precision was approximately 78% in
both datasets, while recall was lower due to parser
errors and unresolved anaphoric references. For the
Protein catabolism class, degrade was identified as
the only trigger verb, resulting in similar high preci-
sion but relatively lower recall due to the higher lex-
ical variation of the triggers for this class. For the
Transcription class we considered only transcribe
as a trigger verb, but while the performance on the
development data is reasonable (55%), the perfor-
mance on the test data is substantially lower (20%).
Inspecting the event triggers in the training data re-
veals that some very common triggers for this class
either cannot be mapped to a verb (e.g., mrna) or are
commonly used as triggers for other event classes.
A notable case of the latter type is the verb express,
which, while mostly a Gene Expressions trigger, is
also annotated as Transcription more than 100 times
in the training data. Assuming that this is desirable,
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Development Test
Event Class recall precision fscore recall precision fscore
Localization 45.28 92.31 60.76 25.86 90.00 40.18

Binding 12.50 24.41 16.53 12.68 31.88 18.14
Gene expression 52.25 80.79 63.46 45.57 75.81 56.92

Transcription 42.68 77.78 55.12 12.41 56.67 20.36
Protein catabolism 42.86 81.82 56.25 35.71 83.33 50.00
Phosphorylation 63.83 78.95 70.59 49.63 77.91 60.63

Event Total 39.03 65.97 49.05 33.16 68.15 44.61
Regulation 20.12 50.75 28.81 9.28 36.49 14.79

Positive regulation 16.86 48.83 25.06 11.39 38.49 17.58
Negative regulation 11.22 36.67 17.19 6.86 36.11 11.53

Regulation Total 16.29 47.06 24.21 9.98 37.76 15.79
Total 26.55 58.09 36.44 21.12 56.90 30.80

Binding (decomposed) 26.92 66.14 38.27 18.84 54.35 27.99

Table 1: Performance analysis on development and test data using Approximate Span/Partial Recursive Matching.

a more appropriate solution would need to take con-
text into account.

Our performance on the regulation events is sub-
stantially lower in both recall and precision. This
is expected, as they rely on the extraction of non-
regulation events. The variety of lexical triggers is
not causing the drop in performance though, since
our system performed reasonably well in the Gene
Expression and Localization classes which have
similar lexical variation. Rather it is due to the com-
bination of the lexical variation with the requirement
to make the distinction between the theme and op-
tional cause argument, which cannot be handled ap-
propriately by the small set of GR paths employed.

The contribution of anaphora resolution to our
system is limited as it relies on the argument ex-
traction stage which, apart from introducing noise,
is geared towards maintaining high precision. Over-
all, it contributes 22 additional events on the de-
velopment set, of which 14 out of 16 are correct
non-regulation events. Of the remaining 6 regula-
tion events only 2 were correct. Similar trends were
observed on the test data.

7 Conclusions - Future work

We described an almost unsupervised approach for
the BioNLP09 shared task on biomedical event ex-
traction which requires only a dictionary of verbs
and a set of argument extraction rules. Ignoring trig-

ger spans, the performance of the approach is parser-
dependent and while we used a domain-independent
parser in our experiments we also want to explore
the benefits of using an adapted one.

The main weakness of our approach is the han-
dling of events with multiple arguments and the dis-
tinctions between them, which are difficult to deal
with using simple unlexicalized rules. In our fu-
ture work we intend to explore semi-supervised ap-
proaches that allow us to acquire more complex
rules efficiently.
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Abstract

In this paper we describe our entry to the
BioNLP 2009 Shared Task regarding bio-
molecular event extraction. Our work can
be described by three design decisions: (1)
instead of building a pipeline using local
classi�er technology, we design and learn
a joint probabilistic model over events in
a sentence; (2) instead of developing spe-
ci�c inference and learning algorithms for
our joint model, we apply Markov Logic, a
general purpose Statistical Relation Learn-
ing language, for this task; (3) we represent
events as relational structures over the to-
kens of a sentence, as opposed to structures
that explicitly mention abstract event en-
tities. Our results are competitive: we
achieve the 4th best scores for task 1 (in
close range to the 3rd place) and the best
results for task 2 with a 13 percent point
margin.

1 Introduction

The continuing rapid development of the Inter-
net makes it very easy to quickly access large
amounts of data online. However, it is impossi-
ble for a single human to read and comprehend a
signi�cant fraction of the available information.
Genomics is not an exception, with databases
such as MEDLINE storing a vast amount of
biomedical knowledge.
A possible way to overcome this is informa-

tion extraction (IE) based on natural language
processing (NLP) techniques. One speci�c IE
sub-task concerns the extraction of molecular
events that are mentioned in biomedical liter-
ature. In order to drive forward research in this

domain, the BioNLP Shared task 2009 (Kim
et al., 2009) concerned the extraction of such
events from text. In the course of the shared task
the organizers provided a training/development
set of abstracts for biomedical papers, annotated
with the mentioned events. Participants were
required to use this data in order to engineer
a event predictor which was then evaluated on
unseen test data.

The shared task covered three sub-tasks. The
�rst task concerned the extraction of events
along with their clue words and their main argu-
ments. Figure 1 shows a typical example. The
second task was an extension of the �rst one,
requiring participants to not only predict the
core arguments of each event, but also the cel-
lular locations the event is associated with in
the text. The events in this task were simi-
lar in nature to those in �gure 1, but would
also contain arguments that are neither events
nor proteins but cellular location terms. In con-
trast to the protein terms, cellular location terms
were not given as input and had to be predicted,
too. Finally, for task 3 participants were asked
to extract negations and speculations regarding
events. However, in our work we only tackled
Task 1 and Task 2, and hence we omit further
details on Task 3 for brevity.

Our approach to biomedical event extraction
is inspired by recent work on Semantic Role La-
belling (Meza-Ruiz and Riedel, 2009; Riedel and
Meza-Ruiz, 2008) and can be characterized by
three decisions that we will illustrate in the fol-
lowing. First, we do not build a pipelined sys-
tem that �rst predicts event clues and cellular
locations, and then relations between these; in-
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stead, we design and learn a joint discrimina-
tive model of the complete event structure for
a given sentence. This allows us to incorporate
global correlations between decisions in a prin-
cipled fashion. For example, we know that any
event that has arguments which itself are events
(such as the positive regulation event in �gure
1) has to be a regulation event. This means that
when we make the decision about the type of
an event (e.g., in the �rst step of a classi�ca-
tion pipeline) independently from the decisions
about its arguments and their type, we run the
risk of violating this constraint. However, in a
joint model this can be easily avoided.

Our second design choice is the following: in-
stead of designing and implementing speci�c in-
ference and training methods for our structured
model, we use Markov Logic, a Statistical Re-
lational Learning language, and de�ne our global
model declaratively. This simpli�ed the imple-
mentation of our system signi�cantly, and al-
lowed us to construct a very competitive event
extractor in three person-months. For example,
the above observation is captured by the simple
formula:

eventType (e, t) ∧ role (e, a, r) ∧ event (a) ⇒
regType (t) (1)

Finally, we represent event structures as rela-
tional structures over tokens of a sentence,
as opposed to structures that explicitly mention
abstract event entities (compare �gure 1 and 2).
The reason is as follows. Markov Logic, for now,
is tailored to link prediction problems where we
may make inferences about the existence of rela-
tions between given entities. However, when the
identity and number of objects of our domain is
unknown, things become more complicated. By
mapping to relational structure over grounded
text, we also show a direct connection to recent
formulations of Semantic Role Labelling which
may be helpful in the future.

The remainder of this paper is organized as
follows: we will �rst present the preprocessing
steps we perform (section 2), then the conversion
to a link prediction problem (section 3). Subse-
quently, we will describe Markov Logic (section
4) and our Markov Logic Network for event ex-
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Figure 1: Example gold annotation for task 1 of the
shared task.
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Figure 2: Link Prediction version of the events in
�gure 1.

traction (section 5). Finally, we present our re-
sults (in section 6) and conclude (section 7).

2 Preprocessing

The original data format provided by the shared
task organizers consists of (a) a collection
biomedical abstracts, and (b) stando� anno-
tation that describes the proteins, events and
sites mentioned in these abstracts. The organiz-
ers also provided a set of dependency and con-
stituent parses for the abstracts. Note that these
parses are based on a di�erent tokenisation of the
text in the abstracts.

In our �rst preprocessing step we convert the
stando� annotation in the original data to stand-
o� annotation for the tokenisation used in the
parses. This allows us to formulate our proba-
bilistic model in terms of one consistent tokeni-
sation (and be able to speak of token instead of
character o�sets). Then we we retokenise the
input text (for the parses) according the protein
boundaries that were given in the shared task
data (in order to split strings such as �p50/p55�).
Finally, we use this tokenisation to once again
adapt the stand-o� annotation (using the previ-
ously adapted version as input).

3 Link Prediction Representation

As we have mentioned earlier, before we learn
and apply our Statistical Relational Model, we
convert the task to link prediction over a se-
quence of tokens. In the following we will present
this transformation in detail.
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To simplify our later presentation we will �rst
introduce a formal representation of the events,
proteins and locations mentioned in a sentence.
Let us simply identify both proteins and cellular
location entities with their token position in the
sentence. Furthermore, let us describe an event e
as a tuple (i, t, A) where i is the token position of
the clue word of e and t is the event type of e; A
is a set of labelled arguments (a, r) where each a
is either a protein, location or event, and r is the
role a plays with respect to e. We will identify
the set of all proteins, locations and events for a
sentence with P , L and E, respectively.
For example, in �gure 1 we have P =

{4, 7} , L = ∅ and E = {e13, e14, e15} with

e15 = (5, gene_expr, {(4,Theme)})
e14 = (2, pos_reg, {(e15,Theme) , (7,Cause)})
e13 = (1, neg_reg, {(e14,Theme)})

3.1 Events to Links

As we mentioned in section 1, Markov Logic (or
its interpreters) are not yet able to deal with
cases where the number and identity of entities is
unknown, while relations/links between known
objects can be readily modelled. In the follow-
ing we will therefore present a mapping of an
event structure E to a labelled relation over to-
kens. Essentially, we project E to a pair (L,C)
where L is a set of labelled token-to-token links
(i, j, r), and C is a set of labelled event clues
(i, t). Note that this mapping has another ben-
e�t: it creates a �predicate-argument� structure
very similar to most recent formulations of Se-
mantic Role Labelling (Surdeanu et al., 2008).
Hence it may be possible to re-use or adapt the
successful approaches in SRL in order to improve
bio-molecular event extraction. Since our ap-
proach is inspired by the Markov Logic role la-
beller in (Riedel and Meza-Ruiz, 2008), this work
can be seen as an attempt in this direction.
For a sentence with given P , L and E, algo-

rithm 1 presents our mapping from E to (L,C).
For brevity we omit a more detailed description
of the algorithm. Note that for our running ex-
ample eventsToLinks would return

C = {(1, neg_reg) , (2, pos_reg) , (5, gene_expr)}
(2)

Algorithm 1 Event to link conversion

/* returns all clues C and links L given
by the events in E */

1 function eventsToLinks (E):
2 C ← ∅, L← ∅
3 for each event (i, t, A) ∈ E do
4 C ← C∪{(i, t)}
5 for each argument (a, r) ∈ A do
6 if a is an event (i′, t′, A′) do
7 L← L∪{(i, i′, r)} with a = (i′, t′, A′)
8 else
9 L← L ∪ {(i, a, r)}
10 return (C, L)

and

L = {(1, 2,Theme) , (2, 5,Theme) ,

(2, 7,Cause) , (5, 4,Theme)} . (3)

3.2 Links to Events

The link-based representation allows us to sim-
plify the design of our Markov Logic Network.
However, after we applied the MLN to our data,
we still need to transform this representation
back to an event structure (in order to use or
evaluate it). This mapping is presented in al-
gorithm 2 and discussed in the following. Note
that we expect the relational structure L to be
cycle free. We again omit a detailed discussion of
this algorithm. However, one thing to notice is
the special treatment we give to binding events.
Roughly speaking, for the binding event clue c
we create an event with all arguments of c in
L. For a non-binding event clue c we �rst col-
lect all roles for c, and then create one event per
assignment of argument tokens to these roles.

If we would re-convert C and L from equation
2 and 3, respectively, we could return to our orig-
inal event structure in �gure 1. However, con-
verting back and forth is not loss-free in general.
For example, if we have a non-binding event in
the original E set with two arguments A and B
with the same role Theme, the round-trip con-
version would generate two events: one with A
as Theme and one with B as Theme.

4 Markov Logic

Markov Logic (Richardson and Domingos, 2006)
is a Statistical Relational Learning language
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Algorithm 2 link to event conversion. Assume:
no cycles; tokens can only be one of protein, site
or event; binding events have only protein argu-
ments.

/* returns all events E specified

by clues C and links L */
1 function linksToEvents (C, L)

2 return
S

(i,t)∈C resolve (i, C, L)

/* returns all events for

the given token i */
1 function resolve (i, C, L)
2 if no t with (i, t) ∈ C return {i}
3 t← type (i, C)

4 if t = binding return {(i, t, A)} with
5 A = {(a, r) | (i, a, r) ∈ L}
6 Ri ← {r′|∃a : (i, a, r) ∈ L}
7 for each role r ∈ Ri do
8 Ar ← {a| (i, a, r) ∈ L}
9 Br ←

S
a∈Ar

{(resolve (a) , r)}
10 return

S
A∈expand(Br1 ,...,Brn ) {(i, t, A)}

/* returns all possible argument
sets for Br1 , . . . , Brn */

1 function expand (Br1 , . . . , Brn )
2 if n = 1 return Brn

3 returnS
a∈Br1

S
A∈expand(Br2 ,...,Brn ) {(a, r1)} ∪A

based on First Order Logic and Markov Net-
works. It can be seen as a formalism that ex-
tends First Order Logic to allow formulae that
can be violated with some penalty. From an al-
ternative point of view, it is an expressive tem-
plate language that uses First Order Logic for-
mulae to instantiate Markov Networks of repet-
itive structure.

Let us introduce Markov Logic by considering
the event extraction task (as relational structure
over tokens as generated by algorithm 1). In
Markov Logic we can model this task by �rst
introducing a set of logical predicates such as
eventType(Token,Type), role(Token,Token,Role)
and word(Token,Word). Then we specify a set of
weighted �rst order formulae that de�ne a distri-
bution over sets of ground atoms of these pred-
icates (or so-called possible worlds). Note that
we will refer predicates such as word as observed
because they are known in advance. In contrast,
role is hidden because we need to infer its ground
atoms at test time.

Ideally, the distribution we de�ne with these
weighted formulae assigns high probability to
possible worlds where events are correctly iden-
ti�ed and a low probability to worlds where this
is not the case. For example, in our running ex-
ample a suitable set of weighted formulae would
assign a higher probability to the world

{word (1, prevented) , eventType (1, neg_reg) ,

role(1, 2,Theme), event(2), . . .}

than to the world

{word (1, prevented) , eventType (1, binding) ,

role(1, 2,Theme), event(2), . . .}

In Markov Logic a set of weighted �rst order for-
mulae is called a Markov Logic Network (MLN).
Formally speaking, an MLN M is a set of pairs
(φ,w) where φ is a �rst order formula and w a
real weigh t. M assigns the probability

p (y) =
1
Z

exp


 ∑

(φ,w)∈M

w
∑

c∈Cφ

fφ
c (y)


 (4)

to the possible world y. Here Cφ is the set of all
possible bindings of the free variables in φ with
the constants of our domain. fφ

c is a feature
function that returns 1 if in the possible world y
the ground formula we get by replacing the free
variables in φ by the constants in the binding
c is true and 0 otherwise. Z is a normalisation
constant.

4.1 Inference and Learning

Assuming that we have an MLN, a set of weights
and a given sentence, we need to predict the
choice of event clues and roles with maximal
a posteriori probability (MAP). To this end
we apply a method that is both exact and ef-
�cient: Cutting Plane Inference Riedel (2008,
CPI) with Integer Linear Programming (ILP) as
base solver.
In order to learn the weights of the MLN

we use the 1-best MIRA Crammer and Singer
(2003) Online Learning method. As MAP infer-
ence method that is applied in the inner loop of
the online learner we apply CPI, again with ILP
as base solver. The loss function for MIRA is a
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weighted sum FP +αFN where FP is the num-
ber of false positives, FN the number of false
negatives and α = 0.01.

5 Markov Logic Network for Event
Extraction

We de�ne four hidden predicates our task:
event(i) indicates that there is an event with
clue word i; eventType(i,t) denotes that at token
i there is an event with type t; site(i) denotes a
cellular location mentioned at token i; role(i,j,r)
indicates that token i has the argument j with
role r. In other words, the four hidden predicates
represent the set of sites L (via site), the set of
event clues C (via event and eventType) and the
set of links L (via role) presented in section 3.
There are numerous observed predicates we

use. Firstly, the provided information about
protein mentions is captured by the predicate
protein(i), indicating there is a protein mention
ending at token i. We also describe event types
and roles in more detail: regType( t) holds for
an event type t i� it is a regulation event type;
task1Role(r) and task2Role(r) hold for a role r
if is a role of task 1 (Theme, Cause) or task 2
(Site, CSite, etc.).
Furthermore, we use predicates that de-

scribe properties of tokens (such as the word
or stem of a token) and token pairs (such
as the dependency between two tokens); this
set is presented in table 1. Here the path
and pathNL predicates may need some fur-
ther explanation. When path(i,j,p,parser) is
true, there must be a labelled dependency
path p between i and j according to the
parser parser. For example, in �gure 1 we
will observe path(1,5,dobj↓prep_of↓,mcclosky-
charniak). pathNL just omits the depen-
dency labels, leading to path(1,5,↓↓,mcclosky-
charniak) for the same example.
We use two parses per sentence: the outputs

of a self-trained reranking parser Charniak and
Johnson (2005); McClosky and Charniak (2008)
and a CCG parser (Clark and Curran, 2007),
provided as part of the shared task dataset. As
dictionaries we use a collection of cellular lo-
cation terms taken from the Genia event cor-
pus (Kim et al., 2008), a small handpicked set of
event triggers and a list of English stop words.

Predicate Description

word(i,w) Token i has word w.

stem(i,s) i has (Porter) stem s.

pos(i,p) i has POS tag p.

hyphen(i,w) i has word w after last hyphen.

hyphenStem(i,s) i has stem s after last hyphen.

dict(i,d) i appears in dictionary d.

genia(i,p) i is event clue in the Genia

corpus with precision p.

dep(i,j,d,parser) i is head of token j with

dependency d according to

parser parser.

path(i,j,p,parser) Labelled Dependency path

according to parser parser

between tokens i and j is p.

pathNL(i,j,p,parser) Unlabelled dependency path

according to parser p between

tokens i and j is path.

Table 1: Observable predicates for token and token
pair properties.

5.1 Local Formulae

A formula is local if its groundings relate any
number of observed ground atoms to exactly one
hidden ground atom. For example, the ground-
ing

dep (1, 2, dobj, ccg) ∧ word (1, prevented) ⇒
eventType (2, pos_reg) (5)

of the local formula

dep(h, i, d, parser) ∧ word (h, +w) ⇒
eventType(i,+t) (6)

connects a single hidden eventType ground atom
with an observed word and dep atom. Note that
the �+� pre�x for variables indicates that there is
a di�erent weight for each possible pair of word
and event type (w, t).

5.1.1 Local Entity Formulae

The local formulae for the hidden event/1
predicate can be summarized as follows. First,
we add a event (i) formula that postulates the
existence of an event for each token. The weight
of this formulae serves as a general bias for or
against the existence of events.
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Next, we add one formula

T (i,+t) ⇒ event (i) (7)

for each �simple token property� predicate T in
table 1 (those in the �rst section of the table).
For example, when we plug in word for T we get
a formula that encourages or discourages the ex-
istence of an event token based on the word form
of the current token: word (i,+t) ⇒ event (i).
We also add the formula

genia (i, p) ⇒ event (i) (8)

and multiply the feature-weight product for each
of its groundings with the precision p. This is
corresponds to so-called real-valued feature func-
tions, and allows us to incorporate probabili-
ties and other numeric quantities in a principled
fashion.
Finally, we add a version of formula 6 where

we replace eventType(i,t) with event(i).
For the cellular location site predicate we

use exactly the same set of formulae but re-
place every occurrence of event(i) with site(i).
This demonstrates the ease with which we could
tackle task 2: apart from a small set of global
formulae we introduce later, we did not have to
do more than copy one �le (the event model �le)
and perform a search-and-replace. Likewise, in
the case of the eventType predicate we simply
replace event(i) with eventType(i,+t).

5.1.2 Local Link Formulae

The local formulae for the role/3 predicate
are di�erent in nature because they assess two
tokens and their relation. However, the �rst for-
mula does look familiar: role (i, j, +r). This for-
mula captures a (role-dependent) bias for the ex-
istence of a role between any two tokens.
The next formula we add is

dict (i,+di) ∧ dict (j, +dj) ⇒ role (i, j, +r) (9)

and assesses each combination of dictionaries
that the event and argument token are part of.
Furthermore, we add the formula

path (i, j, +p, +parser) ⇒ role (i, j, +r) (10)

that relates the dependency path between two

tokens i and j with the role that j plays with
respect to i. We also add an unlabelled version
of this formula (using pathNL instead of path).
Finally, we add a formula

P (i, j, +p, +parser) ∧ T (i,+t) ⇒
role (i, j, +r) (11)

for each P in {path,pathNL} and T in
{word,stem,pos,dict,protein}. Note that for
T=protein we replace T (i,+t) with T (i).

5.2 Global Formulae

Global formulae relate two or more hidden
ground atoms. For example, the formula in
equation 1 is global. While local formulae can be
used in any conventional classi�er (in the form
of feature functions conditioned only on the in-
put data) this does not hold for global ones.
We could enforce global constraints such as the
formula in equation 1 by building up structure
incrementally (e.g. start with one classi�er for
events and sites, and then predict roles between
events and arguments with another). However,
this does not solve the typical chicken-and-egg
problem: evidence for possible arguments could
help us to predict the existence of event clues,
and evidence for events help us to predict argu-
ments. By contrast, global formulae can capture
this type of correlation very naturally.

Table 2 shows the global formulae we use. We
divide them into three parts. The �rst set of for-
mulae (CORE) ensures that event and eventType
atoms are consistent. In all our experiments we
will always include all CORE formulae; without
them we might return meaningless solutions that
have events with no event types, or types with-
out events.

The second set of formulae (VALID) consist
of CORE and formulae that ensure that the link
structure represents a valid set of events. For
example, this includes formula 12 that enforces
each event to have at least one theme.

Finally, FULL includes VALID and two con-
straints that are not strictly necessary to enforce
valid event structures. However, they do help us
to improve performance. Formula 14 forbids a
token to be argument of more than one event. In
fact, this formula does not hold all the time, but
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# Formula Description

1 event (i)⇒ ∃t.eventType (i, t) If there is an event there should be an event type.

2 eventType (i, t)⇒ event (i) If there is an event type there should be an event.

3 eventType (i, t) ∧ t 6= o⇒ ¬eventType (i, o) There cannot be more than one event type per token.

4 ¬site (i) ∨ ¬event (i) A token cannot be both be event and site.

5 role (i, j, r)⇒ event (i) If j plays the role r for i then i has to be an event.

6 role (i, j, r1) ∧ r1 6= r2 ⇒ ¬role (i, j, r2) There cannot be more than one role per argument.

7 eventType (e, t) ∧ role (e, a, r) ∧ event (a)⇒ regType (t) Only reg. type events can have event arguments.

9 role (i, j, r) ∧ taskOne (r)⇒ event (j) ∨ protein (j) For task 1 roles arguments must be proteins or events

10 role (i, j, r) ∧ taskTwo (r)⇒ site (j) Task 2 arguments must be cellular locations (site).

11 site (j)⇒ ∃i, r.role (i, j, r) ∧ taskTwo (r) Sites are always associated with an event.

12 event (i)⇒ ∃j.role (i, j,Theme) Every events need a theme.

13 eventType (i, t) ∧ ¬allowed (t, r)⇒ ¬role (i, j, r) Certain events may not have certain roles.

14 role (i, j, r1) ∧ k 6= i⇒ ¬role (k, j, r2) A token cannot be argument of more than one event.

15 j < k ∧ i < j ∧ role (i, j, r1)⇒ ¬role (i, k, r2) No inside outside chains.

Table 2: All three sets of global formulae used: CORE (1-3), VALID (1-13), FULL (1-15).

by adding it we could improve performance. For-
mula 15 is our answer to a type of event �chain�
that earlier models would tend to produce.

Note that all formulae but formula 15 are de-
terministic. This amounts to giving them a very
high/in�nite weight in advance (and not learn-
ing it during training).

6 Results

In table 3 we can see our results for task 1 and
2 of the shared task. The measures we present
here correspond to the �approximate span, ap-
proximate recursive match� criterion that counts
an event as correctly predicted if all arguments
are extracted and the event clue tokens approx-
imately match the gold clue tokens. For more
details on this metric we refer the reader to the
shared task overview paper.

To put our results into context: for task 1 we
reached the 4th place among 20 participants, are
in close range to place 2 and 3, and signi�cantly
outperform the 5th best entry. Moreover, we
had highest scoring scores for task 2 with a 13%
margin to the runner-up. Using both training
and development set for training (as allowed by
the task organisers), our task 1 score rises to
45.1, slightly higher than the score of the current
third.

In terms of accuracy across di�erent event
types our model performs worse for binding, reg-

ulation type and transcription events. Binding
events are inherently harder to correctly extract
because they often have multiple core arguments
while other non-regulation events have only one;
just missing one of the binding arguments will
lead to an event that is considered as error with
no partial credit given. If we would give credit
for binding with partially correct arguments our
F-score for binding events would rise to 49.8.

One reason why regulation events are di�cult
to extract is the fact that they often have argu-
ments which themselves are events, too. In this
case our recall is bound by the recall for argu-
ment events because we can never �nd a regu-
lation event if we cannot predict the argument
event. Note that we are still unsure about tran-
scription events, in particular because we ob-
serve 49% F-score for such events in the devel-
opment set.

How does our model bene�t from the global
formulae we describe in section 5 (and which
represent one of the core bene�ts of a Markov
Logic approach)? To evaluate this we compare
our FULL model with CORE and VALID from
table 2. Note that because the evaluation inter-
face rejects invalid event structures, we cannot
use the evaluation metrics of the shared task.
Instead we use table 4 to present an evaluation
in terms of ground atom F1-score for the hidden
predicates of our model. This amounts to a per-
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Task 1 Task 2

R P F R P F

Loc 37.9 88.0 53.0 32.8 76.0 45.8

Bind 23.1 48.2 31.2 22.4 47.0 30.3

Expr 63.0 75.1 68.5 63.0 75.1 68.5

Trans 16.8 29.9 21.5 16.8 29.9 21.5

Cata 64.3 81.8 72.0 64.3 81.8 72.0

Phos 78.5 77.4 77.9 69.1 70.1 69.6

Total 48.3 68.9 56.8 46.8 67.0 55.1

Reg 23.7 40.8 30.0 22.3 38.5 28.2

Pos 26.8 42.8 32.9 26.7 42.3 32.7

Neg 27.2 40.2 32.4 26.1 38.6 31.2

Total 26.3 41.8 32.3 25.8 40.8 31.6

Total 36.9 55.6 44.4 35.9 54.1 43.1

Table 3: (R)ecall, (P)recision, and (F)-Score for task
1 and 2 in terms of event types.

role, per-site and per-event-clue evaluation. The
numbers here will not directly correspond to ac-
tual scores, but generally we can assume that if
we do better in our metrics, we will likely have
better scores.

In table 4 we notice that ensuring consistency
between all predicates has a signi�cant impact
on the performance across the board (see the
VALID results). Furthermore, when adding ex-
tra formulae that are not strictly necessary for
consistency, but which encourage more likely
event structure, we again see signi�cant improve-
ments (see FULL results). Interestingly, al-
though the extra formulae only directly consider
role atoms, they also have a signi�cant impact
on event and particularly site extraction perfor-
mance. This re�ects how in a joint model deci-
sions which would appear in the end of a tradi-
tional pipeline (e.g., extracting roles for events)
can help steps that would appear in the begin-
ning (extracting events and sites).

For the about 7500 sentences in the training
set we need about 3 hours on a MacBook Pro
with 2.8Ghz and 4Gb RAM to learn the weights
of our MLN. This allowed us to try di�erent sets
of formulae in relatively short time.

7 Conclusion

Our approach the BioNLP Shared Task 2009 can
be characterized by three decisions: (a) jointly

CORE VALID FULL

eventType 52.8 63.2 64.3

role 44.0 53.5 55.7

site 42.0 46.0 51.5

Total 50.7 60.1 61.9

Table 4: Ground atom F-scores for global formulae.

modelling the complete event structure for a
given sentence; (b) using Markov Logic as gen-
eral purpose-framework in order to implement
our joint model; (c) framing the problem as a
link prediction problem between tokens of a sen-
tence.

Our results are competitive: we reach the 4th
place in task 1 and the 1st place for task 2 (with
a 13% margin). Furthermore, the declarative na-
ture of Markov Logic helped us to achieve these
results with a moderate amount of engineering.
In particular, we were able to tackle task 2 by
copying the local formulae for event prediction,
and adding three global formulae (4, 10 and 11
in table 2). Finally, our system was fast to train
(3 hours) . This greatly simpli�ed the search for
good sets of formulae.

We have also shown that global formulae sig-
ni�cantly improve performance in terms of event
clue, site and argument prediction. While a sim-
ilar e�ect may be possible with reranking archi-
tectures, we believe that in terms of implemen-
tation e�orts our approach is at least as simple.
In fact, our main e�ort lied in the conversion to
link prediction, not in learning or inference. In
future work we will therefore investigate means
to extend Markov Logic (interpreter) in order to
directly model event structure.
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Abstract

We approached the problems of event detec-
tion, argument identification, and negation and
speculation detection as one of concept recog-
nition and analysis. Our methodology in-
volved using the OpenDMAP semantic parser
with manually-written rules. We achieved
state-of-the-art precision for two of the three
tasks, scoring the highest of 24 teams at pre-
cision of 71.81 on Task 1 and the highest of 6
teams at precision of 70.97 on Task 2.

The OpenDMAP system and the rule set are
available at bionlp.sourceforge.net.

*These two authors contributed equally to the
paper.

1 Introduction

We approached the problem of biomedical event
recognition as one of concept recognition and anal-
ysis. Concept analysis is the process of taking a
textual input and building from it an abstract rep-
resentation of the concepts that are reflected in it.
Concept recognition can be equivalent to the named
entity recognition task when it is limited to locat-
ing mentions of particular semantic types in text, or
it can be more abstract when it is focused on recog-
nizing predicative relationships, e.g. events and their
participants.

2 BioNLP’09 Shared Task

Our system was entered into all three of the
BioNLP’09 (Kim et al., 2009) shared tasks:

• Event detection and characterization This
task requires recognition of 9 basic biological
events: gene expression, transcription, protein
catabolism, protein localization, binding, phos-
phorylation, regulation, positive regulation and
negative regulation. It requires identification
of the core THEME and/or CAUSE participants
in the event, i.e. the protein(s) being produced,
broken down, bound, regulated, etc.

• Event argument recognition This task builds
on the previous task, adding in additional argu-
ments of the events, such as the site (protein or
DNA region) of a binding event, or the location
of a protein in a localization event.

• Recognition of negations and speculations
This task requires identification of negations of
events (e.g. event X did not occur), and specu-
lation about events (e.g. We claim that event X
should occur).

3 Our approach

We used the OpenDMAP system developed at the
University of Colorado School of Medicine (Hunter
et al., 2008) for our submission to the BioNLP
’09 Shared Task on Event Extraction. OpenDMAP
is an ontology-driven, integrated concept analysis
system that supports information extraction from
text through the use of patterns represented in a
classic form of “semantic grammar,” freely mixing
text literals, semantically typed basal syntactic con-
stituents, and semantically defined classes of enti-
ties. Our approach is to take advantage of the high
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quality ontologies available in the biomedical do-
main to formally define entities, events, and con-
straints on slots within events and to develop pat-
terns for how concepts can be expressed in text that
take advantage of both semantic and linguistic char-
acteristics of the text. We manually built patterns for
each event type by examining the training data and
by using native speaker intuitions about likely ways
of expressing relationships, similar to the technique
described in (Cohen et al., 2004). The patterns char-
acterize the linguistic expression of that event and
identify the arguments (participants) of the events
according to (a) occurrence in a relevant linguistic
context and (b) satisfaction of appropriate semantic
constraints, as defined by our ontology. Our solution
results in very high precision information extraction,
although the current rule set has limited recall.

3.1 The reference ontology

The central organizing structure of an OpenDMAP
project is an ontology. We built the ontology
for this project by combining elements of several
community-consensus ontologies—the Gene Ontol-
ogy (GO), Cell Type Ontology (CTO), BRENDA
Tissue Ontology (BTO), Foundational Model of
Anatomy (FMA), Cell Cycle Ontology (CCO), and
Sequence Ontology (SO)—and a small number of
additional concepts to represent task-specific aspects
of the system, such as event trigger words. Combin-
ing the ontologies was done with the Prompt plug-in
for Protégé.

The ontology included concepts representing each
event type. These were represented as frames, with
slots for the various things that needed to be re-
turned by the system—the trigger word and the var-
ious slot fillers. All slot fillers were constrained to
be concepts in some community-consensus ontol-
ogy. The core event arguments were constrained in
the ontology to be of type protein from the Sequence
Ontology (except in the case of regulation events,
where biological events themselves could satisfy the
THEME role), while the type of the other event argu-
ments varied. For instance, the ATLOC argument
of a gene expression event was constrained to be
one of tissue (from BTO), cell type (from CTO), or
cellular component (from GO-Cellular Component),
while the BINDING argument of a binding event was
constrained to be one of binding site, DNA, domain,

or chromosome (all from the SO and all tagged by
LingPipe). Table 1 lists the various types.

3.2 Named entity recognition
For proteins, we used the gold standard annota-
tions provided by the organizers. For other seman-
tic classes, we constructed a compound named en-
tity recognition system which consists of a LingPipe
GENIA tagging module (LingPipe, (Alias-i, 2008)),
and several dictionary look-up modules. The dictio-
nary lookup was done using a component from the
UIMA (IBM, 2009; Ferrucci and Lally, 2004) sand-
box called the ConceptMapper.

We loaded the ConceptMapper with dictionar-
ies derived from several ontologies, including the
Gene Ontology Cellular Component branch, Cell
Type Ontology, BRENDA Tissue Ontology, and
the Sequence Ontology. The dictionaries contained
the names and name variants for each concept in
each ontology, and matches in the input documents
were annotated with the relevant concept ID for the
match. The only modifications that we made to
these community-consensus ontologies were to re-
move the single concept cell from the Cell Type On-
tology and to add the synonym nuclear to the Gene
Ontology Cell Component concept nucleus.

The protein annotations were used to constrain the
text entities that could satisfy the THEME role in the
events of interest. The other named entities were
added for the identification of non-core event partic-
ipants for Task 2.

3.3 Pattern development strategies
3.3.1 Corpus analysis

Using a tool that we developed for visualizing the
training data (described below), a subset of the gold-
standard annotations were grouped by event type
and by trigger word type (nominalization, passive
verb, active verb, or multiword phrase). This orga-
nization helped to suggest the argument structures of
the event predicates and also highlighted the varia-
tion within argument structures. It also showed the
nature of more extensive intervening text that would
need to be handled for the patterns to achieve higher
recall.

Based on this corpus analysis, patterns were de-
veloped manually using an iterative process in which
individual patterns or groups of patterns were tested
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Table 1: Semantic restrictions on Task 2 event arguments. CCO = Cell Cycle Ontology, FMA = Foundational Model
of Anatomy, other ontologies identified in the text.

Event Type Site AtLoc ToLoc
binding protein domain (SO),

binding site (SO), DNA
(SO), chromosome (SO)

gene expression gene (SO), biological
entity (CCO)

tissue (BTO), cell type
(CTO), cellular compo-
nent (GO)

localization cellular component
(GO)

cellular component
(GO)

phosphorylation amino acid (FMA),
polypeptide region (SO)

protein catabolism cellular component
(GO)

transcription gene (SO), biological
entity (CCO)

on the training data to determine their impact on per-
formance. Pattern writers started with the most fre-
quent trigger words and argument structures.

3.3.2 Trigger words
In the training data, we were provided annotations

of all relevant event types occurring in the training
documents. These annotations included a trigger
word specifying the specific word in the input text
which indicated the occurrence of each event. We
utilized the trigger words in the training set as an-
chors for our linguistic patterns. We built patterns
around the generic concept of, e.g. an expression
trigger word and then varied the actual strings that
were allowed to satisfy that concept. We then ran ex-
periments with our patterns and these varying sets of
trigger words for each event type, discarding those
that degraded system performance when evaluated
with respect to the gold standard annotations.

Most often a trigger word was removed from an
event type trigger list because it was also a trig-
ger word for another event type and therefore re-
duced performance by increasing the false positive
rate. For example, the trigger words “level” and
“levels” appear in the training data trigger word lists
of gene expression, transcription, and all three regu-
lation event types.

The selection of trigger words was guided by a

frequency analysis of the trigger words provided in
the task training data. In a post-hoc analysis, we find
that a different proportion of the set of trigger words
was finally chosen for each different event type. Be-
tween 10-20% of the top frequency-ranked trigger
words were used for simple event types, with the
exception that phosphorylation trigger words were
chosen from the top 30%. For instance, for gene ex-
pression all of the top 15 most frequent trigger words
were used (corresponding to the top 16%). For com-
plex event types (the regulations) better performance
was achieved by limiting the list to between 5-10%
of the most frequent trigger words.

In addition, variants of frequent trigger words
were included. For instance, the nominalization “ex-
pression” is the most frequent gene expression trig-
ger word and the verbal inflections “expressed” and
“express” are also in the top 20%. The verbal inflec-
tion “expresses” is ranked lower than the top 30%,
but was nonetheless included as a trigger word in the
gene expression patterns.

3.3.3 Patterns
As in our previous publications on OpenDMAP,

we refer to our semantic rules as patterns. For
this task, each pattern has at a minimum an event
argument THEME and an event-specific trigger
word. For example, {phosphorylation} :=
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[phosphorylation nominalization][Theme],
where [phosphorylization nominalization]
represents a trigger word. Both elements are defined
semantically. Event THEMEs are constrained by
restrictions placed on them in the ontology, as
described above.

The methodology for creating complex event pat-
terns such as regulation was the same as for sim-
ple events, with the exception that the THEMEs
were defined in the ontology to also include bio-
logical processes. Iterative pattern writing and test-
ing was a little more arduous because these pat-
terns relied on the success of the simple event pat-
terns, and hence more in-depth analysis was re-
quired to perform performance-increasing pattern
adjustments. For further details on the pattern lan-
guage, the reader is referred to (Hunter et al., 2008).

3.3.4 Nominalizations
Nominalizations were very frequent in the train-

ing data; for seven out of nine event types, the most
common trigger word was a nominalization. In writ-
ing our grammars, we focused on these nominaliza-
tions. To write grammars for nominalizations, we
capitalized on some of the insights from (Cohen et
al., 2008). Non-ellided (or otherwise absent) argu-
ments of nominalizations can occur in three basic
positions:

• Within the noun phrase, after the nominaliza-
tion, typically in a prepositional phrase

• Within the noun phrase, immediately preceding
the nominalization

• External to the noun phrase

The first of these is the most straightforward to
handle in a rule-based approach. This is particu-
larly true in the case of a task definition like that
of BioNLP ’09, which focused on themes, since an
examination of the training data showed that when
themes were post-nominal in a prepositional phrase,
then that phrase was most commonly headed by of.

The second of these is somewhat more challeng-
ing. This is because both agents and themes can
occur immediately before the nominalization, e.g.
phenobarbital induction (induction by phenobarbi-
tal) and trkA expression (expression of trkA). To de-
cide how to handle pre-nominal arguments, we made

use of the data on semantic roles and syntactic posi-
tion found in (Cohen et al., 2008). That study found
that themes outnumbered agents in the prenominal
position by a ratio of 2.5 to 1. Based on this obser-
vation, we assigned pre-nominal arguments to the
theme role.

Noun-phrase-external arguments are the most
challenging, both for automatic processing and for
human interpreters; one of the major problems is
to differentiate between situations where they are
present but outside of the noun phrase, and situations
where they are entirely absent. Since the current im-
plementation of OpenDMAP does not have robust
access to syntactic structure, our only recourse for
handling these arguments was through wildcards,
and since they mostly decreased precision without a
corresponding increase in recall, we did not attempt
to capture them.

3.3.5 Negation and speculation
Corpus analysis of the training set revealed two

broad categories each for negation and speculation
modifications, all of which can be described in terms
of the scope of modification.

Negation
Broadly speaking, an event itself can be negated

or some aspect of an event can be negated. In other
words, the scope of a negation modification can be
over the existence of an event (first example below),
or over an argument of an existing event (second ex-
ample).

• This failure to degrade IkappaBalpha ...
(PMID 10087185)

• AP-1 but not NF-IL-6 DNA binding activity ...
(PMID 10233875)

Patterns were written to handle both types of
negation. The negation phrases “but not” and “but
neither” were appended to event patterns to catch
those events that were negated as a result of a
negated argument. For event negation, a more ex-
tensive list of trigger words was used that included
verbal phrases such as “failure to” and “absence of.”

The search for negated events was conducted in
two passes. Events for which negation cues fall out-
side the span of text that stretches from argument to
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event trigger word were handled concurrently with
the search for events. A second search was con-
ducted on extracted events for negation cues that fell
within the argument to event trigger word span, such
as

. . . IL-2 does not induce I kappa B alpha degrada-
tion (PMID 10092783)

This second pass allowed us to capture one addi-
tional negation (6 rather than 5) on the test data.

Speculation
The two types of speculation in the training data

can be described by the distinction between “de re”
and “de dicto” assertions. The “de dicto” assertions
of speculation in the training data are modifications
that call into question the degree of known truth of
an event, as in

. . . CTLA-4 ligation did not appear to affect the
CD28 - mediated stabilization (PMID 10029815)

The “de re” speculation address the potential ex-
istence of an event rather that its degree of truth. In
these cases, the event is often being introduced in
text by a statement of intention to study the event, as
in

. . . we investigated CTCF expression
. . . [10037138]

To address these distinct types of speculation, two
sets of trigger words were developed. One set con-
sisted largely of verbs denoting research activities,
e.g. research, study, examine investigate, etc. The
other set consisted of verbs and adverbs that denote
uncertainty, and included trigger words such as sug-
gests, unknown, and seems.

3.4 Handling of coordination

Coordination was handled using the OpenNLP con-
stituent parser along with the UIMA wrappers that
they provide via their code repository. We chose
OpenNLP because it is easy to train a model, it in-
tegrates easily into a UIMA pipeline, and because
of competitive parsing results as reported by Buyko
(Buyko et al., 2006). The parser was trained using
500 abstracts from the beta version of the GENIA
treebank and 10 full-text articles from the CRAFT
corpus (Verspoor et al., In press). From the con-
stituent parse we extracted coordination structures
into a simplified data structure that captures each
conjunction along with its conjuncts. These were

provided to downstream components. The coordi-
nation component achieves an F-score of 74.6% at
the token level and an F-score of 57.5% at the con-
junct level when evaluated against GENIA. For both
measures the recall was higher than the precision by
4% and 8%, respectively.

We utilized the coordination analysis to identify
events in which the THEME argument was expressed
as a conjoined noun phrase. These were assumed to
have a distributed reading and were post-processed
to create an individual event involving each con-
junct, and further filtered to only include given (A1)
protein references. So, for instance, analysis of the
sentence in the example below should result in the
detection of three separate gene expression events,
involving the proteins HLA-DR, CD86, and CD40,
respectively.

NAC was shown to down-regulate the
production of cytokines by DC as well
as their surface expression of HLA-
DR, CD86 (B7-2), and CD40 molecules
. . . (PMID 10072497)

3.5 Software infrastructure
We took advantage of our existing infrastructure
based on UIMA (The Unstructured Information
Management Architecture) (IBM, 2009; Ferrucci
and Lally, 2004) to support text processing and data
analysis.

3.5.1 Development tools
We developed a visualization tool to enable the

linguistic pattern writers to better analyze the train-
ing data. This tool shows the source text one sen-
tence at a time with the annotated words highlighted.
A list following each sentence shows details of the
annotations.

3.6 Errors in the training data
In some cases, there were discrepancies between the
training data and the official problem definitions.
This was a source of problems in the pattern devel-
opment phase. For example, phosphorylation events
are defined in the task definition as having only a
THEME and a SITE. However, there were instances
in the training data that included both a THEME and
a CAUSE argument. When those events were identi-
fied by our system and the CAUSE was labelled, they

54



were rejected during a syntactic error check by the
test server.

4 Results

4.1 Official Results

We are listed as Team 13. Table 2 shows our re-
sults on the official metrics. Our precision was the
highest achieved by any group for Task 1 and Task
2, at 71.81 for Task 1 and 70.97 for task 2. Our re-
calls were much lower and adversely impacted our
F-measure; ranked by F-measure, we ranked 19th
out of 24 groups.

We noted that our results for the exact match met-
ric and for the approximate match metric were very
close, suggesting that our techniques for named en-
tity recognition and for recognizing trigger words
are doing a good job of capturing the appropriate
spans.

4.2 Other analysis: Bug fixes and coordination
handling

In addition to our official results, we also report in
Table 3 (see last page) the results of a run in which
we fixed a number of bugs. This represents our cur-
rent best estimate of our performance. The precision
drops from 71.81 for Task 1 to 67.19, and from 70.97
for Task 2 to 65.74, but these precisions are still
well above the second-highest precisions of 62.21
for Task 1 and 56.87 for Task 2. As the table shows,
we had corresponding small increases in our recall
to 17.38 and in our F-measure to 27.62 for Task 1,
and in our recall to 17.07 and F-measure to 27.10 for
Task 2.

We evaluated the effects of coordination handling
by doing separate runs with and without this ele-
ment of the processing pipeline. Compared to our
unofficial results, which had an overall F-measure
for Task 1 of 27.62 and for Task 2 of 27.10, a ver-
sion of the system without handling of coordination
had an overall F-measure for Task 1 of 24.72 and for
Task 2 of 24.21.

4.3 Error Analysis

4.3.1 False negatives
To better understand the causes of our low recall,

we performed a detailed error analysis of false neg-
atives using the devtest data. (Note that this section

includes a very small number of examples from the
devtest data.) We found five major causes of false
negatives:

• Intervening material between trigger words and
arguments

• Coordination that was not handled by our coor-
dination component

• Low coverage of trigger words

• Anaphora and coreference

• Appositive gene names and symbols

Intervening material For reasons that we detail
in the Discussion section, we avoided the use of
wildcards. This, and the lack of syntactic analy-
sis in the version of the system that we used (note
that syntactic analyses can be incorporated into an
OpenDMAP workflow), meant that if there was text
intervening between a trigger word and an argument,
e.g. in to efficiently [express] in developing thymo-
cytes a mutant form of the [NF-kappa B inhibitor]
(PMID 10092801), where the bracketed text is the
trigger word and the argument, our pattern would
not match.
Unhandled coordination Our coordination system
only handled coordinated protein names. Thus, in
cases where other important elements of the utter-
ance, such as the trigger word transcription in tran-
scription and subsequent synthesis and secretion
of galectin-3 (PMID 8623933) were in coordinated
structures, we missed the relevant event arguments.
Low coverage of trigger words As we discuss in
the Methods section, we did not attempt to cover
all trigger words, in part because some less-frequent
trigger words were involved in multiple event types,
in part because some of them were extremely low-
frequency and we did not want to overfit to the train-
ing data, and in part due to the time constraints of the
shared task.
Anaphora and coreference Recognition of some
events in the data would require the ability to do
anaphora and coreference resolution. For example,
in Although 2 early lytic transcripts, [BZLF1] and
[BHRF1], were also detected in 13 and 10 cases,
respectively, the lack of ZEBRA staining in any case
indicates that these lytic transcripts are most likely
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Tasks 1 and 3 Task 2
Event class GS answer R P F R P F
Localization 174 (18) 18 (18) 10.34 100.00 18.75 9.77 94.44 17.71
Binding 347 (44) 110 (44) 12.68 40.00 19.26 12.32 39.09 18.74
Gene expression 722 (263) 306 (263) 36.43 85.95 51.17 36.43 85.95 51.17
Transcription 137 (18) 20 (18) 13.14 90.00 22.93 13.14 90.00 22.93
Protein catabolism 14 (4) 6 (4) 28.57 66.67 40.00 28.57 66.67 40.00
Phosphorylation 135 (30) 30 (30) 22.22 100.00 36.36 20.14 93.33 33.14
EVENT TOTAL 1529 (377) 490 (377) 24.66 76.94 37.35 24.30 76.12 36.84
Regulation 291 (9) 19 (9) 3.09 47.37 5.81 3.08 47.37 5.79
Positive regulation 983 (32) 65 (32) 3.26 49.23 6.11 3.24 49.23 6.08
Negative regulation 379 (10) 22 (10) 2.64 45.45 4.99 2.37 40.91 4.49
REGULATION TOTAL 1653 (51) 106 (51) 3.09 48.11 5.80 3.02 47.17 5.67
Negation 227 (4) 76 (4) 1.76 5.26 2.64
Speculation 208 (14) 105 (14) 6.73 13.33 8.95
MODIFICATION TOTAL 435 (18) 181 (18) 4.14 9.94 5.84
ALL TOTAL 3182 (428) 596 (428) 13.45 71.81 22.66 13.25 70.97 22.33

Table 2: Official scores for Tasks 1 and 2, and modification scores only for Task 3, from the approximate span
matching/approximate recursive matching table. GS = gold standard (true positives) (given for Tasks 1/3 only), answer
= all responses (true positives) (given for tasks 1/3 only), R = recall, P = precision, F = F-measure. All results are as
calculated by the official scoring application.

[expressed] by rare cells in the biopsies entering
lytic cycle (PMID 8903467), where the bracketed
text is the arguments and the trigger word, the syn-
tactic object of the verb is the anaphoric noun phrase
these lytic transcripts, so even with the addition of
a syntactic component to our system, we still would
not have recognized the appropriate arguments with-
out the ability to do anaphora resolution.
Appositives The annotation guidelines for proteins
apparently specified that when a gene name was
present in an appositive with its symbol, the symbol
was selected as the gold-standard argument. For this
reason, in examples like [expression] of Fas ligand
[FasL] (PMID 10092076), where the bracketed text
is the trigger word and the argument, the gene name
constituted intervening material from the perspec-
tive of our patterns, which therefore did not match.

We return to a discussion of recall and its implica-
tions for systems like ours in the Discussion section.

4.3.2 False positives

Although our overall rate of false positives was
low, we sampled 45 false positive events distributed
across the nine event types and reviewed them with
a biologist.

We noted two main causes of error. The most
common was that we misidentified a slot filler or
were missing a slot filler completely for an actual
event. The other main reason for false positives was
when we erroneously identified a (non)event. For
example, in coexpression of NF-kappa B/Rel and
Sp1 transcription factors (PMID 7479915), we mis-
takenly identified Sp1 transcription as an event.

5 Discussion

Our results demonstrate that it is possible to achieve
state-of-the art precision over a broad range of tasks
and event types using our approach of manually
constructed, ontologically typed rules—our preci-
sion of 71.81 on Task 1 was ten points higher than
the second-highest precision (62.21), and our preci-
sion of 70.97 on Task 2 was 14 points higher than
the second-highest precision (56.87). It remains the
case that our recall was low enough to drop our F-
measure considerably. Will it be the case that a sys-
tem like ours can scale to practical performance lev-
els nonetheless? Four factors suggest that it can.

The first is that there is considerable redundancy
in the data; although we have not quantified it for
this data set, we note that the same event is often
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Tasks 1 and 3 Task 2
Event class GS answer R P F R P F
Localization 174 (33) 41 (33) 18.97 80.49 30.70 16.67 69.05 26.85
Binding 347 (62) 152 (62) 17.87 40.79 24.85 17.48 40.13 24.35
Gene expression 722 (290) 344 (290) 40.17 84.30 54.41 40.17 84.30 54.41
Transcription 137 (28) 31 (28) 20.44 90.32 33.33 20.44 90.32 33.33
Protein catabolism 14 (4) 6 (4) 28.57 66.67 40.00 28.57 66.67 40.00
Phosphorylation 135 (47) 48 (47) 34.81 97.92 51.37 32.37 84.91 46.88
EVENT TOTAL 1529 (464) 622 (464) 30.35 74.60 43.14 29.77 72.77 42.26
Regulation 291 (11) 31 (11) 3.78 35.48 6.83 3.77 35.48 6.81
Positive regulation 983 (60) 129 (60) 6.10 46.51 10.79 6.08 46.51 10.75
Negative regulation 379 (18) 41 (18) 4.75 43.90 8.57 4.49 41.46 8.10
REGULATION TOTAL 1653 (89) 201 (89) 5.38 44.28 9.60 5.31 43.78 9.47
Negation 227 (6) 129 (6) 2.64 4.65 3.37
Speculation 208 (25) 165 (25) 12.02 15.15 13.40
MODIFICATION TOTAL 435 (31) 294 (31) 7.13 10.54 8.50
ALL TOTAL 3182 (553) 823 (553) 17.38 67.19 27.62 17.07 65.74 27.10

Table 3: Updated results on test data for Tasks 1-3, with important bug fixes in the code base. See key above.

mentioned repeatedly, but for knowledge base build-
ing and other uses of the extracted information, it is
only strictly necessary to recognize an event once
(although multiple recognition of the same assertion
may increase our confidence in its correctness).

The second is that there is often redundancy
across the literature; the best-supported assertions
will be reported as initial findings and then repeated
as background information.

The third is that these recall results reflect an ap-
proach that made no use of syntactic analysis be-
yond handling coordination. There is often text
present in the input that cannot be disregarded with-
out either using wildcards, which generally de-
creased precision in our experiments and which
we generally eschewed, or making use of syntac-
tic information to isolate phrasal heads. Syntactic
analysis, particularly when combined with analysis
of predicate-argument structure, has recently been
shown to be an effective tool in biomedical infor-
mation extraction (Miyao et al., 2009). There is
broad need for this—for example, of the thirty lo-
calization events in the training data whose trigger
word was translocation, a full eighteen had inter-
vening textual material that made it impossible for
simple patterns like translocationof [Theme] or
[ToLoc]translocation to match.

Finally, our recall numbers reflect a very short de-
velopment cycle, with as few as four patterns writ-
ten for many event types. A less time-constrained
pattern-writing effort would almost certainly result
in increased recall.
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Abstract

In this paper we describe the memory-based ma-
chine learning system that we submitted to the
BioNLP Shared Task on Event Extraction. We mod-
eled the event extraction task using an approach that
has been previously applied to other natural lan-
guage processing tasks like semantic role labeling
or negation scope finding. The results obtained by
our system (30.58 F-score in Task 1 and 29.27 in
Task 2) suggest that the approach and the system
need further adaptation to the complexity involved
in extracting biomedical events.

1 Introduction

In this paper we describe the memory-based ma-
chine learning system that we submitted to the
BioNLP shared task on event extraction1. The sys-
tem operates in three phases. In the first phase, event
triggers and entities other than proteins are detected.
In the second phase, event participants and argu-
ments are identified. In the third phase, postprocess-
ing heuristics select the best frame for each event.

Memory-based language processing (Daelemans
and van den Bosch, 2005) is based on the idea that
NLP problems can be solved by reuse of solved ex-
amples of the problem stored in memory. Given
a new problem, the most similar examples are re-
trieved, and a solution is extrapolated from them.
As language processing tasks typically involve many

1Web page: http://www-tsujii.is.s.u-tokyo.
ac.jp/GENIA/SharedTask/index.html

subregularities and (pockets of) exceptions, it has
been argued that memory-based learning is at an
advantage in solving these highly disjunctive learn-
ing problems compared to more eager learning that
abstract from the examples, as the latter eliminates
not only noise but also potentially useful exceptions
(Daelemans et al., 1999).

The BioNLP Shared Task 2009 takes a
linguistically-motivated approach, which is re-
flected in the properties of the shared task definition:
rich semantics, a text-bound approach, and decom-
position of linguistic phenomena. Memory-based
algorithms have been successfully applied in lan-
guage processing to a wide range of linguistic tasks,
from phonology to semantic analysis. Our goal was
to investigate the performance of a memory–based
approach to the event extraction task, using only
the information available in the training corpus and
modelling the task applying an approach similar to
the one that has been applied to tasks like semantic
role labeling (Morante et al., 2008) or negation
scope detection (Morante and Daelemans, 2009).

In Section 2 we briefly describe the task. Section
3 reviews some related work. Section 4 presents the
system, and Section 5 the results. Finally, some con-
clusions are put forward in Section 6.

2 Task description

The BioNLP Shared Task 2009 on event extrac-
tion consists of recognising bio-molecular events in
biomedical texts, focusing on molecular events in-
volving proteins and genes. An event is defined as a
relation that holds between multiple entities that ful-
fil different roles. Events can participate in one type
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of events: regulation events.
The task is divided into the three subtasks listed

below. We participated in subtasks 1 and 2.

• Task 1: event detection and characterization. This
task involves event trigger detection, event typing,
and event participant recognition.

• Task 2: event argument recognition. Recognition
of entities other than proteins and the assignment of
these entities as event arguments.

• Task 3: recognition of negations and speculations.

The task did not include a named entity recogni-
tion subtask. A gold standard set of named entity
annotations for proteins was provided by the organ-
isation. A dataset based on the publicly available
portion of the GENIA (Collier et al., 1999) corpus
annotated with events (Kim et al., 2008) and of the
BioInfer (Pyysalo et al., 2007) corpus was provided
for training, and held-out parts of the same corpora
were provided for development and testing.

The inter-annotator agreement reported for the
Genia Event corpus is 56% strict match2, which
means that the event type is the same, the clue ex-
pressions are overlapping and the themes are the
same. This low inter-annotator agreement is an in-
dicator of the complexity of the task. Similar low
inter-annotator agreement rates (49.00 %) in identi-
fication of events have been reported by Sasaki et al.
(2008).

3 Related work

In recent years, research on text mining in the
biomedical domain has experienced substantial
progress, as shown in reviews of work done in this
field (Krallinger and Valencia, 2005; Ananiadou and
McNaught, 2006; Krallinger et al., 2008b). Some
corpora have been annotated with event level infor-
mation of different types: PropBank-style frames
(Wattarujeekrit et al., 2004; Chou et al., 2006),
frame independent roles (Kim et al., 2008), and
specific roles for certain event types (Sasaki et al.,
2008). The focus on extraction of event frames us-
ing machine learning techniques is relatively new
because there were no corpora available.

2We did not find inter-annotator agreement measures in
the paper that describes the corpus (Kim et al., 2008), but in
www-tsujii.is.s.u-tokyo.ac.jp/T-FaNT/T-FaNT
.files/Slides/Kim.pdf.

Most work focuses on extracting biological rela-
tions from corpora, which consists of finding asso-
ciations between entities within a text phrase. For
example, Bundschus et al. (2008) develop a Condi-
tional Random Fields (CRF) system to identify re-
lations between genes and diseases from a set of
GeneRIF (Gene Reference Into Function) phrases.
A shared task was organised in the framework of
the Language Learning in Logic Workshop 2005 de-
voted to the extraction of relations from biomedical
texts (Nédellec, 2005). Extracting protein-protein
interactions has also produced a lot of research, and
has been the focus of the BioCreative II competi-
tion (Krallinger et al., 2008a).

As for event extraction, Yakushiji et al. (2001)
present work on event extraction based on full-
parsing and a large-scale, general-purpose grammar.
They implement an Argument Structure Extractor.
The parser is used to convert sentences that describe
the same event into an argument structure for this
event. The argument structure contains arguments
such as semantic subject and object. Information
extraction itself is performed using pattern matching
on the argument structure. The system extracts 23 %
of the argument structures uniquely, and 24% with
ambiguity. Sasaki et al. (2008) present a supervised
machine learning system that extracts event frames
from a corpus in which the biological process E. coli
gene regulation was linguistically annotated by do-
main experts. The frames being extracted specify
all potential arguments of gene regulation events.
Arguments are assigned domain-independent roles
(Agent, Theme, Location) and domain-dependent
roles (Condition, Manner). Their system works in
three steps: (i) CRF-based named entity recogni-
tion to assign named entities to word sequences; (ii)
CRF-based semantic role labeling to assign seman-
tic roles to word sequences with named entity labels;
(iii) Comparison of word sequences with event pat-
terns derived from the corpus. The system achieves
50% recall and 20% precision.

We are not aware of work that has been carried
out on the data set of the BioNLP Shared Task 2009
before the task took place.
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4 System description

We developed a supervised machine learning sys-
tem. The system operates in three phases. In the first
phase, event triggers and entities other than proteins
are detected. In the second phase, event participants
and arguments are identified. In the third phase,
postprocessing heuristics select the best frame for
each event. Parameterisation of the classifiers used
in Phases 1 and 2 was performed by experiment-
ing with sets of parameters on the development set.
We experimented with manually selected parame-
ters and with parameters selected by a genetic algo-
rithm, but the parameters found by the genetic algo-
rithm did not yield better results than the manually
selected parameters

As a first step, we preprocess the corpora with the
GDep dependency parser (Sagae and Tsujii, 2007)
so that we can use part-of-speech tags and syntac-
tic information as features for the machine learner.
GDep is a a dependency parser for biomedical text
trained on the Tsujii Lab’s GENIA treebank. The
dependency parser predicts for every word the part-
of-speech tag, the lemma, the syntactic head, and
the dependency relation. In addition to these regular
dependency tags it also provides information about
the IOB-style chunks and named entities. The clas-
sifiers use the output of GDep in addition to some
frequency measures as features.

We represent the data into a columns format, fol-
lowing the standard format of the CoNLL Shared
Task 2006 (Buchholz and Marsi, 2006), in which
sentences are separated by a blank line and fields
are separated by a single tab character. A sentence
consists of tokens, each one starting on a new line.

4.1 Phase 1: Entity Detection
In the first phase, a memory based classifier pre-
dicts for every word in the corpus whether it is an
entity or not and the type of entity. In this set-
ting, entity refers to what in the shared task def-
inition are events and entities other than proteins.
Classes are defined in the IOB-style3 in order to
find entities that span over multiple words. Figure
1 shows a simplified version of a sentence in which
high level is a Positive Regulation event that spans
over multiple tokens and proenkephalin is a Pro-

3I stands for ‘inside’, B for ‘beginning’, and O for ‘outside’.

tein. The Protein class does not need to be predicted
by the classifier because this information is pro-
vided by the Task organisers. The classes predicted
are: O, {B,I}-Entity, {B,I}-Binding, {B,I}-Gene Ex-
pression, {B,I}-Localization, {B,I}-Negative Regula-
tion, {B,I}-Positive Regulation, {B,I}-Phosphorylation,
{B,I}-Protein Catabolism, {B,I}-Transcription.

Token Class Token Class
Upon O which O
activation O correlate O
, O with O
T O high B-Positive regulation
lymphocyte O level I-Positive regulation
accumulate O of O
high O proenkephalin B-Protein
level O mRNA O
of O in O
the O the O
neuropeptide O cell O
enkephalin O . O

Figure 1: Instance representation for the entity de-
tection classifier.

We use the IB1 memory–based classifier as im-
plemented in TiMBL (version 6.1.2) (Daelemans
et al., 2007), a supervised inductive algorithm for
learning classification tasks based on the k-nearest
neighbor classification rule (Cover and Hart, 1967).
The memory-based learning algorithm was param-
eterised in this case by using modified value differ-
ence as the similarity metric, gain ratio for feature
weighting, using 7 k-nearest neighbors, and weight-
ing the class vote of neighbors as a function of their
inverse linear distance. For training we did not use
the entire set of instances from the training data. We
downsampled the instances keeping 5 negative in-
stances (class label O) for every positive instance.
Instances to be kept were randomly selected. The
features used by this classifier are the following:

• About the token in focus: word, chunk tag, named
entity tag as provided by the dependency parser,
and, for every entity type, a number indicating how
many times the focus word triggered this type of en-
tity in the training corpus.

• About the context of the token in focus: lemmas
ranging from the lemma at position -4 until the
lemma at position +3 (relative to the focus word);
part-of-speech ranging from position -1 until posi-
tion +1; chunk ranging from position -1 until posi-
tion +1 relative to the focus word; the chunk be-
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fore the chunk to which the focus word belongs;
a boolean indicating if a word is a protein or not
for the words ranging from position -2 until posi-
tion +3.

Class label Precision Recall F-score
B-Gene expression 59.32 60.23 59.77
B-Regulation 30.41 33.58 31.91
B-Entity 40.21 41.49 40.84
B-Positive regulation 41.16 46.25 43.56
B-Binding 57.76 53.14 55.36
B-Negative regulation 42.94 48.67 45.63
I-Negative regulation 7.69 3.33 4.65
I-Positive regulation 14.29 13.24 13.74
B-Phosphorylation 75.68 71.80 73.68
I-Regulation 14.29 10.00 11.77
B-Transcription 48.78 59.70 53.69
I-Entity 20.00 16.13 17.86
B-Localization 75.00 60.00 66.67
B-Protein catabolism 73.08 100.00 84.44
O 97.66 97.62 97.64

Table 1: Results of the entity detection classifier.
Entities that are not in the table have a precision and
recall of 0.

Table 1 shows the results4 of this first step. All
class labels with a precision and recall of 0 are left
out. The overall accuracy is 95.4%. This high ac-
curacy is caused by the skewness of the data in the
training corpus, which contains a higher proportion
of instances with class label O. Instances with this
class are correctly classified in the development test.
B-Protein catabolism and B-Phosphorylation get the
highest scores. The reason why these classes get
higher scores can be that the words that trigger these
events are less diverse.

4.2 Phase 2: predicting the arguments and
participants of events

In the second phase, another memory-based clas-
sifier predicts the participants and arguments of an
event. Participants have the main role in the event
and arguments are entities that further specify the
event. In (1), for the event phosphorylation the sys-
tem has to find that STAT1, STAT3, STAT4, STAT5a,
and STAT5b are participants with the role Theme and
that tyrosine is an argument with the role Site.

4In this section we provide results on development data be-
cause the gold test data have not been made available.

(1) IFN-alpha enhanced tyrosine phosphorylation
of STAT1, STAT3, STAT4, STAT5a, and
STAT5b.

We use the IB1 algorithm as implemented in
TiMBL (version 6.1.2) (Daelemans et al., 2007).
The classifier was parameterised by using gain ratio
for feature weighting, overlap as distance metrics,
11 nearest neighbors for extrapolation, and normal
majority voting for class voting weights.

For this classifier, instances represent combina-
tions of an event with all the entities in a sentence,
for as many events as there are in a sentence. Entities
include entities and events. We use as input the out-
put of the classifier in Phase 1, so only events and
entities classified as such in Phase 1, and the gold
proteins will be combined. Events can have partici-
pants and arguments in a sentence different that their
sentence. We calculated that in the training corpus
these cases account for 5.54% of the relations, and
decided to restrict the combinations at the sentence
level. For the sentence in (1) above, where tyrosine,
phosphorylation, STAT1, STAT3, STAT4, STAT5a,
and STAT5b are entities and of those only phospho-
rylation is an event, the instances would be produced
by combining phosphorylation with the seven enti-
ties.

The features used by this classifier are the follow-
ing:

• Of the event and of the combined entity: first word,
last word, type, named entity provided by GDep,
chain of lemmas, chain of part-of-speech (POS)
tags, chain of chunk tags, dependency label of the
first word, dependency label of the last word.

• Of the event context and of the combined entity con-
text: word, lemma, POS, chunk, and GDep named
entity of the five previous and next words.

• Of the context between event and combined entity:
the chain of chunks in between, number of tokens in
between, a binary feature indicating whether event
is located before or after entity.

• Others: four features indicating the parental rela-
tion between the first and last words of the event
and the first and last words of the entity. The values
for this feature are: event father, event ancestor, en-
tity father, entity ancestor, none. Five binary fea-
tures indicating if the event accepts certain roles
(Theme, Site, ToLoc, AtLoc, Cause).
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Table 2 shows the results of this classifier per type
of participant (Cause, Site, Theme) and type of ar-
gument (AtLoc, ToLoc). Arguments are very infre-
quent, and the participants are skewed towards the
class Theme. Classes Site and Theme score high F1,
and in both cases recall is higher than precision. The
fact that the classifier overpredicts Sites and Themes
will have a negative influence in the final scores of
the full system. Further research will focus on im-
proving precision.

Part/Arg Total Precision Recall F1
Cause 61 28.88 21.31 24.52
Site 20 54.83 85.00 66.66
Theme 683 55.50 72.32 62.80
AtLoc 1 25.00 100.00 40.00
ToLoc 4 75.00 75.00 75.00

Table 2: Results of finding the event participants and
arguments.

Table 3 shows the results of finding the event par-
ticipants and arguments per event type, expressed in
terms of accuracy on the development corpus. Cause
is easier to predict for Positive Regulation events,
Site is the easiest class to predict, taking into ac-
count that AtLoc and ToLoc occur only 5 times in
total, and Theme can be predicted successfully for
Transcription and Gene Expression events, whereas
it gets lower scores for Regulation, Binding, and
Positive Regulation events.

Event Arguments/Participants
Type Cause Site Theme AtLoc ToLoc

Binding - 100.00 56.00 - -
Gene Expr. - - 89.95 - -
Localization - - 73.07 100.00 75.00
- Regulation 11.11 0.00 75.00 - -
Phosphorylation 0.00 100.00 70.83 - -
+ Regulation 27.77 90.90 56.77 - -
Protein Catab. - - 60.00 - -
Regulation 13.33 0.00 46.87 - -
Transcription - - 94.44 - -

Table 3: Results of finding the event participants and
arguments per event type (accuracy).

Table 4 shows the results of finding the event par-
ticipants that are Entity and Protein per type of event
for events that are not regulations. Entity scores high
in all cases, whereas Protein scores high for Tran-
scription and Gene Expression events and low for
Binding events.

Event Arg./Part. Type
Type Entity Protein

Binding 100.00 56.00
Gene Expr. - 89.90
Localization 80.00 73.07
Phosphorylation 100.00 68.00
Protein Catab. - 60.00
Transcription - 94.44

Table 4: Results of finding the event participants and
arguments that are Entity and Protein per event type
(accuracy).

Table 5 shows the results of finding the partic-
ipants and arguments of regulation events. In the
case of regulation events, Entity is easier to classify
with Positive Regulation events, and Protein with
Negative Regulation events. In the cases in which
events are participants of regulation events, Bind-
ing, Gene Expression and Phosphorylation are easier
to classify with Positive Regulation events, Local-
ization with Regulation events, Protein Catabolism
with Negative Regulation events, and Transcription
is easy to classify in all cases.

Arg./Part. Event Type
Type Regulation + Regulation -Regulation

Entity 0.00 90.90 0.00
Protein 17.85 38.88 45.45
Binding - 75.00 66.66
Gene Expr. 66.66 90.47 75.00
Localization 100.00 80.00 75.00
Phosphorylation 0.00 44.44 0.00
Protein Catab. 0.00 40.00 100.00
Transcription 100.00 92.85 100.00

Table 5: Results of finding event arguments and par-
ticipants for regulation events (accuracy).

From the results of the system in this phase we can
extract some conclusions: data are skewed towards
the Theme class; Themes are not equally predictable
for the different types of events, they are better
predictable for Gene Expression and Transcription;
Proteins are more difficult to classify when they are
Themes of regulation events; and Transcription and
Localization events are easier to predict as Themes
of regulation events, compared to the other types of
events that are Themes of regulation events. This
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suggests that it could be worth experimenting with
a classifier per entity type and with a classifier per
role, instead of using the same classifier for all types
of entities.

4.3 Phase 3: heuristics to select the best frame
per event

Phases 1 and 2 aimed at identifying events and can-
didates to event participants. However, the purpose
of the task is to extract full frames of events. For a
sentence like the one in (1) above, the system has to
extract the event frames in (2).

(2) 1. Phosphorylation (phosphorylation): Theme
(STAT1) Site (tyrosine)

2. Phosphorylation (phosphorylation): Theme
(STAT3) Site (tyrosine)

3. Phosphorylation (phosphorylation): Theme
(STAT5a) Site (tyrosine)

4. Phosphorylation (phosphorylation): Theme
(STAT4) Site (tyrosine)

5. Phosphorylation (phosphorylation): Theme
(STAT5b) Site (tyrosine)

It is necessary to apply heuristics in order to build
the event frames from the output of the second clas-
sifier, which for the sentence in (1) above should
contain the predictions in (3).

(3) 1. phosphorylation STAT1 : Theme
2. phosphorylation STAT3 : Theme
3. phosphorylation STAT5a : Theme
4. phosphorylation STAT4 : Theme
5. phosphorylation STAT5b : Theme
6. phosphorylation tyrosine : Site

Thus, in the third phase, postprocessing heuristics
determine which is the frame of each event.

4.3.1 Specific heuristics for each type of event
The system contains different rules for each of the

5 types of participants (Cause, Site, Theme, AtLoc,
ToLoc). The text entities are the entities defined dur-
ing Phase 2. An event is created for every text entity
for which the system predicted at least one partic-
ipant or argument. To illustrate this we can take a
look at the predictions for the Gene Expression event
in (4) where the identifiers starting by T refer to en-
tities in the text. The prediction would results in the
events listed in (5).

(4) Gene expression=
Theme:T11=Theme:T12=Theme:T13

(5) E1 Gene expression:T23 Theme:T11
E2 Gene expression:T23 Theme:T12
E3 Gene expression:T23 Theme:T13

Gene expression, Transcription, and Protein
catabolism. These type of events have only a
Theme. Therefore, an event frame is created for ev-
ery Theme predicted for events that belong to these
types.

Localization. A Localization event can have one
Theme and 2 arguments: AtLoc and ToLoc. A
Localization event with more than one predicted
Theme will result in as many frames as predicted
Themes. The arguments are passed on to every
frame.

Binding. A Binding event can have multiple
Themes and multiple Site arguments. If the system
predicts more than one Theme for a Binding event,
the heuristics first check if these Themes are in a co-
ordination structure. Coordination checking consists
of checking whether the word ‘and’ can be found
between the Themes. Coordinated Themes will give
rise to separate frames. Every participant and loose
Theme is added to all created event lines. This case
applies to the sentence in (6)

(6) When we analyzed the nature of STAT
proteins capable of binding to IL-2Ralpha,
pim-1, and IRF-1 GAS elements after cytokine
stimulation, we observed IFN-alpha-induced
binding of STAT1, STAT3, and STAT4, but not
STAT5 to all of these elements.

The frames that should be created for this sen-
tence listed in (7).

(7) 1. Binding (binding): Theme(STAT4)
Theme2(IRF-1) Site2(GAS elements)

2. Binding (binding): Theme(STAT3)
Theme2:(IL-2Ralpha) Site2(GAS elements)

3. Binding (binding): Theme(STAT3)
Theme2(IRF-1) Site2(GAS elements)

4. Binding (binding): Theme(STAT4)
Theme2(pim-1) Site2(GAS elements)

5. Binding (binding): Theme(STAT1)
Theme2(IL-2Ralpha) Site2(GAS elements)
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6. Binding (binding): Theme(STAT4)
Theme2(IL-2Ralpha) Site2(GAS elements)

7. Binding (binding): Theme(IL-2Ralpha)
Site(GAS elements)

8. Binding (binding): Theme(pim-1) Site(GAS
elements)

9. Binding (binding): Theme(STAT1)
Theme2(IRF-1) Site2(GAS elements)

10. Binding (binding): Theme(STAT3)
Theme2(pim-1) Site2(GAS elements)

11. Binding (binding): Theme(IRF-1) Site(GAS
elements)

12. Binding (binding): Theme(STAT1)
Theme2(pim-1) Site2(GAS elements)

Phosphorylation. A Phosphorylation event can
have one Theme and one Site. Multiple Themes for
the same event will result in multiple frames. The
Site argument will be added to every frame.

Regulation, Positive regulation, and Negative
regulation. A Regulation event can have a Theme,
a Cause, a Site, and a CSite. For Regulation events
the system uses a different approach when creating
new frames. It first checks which of the participants
and arguments occurs the most frequent in a predic-
tion and it creates as many separate frames as are
needed to give every participant/argument its own
frame. The remaining participants/arguments are
added to the nearest frame. For this type of event
a new frame can be created not only for multiple
Themes but also for e.g. multiple Sites. The purpose
of this strategy is to increase the recall of Regulation
events.

4.3.2 Postprocessing
After translating predictions into frames some

corrections are made.
1. Every Theme and Cause that is not a Protein is

thrown away.
2. Every frame that has no Theme is provided

with a default Theme. If no Protein is found
before the focus word, the closest Protein after
the word is taken as the default Theme.

3. Duplicates are removed.

5 Results

The official results of our system for Task 1 are pre-
sented in Table 6. The best F1 score are for Gene Ex-
pression and Protein Catabolism events. The lowest

results are for all the types of regulation events and
for Binding events. Binding events are more diffi-
cult to predict correctly because they can have more
than one Theme.

Total Precision Recall F1
Binding 347 12.97 31.03 18.29
Gene Expr. 722 51.39 68.96 58.89
Localization 174 20.69 78.26 32.73
Phosphorylation 135 28.15 67.86 39.79
Protein Catab. 14 64.29 42.86 51.43
Transcription 137 24.82 41.46 31.05
Regulation 291 8.93 23.64 12.97
+Regulation 983 11.70 31.68 17.09
-Regulation 379 11.08 29.85 16.15
TOTAL 3182 22.50 47.70 30.58

Table 6: Official results of Task 1. Approximate
Span Matching/Approximate Recursive Matching.

The official results of our system for Task 2 are
presented in Table 7. Results are similar to the re-
sults of Task 1 because there are not many more ar-
guments than participants. Recognising arguments
was the additional goal of Task 2 in relation to
Task 1.

Total Precision Recall F1
Binding 349 11.75 28.28 16.60
Gene Expr. 722 51.39 68.96 58.89
Localization 174 17.82 67.39 28.18
Phosphorylation 139 15.83 39.29 22.56
Protein Catab. 14 64.29 42.86 51.43
Transcription 137 24.82 41.46 31.05
Regulation 292 8.56 22.73 12.44
+Regulation 987 11.35 30.85 16.59
-Regulation 379 11.08 29.20 15.76
TOTAL 3193 21.52 45.77 29.27

Table 7: Official results of Task 2. Approximate
Span Matching/Approximate Recursive Matching.

Results obtained on the development set are a lit-
tle bit higher. For Task1 an overall F1 of 34.78 and
for Task 2 33.54.

For most event types precision and recall are un-
balanced, the system scores higher in recall. Fur-
ther research should focus on increasing precision
because the system is predicting false positives. It
would be possible to add a step in order to fil-
ter out the false positives by comparing word se-
quences with event patterns derived from the cor-
pus, which is an approach taken in the system by
Sasaki et al. (2008) .
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In the case of Binding events, both precision and
recall are low. There are two explanations for this.
In the first place, the first classifier misses almost
half of the binding events. As an example, for
the sentence in (8.1), the gold standard identifies as
binding event the multiwords binds as a homodimer
and form heterodimers, whereas the system identi-
fies two binding events for the same sentence, binds
and homodimer, none of which is correct because
the correct one is the multiword unit. For the sen-
tence in (8.2), the gold standard identifies as binding
events bind, form homo-, and heterodimers, whereas
the system identifies only binds.
(8) 1. The KBF1/p50 factor binds as a homodimer but can

also form heterodimers with the products of other
members of the same family, like the c-rel and v-rel
(proto)oncogenes.
2. A mutant of KBF1/p50 (delta SP), unable to bind to
DNA but able to form homo- or heterodimers, has been
constructed.

From the sentence in (8.1) above the eight frames
in (9) should be extracted, whereas the system ex-
tracts only the frames in (10), which are incorrect
because the events have not been correctly identi-
fied.
(9) 1. Binding(binds as a homodimer) : Theme(KBF1)

2. Binding(binds as a homodimer) : Theme(p50)
3. Binding(form heterodimers) : Theme(KBF1)

Theme2(c-rel)
4. Binding(form heterodimers) : Theme(p50)

Theme2(v-rel)
5. Binding(form heterodimers) : Theme(p50)

Theme2(c-rel)
6. Binding(form heterodimers) : Theme(KBF1)

Theme2(v-rel)
7. Binding(bind) : Theme(p50)
8. Binding(bind) : Theme(KBF1)

(10) 1. Binding(binds) : Theme(v-rel)
2. Binding(homodimer) : Theme(c-rel)

The complexity of frame extraction of Binding
events contrasts with the less complex extraction of
frames for Gene Expression events, like the one in
sentence (11), where expression has been identified
correctly by the system as an event and the frame in
(12) has been correctly extracted.
(11) Thus, c-Fos/c-Jun heterodimers might contribute to the

repression of DRA gene expression.

(12) Gene Expression(expression) : Theme(DRA)

6 Conclusions

In this paper we presented a supervised machine
learning system that extracts event frames from
biomedical texts in three phases. The system partic-
ipated in the BioNLP Shared Task 2009, achieving
an F-score of 30.58 in Task 1, and 29.27 in Task 2.
The frame extraction task was modeled applying the
same approach that has been applied to tasks like se-
mantic role labeling or negation scope detection, in
order to check whether such an approach would be
suitable for a frame extraction task. The results ob-
tained for the present task do not compare to results
obtained in the mentioned tasks, where state of the
art F-scores are above 80.

Extracting biomedical event frames is more com-
plex than labeling semantic roles because of several
reasons. Semantic roles are mostly assigned to syn-
tactic constituents, predicates have only one frame
and all the arguments belong to the same frame. In
contrast, in the biomedical domain one event can
have several frames, each frame having different
participants, the boundaries of which do not coin-
cide with syntactic constituents.

The system presented here can be improved in
several directions. Future research will concentrate
on increasing precision in general, and precision and
recall of binding events in particular. Analysing in
depth the errors made by the system at each phase
will allow us to find the weaker aspects of the sys-
tem. From the results of the system in the second
phase we could draw some conclusions: data are
skewed towards the Theme class; Themes are not
equally predictable for the different types of events;
Proteins are more difficult to classify when they are
Themes of regulation events; and Transcription and
Localization events are easier to predict as Themes
of regulation events, compared to the other types of
events that are Themes of regulation events. We plan
to experiment with a classifier per entity type and
with a classifier per role, instead of using the same
classifier for all types of entities. Additionally, the
effects of the postprocessing rules in Phase 3 will be
evaluated.
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Abstract 

The BioNLP´09 Shared Task on Event Extrac-
tion presented an evaluation on the extraction 
of biological events related to genes/proteins 
from the literature. We propose a system that 
uses the case-based reasoning (CBR) machine 
learning approach for the extraction of the enti-
ties (events, sites and location). The mapping 
of the proteins in the texts to the previously ex-
tracted entities is carried out by some simple 
manually developed rules for each of the argu-
ments under consideration (cause, theme, site 
or location). We have achieved an f-measure of 
24.15 and 21.15 for Task 1 and 2, respectively. 

1 Introduction 

The increasing amount of biological data gener-
ated by the high throughput experiments has 
lead to a great demand of computational tools to 
process and interpret such amount of informa-
tion. The protein-protein interactions, as well as 
molecular events related to one entity only, are 
key issues as they take part in many biological 
processes, and many efforts have been dedicate 
to this matter. For example, databases are avail-
able for the storage of such interaction pairs, 
such as the Molecular INTeraction Database 
(Chatr-aryamontri et al., 2007) and IntAct 
(Kerrien et al., 2007). 

In the field of text mining solutions, many ef-
forts have been made. For example, the Bio-
Creative II protein-protein interaction (PPI) task 
(Krallinger, Leitner, Rodriguez-Penagos, & Va-
lencia, 2008) consists of four sub-tasks, includ-
ing the extraction of the protein interaction pairs 
in full-text documents, achieving an f-measure 
of up to 0.30. The initiative of annotation of 
both Genia corpus (J. D. Kim, Ohta, & Tsujii, 
2008) and BioInfer (Pyysalo et al., 2007) is an-
other good example. 

The BioNLP´09 Shared Task on Event Ex-
traction (J.-D. Kim, Ohta, Pyysalo, Kano, & 
Tsujii, 2009) proposes a comparative evaluation 
for the extraction of biological events related to 
one or more gene/protein and even other types 
of entities related to the localization of the re-
ferred event in the cell. The types of events that 
have been considered in the shared task were 
localization, binding, gene expression, transcrip-
tion, protein catabolism, phosphorylation, regu-
lation, positive regulation and negative 
regulation. A corpus that consisted of 800, 150 
and 260 PubMed documents (title and abstract 
text only) was made available for the training, 
development test and testing datasets, respec-
tively. For all documents, the proteins that took 
part in the events were provided. 

The shared task organization proposed three 
tasks. Task 1 (Event detection and characteriza-
tion) required the participants to extract the 
events from the text and map them to its respec-
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tive theme(s), as an event may be associated to 
one or more themes, e.g. binding. Also, some 
events may have only a gene/protein as theme, 
e.g. protein catabolism, while some other may 
be also associated to another event, e.g. regula-
tion events. Task 2 (Event argument recognition) 
asked the participants to provide the many ar-
guments that may be related to the extracted 
event, such as its cause, that may be an anno-
tated or one of the previously extracted events. 
Other arguments include site and localization, 
which should be first extracted from the texts by 
the system, as they do not come annotated in the 
documents. Task 3 (Recognition of negation and 
speculations) evaluates the presence of negations 
and speculation related to the previously ex-
tracted events. 

Our group has participated in this shared task 
with a system implemented with the case-based 
reasoning (CBR) machine learning technique   
as well as some manual rules. We have pre-
sented results for tasks 1 and 2 exclusively. The 
system described here is part of the Moara pro-
ject1 and was developed in Java programming 
language and use MySQL database. 

2 Methods  

Case-based reasoning (CBR) (Aamodt & Plaza, 
1994) is the machine learning method that was 
used for extracting the terms and events here 
proposed and consists of first learning cases 
from the training documents, by means of saving 
them in a base of case, and further retrieving a 
case the most similar to a given problem during 
the testing step, from which will be given the 
final solution, hereafter called “case-solution”. 
One of the advantages of the CBR algorithm is 
the possibility of getting an explanation of why 
to a given token has been attributed a certain 
category, by means of checking the features that 
compose the case-solution. Additionally, and 
due to the complexity of the tasks, a rule-based 
post-processing step was built in order to map 
the previously extracted terms and events among 
themselves.  

 
 
 

                                                           
1 http://moara.dacya.ucm.es 

2.1 Retaining the cases 

In this first step, documents of the training data-
set are tokenized according to spaces and punc-
tuations. The resulting tokens are represented in 
the CBR approach as cases composed of some 
predefined features that take into account the 
morphology and grammatical function of the 
tokens in the text as well as specific features 
related to the problem under consideration. The 
resulting cases are then stored in a base of case 
to be further retrieved (Figure 1). 
 

 
Figure 1: Training step in which cases are repre-
sented by some pre-defined features and further 
saved to a base. 
 
Regarding the features that compose a case, 
these were the ones that were considered during 
the training and development phases: the token 
itself (token); the token in lower case (lower-
case); the stem of the token (stem); the shape of 
the token (shape); the part-of-speech tag 
(posTag); the chunk tag (chunkTag); a biomedi-
cal entity tag (entityTag); the type of the term 
(termType); the type of the event (eventType); 
and the part of the term in the event (eventPart). 
The stem of a token was extracted using an 
available Java implementation2 of the Porter al-
gorithm (Porter, 1980), while the part-of-speech, 
chunk and bio-entity tags were taken from the 
GENIA Tagger (Tsuruoka et al., 2005). 

The shape of a token is given by a set of char-
acters that represent its morphology: “a” for 
lower case letters, “A” for upper case letters, “1” 
for numbers, “g” for Greek letters, “p” for stop-

                                                           
2 http://www.tartarus.org/~martin/PorterStemmer 
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words3, “$” for identifying 3-letters prefixes or 
suffixes or any other symbol represented by it-
self. Here are some few example for the shape 
feature: “Dorsal” would be represented by “Aa”, 
“Bmp4” by “Aa1”, “the” by “p”, “cGKI(alpha)” 
by “aAAA(g)”, “patterning” by “pat$a” (‘$’ 
symbol separating the 3-letters prefix) and “ac-
tivity” by “a$vity” (‘$’ symbol separating the 4-
letters suffix). No repetition is allowed in the 
case of the “a” symbol for the lower case letters. 
 

 
Figure 2: Example of the termType, eventType and 
partEvent features. 
 
The last three features listed above are specific 
to the event detection task and were extracted 
from the annotation files (.a1 and .a2) that are 
part of the corpus. The termType feature is used 
to identify the type of the term in the event prob-
lem, and it is extracted from the term lines of 
both annotation files .a1 and .a2, i.e. the ones 
which the identifiers starts with a “T”. The 
eventType features represent the event itself and 
it is extracted from the event lines of .a2 annota-
tion file, i.e. the ones that starts with an “E”. Fi-
nally, eventPart represents the token according 
to its role, i.e. entity, theme, cause, site and loca-
tion. The termType, eventType and eventPart 
features are the hereafter called “feature-
problem”, the features that are unknown to the 
system in the testing phase and which values are 
to be given by the case-solution. Figure 2 illus-
trate one example of these features for an extract 
of the annotation of the document “1315834” 
from the training dataset. 

Usually, one case corresponds for each token 
of the documents in the training dataset. How-
ever, more than one case may be created from a 
token, as well as none at all, depending on the 
predefined features. For example, some tokens 
may derive in more than one case due to the 
shape feature, as for example, “patterning” 
                                                           
3 
http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/ 

(“pat$a”, “a$ing”, “a”). Also, according to the 
retaining strategy, some tokens may be associ-
ated to no case at all, for example, by restricting 
the value of a determined feature as the retaining 
strategy. In order to reduce the number of re-
tained cases, and consequently reduce the further 
retrieving time, only those tokens related to an 
event are retained, i.e., tokens with not null 
value for the termType feature. 

The text of a document may be read in the 
forward or backward direction during the train-
ing step, and even combining both of them 
(Neves, Chagoyen, Carazo, & Pascual-Montano, 
2008). Here, we have considered the forward 
direction exclusively. Also, another important 
point is the window of tokens under considera-
tion when setting the features of a case, if taking 
into account only the token itself or also the sur-
rounding tokens, the ones which come before or 
after it. Here we consider a window of (-1,0), 
i.e., for each token, we get the feature of the to-
ken itself and of the preceding one, exclusively.  
 

Training Testing Features / Tokens -1 0 -1 0 
stem     
shape     
posTag     
chunkTag     
entityTag     
termType     
eventType     
partEvent     

Table 1: Selected features in the training and testing 
steps for the tokens “0” and “-1”. The last three fea-
tures are the ones to be inferred.  
 
Many experiments have been carried out in or-
der to choose the best set of features (Table 1). 
The higher the number of features under consid-
eration, the greater is the number of cases to be 
retained and the higher is the time needed to 
search for the case-solution. He relies therefore 
the importance of choosing a small an efficient 
set of features. For this reason, the shape fea-
tures has not been considered for the preceding 
token (-1) in order to reduce the number of 
cases, as this shape usually result in more than 
one case per token. The termType feature is at 
the same time known and unknown in the testing 
step. It is know for the protein terms but is un-
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known for the remaining entities (events, sites 
and locations).  

By considering these features for the 800 
documents in the training set, about 26,788 
unique cases were generated. It should be noted 
that no repetition of cases with the same values 
for the features are allowed, instead a field for 
the frequency of the case is incremented to keep 
track of the number of times that it has appeared 
during the training phase. The frequency range 
goes from 1 (more than 22,000 cases) to 238 
(one case only). 

2.2 Retrieving a case  

When a new document is presented to the sys-
tem, it is first read in the forward direction and 
tokenized according to space and punctuation 
and the resulting tokens are mapped to cases of 
features, exactly as discussed in the retaining 
step. The only difference here is the set of fea-
ture (cf. Table 1), as some of them are unknown 
to the system and are the ones to be inferred 
from the cases retained during the training step.  
 

 
Figure 3: Retrieval procedure to choose the most 
case-solution with higher frequency and based on 
MMF and MFC parameters.  

 
For each token, the system first creates a case 
(hereafter called “case-problem”) based on the 
testing features and proceeds to search the base 
of cases for the case-solution the most similar to 
this case-problem (Figure 3). It should be noted 
that a token may have more than one case-
problem, depending of the values of the shape 
feature. The best case-solution among the ones 
found by the system will be the one with the 
higher frequency. The system always tries to 
find a case-solution with the higher number of 
features that have exactly the same value of the 
case-problem’s respective features. The stem is 
the only mandatory feature which value must be 
always matched between the case-problem and 
the case-solution. The value of the two features-
problem (eventType and partEvent) will be 

given by the values of the case-solution’s re-
spective features. If no case solution is found, 
the token is considered of not being related to 
the event domain in none of its parts (entity, 
theme, cause, etc.).  

Two parameters have been taken into consid-
eration in the retaining strategy: the minimum 
matching feature (MMF) and the minimum fre-
quency of the case (MFC). The first one set the 
minimum features that should be matched be-
tween the case-problem and the case-solution, as 
the higher the number of equal features between 
theses cases, the more precise is the decision 
inferred from the case-solution.  

On the other hand, the MFC parameter re-
stricts the cases that are to be considered by the 
search strategy, the ones with frequency higher 
than the value specified by this parameter. The 
higher the minimum frequency asked for a case, 
the lower is the number of cases under consid-
eration and the lower is the time for obtaining 
the case-solution. From the 26,788 cases we 
have retained during the training phase, about 
22,389 of them appeared just once and would 
not be considered by the searching procedure if 
the MFC parameter was set to 2, for example,  
therefore reducing the searching time.  

Experiments have been carried out in order to 
decide the values for both parameters and it re-
sulted that a better performance is achieved (cf. 
3) by setting the MFC to a value higher than 1. 
On the other hand, experiments have shown that 
the recall may decrease considerably when re-
stricting the MMF parameter. 

By repeating this procedure for all the tokens 
of the document, the latter may be then consid-
ered as being tagged with the event entities. 
However, in order to construct the output file 
required by the shared task organization, some 
manual rules have been created in order to map 
the events mapped to its respective arguments, 
as described in the next section. 

2.3 Post-processing rules 

For the tasks 1 and 2, the participants were 
asked to output the events present in the pro-
vided texts along with their respective argu-
ments. The events have been already extracted 
in the previous step; the tokens that were tagged 
as “Entity” for the “partEvent” feature (cf. Fig-
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ure 2), hereafter called “event-entity”. This en-
tity is the start point from which to search for the 
arguments which are incrementally extracted 
from the text in the following order: theme, 
theme 2, cause, site and location. Figure 4 re-
sumes the rules for each of the arguments. 

 

 
Figure 4: Resume of the post-processing rules for 
each type of argument.  
 
Themes: The theme-candidates for an event-
entity are the annotated proteins (.a1 file) as well 
as the events themselves, in the case of the regu-
lation, positive regulation and negative regula-
tion events. The first step is then to try to map 
each event to its theme and in case that no theme 
is found, the event is not considered anymore by 
the system and it is not printed to the output file. 

The theme searching strategy starts from the 
event-entity and consists of reading the text in 
both directions alternatively, one token in the 
forward direction followed by one token in the 
backward direction until a theme-candidate is 
found (Figure 5). The system halts if the end of 
the sentence is found or if the specified number 
of tokens in each direction is reached, 20 for the 
theme. By analyzing some of the false negatives 
returned from the experiments with the devel-
opment dataset, we have learned that few events 
are associated to themes present in a different 
sentence and although aware these cases, we 
have decided to restrict the searching to the sen-
tence boundaries in order to avoid a high num-
ber of false positives.  

In the case of a second theme, allowed for 
binding events only, a similar searching strategy 
is carried out, except that here the system reads 
up of 10 tokens in each direction, starting from 
the theme entity previously extracted. 

Cause: The cause-candidates are also the an-
notated proteins and, starting from the event-
entity, a similar search is carried out, restricted 
up to 30 tokens in each direction and to the 
boundaries of the same sentence. This procedure 

is carried out for the regulation, positive regula-
tion and negative regulation events only and the 
only extra restriction is that the candidate should 
not be the protein already assigned as theme. If 
no candidate is found, the system considers that 
there is no cause associated to the event under 
consideration. 

Site and Location: Here the candidates are 
the tokens tagged with the values of “Entity” for 
the termType feature, and “Site” and “Location” 
for the partEvent feature, respectively. The 
search for the site is carried out for the binding 
and phosphorylation events and the location 
search for the localization event only. The pro-
cedure is restricted to the sentence boundaries 
and up to 20 and 30 tokens, respectively, starting 
from the event-entity. Once again, if not candi-
date is found, the system consider that there is 
no site or location associated to the event under 
consideration. 
 

 
Figure 5: Contribution of each class of error to the 
275 false positives analyzed here. 

3 Results  

This section presents the results of the experi-
ments carried out with the development and the 
blind test datasets as well as an analysis of the 
false negatives and false positives. Results here 
will be presented for tasks 1 and 2 in terms of 
precision, recall and f-measure. 

Experiments have been carried out with the 
development dataset in order to decide the best 
value of the MMF and MFC parameters (cf. 
2.2). Figure 6 shows the variation of the F-
measure according to both parameters for the 
values of 1, 3, 4, 5, 6, 7 and 8 for MMF; and 1, 
2, 5, 10, 15, 20 and 50 for MFC. 

Usually, recall is higher for a low value of 
MFC, as the searching for the case-solution is 
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carried out over a greater number of cases and 
the possibility of finding a good case-problem is 
higher. On the other hand, precision increases 
when few cases are under considered by the 
search strategy, as fewer decisions are taken and 
the cases-solution have usually a high frequency, 
avoiding decision based on “weak” cases of fre-
quency 1, for example.  

Figure 6 shows that the best value for MFC 
ranges from 2 to 20 and for MMF from 5 to 7 
and the best f-measure result is found for the 
values of 2 and 6 for these parameters (f2m6), 
respectively. As these experiments have been 
carried out after the deadline of the test dataset, 
the run that was submitted as the final solution 
was the one with the values of 2 and 1 for the 
MFC and MMF parameters (f2m1), respectively. 
Table 3 and 4 resumes the results obtained for 
the test dataset with the configuration that was 
submitted (f2m1), and the best one (f2m6) after 
accomplishing the experiments above described. 
Results have slightly improved by only trying to 
choose the best values for the parameters here 
considered.  
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Figure 6: F-Measure for the development dataset in 
terms of the MFC (curves) and the MMF (x-axis). 
 
An automatic analysis of the false positives and 
false negatives has been performed for the de-
velopment dataset and for the results obtained 
with the final submission (f2m1), a total of 2502 
false positives and 1300 false negatives. We 
have found out that the mistakes are related 
mainly to the retrieving of the case-solution and 
to the mapping of an event to its arguments. The 

mistakes have been classified in seven groups 
described below and figures 7 and 8 show the 
percent contribution of each class for the false 
positives and false negatives, respectively. 

Events composed of more than one token 
(1): this mistake happens when the system is 
able to find the event with its correct type and 
arguments but with only part of its tokens, such 
as “regulation” instead of “up-regulation” and 
“reduced” or “levels” instead of “reduced lev-
els”, both in document 10411003. This is mainly 
due to our tokenization strategy of separating the 
tokens according to all punctuation and symbols 
(including hyphens) and also due to the evalua-
tion method that seems not consider alternatives 
to the text of an event. This mistake always re-
sults in one false positive and one false negative. 
 

tasks /  
results recall precision f-measure 

(f2m1) 28.63 20.88 24.15 task 1 (f2m6) 27.18 23.92 25.45 
(f2m1) 25.02 18.32 21.15 task 2 (f2m6) 24.49 21.63 22.97 

Table 3: Results for the test dataset (tasks 1 and 2). 
 

(f2m1) (f2m6) Results /  
Events p r fm p r fm 

prot. catab. 78.6 55.0 64.7 71.4 55.6 65.5 
phosphoryl. 49.6 56.1 52.7 46.0 55.2 50.2 
transcript. 48.9 19.8 28.1 38.7 29.6 33.5 
neg. reg. 9.8 7.9 8.8 7.9 7.7 7.8 
pos. reg. 10.0 6.6 7.9 10.2 8.0 9.0 
regulation 8.6 4.5 5.9 7.5 5.3 6.3 
localizat. 28.2 42.9 34.0 23.3 48.9 33.3 
gene expr. 51.8 55.1 53.4 52.6 61.2 56.6 
binding 19.5 12.1 14.9 22.4 14.4 17.5 
Table 4: Results by event for Task 2 on test dataset. 
 
Events and arguments in different sentences 
of the text (2):  as we already discussed in sec-
tion 2.3, our arguments searching strategy is re-
stricted to the boundaries of the sentence. Some 
examples of this mistake may be found in 
document 10395645 in which two events of the 
token “activation [1354-1364]” is mapped to the 
themes “caspase-6 [1190-1199]” and “CPP32 
[1165-1170]”, both located in a different sen-
tence. This mistake usually affects only the false 
negatives but may cause also a false positive if 
the system happens to find a valid (wrong) ar-
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gument in the same sentences for the event un-
der consideration. 
 

False Positives

case 
decision (3); 

74,3

composed 
tokens (1); 

5,2

site/location 
detection 
(7); 1,6

theme 
detection 
(5); 14,6

cause 
detection 
(6); 1,6

event type 
(4); 2,7

 
Figure 7: Percent contribution of each error to the 
false positives. 
 

False Negatives

theme 
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(5); 56,2
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detection 
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(6); 4,2

event type 
(4); 10,0

different 
sentences 
(2); 1,4

composed 
tokens (1); 

10,4

case 
decision (3); 

17,2

 
Figure 8: Percent contribution of each error to the 
false negatives. 
 
Decision for a case (3): this class of error is due 
to the selection of a wrong case-solution and we 
include in this class mistakes due to two situa-
tions: when the system fails to find any case-
solution for an event token (false negative) or 
when a case-solution is found for a non-event 
token (false positive). The first situation is only 
dependent of the searching strategy and its two 
parameters (MMF and MFC) while the second 
one is also related to the post-processing step, if 
the latter succeeds to find a theme for the incor-
rectly extracted event. An example of a false 
negative that falls in this group is “dysregulation 
[727-740]” from document 10229231 that failed 
to be mapped to a case-solution. Regarding the 
false positives, this class of mistake is the major-

ity of them and it is due to the low precision of 
the system that frequently is able to find cases-
solution associated to tokens that are not events 
at all, such as the token “transcript [392-402]” of 
document 10229231. It should be noted that the 
incorrect association of a token to a case-
solution does not result in a false positive a pri-
ori, but only if the post-processing step happen 
to find a valid theme to it, a mistake further de-
scribed in group 5. 

Wrong type of the event (4): this class of 
mistake is also due to the wrong selection of a 
case-solution, but the difference here is that the 
token is really an event, but the case-solution is 
of the wrong type, i.e. it has a wrong value for 
the eventType feature. The causes of this mis-
take are many, such as, the selection of features 
(cf. Table 1) or the value of the MFC parameter 
that may lead to the selection of a wrong but 
more frequent case. We also include in this 
group the few false negatives mistakes in which 
a token is associated to more than one type of 
event in the gold-standard, such as the token 
“Overexpression [475-489]” from document 
10229231 that is associated both to a Gene Ex-
pression and to a Positive Regulation event. One 
way of overcome it would be to allow the sys-
tem to associated more than one case to a token, 
taking the risk of decreasing the precision. 

Theme detection (5): in this group falls more 
than half of the false negatives and we include 
here only those mistakes in which the token was 
correctly associated to a case-solution of the cor-
rect type. These mistakes may be due to a vari-
ety of situations related to the theme detection, 
such as: the association of the event to another 
event when it should have been done to a protein 
or vice-versa (for the regulation events); the 
mapping of a binding event to one theme only 
when it should have been two theme or vice-
versa; the association of the event to the wrong 
protein theme, especially when there is more 
than one nearby; and even not being able to find 
any theme at all. Also, half of theses mistakes 
happen when an event is associated to more than 
one theme separately, not as a second theme. For 
example, the token “associated [278-288]”, from 
document 10196286, is associated in the gold 
standard to three themes – “tumor necrosis fac-
tor receptor-associated factor (TRAF) 1 [294-
351]”, “2 [353-354]” and “3 [359-360]” – and 
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we were only able to extract the first of them. 
This is due to the fact that we restrict the system 
to search only one “first” and one “second” 
theme for each event. 

Cause detection (6): similar to the previous 
class, these mistakes happens when associating a 
cause to an event (regulation events only) when 
there is no cause related to it or vice-versa. For 
example, in document 10092805, the system has 
correctly mapped the token “decreases [1230-
1239]” to the theme “4E-BP1 [1240-1246]” but 
also associated to it an inexistent cause “4E-BP2 
[1315-1321]”. The evaluation of Task 2 does not 
allow the partial evaluation of an event and 
therefore a false positive and a false negative 
would be returned for the example above. 

Site/Location detection (7): this error is 
similar to the previous one but related only to 
binding, phosphorylation and localization 
events, when the system fails to associate a site 
or a location to an event or vice-versa. For ex-
ample, in document 10395671, the token “phos-
phorylation [1091-1106]” was correctly mapped 
to the theme “Janus kinase 3 [1076-1090]” but 
was also associated to an inexistent site “DNA 
[1200-1203]”. Once again, the evaluation of 
Task 2 does not allow the partial evaluation of 
the event and a false positive and a false nega-
tive would be returned. 

We have also carried out an evaluation of our 
own in order to check the performance of our 
system only on the extraction the entities (event, 
site and location), not taking into account the 
association to the arguments. Table 5 resumes 
the values of precision, recall and f-measure for 
each type of term. The high recall confirm that 
most of the entities were successful extracted 
although the precision is not always satisfactory, 
proving that the tagging of the entities is not as 
hard a task as it is the mapping of the arguments. 
Additional results and more a detailed analysis 
of the errors may be found at Moara page4. 

4 Conclusions 

Results show that our system has performed 
relatively well using a simple methodology of a 
machine learning based extraction of the entities 
and manual rules developed for the post-

                                                           
4 http://moara.dacya.ucm.es/results_shared_task.html 

processing step. The analysis of the mistakes 
presented here confirms the complexity of the 
tasks proposed but not the extraction of the 
event terms (cf. Table 5). 

We consider that the part of our system that 
requires most our attention is the retrieval of the 
case-solution and the theme detection of the 
post-processing step, in order to increase the 
precision and recall, respectively. The decision 
of searching for a second theme and of associat-
ing a single event separately to more than one 
theme is hard to be accomplished by manual 
rules and could better be learned automatically 
using a machine learning algorithm. 
 

(f2m1) (f2m6) Events p r fm p r fm 
prot. catab. 70.8 89.5 79.1 69.6 84.2 76.2 
phosphoryl. 75.0 94.7 83.7 79.1 89.5 84.0 
transcript. 22.7 75.9 34.9 36.4 74.6 48.9 
neg. reg. 26.4 56.5 36.0 25.3 43.5 32.0 
pos. reg. 24.3 63.7 35.2 26.5 59.1 36.6 
regulation 20.8 65.9 31.7 22.1 52.5 31.1 
localizat. 47.7 79.5 59.6 49.1 66.7 56.5 
gene expr. 46.5 83.4 59.7 50.8 80.2 62.2 
binding 29.7 71.1 41.9 29.7 64.4 40.7 
entity 12.5 55.3 20.4 16.8 50.0 25.1 
TOTAL 27.5 69.2 39.4 30.9 62.9 41.4 
Table 5: Evaluation of the extraction of the event and 
site/location entities for the development dataset. 

 
The automatic analysis of the false positive and 
false negative mistakes is a hard task since no 
hint is given for the reason of the mistake by the 
evaluation system, if due to the event type or to 
wrong theme, an incorrectly association to an 
event or even a missing cause or site.  
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Abstract

This work describes a system for the tasks
of identifying events in biomedical text and
marking those that are speculative or negated.
The architecture of the system relies on
both Machine Learning (ML) approaches and
hand-coded precision grammars. We submit-
ted the output of our approach to the event ex-
traction shared task at BioNLP 2009, where
our methods suffered from low recall, al-
though we were one of the few teams to pro-
vide answers for task 3.

1 Introduction

We present in this paper our techniques for the tasks
1 and 3 of the event extraction shared task at BioNLP
2009. We make use of both Machine Learning (ML)
approaches and hand-coded precision grammars in
an architecture that combines multiple dedicated
modules. In the third task on negation/speculation,
we extract extract rich linguistic features resulting
from our HPSG high-precision grammar to train an
ML classifier.

2 Methodology

2.1 Task 1: Shallow Features and CRFs

Our system consists of two main modules, the first
of which is devoted to the detection of event trigger
words, and the second to event–theme analysis.

2.1.1 Trigger-word detection
We developed two separate systems to perform

trigger word detection, and also a hybrid system

which combines their outputs. The first system is
a simple dictionary-based look-up tagger; the sec-
ond system learns a structured model from the train-
ing data using conditional random fields (CRFs).
For pre-processing, we relied on the domain-specific
token and sentence splitter from the JULIE Lab
(Tomanek et al., 2007) and the GENIA tagger for
lemmatisation, POS tagging, chunking, and protein
detection (Tsuruoka et al., 2005).

The look-up tagger operates by counting the oc-
currences in the training data of different event tags
for a given term. Over the development and test data,
each occurrence of a given term is assigned the event
class with the highest prior in the training data. We
experimented with a frequency cut-off that allows us
to explore the precision/recall trade-off.

Our second system relies on CRFs, as imple-
mented in the CRF++ toolkit (Lafferty et al., 2001).
CRFs provide a discriminative framework for build-
ing structured models to segment and label sequence
data. CRFs have the well-known advantage that they
both model sequential effects and support the use of
large numbers of features. In our experiments we
used the following feature types: word-forms, lem-
mas, POS, chunk tags, protein annotation, and gram-
matical dependencies. For dependency annotation,
we used the Bikel parser and GDep as provided by
the organisers. This information was provided as a
feature that expresses the grammatical function of
the token. We explored window sizes of±3 and±4.

Finally, we tested combining the outputs of the
look-up tagger and CRF, by selecting all trigger
words from both outputs.

77



2.1.2 Event-theme construction
We constructed the output for task 1 by differenti-

ating among three types of events, according to their
expected themes: basic events, binding events, and
regulation events. We applied a simple strategy, as-
signing the closest events or proteins within a given
sentence as themes.

For the basic events, we simply assigned the clos-
est protein, an approach that we found to perform
well over the training and development data. For
binding events, we estimated the maximum dis-
tance away from the event word(s) for themes, and
the maximum number of themes. For regulation
events, we had to choose between proteins or events
as themes, and the CAUSE field was also required.
Again, we relied on a maximum distance threshold,
and gave priority to events over proteins as themes.
We removed regulation events as theme candidates,
since our basic approach could not indicate the di-
rection of the regulation. We also tested predicting
the CAUSE by relying on the protein closest to the
regulation event.

2.2 Task 3: Deep Parsing and Maximum
Entropy classification

For task 3 we ran a syntactic parser over the abstracts
and used the outputs to construct feature vectors for
a machine learning algorithm. We built two classi-
fiers (possibly with overlapping sets of feature vec-
tors) for each training run: one to identify specula-
tion and one for negation. We deliberately built a
separate binary classifier for each task instead of a
single four-class classifier, since the problem natu-
rally decomposes this way. Speculation and nega-
tion are independent of one another (informally, not
statistically) and it enables us to focus on feature en-
gineering for each subtask.

2.2.1 Deep Parsing with the ERG
It seemed likely that syntactico-semantic analysis

would be useful for task 3. To identify negation or
speculation with relatively high precision, it is prob-
able that knowledge of the relationships of possibly
distant elements (such as the negation particle not)
to a particular target word would provide valuable
information for classification.

Further to this, it was our intention to evaluate
the utility of deep parsing in such an approach,

rather than a shallower annotation such as the out-
put of a dependency parser. With this in mind,
we selected the English Resource Grammar1 (ERG:
Copestake and Flickinger (2000)), an open-source,
broad-coverage high-precision grammar of English
in the HPSG framework.

While the ERG is relatively robust across dif-
ferent domains, it is a general-purpose resource,
and there are some aspects of the language used in
the biomedical abstracts that cause difficulties; un-
known word handling is especially important given
the nature of terms in the domain. Fortunately we
can make some optimisations to mitigate this. The
GENIA tagger mentioned in Section 2.1.1 provides
both POS and named entity annotations, which we
used to constrain the input to the ERG in two ways:

• Biological named entities identified by the GE-
NIA tagger are flagged as such, and the parser
does not attempt to decompose them.

• POS tags are appended to each input token to
constrain the token to an appropriate category
if it is absent from the ERG lexicon.

With these modifications to the parser, as well as
preprocessing to handle differences in the tokenisa-
tion expected by the ERG to the output of the tagger,
we were able to obtain a spanning parse for 72% of
the training sentences. This still leaves 28% of the
sentences inaccessible – the need for a fallback strat-
egy is discussed further in Section 4.2.

2.2.2 Feature Extraction from RMRSs
Rather than outputting syntactic parse trees, the

ERG can also produce output in particular semantic
formalisms: Minimal Recursion Semantics (MRS:
Copestake et al. (2005)) and the closely related Ro-
bust Minimal Recursion Semantics (RMRS: Copes-
take (2004)). For our feature generation here we
make use of the latter.

Figure 1 shows an example RMRS obtained from
one of the training documents. While there is in-
sufficient space to give a complete treatment here,
we highlight several aspects for expository purposes.

1Specifically the July 2008 version, downloadable from
http://lingo.stanford.edu/ftp/test/
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l1,
{ l3: thus a 1〈62:67〉(e5, ARG1: h4),

l16: generic unk nom rel〈68:78〉(x11, CARG: ‘nf- kappa b’),
l6: udef q rel〈68:89〉(x9, RSTR: h8, BODY: h7),
l10: compound rel〈68:89〉(e12, ARG1: x9, ARG2: x11),
l13: udef q rel〈68:89〉(x11, RSTR: h15, BODY: h14),
l101: activation n 1〈79:89〉(x9),
l17: neg rel〈94:97〉(e19, ARG1: h18),
l20: require v 1〈98:106〉(e2, ARG1: u21, ARG2: x9),
l102: parg d rel〈98:106〉(e22, ARG1: e2, ARG2: x9),
l103: for p〈107:110〉(e24, ARG1: e2, ARG2: x23),
l34: generic unk nom rel〈111:129〉(x29,

CARG: ‘neuroblastoma cell’),
l25: udef q rel〈111:146〉(x23, RSTR: h27, BODY: h26),
l28: compound rel〈111:146〉(e30, ARG1: x23, ARG2: x29),
l31: udef q rel〈111:146〉(x29, RSTR: h33, BODY: h32),
l104: differentiation n of〈130:146〉(x23, ARG1: u35) },
{ h4 qeq l17, h8 qeq l10, h15 qeq l16, h18 qeq l20, h27 qeq l28,

h33 qeq l34 },
{ l10 in-g l101, l20 in-g l102, l20 in-g l103, l28 in-g l104 }

Figure 1: RMRS representation of the sentence Thus NF-
kappa B activation requires neuroblastoma cell differ-
entiation showing, in order, elementary predicates, qeq-
constraints, and in-g constraints

The primary component of an RMRS is bag of ele-
mentary predicates, or EPs. Each EP shown has: (a)
a label, such as ‘l104’; (b) a predicate name, such as
‘ differentiation n 1’ (where ‘n’ indicates the part-
of-speech); (c) character indices to the source sen-
tence; and (d) a set of arguments. The first argu-
ment is always ARG0 and is afforded special sta-
tus, generally referring to the variable introduced by
the predicate. Subsequent arguments are labelled ac-
cording to the relation of the argument to the pred-
icate. Arguments can be variables such as ‘e30’ or
‘x23’ (where the first letter indicates the nature of
the variable – ‘e’ referring to events and ‘x’ to enti-
ties), or handles such as ‘h33’.

These handles are generally used in the qeq con-
straints, which relate a handle to a label, indicating
a particular kind of outscoping relationship between
the handle and the label – either that the handle and
label are equal or that the handle is equal to the label
except that one or more quantifiers occur between
the two (the name is derived from ‘equality mod-
ule quantifiers’). Finally there are in-g constraints
which indicate that labels can be treated as equal.
For our purposes this simply affects which qeq con-
straints they participate in – for example from the
in-g constraint ‘l28 in-g l104’ and the qeq constraint

‘h27 qeq l28’, we can also infer that ‘h27 qeq l104’.
In constructing features, we make use of:

• The outscopes relationship (specifically qeq-
outscopes) – if EP A has a handle argument
which qeq-outscopes the label of EP B, A is
said to immediately outscope B ; outscopes is
the transitive closure of this.

• The shared-argument relationship, where EPs
C and D refer to the same variable in one
or more of their argument positions. We also
in some cases make further restrictions on the
types of arguments (ARG0 , RSTR , etc) that
may be shared on either end of the relationship.

2.2.3 Feature Sets and Classification
Feature vectors for a given event are constructed

on the basis of the trigger word for the particular
event, which we assume has already been identified;
a natural consequence is that all events with the same
trigger words have identical feature vectors. We use
the term trigger EPs to describe the EP(s) which cor-
respond to that trigger word – i.e. those whose char-
acter span encompasses the trigger word. We have
a potentially large set of related EPs (with the kinds
of relationships described above), which we filter to
create the various feature sets, as outlined below.

We have several feature sets targeted at identify-
ing negation:

• NEGOUTSCOPE2: If any EPs in the RMRS
have predicate names in { no q, but+not c,
nor c, only a, never a, not+as+yet a,
not+as+yet a, unable a, neg rel}, and that

EP outscopes a trigger EP, set a general feature
as well as a specific one for the particle.

• NEGCONJINDEX: If any EPs in the RMRS
have predicate names in { not c, but+not c,
nor c}, the R-INDEX (RHS of a conjunction)

of that EP is the ARG0 a trigger EP, set a gen-
eral feature as well as a specific one for the par-
ticle – capturing the notion that these conjunc-
tions are semantically negative for the particle
on the right. This also had a corresponding fea-
ture for the L-INDEX of nor c, corresponding
to the LHS of the neither...nor construction.
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• ARG0NEGOUTSCOPEESA: For any EPs
which have an argument that matches the
ARG0 of a trigger EP, if they are outscoped
by an EP whose predicate name is in
the list { only a, never a, not+as+yet a,
not+as+yet a, unable a, neg rel}, set a gen-

eral feature to true, as well as features for the
name of the outscoping and outscoped EPs.
This is designed to catch trigger EP which are
nouns, where the verb of which they are subject
or object (or indeed an adjective/preposition to
which they are linked) is semantically negated.

And several targeted at identifying speculation:

• SPECVOBJ2: if a verb is a member of
the set { investigate, study, examine, test,
evaluate, observe} and its ARG2 (which cor-

responds to the verb object) is the ARG0 of a
trigger EP. This has a general feature for if any
of the verbs match, and a feature which is spe-
cific to each verb in the target list.

• SPECVOBJ2+WN: as above, but augment the
list of seed verbs with a list of WordNet sisters
(i.e. any lemmas from any synsets for the verb),
and add a feature which is set for the seed verbs
which gave rise to other sister verbs.

• MODALOUTSCOPE: modal verbs (can, should,
etc) may be strong indicators of specula-
tion; this sets a value when the trigger EP is
outscoped by any predicate corresponding to a
modal, both as a general feature and a specific
feature for the particular modal.

• ANALYSISSA: the ARG0 of the trigger EP is
also an argument of an EP with the predicate
name analysis n. Such constructions involv-
ing the word analysis are relatively frequent in
speculative events in the data.

And some general features, aiming to see if the
learning algorithm could pick up other patterns we
had missed:

• TRIGPREDPROPS: Set a feature value for the
predicate name of each trigger EP, as well as
the POS of each trigger EP.

• TRIGOUTSCOPES: Set a feature value for the
predicate name and POS of each EP that is
outscoped by the trigger EP.

• MODADJ: Set a feature value for any EPs
which have an ARG1 which matches the ARG0
of the trigger EP if their POS is marked as ad-
jective or adverb.

• +CONJ: This is actually a variant on the feature
extraction method, which attempts to abstract
away the effect of conjunctions. If the trigger
EP is a member of a conjunction (i.e. shares
an ARG0 with the L-INDEX or R-INDEX of a
conjunction), also treat the EPs which are con-
junction parents (and their conjunctive parents
if they exist) as trigger EPs in the feature con-
struction.

2.2.4 Implementation
To produce training data to feed into a classifier,

we parsed as many sentences as possible using the
ERG, and used the output RMRSs to create train-
ing data using various combinations of the feature
sets described above. The construction of features,
however, presupposes annotations for the events and
trigger words. For producing training data, we used
the provided trigger annotations. For the test phase,
we simply use the outputs of the classifier we built
in phase 1, selecting the combination with the best
performance over the development set. This pipeline
architecture places limits on annotation performance
– in particular, the recall in task 1 is an upper bound
on task 3 recall. We used a maximum entropy clas-
sification algorithm for the ML component here – it
has a low level of parameterization and is a solid per-
former in NLP tasks. The implementation we used
was Zhang Le’s Maxent Toolkit.2

3 Development experiments

3.1 Task 1
We devised a set of experiments over the trial, train-
ing, and development data in order to estimate the
parameters for our final submission. Using the trial
data, we performed manual error analysis on the
rules used to construct events. With the training

2http://homepages.inf.ed.ac.uk/s0450736/
maxent_toolkit.html
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data, we performed our own evaluation based on
cross-validation to detect trigger words and con-
struct events. For the experiments over the devel-
opment data, we relied on the evaluation interface
provided by the organisation. We focused on testing
the following modules: look-up tagger, CRF, com-
bined system, and event construction.

First, we tuned the parameters of our look-up tag-
ger over the training data. We used a threshold on
the minimum number of term occurrences required
to use the class information for that term from the
training data. We evaluated thresholding on raw fre-
quencies, and also on the percentage of occurrences
of the term that were linked to the majority event. In
cross-validation over the training data, we found that
the raw-frequency threshold worked best, achiev-
ing a maximum F-score of 38.86%, as compared to
30.81% for the percentage approach (the results are
shown in the bottom part of Table 1). We also es-
timated the frequency threshold as ≥ 25, and ob-
served that most of the terms identified consisted of
a single word, due to data sparseness in the training
set.

Our next experiments are devoted to the CRF sys-
tem, focusing on feature engineering. The results
over the training data for: (a) the full feature set, and
(b) removing one feature type at a time, are shown
in Table 1, for windows of size ±3 and ±4. We can
see that the best F-score is achieved by the±3 word-
window system when removing the syntactic depen-
dencies from Bikel’s parser. These results improved
over the look-up system.

As a final experiment on feature combinations
and window size, we used the development evalu-
ation interface. We submitted the best combinations
shown in the above experiment, and also syntactic
dependencies extracted with GDep. We observed
the same behaviour as in training data, with the ±3
word window obtaining the best F-score, and syn-
tactic dependencies harming performance. These re-
sults are shown in the upper part of Table 2. Our
final CRF system used this configuration (±3 word
window and all feature types except syntactic depen-
dencies).

Our next step was to test the integration of the
look-up tagger and CRF into a single system. We
observed that by combining the outputs directly we

W. size Feats. Rec. Prec. FSc.
±3 All 30.28 64.44 41.20
±3 −synt. dep. 30.20 65.01 41.24
±3 −protein NER 28.04 65.73 39.31
±3 −chunking 30.13 65.16 41.20
±3 −POS 29.68 65.25 40.80
±3 −lemma 27.96 62.60 38.66
±3 −word form 29.98 63.81 40.79
±4 All 28.86 66.15 40.19
±4 −synt. dep. 29.75 67.06 41.22
±4 −protein NER 28.11 66.73 39.56
±4 −chunking 28.56 66.61 39.98
±4 −POS 28.19 66.67 39.62
±4 −lemma 26.55 65.20 37.73
±4 −word form 28.19 65.28 39.38
Look-up (freq.) 52.14 30.97 38.86
Look-up (perc.) 38.20 25.82 30.81

Table 1: Trigger-word detection performance over train-
ing data. Results for the look-up tagger and CRFs with
the full feature set and when removing one feature type
at a time, for 3 and 4 word windows. The best results per
column are shown in bold.

W. size Feats. Rec. Prec. FSc.
±3 All - synt. 17.55 56.17 26.75
±4 All - synt. 17.38 56.75 26.62
±3 All (GDep) 15.48 58.69 24.50
Combined (All) 26.94 27.83 27.38
Combined (Best) 21.24 39.92 27.73

Table 2: Performance of selected feature and window-
size combinations over development data. Best results
per column are given in bold.

could improve over the recall of CRF, and achieve
higher F-score. This approach is referred to as
“Combined (All)” in Table 2. We also tested the
results when choosing either the look-up tagger or
CRF depending on their performance over each
event in the training data. The results of this sys-
tem (“Combined (Best)”) show a slight improve-
ment over the basic combination.

Finally, we analysed the results of the event con-
struction step. We used the gold-standard trigger an-
notation over the trial data and analysed the errors of
our rules. We found out that there were three main
types of error: (1) incorrect assignation of regulation
themes; (2) trigger words having multiple themes;
and (3) themes crossing sentence boundaries. We
plan to address these problems in future work. We
also observed that predicting CAUSE for the regula-
tory events caused the F-score to drop, resulting in
us removing this functionality from the system.
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N1: NEGOUTSCOPE2+CONJ, NEGCONJINDEX
N2: N1, TRIGPREDPROPS
N3: N1, ARG0NEGOUTSCOPEESA
N4: N3, TRIGPREDPROPS, NEGVOUTSCOPE
N5: N3, NEGVOUTSCOPE

S1: SPECVOBJ2+WN+CONJ, ANALYSISSA
S2: S1, TRIGPREDPROPS
S3: S1, MODADJ, MODALOUTSCOPE
S4: S3, TRIGOUTSCOPES
S5: SPECVOBJ2+WN+CONJ, MODADJ,

MODALOUTSCOPE,TRIGOUTSCOPES

B+y
−x: Context window of lemmatized tokens: x preceding and y

following.

Table 3: Task 3 feature sets

3.2 Task 3

We evaluated the classification performance of vari-
ous feature sets (including some not described here)
using 10-fold cross-validation over the training data
in the initial stages. We ran various combinations of
the most promising features over the development
data and evaluated their relative performance in an
attempt to avoid overfitting.

To evaluate the performance boost we got in task
3 relative to more naive methods, we also experi-
mented with feature sets based on a bag-of-words
approach with a sliding context window of lemma-
tised tokens on either side. We evaluated all com-
binations of preceding and following context win-
dow sizes from 0 to 3. There are features for tokens
that precede the trigger, follow the trigger, or lie any-
where within the context window, as well as for the
trigger itself. A ‘token’ here may also be a named
biological entity (protein etc) produced by GENIA
tagger in our preprocessing phase, which would not
be lemmatised. For comparability we only evaluate
these features for sentences which we were able to
parse. For the best performing baseline and RMRS-
based feature sets, we also tested them in combina-
tion to see whether the features produced were com-
plementary.

In Table 4 we present the results over the develop-
ment data, using the provided gold-standard annota-
tions of trigger words, as well as some selected re-
sults for our other task 1 outputs. The gold-standard
figures are unrealistically high compared to what
we would expect to achieve against the test data,
but they are indicative at least of what we could
achieve with a perfect event classifier. Similar to

Task 1 Mod Feats. Rec. Prec. FSc.
Gold Spec B+2

−2 23.2 40.0 29.3
Gold Spec B+3

−3 22.1 47.7 30.2
Gold Spec S2 15.8 83.3 26.5
Gold Spec S3 18.9 78.3 30.5
Gold Spec S3,B+2

−2 21.1 58.8 31.0
Gold Spec S3,B+3

−3 23.2 57.9 33.1
Comb(best) Spec S3 4.2 21.0 7.0
Gold Spec S4 17.9 94.4 30.1
Gold Spec S5 17.9 100.0 30.4
Gold Neg B+0

−2 14.0 33.3 19.7
Gold Neg B+1

−3 15.0 30.2 20.0
Gold Neg N2 19.6 61.8 29.8
Comb(best) Neg N2 0.9 7.7 1.7
Gold Neg N3 15.9 68.0 25.8
Gold Neg N4 19.6 67.7 30.4
Gold Neg N4,B+1

−3 22.4 52.2 31.4
Gold Neg N4,B+0

−2 24.3 68.4 35.9
Gold Neg N5 16.8 69.2 30.1

Table 4: Results (exact match) over development data
for task 3 using gold-standard event/trigger annotations
and selected other annotations for task 1. Feature sets
described in Table 3

task 1, our system shows reasonable precision but
suffers badly in recall. The substantially poorer per-
formance when using our own annotations for the in-
put events is discussed in more detail in Section 4.2

One area where we could improve is to go after
the 30% of sentences for which we do not have a
spanning parse and resultant RMRS. To reuse ex-
isting infrastructure, we could produce RMRS out-
put from an alternative processing component with
broader coverage but less precision. Several meth-
ods exist to do this – e.g. producing RMRS out-
put from RASP (Briscoe et al., 2006) is described in
Frank (2004). However there is clearly room for im-
provement in the remaining 70% of sentences which
we can parse – our results in Table 4 are still well
below the limit of roughly 70% recall.3

Additional lexical resources beyond WordNet,
particularly domain-specific ones, are likely to be
useful in boosting performance since they will help
maximally utilise the training data. Additionally,
we have not yet made use of other event annota-
tions apart from the trigger words – features based
on characteristics such as the event class or proper-
ties of the event arguments could also be useful.

3We have not performed any analysis to verify whether the
number of events per sentence differs between parseable and
unparseable sentences.
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System Rec. Prec. FSc.
Combined (Best) 17.44 39.99 24.29
Combined (All) 24.36 30.87 27.23
CRF 12.23 62.24 20.44
CRF (+ synt feats) 12.01 61.91 20.11
Look-Up 22.88 29.67 25.84
Look-Up (freq >= 20) 23.26 26.74 24.88
Look-Up (freq >= 30) 21.37 30.50 25.13

Table 5: Task 1 results with approximate span matching,
recursive evaluation (our final submission is in bold)

4 Results

4.1 Task 1

Our experiments on the training and development set
showed that our CRF++ was biased towards preci-
sion at the cost of recall, and for the look-up system
the best F-score was obtained when aiming for high
recall at the cost of lower precision. The best results
were obtained when combining both approaches,
and this was the composition of the system we sub-
mitted.

For our final submission, the CRF++ approach
had a ±3 word window, and all the features ex-
cept for syntactic dependencies, which were found
to harm performance. Our final look-up system re-
lied on raw frequencies to choose candidate terms,
and those above 24 occurrences in training data were
included in the dictionary. For the combination, we
observed that for most events the look-up system
performed better (although the overall F-score was
lower), and we decided to use the CRF++ output
only for the events that showed better performance
than the look-up system (TRANSCRIPTION, GENE

EXPRESSION, and POSITIVE REGULATION).
The results over the test data for our final submis-

sion and the main variants we explored are shown in
Table 5. We can see that the CRF performed poorly,
with very low recall over the test set, in contrast with
the development results, where the higher recall re-
sulted in a higher F-score than the look-up approach.
The best of our systems was the full combination of
CRF and the look-up tagger, with a 27.23% F-score.

The results for each event separately are given in
Table 6. The system performs much worse on regu-
lation events, due to the difficulty of having to cor-

Event Class Rec. Prec. FSc.
Localization 25.86 65.22 37.04
Binding 17.00 28.92 21.42
Gene-expression 45.71 69.18 55.05
Transcription 34.31 26.26 29.75
Protein-catabolism 42.86 85.71 57.14
Phosphorylation 45.19 64.21 53.04
EVT-TOTAL 35.84 53.15 42.81
Regulation 15.46 13.24 14.26
Positive-regulation 13.84 14.82 14.31
Negative-regulation 12.14 20.44 15.23
REG-TOTAL 13.73 15.31 14.48
ALL-TOTAL 24.36 30.87 27.23

Table 6: Results for the different events from our com-
bined system. Averaged scores for single events, regula-
tions, and all.

rectly identify other events in the near context.

4.2 Task 3

For testing, we repurposed all of the development
data as training data and retrained our classifiers.
The results in Table 7 were somewhat disappointing,
but a drop in recall versus the equivalent run over
the development data using oracle task 1 annotations
was unsurprising and the ratio of this drop is within
the bounds of what we would expect. The substan-
tial drop in precision can similarly be explained by
flow-on effects from our task 1 classification, a nat-
ural consequence of our pipeline architecture. It is
quite possible for our system to identify false pos-
itive events as being modified; in the online eval-
uation system, these classifications of non-existent
events reduce our precision in task 3.

In the feature engineering stage, we primarily
used the oracle data for task 1 to maximise the
amount of training data available. We felt that if we
were to use our task 1 classifications for events and
trigger words, the effectively lower number of train-
ing instances would only hurt performance. How-
ever this possibly led to bias towards features which
were more useful for classifying events that we
couldn’t successfully classify in task 1. The devel-
opment set shows similar performance drops under
these conditions in Table 4.

It is also possible that our features work reason-
ably but that our classification engine trained over
the oracle data simply learnt the wrong parameters
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Task 1 Mod Fts. Rec. Prec. FSc.
Comb(Best) Spc B+3

−3 2.88 12.24 4.67
Comb(Best) Spc S2 4.33 37.50 7.76
Comb(Best) Spc S3 4.81 30.30 8.30
Comb(All) Spc S3 5.29 26.19 8.80
Comb(Best) Spc S3,B+3

−3 4.81 14.08 7.17
Comb(Best) Spc S4 3.85 27.59 6.75
Comb(Best) Spe S5 3.85 27.59 6.75
Comb(Best) Neg B+3

−1 3.96 25.00 6.84
Comb(Best) Neg N2 5.29 34.48 9.17
Comb(All) Neg N2 5.73 30.00 9.62
Comb(Best) Neg N3 5.29 27.78 8.88
Comb(Best) Neg N4 5.29 34.48 9.17
Comb(Best) Neg N4,B+0

−2 4.85 28.12 8.27
Comb(All) Neg N4 5.73 27.27 9.47
Comb(Best) Neg N5 5.29 29.41 8.96

Table 7: Results over test data for task 3 using gold-
standard event annotations (approx recursive matching),
showing which set of trigger word classifications from
task 1 was used as input (submitted results in bold). Fea-
ture sets described in table 3

for the events we had identified correctly in task 1.
We could check this by training a classifier using
our task 1 event classifications combined with the
gold-standard trigger annotations. However com-
bining the gold-standard annotations for task 3 with
the classifier outputs of task 1 is non-trivial and was
not attempted due to time constraints. It also would
have been instructive to calculate a ceiling on our
task 3 performance given our performance in task 1
– i.e. how many modifications we could have cor-
rectly identified with a perfect task 3 classifier, but
we were not able to show this for similar reasons.

5 Conclusions

Our analysis of task 1 seemed to indicate that the
scarcity of training instances was the main reason
for the low recall of CRFs. The look-up system con-
tributed to increase the recall, but at the cost of lower
precision. In order to improve this module we plan
to find ways to extend the training data automatically
in a bootstrapping process.

Another limitation of our system is the event-
construction module, which follows simple rules
and performs poorly on regulation events. For this
subtask we plan to extend the rule set and apply op-
timisation techniques, following the lessons learned
in error analysis.

In task 3 we investigated the application of a pre-

cise, general-purpose grammar over this domain,
and were relatively successful. However, while the
parse coverage for task 3 is very respectable for a
precision grammar on comparatively difficult mate-
rial, it is clearly unwise to throw away 30% of sen-
tences, so a method to extract features from these is
desirable. Further sources of data would also be use-
ful, such as data from the event annotations them-
selves, and additional lexical resources tailored to
the biomedical domain.

We have also shown the syntactico-semantic out-
put of a deep parser, in the form of an RMRS, can
be beneficial in such a task compared with a more
naive approach based on bags of words within a
sliding context window. From Table 4, for nega-
tion, the syntactic features provided substantial per-
formance gains over the best set of baseline param-
eters we could find. For speculation the evidence
here is less compelling, with similar scores from
both approaches. Over test data in Table 7, the the
deep methods showed superior performance, albeit
over a smaller number of instances. Regardless, the
RMRS still has some advantages, giving (unsurpris-
ingly) higher precision than the baseline methods.
Combining naive and deep features does tend to give
slightly higher performance than either of the inputs
over the development data (although not over the test
data, perhaps due to the poorer performance of naive
methods), suggesting that the two approaches iden-
tify slightly different kinds of modification.

Our system suffered from the pipeline approach –
there was no way to recover from an incorrect classi-
fication in task 1, resulting in greatly reduced preci-
sion and recall in task 3. It is possible that a carefully
constructed integrated system could annotate events
for trigger words and argument at the same time as
modification, with features shared between the two,
which may avoid some of these issues.
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Abstract

We present an approach for extracting molec-
ular events from literature based on a deep
parser, using in a query language for parse
trees. Detected events range from gene ex-
pression to protein localization, and cover a
multitude of different entity types, including
genes/proteins, binding sites, and locations.
Furthermore, our approach is capable of rec-
ognizing negation and the speculative char-
acter of extracted statements. We first parse
documents using Link Grammar (BioLG) and
store the parse trees in a database. Events are
extracted using a newly developed query lan-
guage with traverses the BioLG linkages be-
tween trigger terms, arguments, and events.
The concrete queries are learnt from an an-
notated corpus. On BioNLP Shared Task data,
we achieve an overall F1-measure of 29.6%.

1 Introduction

Biomedical text mining aims at making the wealth
of information available in publications available for
systematic, automatic studies. An important area of
biomedical text mining is concerned with the ex-
traction of relationships between biological entities,
especially the extraction of protein–protein inter-
actions from PubMed abstracts (Krallinger et al.,
2008). The BioNLP’09 Shared Task addresses the
problem of extracting nine different types of molec-
ular events (Kim et al., 2009) and thus targets a
problem that is considerable less-well studied than
protein-protein interactions. Such molecular events
include statements about the expression level of
genes, the binding sites of proteins, and the up/down

regulation of genes, among others. All events fo-
cus on genes/proteins and may include only a single
protein (e.g., protein catabolism), multiple proteins
(e.g., binding), and other arguments (e.g., phospho-
rylation site; protein location). The most complex
type of event considered in the task are regulations,
which may refer to other events (negative regulation
of gene expression) and may also include causes as
arguments. The task also addresses the problem that
experimental findings often are described in a defen-
sive manner (“Our results suggest ...”) or may appear
in negated context. This meta-information about an
extracted event should be taken into account when
text mining results are used in automated analysis
pipelines, but recognizing the degree of confidence
that can be put into an event adds further complex-
ity to the task. Overall, the three tasks in BioNLP’09
are:1) event detection and characterization,2) event
argument recognition, and3) recognition of nega-
tions and speculations.

The approach we present in this paper addresses
all three tasks. Essentially, our system consists of
three components: A deep parser, a query language
for parse trees, and a set of queries that extract spe-
cific events from parse trees. First, we use the Bio-
LG parser (Pyysalo et al., 2006) for parsing sen-
tences into a graph-like structure. Essentially, Bio-
LG recognizes the syntactic structure of a sentence
and represents this information in a tree. It adds links
between semantically connected elements, such as
the links between a verb and its object and sub-
ject. Second, we store the result of BioLG in a re-
lational database. This information is accessed by a
special-purpose query language (Tu et al., 2008) that
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Figure 1: Parse tree where constituents are connected by
solid lines, linkages between terminals shown as dotted
lines. E: adverb to verb, S: subject to verb, O: verb to
object.

matches a user-defined linguistic pattern describ-
ing relationships between terms (the query) to the
database of stored graphs. The query language thus
is a powerful, scalable, extensible, and systematic
way of describing extraction patterns. Using these
tools, we can solve the BioNLP tasks by means of a
set of queries, extracted from the training data set.

2 Methods

The Link Grammar parser is a deep syntactic parser
based on the Link Grammar theory (Sleator and
Temperley, 1993), which consists of a set of words
and linking requirements between words. The par-
ticular implementation of Link Grammar parsing we
use in our system is the BioLG parser described
in Pyysalo et al. (2006), which modifies the origi-
nal parser by extending its dictionary and by adding
more rules for guessing structures when facing un-
known words. The output of the parser is twofold:
it produces aconstituent tree as well as alinkage
that shows the dependencies between words. In Fig-
ure 1, solid lines indicate parent-child relationships
in the constituent tree, and dotted lines represent the
linkage. Three links were detected in the sentence:
S connects the subject-nounRAD53 to the transitive
verb regulates, O connects the transitive verb
regulates to the direct objectDBF4, andE con-
nects the verb-modifying adverbpositively to
the verbregulates.

Our detection of arguments for events is based on
Link Grammar linkages obtained from training data.
Essentially, we automatically extract all shortest link
paths that connect event trigger terms to themes,
themes to sites, themes to locations, and so on. We

+---------------Jp------------+
| +----------CH-------------+
| | +---------CH----------+

+----Mp----+ | | +----CH----+
| | | | | |
expression of P53, Rb, and Bcl-xL proteins

Figure 2: Linkage in a gene expression evidence. Mp:
prepositional phrase modifying a noun; Jp: connects
preposition to object; CH: noun modifier.

describe these examples as queries against a parse
tree, and evaluate these queries on the test data to ex-
tract and assemble events. An example for a linkage
in a gene expression evidence is shown in Figure 2.
It illustrates that the event trigger term ‘expression’
is connected to the three proteins ‘P53’, ‘Rb’, and
‘Bcl-XL’ in exactly the same way.

Our method for event argument recognition is
based on three components. The first parses train-
ing as well as test data using the BioLG parser,
and stores the result in a relational database. The
second component is a query language to search
the databases for known linkages. The third compo-
nent extracts these linkages from training data and
rewrites into such queries. These components are de-
tailed in Sections 2.1 to 2.3. Section 2.4 explains
our methods for context identification with respect
to negations and speculations. Sections 2.5 and 2.6,
finally, explain how we handle anaphora and enu-
merations, respectively.

2.1 Parse Tree Database and Query Language

A fundamental component of our approach is a parse
tree database (PTDB) for storing and querying parse
trees (Tu et al., 2008). PTDB is a relational database
for storing the results of the BioLG parser on arbi-
trary texts. For the task, we parsed all texts from the
training, development and testing data set. Recogni-
tion of entity types (gene etc.) of word tokens relied
on the provided annotation. Each abstract is repre-
sented in a manner that captures both the document
structure (such as title, sections, sentences) and the
parse trees of sentences.

Parse trees in PTDB are accessed by means of
a special purpose query language, called PTQL.
PTQL is an extension to LPath (Bird et al., 2006),
which itself is an adaptation of XPath (XPath, 2009)
to linguistic structures. Essentially, a PTQL query is
a hierarchical pattern that is matched against a set
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of constituent trees together with additional require-
ments on linkages between matches. More specifi-
cally, a PTQL query consists four components de-
limited by colons:1) tree pattern,2) link conditions,
3) proximity conditions, and4) return expression. A
tree pattern describes the hierarchical structure and
the horizontal order between the nodes of a parse
tree, alink condition describes the linking dependen-
cies between nodes, aproximity condition specifies
words that are within a specified number of words
in the sentence, and thereturn expression defines
which variables should be returned as query result.
An example PTQL query is shown in Figure 3.

PTQL queries are evaluated on a PTDB using
a two step process. A query is first translated into
an IR-style keyword query to efficiently filter out
irrelevant sentences. This step is performed out-
side the database using an inverted index built with
Lucene (2009). In the second step, the query is trans-
lated into a complex SQL command which is re-
stricted to the sentence IDs that passed the first step.
This query is evaluated on the database, and the re-
sults are projected onto the return expression.

2.2 Extracting PTQL queries

From all events in the training data, we searched
for the shortest link paths that connected event trig-
gers to themes, themes to sites, themes to locations,
and so on. For each of the different event classes,
we obtained a set of link paths connecting the event
trigger to the theme. Links from themes to sites
(required for phosphorylation, binding, and regula-
tion events) where extracted from all three and then
joined into one set. We transformed all linkages into
PTQL queries, and ran these queries on the develop-
ment and test data sets, respectively. Note that this
entire process is performed automatically. As many
link paths are identical expect for their event trigger
terms, we manually grouped similar terms together;
queries were then expanded automatically to allow
for either one. An example is the following group
of inter-changeable terms that could replace ‘expres-
sion’ in gene expression events (see Figure 3):

expression ≡ {expression, overexpression, coex-
pression, production, overproduction, generation,
synthesis, biosynthesis, transfection, cotransfection}

For evaluation on the development data, we ex-
tracted all queries from the training data; for evalu-

ation on the test set, queries originate from training
and development data together.

2.3 Regular expressions forregulation events

Regarding regulation events, we concentrated on the
recognition of events with only the theme slot filled.
In the training data, 73.8% of the regulations (incl.
positive and negative regulation) do not have any
site, cause, or cause-site arguments/participants. We
addressed this task using regular expressions that
were matched against the annotated sentences in the
PTDB. Therefore, we sought for trigger expressions
of regulation events that immediately precede or fol-
low an annotation (protein name or event trigger).
For all four possible combinations (precede/follow
and protein/trigger) we created regular expressions
that were able to recognize the given patterns, for
example:
• (NOUN:trigger) (of) (PROTEIN), finds
[up-regulation]Trigger:Pos reg of [Fas ligand]Protein

• (PROTEIN) (NOUN:trigger), finds
mediate [IL-8]Protein [induction]Trigger:Pos reg

• (VERB:trigger) (EVENT:trigger), finds
[inhibit]Trigger:Neg reg [secretion]Event:Loc

• (EVENT:trigger) (VERB:trigger), finds
TNF-alpha [release]Event:Loc [peaked]Trigger:Pos reg

The actual patterns also allowed some event class
specific prepositions (of, with, to, etc.) and deter-
miners between the regulation trigger and the pro-
tein or event trigger. However, care has to be taken
as regulation events often are embedded in nested
structures which are not properly recognized by
regular expressions. Therefore, whenever a regula-
tion event pattern had been identified, we also con-
structed another event candidate with the appropri-
ate subexpression as the trigger, such as:

[[IkappaBalpha]Protein induction]]Event:Pos reg

was completely [inhibited]Trigger:Neg reg.

2.4 Context identification to find negations and
speculations

We identifiednegative context of events by simul-
taneously applying four different methods. In the
first three methods, we identified candidatenega-
tion trigger expressions (NTEs) by means of regu-
lar expressions that were created based on the anal-
ysis of surface patterns of negation annotation in the
training set. The fourth method uses the parse trees
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//S{ //N[value=‘expression’](e) -> //PRP[value=‘of’](a)
=> //?[tag=‘gene’](t) -> //N[value=‘gene’](h) }
: e !Mp a and a !Jp t and t !CH h : : e.value, t.value

Figure 3: PTQL query for the extraction of some gene expression event. It searches for a sentence S that contains a
noun ‘expression’, followed by a preposition ‘of’, which isthen followed by a noun phrase (2nd line) that contains a
gene name (‘//?’, any node with tag=gene) and has ‘gene’ as head noun. The link types are specified in the 3rd line
using the variables each node is bound to (e,a,t,h): ‘expression’ has to be connected to ‘of’ with an ‘Mp’ link, the link
from ’of’ to the head noun has to be ’Jp’, and the ‘CH’ link specifies ‘gene’ as head noun. The return values of the
query are the values of nodes ’e’ and ’t’, which are bound to the event trigger ‘expression’ and the gene, respectively.
This query would return all three event/theme pairs from thephrase in Figure 2.

of sentences including negated event using a set of
queries for the identification of candidate NTEs. To
fine tune the combined prediction, we used some
manually encoded exceptions.

1) NTEs inside the trigger of an event: these ex-
pressions are partly or entirely event triggers and
usually suggest negative context, such asinability
andundetectable. In the training set, sometimes an
NTE indicated negation for some event classes but
not for others; we added exceptions to exclude such
NTE–event class combinations (e.g.,deficientwith
a negative regulation).

2) NTEs immediately preceding an annotation
(protein name or event trigger), e.g.,no(t), lack of,
minimal, absence of, cannot, etc.

3) NTEs in the span of all the annotation related
to an event (triggers, attributes recursively): these
NTEs can span over multiple sentences. Starting
with a hand-crafted dictionary of negation context
triggers (Solt et al., 2009), we selected those dictio-
nary items that had a positive effect on overall F1-
measure.

4) NTEs from parse tree patterns: We identi-
fied on the training data parse tree patterns in-
cluding NTEs (using hand-made NTE dictionary)
and protein names or event triggers. Candidate pat-
terns, e.g.,regulate*⇒in⇒but→not⇒in,
were then formulated as queries against the PTDB
and filtered via optimization.

We also applied the parse tree based method to
identify speculation context (details not shown). We
observed that some apparently speculative contexts
were, to our surprise, considered as facts by the an-
notators if the pattern occurred in the last sentence
of the abstract, such as:These data suggests. . .. To
counteract such situations, we developed a pattern-
location heuristic by dividing the abstract into title,

body, and conclusion part. Frequent speculation can-
didate patterns were evaluated separately on each
part and filtered via optimization.

2.5 Resolving anaphora

Almost 8% of all events in the training set span
multiple sentences. Our solution outlined so far
works at the sentence level and is therefore unable
to correctly recognize such events. To overcome
this deficiency, we developed a baseline method
for anaphora resolution, which is implemented as a
pre–processing step. First, we identified all events
spanning multiple sentence in the training set and
collected typical anaphora expressions for proteins
(e.g., this gene, these proteins, both factors). For
each anaphora occurrence in development and test
sets, we searched the closest preceding protein(s);
here we also took into account if the anaphora was
singular or plural. We also expected that resolved
anaphora would generate additional PTQL queries
and would thus improve the overall recall twofold.
Unfortunately we could not analyze the results of
our resolution approach on the train set (due to lack
of time) and could hence not take full advantage of
this idea. So far, we only addressed anaphora refer-
ring to protein(s). Once an anaphora and its refer-
enced expression(s) were recognized, we effectively
duplicated the original sentence with referenced ex-
pressions substituting the anaphora; PTQL queries
would thus run on the original sentence as well as
on the resolved version.

2.6 Handling enumerations

In most cases, PTQL queries were able to correctly
recognize events that involve enumerated entities.
However, when the enumeration included some spe-
cial characters (brackets, slashes) or led to incor-
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rect parse trees, our queries were not able to extract
all annotated events. We applied post-processing to
solve this problem, which was applicable when at
least one protein in the enumeration was annotated
as a part of an event. Post-processing was based on
regular expressions searching for additional proteins
occurring in the neighborhood of an initial one, sep-
arated from it only by an enumeration separator. If
found, the original event was replicated by substitut-
ing the original protein with the new ones.

3 Datasets and results

Statistics concerning event classes and number of in-
stances per event class can be found in the overview
paper for the shared task, see (Kim et al., 2009). All
in all, we extracted 1845 different link paths from
the training data (2197 from training plus devel-
opment) that connect two constituents each (event
trigger term to protein, or protein to site, for in-
stance), corresponding to as many PTQL queries.
Table 1 shows the number of link paths per event
class and argument type. From Table 2, which lists
the top query per event class according to support
in the training data, it becomes obvious that most
events are described in fairly simple ways (“gene
expression” or “ phosphorylation of gene”). Adding
the development data increased the number of events
by 20.8% and the number of unique link paths
by 19.1%. This might indicate that adding more data
in the future will produce less and less new link
paths, but we still observe a decent amount of link
paths yet not covered. Per link path type, the increase
rate ranged from only 9% (localization: theme to at-
loc) over 11-15% for basic events (gene-expression
or transcription trigger term to theme) to almost 27%
(regulation: theme to site).

On the BioNLP’09 Shared Task test set, the
method achieved an F1-score of 45.6% for the ba-
sic types, 9% on regulation events, with a total of
29.3% for Task 2 (see Table 3). On Task 3, the F1-
score was 8.6%. For Task 1, which was handled by
us implicitly with Task 2, the F1-score was 32.1%.
The combined F1-score for all tasks was 29.6%. Pre-
cision was significantly higher than recall in all cases
(overall: 60% precision at 20% recall).

Concerning regulation events, since we only
aimed to recognize the simplest ones with this

Event class: arguments Unique Total
Localization: event-theme 120 237
Localization: theme-atloc 39 56
Localization: theme-toloc 28 43
Binding: event-theme 578 996
Binding: theme-site 64 130
Gene expression: event-theme 447 1507
Transcription: event-theme 208 498
Protein catabolism: event-theme 42 98
Phosphorylation: event-theme 59 153
Phosphorylation: theme-site 34 60
Regulation: event-theme 178 267
Regulation: protein-site 11 40
Regulation: event-csite 2 2
Regulation: event-cause 35 54

Sum 1845 4141

Table 1: Number of link paths per event class and pair of
arguments (based on the training data). Themes are pro-
teins for the first block of events, and proteins or other
events for the three regulation types. atloc: at location,
toloc: to location.

Event class TP FP FN Rec Prec F1
Localization 42 28 132 24.14 60.00 34.43
Binding 69 86 280 19.77 44.52 27.38
Gene expr. 373 99 349 51.66 79.03 62.48
Transcription 22 30 105 16.06 42.31 23.28
Protein cat. 7 5 7 50.00 58.33 53.85
Phosphoryl. 31 57 108 22.30 35.23 27.31
Sub-total 544 305 991 35.44 64.08 45.64
Regulation 1 12 291 0.34 7.69 0.66
Positive reg. 70 146 917 7.09 32.41 11.64
Negative reg. 14 14 365 3.69 50.00 6.88
Reg. total 85 172 1573 5.13 33.07 8.88
Task 2 total 629 477 2564 19.70 56.87 29.26
Negation 9 24 218 3.96 27.27 6.92
Speculation 13 33 195 6.25 28.26 10.24
Task 3 total 22 57 413 5.06 27.85 8.56
Overall 710 475 2907 19.63 59.9229.57

Table 3: Official results for the BioNLP’09 Shared Task
tasks 2 and 3, approximate span, recursive matching.

method, not surprisingly the recall of the method is
very low, but the precision is on par with the ones of
other events (for positive and negative regulation).
The precision gets diminished because only a partial
event was submitted, accounting for a false positive
and false negative.

The post-processing improved the F1-score of
Task 2 slightly (1.2%) for the first 6 events at 3%
better recall and 6% worse precision. For regulation
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Pair Nodes Links Support
Localization↔ theme GENE(t1) => localization(e1) t1→CH→e1 36/237
Binding↔ theme GENE(t1) => association(e1) t1→CH→e1 42/996
Gene expression↔ theme GENE(t1) => expression(e1) t1→CH→e1 347/1507
Transcription↔ theme GENE(t1) => gene(a1) => transcription(e1) t1→CH→a1 and a1→CH→e1 72/498
Protein catab.↔ theme proteolysis(e1) => of(a1) => GENE(t1) e1→M→a1 and a1→J→t1 32/98
Phosphorylation↔ theme phosphorylation(e1) => of(a1) => GENE(t1) e1→M→a1 and a1→J→t1 48/153

Table 2: Queries per argument pair (event↔theme) with the highest support in the training data. All nodes are bound to
variables (round brackets) that are use in the links to depict connections between nodes. Note that all event trigger terms
are placeholders for alternatives (see text): ‘expression’ also refers to instances that used the terms ‘co-expression’,
‘synthesis’, ‘production’, etc. GENE: wildcard for any gene name; RES: residue. CH: links head noun to modifying
noun; M: connects nouns to post-nominal modifiers; J: connects prepositions to objects.

Method TP FP FN P R F1
Inside trigger 15 8 92 65.2 14.0 23.1
Before trigger 62 17 45 78.5 57.9 66.7
Span-based 6 3 101 66.7 5.6 10.3
Parse tree query 4 1 103 60.0 5.6 10.7
(I∪B∪S) 79 27 28 74.5 73.8 74.2
(I∪B∪S∪P ) 82 28 25 76.6 74.6 75.6
I∪B∪S∪P noF 84 79 23 50.9 75.7 60.9

Table 4: Performance for negation context identification
on thedevelopment set. The last row indicates the im-
portance of fine tuning (F): when event class–trigger pair
exceptions and NTE exceptions are not applied, the pre-
cision decreases considerably with only a small increase
in recall. See text for details in each method.

events its impact was higher since for those no Bio-
LG based solution was applied. Its overall effect on
Task 2 was almost a 4% improvement in F1-score
and recall, at 15% decreased precision.

Identification of negative context

Table 4 shows the effectiveness of each method
for the identification of negative context on the de-
velopment set. Searching for the negation inside the
event trigger had little effect on the final results,
since a specific word was rarely identified as being
the trigger of more than one event classes. The most
reliable spot to look for negation was immediately
before the term that triggered the event (lack of ex-
pression of . . .).

Identification of speculation

Table 5 shows the effectiveness of our parse
tree based method for the identification of spec-
ulation context on the development set. With the
use of location-based heuristic we could improve

Method TP FP FN P R F1
w/o location hrst. 53 47 42 53.0 55.8 54.4
with location hrst. 52 34 43 60.5 54.7 57.5

Table 5: Performance of parse tree based speculation
identification, with or without location heuristics; eval-
uated on the development set.

the F1-score of our method by 3%, at 7% bet-
ter precision and 1% worse recall. The parse tree
based method worked significantly better for spec-
ulative context than for negation, because specula-
tions are expressed in less multifarious way, and trig-
ger words are more specific for the context.

3.1 Error analysis

An analysis of false positives (FP) and false neg-
atives (FN) revealed the following main types of
errors (in order of decreasing gravity). Our system
produced much better precision than recall, which is
reflected in dominance of FNs over FPs. Note that,
as we used parse trees on training and test data, parse
errors result both in incorrect queries and wrongly
extracted results. Some of these errors, mainly due
to missing or incorrect parse trees or links, could be
recovered by the post-processing if the surface pat-
terns were simple.
1. FNs: no corresponding link path query
2. FNs: there exists a corresponding yet slightly
different link
3. FNs: query links to a (pre or post) modifier of the
gene, but not the actual gene name
4. FNs: query misses one argument
5. FPs: wrong event categorization (mostly gene
expression vs. transcription)
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6. FNs: unseen event trigger term, location, or site
7. FPs: wrong despite perfect match wrt. a link path
from the training data
8. FNs, FPs: incorrect or partial parse tree
9. FNs: problems with anaphora, brackets, or
enumerations

We discuss these error classes in more detail. The
first problem may be attributed to the small size
of the training data, but is also a general property
of pattern-based methods in NLP. The second class
stems from the current inability of our query lan-
guage to deal with morpho-syntactical variation in
language (see next Section). A large portion (3) of
false negatives was due to link paths that went to
the gene/theme in the training data, but to the head
of a noun phrase that contained a gene/theme in the
test data (or vice versa); or the link went to a noun
pre-modifier. An example is the following, where
the first phrase originates from the training data and
gene is placeholder for the actual gene/protein name:

“... phosphorylatesgene ...”
“... phosphorylatesgene protein ...”
“... phosphorylates X domain ofgene ...”

In all three cases, there is a link from the verb to its
object, but in the lower two examples, that object is
‘protein’ and ‘domain’, respectively. Only for a few
such cases, all three link paths were contained in the
training data.

For 5% of the false positive events (5), we
predicted the wrong event class, while all trigger
terms/arguments were correct. Half of those were
mix-ups of positive regulation, predicted as gene ex-
pression; another group has gene expression pre-
dicted as localization. 13% of FPs were a result of
both: the prediction was part of a corresponding FN
(but some argument was missing), and at the same
time we predicted the wrong type. For a small frac-
tion (1.5%) of false negative events on the devel-
opment set, we found a corresponding false posi-
tive event where one argument (ToLoc, Cause, Site,
Theme2) was missing; 11 of those were binding
events (comprising 9% of FNs for binding).

A relatively small portion of false negatives were
due to non-existing linkages (8) for a sentence. We
stopped parsing after 30sec per sentence; this yields
partial linkages in some cases, which we could still
use for extraction of link paths (training data) or

querying against (test data); sometimes, no linkage
was available at all. This timeout also influences the
quality of linkages, which result in false positives as
well as false negatives.

As for context identification, our approach per-
formed significantly weaker on the test set, since
over 70% of negations and speculations were re-
lated to regulation events (measured on the joined
train and development sets), for which we applied a
coarse baseline method, i.e., here a large part of the
base events were missing.

4 Related work

We focus our discussion on approaches to informa-
tion extraction that also use LinkGrammar. Evalua-
tions of other deep parsers for information extrac-
tion in the life sciences may, for instance, be found
in Miyao et al. (2009) and Pyysalo et al. (2008).
Note that most other systems based on deep pars-
ing convert IE into a classification problem, often
using some kind of convolution kernels, for exam-
ple, Kim et al. (2008); instead, we employ a pattern-
matching approach where patterns are expressed as
queries. A similar approach is described in Fundel
et al. (2007), where three rules are defined to ex-
tract protein-protein interactions from an aggregated
form of dependency graphs. These rules could in
fact easily be expressed as queries in our language.

Ding et al. (2003) studied the extraction of
protein-protein interactions using the Link Grammar
parser. After some manual sentence simplification to
increase parsing efficiency, their system assumed an
interaction whenever two proteins were connected
via a link path; an adjustable threshold allowed to
cut-off too long paths. As they used the original ver-
sion of Link Grammar, Ding et al. argue that adap-
tations to the biomedical domain would enhance the
performance. Pyysalo et al. (2004) extracted inter-
action subgraphs, spanning all predicates and ar-
guments at the same time, from the Link Gram-
mar linkage of known examples. Failure analysis re-
vealed that 34% of the errors were due to unknown
grammatical structures, 26% due to dictionary issues
and a further 17% due to unknown words.

An adaption of Link Grammar that handles some
of the failure cases is BioLG (Pyysalo et al., 2006).
BioLG includes additional morpho-guessing rules,
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lexicon expansion, and disambiguation using a POS
tagger. Adding morpho-guessing rules and using a
domain-specific POS tagger for disambiguation re-
sulted in an increase from 74.2 to 76.8% in re-
call; it also increased parsing efficiency by 45%.
Szolovits (2003) adapted the Link Grammar parser
by expanding the lexicon with data from UMLS
Specialist. This expansion consisted of 200k new en-
tries (including 74k phrases), resulting in a 17% in-
crease in coverage on a corpus of 495k words.

The main differences between the cited previous
works and our approach are:1) we extract only pair-
wise subgraphs (e.g., from a trigger term to a sin-
gle protein) and then attempt to construct events
based on such small components;2) we consider
link types, predicates, prepositions, and other nodes
as requirements for a valid linkage with respect to
event argument recognition;3) we use a query lan-
guage to query persistently stored parse trees instead
of parsing each sentence and then comparing it to
known link paths;4) we combine subgraph match-
ing with extensive pre- and post-processing rules us-
ing regular expressions and other filtering rules.

5 Conclusions

We presented a method for extraction of molecu-
lar events from text. We distinguished nine classes
of events and identified arguments associated with
them. We also characterized each event for either be-
ing speculative or negated. The underlying method
extracts link paths between all relevant pairs of ar-
guments involved in the event from a Link Grammar
parse (BioLG, see Pyysalo et al. (2006)). These link
paths connect, for instance, an event trigger term
to its theme, or a protein theme to a binding site.
We query the graph formed by these linkages us-
ing a dedicated query language for parse trees (Tu
et al., 2008) which allows us to very quickly imple-
ment large sets of rules. We combine queries with
extensive pre- and post-processing using a mixture
of different techniques. For the BioNLP’09 Shared
Task, we focused on all event classes but the three
types of regulation. For the other six, we obtain an
overall F1-score of 45.6%, for all nine it was 29.3%
(task 2). Including speculation and negation (task
3), the overall total on all nine event classes was
29.6%. All in all, we found that link paths connect-

+----Js----+ +--Js-+
+--Mp--+ +--CH--+ +--Mp--+ |
| | | | | | |

expression of c-Fos gene expression of c-Fos

Figure 4: Example for alternative structures / optional
nodes. In this case, the linkage should reflect the connec-
tion from ‘expression’ to a noun that refers to a gene, in-
dependent of its head. The ‘Mp’ and ‘Js’ links would be
required, the ‘CH’ link from head to actual gene optional.

ing constituents of known types (e.g., event trigger
term, gene) as extracted from training data yield a
precise way for event argument detection. Using a
specialized query language on pre-processed data
(NER; parsing) greatly enhances the utility of such
extracted rules to put together more complex events.
Still, our current approach lacks in overall recall
(20–52%, depending on event class), often due to
slight variations that include, for instance, alterna-
tive nodes along a link path that were not observed
in training data.

Our approach could be improved in various ways.
First, we currently extract queries from the train-
ing corpus and use them directly as they are. We
see that to improve recall, queries need to be gen-
eralized further. In previous work (Hakenberg et al.,
2008) we showed that such generalized rules may be
learned automatically (from much larger corpora),
which helped to increase recall considerably at a
modest precision penalty. Second, our query lan-
guage currently performs exact matching, while it
would be more advantageous to implement some
form of fuzzy semantics, producing a ranked list of
hits. This could include wildcards, alternative nodes,
alternative sub-paths, optional nodes etc. An exam-
ple is discussed in Figure 4. Finally, we also believe
that it would be rather easy to include more sophis-
ticated ways of performing anaphora resolution to
properly address events spanning multiple sentences
and referential phrases within sentences.
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Abstract

We describe the system of the PIKB team
for BioNLP’09 Shared Task 1, which targets
tunable domain-independent event extraction.
Our approach is based on a three-stage clas-
sification: (1) trigger word tagging, (2) sim-
ple event extraction, and (3) complex event
extraction. We use the MIRA framework for
all three stages, which allows us to trade pre-
cision for increased recall by appropriately
changing the loss function during training. We
report results for three systems focusing on re-
call (R = 28.88%), precision (P = 65.58%),
and F1-measure (F1 = 33.57%), respectively.

1 Introduction

Molecular interactions have been the focus of inten-
sive research in the development of in-silico biology.
Recent developments like the Pathway and Interac-
tion Knowledge Base (PIKB) aim to make available
to the user the large semantics of the existing molec-
ular interactions data using massive knowledge syn-
dication. PIKB is part of LinkedLifeData1, a plat-
form for semantic data integration based on RDF2

syndication and lightweight reasoning.
Our system is based on the MIRA framework

where, by appropriately changing the loss function
on training, we can achieve any desirable balance
between precision and recall. For example, low pre-
cision with high recall would be appropriate in a
search that aims to identify as many potential candi-
dates as possible to be further examined by the user,

1http://www.linkedlifedata.com
2http://www.w3.org/RDF/

while high precision might be essential when adding
relations to a knowledge base. Such a tunable sys-
tem is practical for a variety of important tasks, in-
cluding but not limited to, populating extracted facts
in PIKB and reasoning on top of new and old data.

Our system is based on a three-stage classification
process: (1) trigger word tagging using a linear se-
quence model, (2) simple event extraction, and (3)
complex event extraction. In stage (2), we generate
relations between a trigger word and one or more
proteins, while in stage (3), we look for complex in-
teractions between simple events, trigger words and
proteins. We use MIRA for all three stages with a
loss function tuned for high recall.

2 One-best MIRA and Loss Functions

In what follows, xi will denote a generic input sen-
tence, and yi will be the “gold” labeling of xi. For
each pair of a sentence xi and a labeling y, we com-
pute a vector-valued feature representation f(xi, y).
Given a weight vector w, the dot-product w · f(x, y)
ranks the possible labelings y of x; we will denote
the top scoring labeling as yw(x). As with hidden
Markov models (Rabiner, 1989), yw(x) can be com-
puted efficiently for suitable feature functions using
dynamic programming.

The learning portion of our method requires find-
ing a weight vector w that scores the correct labeling
of the training data higher than any incorrect label-
ing. We used a one-best version of MIRA (Cram-
mer, 2004; McDonald et al., 2005) to choose w.
MIRA is an online learning algorithm that updates
the weight vector w for each training sentence xi

according to the following rule:
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wnew = arg min
w

‖w − wold‖

s.t. w · f(xi, yi)− w · f(x, ŷ) ≥ L(yi, ŷ)

where L(yi, y) is a measure of the loss of using y in-
stead of the correct labeling yi, and ŷ is a shorthand
for ywold

(xi). In case of a single constraint, this pro-
gram has a closed-form solution. The most straight-
forward and the most commonly used loss function
is the Hamming loss, which sets the loss of labeling
y with respect to the gold labeling yi as the number
of training examples where the two labelings dis-
agree. Since Hamming loss is not flexible enough
for targeted training towards recall or precision, we
use a number of task-specific loss functions (see
Sections 3 and 5 for details). We implemented one-
best MIRA and the corresponding loss functions in
an in-house toolkit called Edlin. Edlin provides gen-
eral machine learning architecture for linear models
and a framework with implementations of popular
learning algorithms including Naive Bayes, percep-
tron, maximum entropy, one-best MIRA, and condi-
tional random fields (CRF) among others.

3 Trigger Word Tagging

The training and the development abstracts were
first tokenized and split into sentences using maxi-
mum entropy models trained on the Genia3 corpora.
Subsequently, we trained several sequence taggers
in order to identify the trigger words in text. All
our experiments used the standard BIO encoding
(Ramshaw and Marcus, 1995) with different feature
sets and learning procedures. We focused on recall
since it determines the upper bound on the perfor-
mance of our final system. In our experiments, we
found that simultaneously identifying trigger words
and the event types they trigger yielded low recall;
thus, we settled on identifying trigger words in text
as one kind of entity, regardless of event types.

In our initial experiments, we used a CRF-
based sequence tagger (Lafferty et al., 2001), which
yielded R=43.51%. We further tried feature induc-
tion (McCallum, 2003) and second-order Markov
assumptions for the CRF, achieving 44.72% and
49.64% recall, respectively.

3http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/home/wiki.cgi

Feature Set R P F1

Baseline (current word) 44.82 2.86 05.38
+ POS & char 3-gram 77.41 27.96 41.09
+ previous POS tag 79.77 29.32 42.88
+ lexicon (final tagger) 80.44 29.65 43.33

Table 1: Recall (R), precision (P), and F1-measure for the
trigger words tagger (in %s) on the development dataset
for different feature sets using MIRA training with false
negatives as a loss function.

Feature Sets
entity type of e1 and e2

words in e1 and e2

word bigrams in e1 and e2

POS of e1 and e2

words between e1 and e2

word bigrams between e1 and e2

POS between e1 and e2

distance between e1 and e2

distance between e1 and e2 in the dependency graph
steps in parse tree to get e1 and e2 in the same phrase
various combinations of the above features

Table 2: Our feature set for the MIRA classifier that pre-
dicts binary relations. Here e1 and e2 can be proteins
and/or trigger words.

Subsequently, we settled on using MIRA so that
we can trade-off precision for recall. In order to
boost recall, we defined the loss function as the num-
ber of false negative trigger chunks. Thus, a larger
loss update was made whenever the model failed to
discover a trigger word, while discovering spurious
trigger words was penalized less severely. We ex-
perimented with popular feature sets previously used
for named entity (McCallum and Li, 2003) and gene
(McDonald and Pereira, 2005) recognition including
orthographic, part-of-speech (POS), shallow parsing
and gazetteers. However, we found that only a small
number of them was really helpful; a summary is
presented in Table 1. In order to boost recall even
further, we prepared a gazetteer of trigger chunks
derived from the training data, and we extended it
with the corresponding WordNet synsets; we thus
achieved 80.44% recall for our final tagger.

4 Event Extraction

The input to our event extraction algorithm is a list
of trigger words and a list of genes or gene prod-
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ucts (e.g., proteins); the output is a set of relations
as defined for Task 1. Our algorithm works in two
stages. First, we generate events corresponding to
relations between a trigger word and one or more
proteins (simple events); then we generate events for
relations between trigger words, proteins and simple
events (complex events). The two stages differ only
in the input data; thus, below we will describe our
system for the first stage only.

For each sentence, we considered all pairs of en-
tities (trigger words and proteins), and we used an
unstructured classifier to determine the relationship
for a given pair. These relationships encoded both
the type of event (e.g., binding, regulation) and enti-
ties’ roles in that event (e.g., theme, cause); there
was also a special relationship for unrelated enti-
ties. We constructed labeled examples to train a
MIRA classifier using the training data provided by
the task organizers; n-ary relations were then recon-
structed from classifier’s predictions. The features
we used are summarized in Table 2: they are over
the words separating the two entities and their part-
of-speech tags. We further used some simple fea-
tures from syntactic phrases (OpenNLP4 parser) and
dependency parse trees (McDonald et al., 2005), ex-
tracted using parsers trained on Genia corpora.

After some initial experiments, we found that our
features were not sufficiently rich to allow us to learn
the relationships between proteins that are part of the
same event: we achieved a very low recall of about
20%. Consequently, we focused on the relationships
between a trigger word and a protein. Since the com-
petition stipulated that each trigger could be associ-
ated with only one type of event, we first chose the
event type for each trigger by selecting the protein-
label pair with the highest score. We then fixed the
event type for this trigger word, and we discarded all
proteins for which our classifier assigned a different
event type to the target trigger-protein pair. Finally,
we added to our output list all binary relations where
the role of the protein was theme.

For some event classes – binding, regulation, pos-
itive regulation and negative regulation – the output
of the binary classifier was further transformed so
that n-ary relations can be formed. However, the
way we did this was somewhat ad-hoc. For bind-

4http://opennlp.sourceforge.net

Event Class R P F1

Localization 10.92 82.61 19.29
Binding 7.20 39.68 12.20
Gene expression 30.47 74.58 43.26
Transcription 10.95 39.47 17.14
Protein catabolism 28.57 57.14 38.10
Phosphorylation 34.07 86.79 48.94
Event Total 21.52 68.68 32.77
Regulation 1.37 26.67 2.61
Positive regulation 1.12 25.58 2.14
Negative regulation 0.26 100.00 0.53
Regulation Total 0.97 27.12 1.87
Overall 10.84 64.13 18.55

Table 3: Our official results: for an erroneous submission.

ing events, we added a 3-ary relation between the
trigger, the highest scoring protein, and the second
highest scoring protein. For regulation events, we
added a 3-ary relation between the trigger and every
pair of proteins where one was a theme and the other
one was a cause. This aggressive addition of poten-
tial matches slightly reduced the overall precision,
but helped improve the recall for the final system.

5 Results and Discussion

Unfortunately, we made an error when making our
official submission, which resulted in low scores;
Table 3 shows the results for that submission.

The rest of this section describes the results and
the implementation for the system we intended to
submit. All reported results are for exact span
matches and were obtained using the online tool pro-
vided by the task organizers.

As stated in Section 4, we used a linear model
trained using one-best MIRA with ten runs over
the data for the event extraction system. We over-
sampled the unstructured training instances that cor-
responded to a relation so that they become roughly
equal in number to those that do not correspond to a
relation. Finally, we performed parameter averaging
as described in (Freund and Schapire, 1999). These
details turned out to be very important for the system
performance.

Table 4 shows the results for three different loss
functions that gave the best results in our experi-
ments. In describing the loss functions, we define
three different types of errors: (1) if the system cor-
rectly predicted that a relation should be present,
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0-1 Loss High Recall High Precision
Event Class R P F1 R P F1 R P F1

Localization 33.33 69.05 44.96 39.08 48.23 43.17 25.86 86.54 39.82
Binding 38.33 32.60 35.23 46.97 24.51 32.21 24.50 37.95 29.77
Gene expression 57.89 65.72 61.56 64.82 53.49 58.61 47.65 76.27 58.65
Transcription 30.66 33.87 32.18 33.58 22.12 26.67 21.17 47.54 29.29
Protein catabolism 42.86 85.71 57.14 42.86 60.00 50.00 42.86 85.71 57.14
Phosphorylation 75.56 77.86 76.69 77.78 65.22 70.95 52.59 82.56 64.25
Event total 49.64 54.60 52.00 55.98 41.55 47.70 37.93 65.83 48.13
Regulation 0.00 0.00 0.00 2.41 22.58 4.35 0.00 0.00 0.00
Positive regulation 1.73 30.91 3.28 5.29 25.24 8.75 0.20 28.57 0.40
Negative regulation 0.53 40.00 1.04 1.06 23.53 2.02 0.26 100.00 0.53
Regulation Total 1.15 30.16 2.21 3.81 24.80 6.61 0.18 37.50 0.36
Overall 24.45 53.54 33.57 28.88 39.71 33.44 18.32 65.58 28.64

Table 4: Results (in %s) for one-best MIRA with different loss functions.

but guessed the wrong type, we call this a cross-
labeling; (2) a false positive occurs when the learner
guessed some relation while there should have been
none; (3) the reverse is a false negative. All loss
functions we considered had a cross-labeling loss of
1. The 0-1 loss also has a loss of 1 for false positives
and false negatives. The high-recall loss function
penalizes false positives with 0.1 and false negatives
with 5. The high-precision loss function penalizes
false negatives with 0.1 and false positives with 5.
The values 0.1 and 5 were chosen on the develop-
ment data, but were not optimized aggressively.

In conclusion, we have built three domain-
independent event extraction systems based on the
MIRA framework, each using a different loss func-
tion. Overall, they perform quite well and would
have been ranked second on precision5, and 6th on
recall, and 7th on F1-measure.

6 Future Work

After integrating domain knowledge, which should
improve the recall for complex events and should
boost the overall precision, we intend to transform
the system output into RDF and add it to the PIKB
repository. The required efforts discouraged us from
building a middle ontology between the BioNLP and
the PIKB data models, especially given the time lim-
itations for the present task competition. However,
we believe this is a promising direction, which we
plan to pursue in future work.

5Our official submission is second on precision as well.
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Abstract

In this paper, we present BioEve a fully auto-
mated event extraction system for bio-medical
text. It first semantically classifies each sen-
tence to the class type of the event mentioned
in the sentence, and then using high coverage
hand-crafted rules, it extracts the participants
of that event. We participated in Task 1 of
BioNLP 2009 Shared task, and the final eval-
uation results are described here. Our exper-
imentation with different approaches to clas-
sify a sentence to bio-interaction classes are
also shared.

1 Introduction

Human genome sequencing marked beginning of the
era of large-scale genomics and proteomics, which
in turn led to large amount of information. Lots
of that exists (or generated) as unstructured text of
published literature. The first step towards extract-
ing event information, in biomedical domain, is to
recognize the names of proteins (Fukuda et al.,
1998; Blaschke et al., 1999), genes, drugs and other
molecules. The next step is to recognize relation-
ship between such entities (Blaschke and Valen-
cia, 2002; Ono et al., 2001; Fundel et al., 2007)
and then to recognize the bio-molecular interaction
events with these entities as participants (Yakushiji
et al., 2001; Tateisi et al., 2004). The BIONLP’09
shared task involved recognition of bio-molecular
events, which appear in the GENIA corpus. We
mainly focused on task 1, which was detection of
an event and its participants.

Figure 1: BioEve System Architecture

The rest of the paper is organized as follows. In
Section 2 we describe BioEve system, sentence level
classification and event extraction using dependency
parse tree of the sentence. Sections 3 describes ex-
periments with classification approaches and evalu-
ation results for shared task 1. Section 4 concludes
the paper.

2 BioEve: Bio-Molecular Event Extractor

BioEve architecture is shown in Figure 1. First
the biomedical abstracts are split into sentences,
before being sent to sentence level classifier. We
used Näive Bayes Classifier to classify sentences
into different event class types. Classification at
sentence level is a difficult task, as sentences have
lesser information as compared to the whole doc-
ument. To help event extraction module, each of
these sentences are then semantically labeled with
additional keywords. We created a dictionary-based
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labeler, which included trigger words from train-
ing data, along with the corresponding event type.
These labeled sentences are parsed using a depen-
dency parser to identify argument-predicate
roles. For each event class type, we hand crafted
high coverage extraction rules, similar to Fundel et
al. (2007), to identity all event participants. For
BioNLP shared task, the event-participant output
was formatted to GENIA format.

2.1 Sentence Level Classification and Semantic
Labeling

We used Näive Bayes Classifier from Weka 1 library
to classify sentences into different event class types.
Classification at sentence level is a difficult task, as
sentences have lesser information as compared to the
whole document. We tried different approaches for
classification : 1) Näive Bayes Classifier using bag-
of-words, 2) Näive Bayes Classifier using bag-of-
words and parts-of-speech tags and 3) SVM Classi-
fier for Weka library.

BioEve event extraction module depends on class
labels for extraction. To help with this task, we
needed to improve sentence labeling with correct
class type information. For this, we employed dic-
tionary based semantic class labeling by identifying
trigger (or interaction) words, which clearly indicate
presence of a particular event. We used ABNER 2

gene name recognizer to enrich the sentences with
gene mentions.

There have been cases in the training data where
the same trigger word is associated with more than
one event type. To resolve such cases, the trigger
words were mapped to the most likely event type
based on their occurrence count in the training data.
We labeled trigger words in each sentence with their
most likely event type. These tagged words served
as a starting point for the extraction of event par-
ticipants. This was done to speed-up the extraction
process, as event extraction module now only needs
to focus on the parts of the sentences related to these
tagged trigger words.

1http://www.cs.waikato.ac.nz/ml/weka/
2http://pages.cs.wisc.edu/ bsettles/abner/

2.2 Event Extraction Using Dependency
Parsing

The sentences, after being class labeled and tagged,
are parsed using a dependency parser (Stanford
parser3) to identify argument-predicate
roles. Words in the sentence and the relationships
between these words form the dependency parse
tree of the sentence. For our system, we used
typed-dependency representation output format
from Stanford parser which is a simple tuple,
reln(gov, dep), where reln is the depen-
dency relation, gov is the governor word and dep
is the dependent word. Consider the following
example sentence:
We investigated whether PU.1 binds
and activates the M-CSF receptor
promoter.
After this sentence is class labeled and tagged:
We investigated whether
T7 binds/BINDING and
activates/POSITIVE REGULATION the
T8 promoter.
The tagged sentence is parsed to obtain dependency
relations as shown below:
nsubj(investigated-2, We-1)
complm(binds-5, whether-3)
nsubj(binds-5, T7-4)
ccomp(investigated-2, binds-5)
conj and(binds-5, activates-7)
det(promoter-10, the-8)
nn(promoter-10, T8-9)
dobj(binds-5, promoter-10)

This sentence mentions two separate events, bind-
ing and positive regulation. Let’s consider the ex-
tracting the event binding and its participants. Fig-
ure 2 shows the parse tree representation and the part
of the tree that needs to be identified for extracting
event binding.

For each event class type, we carefully hand
crafted rules, keeping theme of the event, number
of participants, and their interactions into consider-
ation. Table 1 lists these extraction rules. In an ex-
traction rule, T represents the occurrence of protein
in sentence. If multiple proteins are involved, then
subscripts, Tn, are used to represent this. The rule

3http://nlp.stanford.edu/software/lex-parser.shtml
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Figure 2: Dependency Parse tree, and event ”binding”
and its participants are shown.

is triggered when it matches I (for an interaction
word, or trigger word ) in the sentence. Some de-
pendency relations and rule predicates are explained
below:

• obj(verb/I, T) :- The matching protein is a di-
rect object of the interaction word

• prep(I, T) :- The matching protein is con-
nected to its interaction word by a preposition

• T1 (I) T2 : − The interaction word occurs in
between the two matching interacting proteins

• conj(T1, T2 ) The two matching proteins are be
connected to each other using conjugates such
as ’and’

• ConnectedRule :- The interaction word and the
matching protein should be directly connected
with a single edge ( dependency relation)

• NearestRule :- The interaction word and the
matching protein should be connected to each
other, directly or indirectly within 5 edge hops,
in either direction

Algorithm 1 shows the steps to extract event par-
ticipants using the rules given in Table 1.

3 Experiments and Evaluations

BioEve shared task evaluation results for Task 1 are
shown in Table 2. Event extraction for classes gene-
expression, protein-catabolism and phosphoryla-
tion performed better comparatively, where as, for

Input: Abstract tagged with interaction words
and class labels

Output: Bio Events with interaction words and
the participants

foreach abstract do Iterate over each abstract
foreach sentence in current abstract do

retrieve all the interaction words in
current sentence;
sort them according to precedence of the
event class type;
foreach interaction word in the sentence
do

extract the participants by matching
the corresponding event’s rule to the
sentence’s dependency parse;

end
end

end
Algorithm 1: BioEve Event Extraction algorithm

classes transcription, regulation, positive-regulation
and negative-regulation, it was below par. The rea-
son noticed (in training examples) was that, most
of the true example sentences of positive-regulation
or negative-regulation class type were mis-classified
as either phosphorylation or gene-expression. This
calls for further improvement of sentence classifier
accuracy. Experiments with different approaches
for sentence level classification are shown in Ta-
ble 3. Classifiers were trained on training data and
tested on development data. Interestingly, simple
Näive Bayes Classifier (NBC) (using just bag-of-
words (BOW)) showed better results (up to 10% bet-
ter) compared to other approaches, even SVM clas-
sifier.

4 Conclusions

In this paper, BioEve’s Task 1 evaluation results
were described, with additional results from differ-
ent approaches experimented to semantically clas-
sify a sentence to the event type. Event ex-
traction performed better for some categories, but
clearly needs re-compiling extraction rules for some.
Where as classification results showed simple Näive
Bayes Classifier performing better than other ap-
proaches.
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Event Class Extraction Rules Event Class Extraction Rules

Positive Regulation

a) obj(verb/I , T )

Negative Regulation

a) obj(verb/I , T )
b) prep(I , T ) b) prep(I , T )
c) ConnectedRule c) ConnectedRule
d) NearestRule d) NearestRule

Regulation
a) prep(I , T )

Binding

a) T1 (I) T2

b) ConnectedRule b) prep(I , T1); prep(T1, T2)
c) NearestRule c) prep(I , T1); conj(T1, T2)

Phosphorylation

a) prep(I , T ) d) obj(verb/I , T )
b) T (connecting-word) I e) prep(I , T )
c) ConnectedRule f) ConnectedRule
d) NearestRule g) NearestRule

Gene Expression
a) ConnectedRule

Protein Catabolism
a) prep(I , T )

b) NearestRule b) ConnectedRule

Transcription

a) prep(I , T ) c) NearestRule
b) T (connecting-word) I

Localization
a) prep(I , T )

c) ConnectedRule b) ConnectedRule
d) NearestRule c) NearestRule

Table 1: Extraction rules for each class type. Rules are fired in the order they are listed for each class.

Approach recall precision f-score
Localization 27.59 33.57 30.28
Binding 16.71 30.53 21.60
Gene-expression 44.04 39.55 41.68
Transcription 10.95 11.28 11.11
Prot-catabolism 57.14 27.59 37.21
Phosphorylation 50.37 63.55 56.20
Regulation 9.28 5.18 6.65
Pos-regulation 10.48 7.34 8.63
Neg-regulation 12.93 10.19 11.40
All Total 21.81 18.21 19.85

Table 2: BioNLP Shared Task Evaluation: Task 1 Results
using approximate span matching.

Sentence Classifier Correct Incorrect
NBC(BOW) 60.45% 39.54%
NBC(BOW+POS) 43.12% 56.87%
SVM 50.14% 49.85%

Table 3: Sentence Classifier results for different ap-
proaches: 1) Näive Bayes Classifier (NBC) (using bag-
of-words (BOW)), 2) Näive Bayes Classifier(using BOW
+ Parts-of-speech(POS) tags) and 3) SVM Classifier. To-
tal number of instances =708.
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Abstract

This document describes the methods and re-
sults for our participation in the BioNLP’09
Shared Task #1 on Event Extraction. It also
contains some error analysis and a brief dis-
cussion of the results. Previous shared tasks in
the BioNLP community have focused on ex-
tractinggene and protein names, and on find-
ing (direct) protein-protein interactions (PPI).
This year’s task was slightly different, since
the protein names were already manually an-
notated in the text. The new challenge was
to extract biologicalevents involving these
given gene and gene products. We modi-
fied a publicly available system (AkanePPI)
to apply it to this new, but similar, protein
interaction task. AkanePPI has previously
achieved state-of-the-art performance on all
existing public PPI corpora, and only small
changes were needed to achieve competitive
results on this event extraction task. Our of-
ficial result was an F-score of 36.9%, which
was ranked as number six among submissions
from 24 different groups. We later balanced
the recall/precision by including more predic-
tions than just the most confident one in am-
biguous cases, and this raised the F-score on
the test-set to 42.6%. The new Akane program
can be used freely for academic purposes.

1 Introduction

With the increasing number of publications report-
ing on protein interactions, there is also a steadily
increasing interest in extracting information from
Biomedical articles by using Natural Language Pro-
cessing (BioNLP). There has been severalshared

tasksarranged by the BioNLP community to com-
pare different ways of doing such Information Ex-
traction (IE), as reviewed in Krallinger et al.(2008).

Earlier shared tasks have dealt with Protein-
Protein Interaction (PPI) in general, but this
task focuses on more specific molecular events,
such as Geneexpression, Transcription, Pro-
tein catabolism, Localization and Binding, plus
(Positive or Negative) Regulationof proteins or
other events. Most of these events are related to PPI,
so our hypothesis was that one of the best perform-
ing PPI systems would perform well also on this
new event extraction task. We decided to modify a
publicly available system with flexible configuration
scripting (Miwa et al., 2008). Some adjustments had
to be made to the existing system, like adding new
types of Named Entities (NE) to represent theevents
mentioned above. The modified AkaneRE (for Re-
lation Extraction) can be freely used in academia1.

2 Material and Methods

The event extraction system is implemented in a
pipeline fashion (Fig. 1).

2.1 Tokenization and Sentence Boundary
Detection

The text was split into single sentences by a sim-
ple sentence detection program, and then each sen-
tence was split into words (tokens). The tokeniza-
tion was done by using white-space as the token-
separator, but since all protein names are known dur-
ing both training and testing, some extra tokeniza-
tion rules were applied. For example, the protein

1http://www-tsujii.is.s.u-tokyo.ac.jp/∼satre/akane/
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Figure 1: System Overview

name “T cell factor 1” is treated as a single token,
“T cell factor 1”, and composite tokens including a
protein name, like “(Tcell factor 1)”, are split into
several tokens, like ’(’, ’Tcell factor 1’ and ’)’, by
adding space around all given protein names. Also,
punctuation (commas, periodsetc.) were treated as
separate tokens.

2.2 POS-tagging and Parsing

We used Enju2 and GDep3 to parse the text. These
parsers have their own built-in Part-of-Speech (POS)
taggers, and Enju also provides a normalized lemma
form for each token.

2.3 Event Clue-word tagging

Event clue-word detection was performed by a Ma-
chine Learning (ML) sequence labeling program.
This named-entity tagger program is based on a first
order Maximum Entropy Markov Model (MEMM)
and is described in Yoshida and Tsujii (2007). The
clue-word annotation of the shared-task training set
was converted into BIO format, and used to train the

2http://www-tsujii.is.s.u-tokyo.ac.jp/enju/
3http://www.cs.cmu.edu/∼sagae/parser/gdep/

MEMM model. The features used in the MEMM
model was extracted from surface strings and POS
information of the words corresponding to (or ad-
jacent to) the target BIO tags. The clue-word tag-
ger was applied to the development and test sets to
obtain the marginal probability that each word is a
clue-word of a certain category. The probabilities
were obtained by marginalizing the n-best output of
the MEMM tagger. We later also created clue-word
probability annotation of the training set, to enable
the template extraction program to access clue-word
probability information in the training phase.

2.4 Event Template Extraction

The training data was used to determine which
events to extract. As input to the system, a list of
Named Entity(NE) types and theRoles they can
play were provided. The roles can be thought of as
slots for arguments in event-frames, and in this task
the roles wereEvent (clue), ThemeandCause. In
the original AkanePPI (based on the AIMed corpus),
the only NE type wasProtein, and the only role was
Theme(p1 and p2). All the (PPI) events were pair-
wise interactions, and there was no explicitevent-
clue role. This means that all the events could be
represented with the single template shown first in
Table 1.

The BioNLP shared task used eight other NE
types, in addition to manually annotatedProteins,
namely Binding, Geneexpression, Localization,
Protein catabolism, Transcription, Regulation, Pos-
itive RegulationandNegativeRegulation. The first
five events have onlyThemeslots, which can only
be filled byProteins, while the last three regulation
events are very diverse. They also have oneTheme
slot, but they can have aCauseslot as well, and each
role/slot can be filled with eitherProteins, or other
Events. See the first half of Table 1.

148 templates were extracted and clustered into
nine homogeneous groups which were classified
as nine separate sub-problems. The grouping was
based on whether the templates had anEventor a
Proteinin the same role-positions. This way of orga-
nizing the groups was motivated by the fact that the
Proteinsare 100% certain, while the accuracy of the
clue-word recognizer is only around 50% (estimated
on the training data). The bottom of Table 1 shows
the resulting ninegeneral interaction templates.

104



2.5 Machine Learning with Maximum Entropy
Models

We integrated Maximum Entropy (ME) modeling,
also known as Logistic Regression, into AkaneRE.
This was done by using LIBLINEAR4, which han-
dles multi-class learning and prediction. Gold tem-
plates were extracted during training, and each tem-
plate was matched with all legal combinations of
Named Entities (including gold proteins/clue-words
and other recognized clue-word candidates) in each
sentence. The positive training examples were la-
beled as gold members of the template, and all other
combinations matching a given template were la-
beled as negative examples within that specific tem-
plate class. The templates were grouped into the
nine generaltemplates shown in the bottom of Ta-
ble 1. Using one-vs-rest logistic regression, we
trained one multi-class classifier for each of the nine
groups individually. The ML features are shown in
Table 2.

In the test-phase, we extracted and labeled all re-
lation candidates matching all the templates from the
training-phase. The ML component was automati-
cally run independently for each of the nine groups
listed in the bottom of Table 1. Each time, all the
candidate template-instances in the current group
were assigned a confidence score by the classifier for
that group. This score is the probability that a can-
didate is a true relation, and a value above a certain
threshold means that the extracted relation will be
predicted as a true member of its specific template.
LIBLINEAR’s C-value parameter and the prediction
threshold were selected by hand to produce a good
F-score (according to the strict matching criterion)
on the development-test set.

2.6 Filtering and recursive output of the most
confident template instances

After machine learning, all the template instances
were filtered based on their confidence score. Af-
ter tuning the threshold to the development test-set,
we ended up using 1 as our C-value, and 3.5% as
our confidence threshold. Because the prediction
of Regulation Eventswere done independent from
the sub-events (or proteins) affected by that event,
some sub-events had to be included for complete-

4http://www.csie.ntu.edu.tw/∼cjlin/liblinear/

ness, even if their confidence score was below the
threshold.

3 Results and Discussion

Our final official result was an F-score of 36.9%,
which was ranked as number six among the sub-
missions from 24 different groups. This means that
the AkanePPI system can achieve good results when
used on other PPI-related relation-extraction tasks,
such as this first BioNLP event recognition shared
task. The most common error was in predicting reg-
ulation events with other events asTheme or Cause.
The problem is that these events involve more than
one occurrence of event-trigger words, so the perfor-
mance is more negatively affected by our imperfect
clue-word detection system.

Since the recall was much lower on the test-set
than on the development test-set, we later allowed
the system to predict multiple confident alternatives
for a single event-word, and this raised our score on
the test-set from 36.9% to 42.6%. In hindsight, this
is obvious since there are many such examples in
the training data: E.g. “over-express” is both posi-
tive regulation and Geneexpression. The new sys-
tem, named AkaneRE (for Relation Extraction), can
be used freely for academic purposes.

As future work, we believe a closer integration
between the clue-word recognition and the template
prediction modules can lead to better performance.
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Freq Event Theme1 Theme2 Theme3 Theme4 Cause
- PPI Protein Protein

613 Binding Protein
213 Binding Protein Protein

3 Binding Protein Protein Protein
2 Binding Protein Protein Protein Protein

217 Regulation Protein Protein
12 Regulation Binding Protein
48 +Regulation Transcription Protein
4 +Regulation Phosphorylation Binding
5 -Regulation +Regulation Protein
... ... ... ...

Total 148 Templates
Count General Templates Theme1 Theme2 Theme3 Theme4 Cause

9 event templates Protein
1 event template Protein Protein
1 event template Protein Protein Protein
1 event template Protein Protein Protein Protein
3 event templates Protein Protein

12 event templates Protein Event
27 event templates Event
26 event templates Event Protein
68 event templates Event Event

Table 1: Interaction Templates from the training-set. Classic PPI at the top, compared to Binding and Regulation
events in the middle. 148 different templates were automatically extracted from the training data by AkaneRE. At
the bottom, the Generalized Interaction Templates are shown, with proteins distinguished from other Named Entities
(Events)

Feature Example
Text Thebinding of the most prominent factor, named TCF-1 (T cell factor 1 ),

is correlated with the proto-enhancer activity of TCEd.
BOW B The
BOW M0 -comma- -lparen- factor most named of prominent PROTEIN the
BOW A -comma- -rparen- activity correlated is of proto-enhancer the TCEd with
Enju PATH (ENTITY1 ) (<preparg12arg1) (of) (preparg12arg2>) (factor)

(<verb arg123arg2) (name) (verb arg123arg3>) (ENTITY2 )
pairs (ENTITY1 <preparg12arg1) (<preparg12arg1of) (of preparg12arg2>) ...
triples (ENTITY1 <preparg12arg1of) (<preparg12arg1of preparg12arg2>) ...
GDepPATH (ENTITY1 ) (<NMOD) (name) (<VMOD) (ENTITY2 )
pairs/triples (ENTITY1 <NMOD) (<NMOD name) ... (ENTITY1 <NMOD name) ...
Vector BOW B BOW M0...BOW M4 BOW A Enju PATH GDepPATH

Table 2: Bag-Of-Words (BOW) and shortest-path features for the machine learning. Several BOW feature groups were
created for each template, based on the position of the words in the sentence, relative to the position of the template’s
Named Entities (NE). Specifically, BOWB was made by the words from the beginning of the sentence to the first NE,
BOW A by the words between the last NE and the end of the sentence, and BOWM0 to BOW M4 was made by the
words between the main event clue-word and the NE in slot 0 through 4 respectively. The path features are made from
one, two or three neighbor nodes. We also included certain specific words, like “binding”, as features.
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Abstract

In this paper, we propose a system for biomed-
ical event extraction using multi-phase ap-
proach. It consists of event trigger detector,
event type classifier, and relation recognizer
and event compositor. The system firstly iden-
tifies triggers in a given sentence. Then, it
classifies the triggers into one of nine pre-
defined classes. Lastly, the system examines
each trigger whether it has a relation with
participant candidates, and composites events
with the extracted relations. The official score
of the proposed system recorded 61.65 preci-
sion, 9.40 recall and 16.31 f-score in approxi-
mate span matching. However, we found that
the threshold tuning for the third phase had
negative effect. Without the threshold tuning,
the system showed 55.32 precision, 16.18 re-
call and 25.04 f-score.

1 Introduction

As the volume of biomedical literature grows expo-
nentially, new biomedical terms and their relations
are also generated. However, it is still not easy for
researchers to access necessary information quickly
since it is lost within large volumes of text. This is
the reason that the study of information extraction
is receiving the attention of biomedical and natural
language processing (NLP) researchers today.

In the shared task, the organizers provide partic-
ipants with raw biomedical text, tagged biomedical
terms (proteins), and the analyzed data with various
NLP techniques such as tokenization, POS-tagging,
phrase structure and dependency parsing and so on.
The expected results are the events, which exist in

the given text, consisting of a trigger and its partici-
pant(s) (Kim et al., 2009).

The proposed system consists of three phases;
event trigger detection phase(TD phase), event type
classification phase(TC phase), relation recognition
and event composition phase(RE phase). It works in
the following manner. Firstly, it identifies triggers of
a given biomedical sentence. Then, it classifies trig-
gers into nine pre-defined classes. Lastly, the sys-
tem finds the relations between triggers and partic-
ipant candidates by examining each trigger whether
it has relations with participant candidates, and com-
posites events with the extracted relations. In the
last phase, multiple relations of the same trigger
can be combined into an event forBinding event
type. In addition, multiple relations can be com-
bined and their participant types can be classified
into not only themebut alsocausefor threeRegu-
lation event types.

In this paper, we mainly use dependency pars-
ing information of the analyzed data because sev-
eral previous studies for SRL have improved their
performance by using features extracted from this
information (Hacioglu, 2004; Tsai et al., 2006).

In the experimental results, the proposed system
showed 68.46 f-score in TD phase, 85.20 accuracy
in TC phase, 89.91 f-score in the initial step of RE
phase and 81.24 f-score in the iterative step of RE
phase, but officially achieved 61.65 precision, 9.40
recall and 16.31 f-score in approximate span match-
ing. These figures were the lowest among twenty-
four shared-task participants. However, we found
that the threshold tuning for RE phase had caused
a negative effect. It deteriorates the f-score of the
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Event Trigger DetectorEvent Type ClassifierRelation Recognizer &Event CompositorInitial StepIterative Step

Source DataAnalyzed Data

Result of Event Extraction
Figure 1: System Architecture

proposed system by enlarging the gap between pre-
cision and recall. With the default threshold, the sys-
tem showed better result in the final test data, 55.32
precision, 16.18 recall and 25.04 f-score with the
rank 17th among 24 teams.

2 System Description

Figure 1 shows our bio-event extraction system
which consists of Event Trigger Detector, Event
Type Classifier and Relation Recognizer & Event
Compositor. Each component includes single or
multiple Maximum Entropy models trained by gold
annotation data. The inputs of the system are source
data and analyzed data. The former is raw text with
entity annotation, and the latter is tokenized, POS
tagged and parsed data of the raw text.1

Because the event type is useful to recognize the
relation, we perform TC phase before RE phase.

One of important characteristics of bio-event is
that one event as well as a protein may participate
in another event. Considering this, we designed the
system in which the Relation Recognizer be per-
formed through two steps. In the initial step, the sys-
tems examines each trigger whether it has the rela-
tions with only proteins, and composites events with
recognized relations. In the iterative step, it repeat-
edly examines remained triggers in the same man-

1We used theGDep result provided by organizers of the
shared task as analyzed data.

ner. This step allows the system to extract chain-
style events, which means that one event participates
in another one and the other participates in the for-
mer.

To increase the f-score, we tuned a threshold for
RE phase which is a binary classification task; de-
ciding whether a given relation candidate is correct
one or not. When the output probability of a maxi-
mum entropy model is lower than the threshold, we
discard a relation candidate.

2.1 Event Trigger Detection

We assume that an event trigger is a single word.
In other words, we do not consider the multi-word
trigger detection. Because the trigger statistic in
the training data showed that about 93% of triggers
are single word, we concentrated on the single word
trigger detection.

This phase is simply defined as the task that clas-
sify whether each token is a trigger or not in a doc-
ument. It is necessary to select targets to classify
among all tokens, because a set of all tokens includes
too many negative examples. For this, the follow-
ing filtering rules are applied to each token. Though
these rules filtered out 69.5% of tokens, the trigger
recall was 94.8%.

• Filter out tokens whose POS tag is not matched
to anything among NN, NNS, VB, VBD, VBG,
VBN, VBP, VBZ, JJ and JJR.

• Filter out tokens that are a biomedical named
entity.

• Filter out sentences that do not have any pro-
teins.

Proposed features for the binary classification of
tokens include both features similar to those used in
(Hacioglu, 2004; Tsai et al., 2006; Ahn, 2006) and
novel ones. The selected feature set is showed in
Table 1.

2.2 Event Type Classification

In TC phase, tokens recognized as trigger are clas-
sified into nine pre-defined classes. Although more
than a dozen features had been tested, the features
except word and lemma features hardly contributed
to the performance improvement. The tuned feature
set is showed in Table 2.
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Word level features
- Token word
- Token lemma
- Token POS
- POSs of previous two tokens
- Distance, word and POS of the nearest protein
- Positional independence: Whether a noun or a
verb is adjacent to the current token
Dependency level features
- Dependency label path of the nearest protein
- The existence of protein in family: This feature is
motivated by the study in (Hacioglu, 2004)
- A boolean feature which is true if token’s child is
a proposition and the chunk of the child include a
protein
- A boolean feature which is true if token’s child is
a protein and its dependency label is OBJ

Table 1: Features for event trigger detection

Features for the event type classification
- Trigger word
- Trigger lemma
- A boolean feature which is true if a protein exists
within left and right two words

Table 2: Features for event type classification

We found that TC phase showed relatively high
precision and recall with simple lexical features in
the experiment. However, it was quite difficult to
find additional features that could improve the per-
formance.

2.3 Relation Recognition and Event
Composition

In the last phase, the system examines each trigger
whether it has relations with participant candidates,
and composites events with the extracted relations.
(A relation consists of one trigger and one partici-
pant)

We devised a two-step process, consisting of ini-
tial and iterative steps, because a participant candi-
date can be a protein or an event. In the initial step,
the system finds relations between triggers and pro-
tein participant candidates. Features are explained
in Table 3. Then, it generates one event with one
relation for event types that have only one partici-
pant. ForBindingevent type, the system combines
at most three relations of the same trigger into one

Word level features
- Trigger word
- Trigger lemma
- Trigger type (I-1)
- Entity word
- Entity type (I-2)
- Word sequence between T&P (I-1)
- Word distance
- Existence of another trigger between T&P
- The number of triggers of above feature
- Existence of another participant candidate
- The number of participants of above feature
Dependency level features
- Trigger dependency label (I-1)
- Entity dependency label
- Lemma of trigger’s head word (I-1)
- POS of trigger’s head word
- Lemma of entity’s head word (I-1)
- POS of entity’s head word
- Lemma of trigger’s head word + Lemma of en-
tity’s head word
- Right lemma of trigger’s head word
- 2nd right lemma of trigger’s head word (I-1)
- Right lemma of entity’s head word
- 2nd right lemma of entity’s head word (I-1)
- Dependency path between T&P
- Dependency distance between T&P
- Direct descendant: a participant candidate is a di-
rect descendant of a given trigger

Table 3: Features for relation recognition between a trig-
ger and a participant (T&P)

event. ForRegulationevent types, we trained a bi-
nary classifier to classify participants of aRegulation
event intothemeor cause. Features for participant
type classification is explained in Table 4. Among
multiple participants of aRegulationevent, only two
participants having highest probabilities fortheme
andcauseconstitute one event.

In the iterative step, the system finds relations be-
tween triggers and event participant candidates that
were extracted in the previous step, and generates
events in the same manner. The system performs it-
erative steps three times to find chain events.

Features are basically common in the initial (I-1)
step and the iterative (I-2) step, but some features
improve the performance only in one step. In order
to represent the difference in Table 3, we indicate (I-
1) when a feature is used in the initial step only, and
indicate (I-2) when it used in the iterative step only.
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Word level features
- Trigger word
- Trigger lemma
- Participant words - event’s trigger words if a par-
ticipant is an event
- Left lemma of a participant
- Right lemma of a participant
- Trigger word + Participant words
- Trigger lemma + Participant lemmas
- Participant lemmas
- Right lemma of a trigger
- 2nd right lemma of a trigger
- Right lemma of a participant
- 2nd left lemma of a participant
Dependency level features
- Dependency path
- Dependency relation to trigger’s head
- Dependency relation to participant’s head
- POS pattern of common head chunk of a trigger
and a participant
- POS pattern of common head chunk of a trigger
and a participant + The presence of an object word
in dependency path

Table 4: Features of the participant type classifier for
Regulationevents

3 Experimental Result

Table 5 shows the official results of the final test
data. After the feature selection, we have performed
the experiments with the development data to tune
the threshold to be used in RE phase. The work im-
proved the performance slightly. The new thresh-
old discovered by the work was 0.65 rather than
the default value, 0.5. However, we found that the
tuned threshold was over-fitted to development data.
When we tested without any threshold change, the
proposed system showed better f-score by reducing
the gap between precision and recall. Table 6 shows
the performance in this case.

Nevertheless, recall is still quite lower than preci-
sion in Table 6. The reason is that many triggers are
not detected in TD phase. The recall of the trigger
detector was 63% with the development data. An-
alyzing errors of TD phase, we found that the sys-
tem missed terms such asrole, preventwhile it easily
detected bio-terms such asphosphorylation, regula-
tion. It implies that the word feature causes not only
high precision but also low recall in TD phase.

Event equality recall precision f-score
Strict 8.99 58.97 15.60
Approximate Span 9.40 61.65 16.31

Table 5: The official results with threshold tuning

Event equality recall precision f-score
Strict 15.46 52.85 23.92
Approximate Span 16.18 55.32 25.04

Table 6: The results without threshold tuning

4 Conclusion

In this paper, we have presented a biomedical
event extraction system consisting of trigger detec-
tor, event type classifier and two-step participant rec-
ognizer. The system uses dependency parsing and
predicate argument information as main sources for
feature extraction.

For future work, we would like to increase the
performance of TD phase by adopting two-step
method similar to RE phase. We also will exploit
more analyzed data such as phrase structure parsing
information to improve the performance.
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Abstract

We introduce a supervised approach for ex-
tracting bio-molecular events by using linguis-
tic features that represent the contexts of the
candidate event triggers and participants. We
use Support Vector Machines as our learning
algorithm and train separate models for event
types that are described with a single theme
participant, multiple theme participants, or a
theme and a cause participant. We perform ex-
periments with linear kernel and edit-distance
based kernel and report our results on the
BioNLP’09 Shared Task test data set.

1 Introduction

Most previous work on biomedical information ex-
traction focuses on identifying relationships among
biomedical entities (e.g. protein-protein interac-
tions). Unlike relationships, which are in general
characterized with a pair of entities, events can be
characterized with event types and multiple entities
in varying roles. The BioNLP’09 Shared Task ad-
dresses the extraction of bio-molecular events from
the biomedical literature (Kim et al., 2009). We par-
ticipated in the “Event Detection and Characteriza-
tion” task (Task 1). The goal was to recognize the
events concerning the given proteins by detecting
the event triggers, determining the event types, and
identifying the event participants.

In this study, we approach the problem as a su-
pervised classification task. We group the event
types into three general classes based on the num-
ber and types of participants that they involve. The
first class includes the event types that are described

with a single theme participant. The second class in-
cludes the event types that are described with one or
more theme participants. The third class includes
the events that are described with a theme and/or
a cause participant. We learn support vector ma-
chine (SVM) models for each class of events to clas-
sify each candidate event trigger/participant pair as
a real trigger/participant pair or not. We use vari-
ous types of linguistic features such as lexical, posi-
tional, and dependency relation features that repre-
sent the contexts of the candidate trigger/participant
pairs. The results that we submitted to the shared
task were based on using a linear kernel function. In
this paper, we also report our results based on using
an edit-distance based kernel defined on the shortest
dependency relation type paths between a candidate
trigger/participant pair.

2 System Description

2.1 Event Type Classes

We grouped the nine event types targeted at the
BioNLP’09 Shared Task into three general event
classes based on the number and types of partici-
pants that they involve.

Class 1 Events: Events that involve a single theme participant
(Gene expression, Transcription, Protein catabolism, Lo-
calization, and Phosphorylation event types).

Class 2 Events: Events that can involve one or more theme
participants (Binding event type).

Class 3 Events: Events that can be described with a theme

and/or a cause participant (Regulation, Positive regula-

tion, and Negative regulation event types). Unlike Class 1
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and Class 2 events, where the participants are proteins, the

participants of Class 3 events can be proteins or events.

Since the event types in each class are similar to
each other based on the number and roles of par-
ticipants that they involve and different from the
event types in the other classes, we learned sepa-
rate classification models for each class. We for-
mulated the classification task as the classification
of trigger/participant pairs. We extracted positive
and negative training instances (trigger/participant
pairs) from the training data for each class of events.
We considered only the pairs that appear in the
same sentence. We used the tokenized and sentence
split abstracts provided by the shared task organiz-
ers1. Consider the sentence “The phosphorylation of
TRAF2 inhibits binding to the CD40 cytoplasmic do-
main”. This sentence describes the following three
events:

1. Event1: Type: Phosphorylation Trigger: phosphorylation
Theme: TRAF2

2. Event2: Type: Binding Trigger: binding Theme1:
TRAF2 Theme2: CD40

3. Event3: Type: Negative regulation Trigger: inhibits

Theme: Event2 Cause: Event1

Event1 belongs to Class 1. The trigger/participant
pair (phosphorylation, TRAF2) is a positive instance
for Class 1. Event2 belongs to Class 2. It has
two theme participants. The instances for Class 2
events are created by decomposing the events into
trigger/theme pairs. The two positive instances ex-
tracted from the decomposition of Event2 are (bind-
ing, TRAF2) and (binding, CD40). Event3 belongs
to Class 3. It consists of two semantically differ-
ent participants, namely a theme and a cause. We
trained two separate models for Class 3 events, i.e.,
one model to classify the themes and another model
to classify the causes. Another distinguishing char-
acteristic of Class 3 events is that a participant of
an event can be a protein or an event. We repre-
sent the participants that are events with their cor-
responding event triggers. We decompose Event3
into its theme and cause and represent its cause
Event1 with its trigger word “phosphorylation” and

1http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA
/SharedTask/tools.html

its theme Event2 with its trigger word “binding”. As
a result, (inhibits, binding) and (inhibits, phosphory-
lation) are included as positive instances to the Class
3 theme and Class 3 cause training sets, respectively.
Negative instances for Class 1 and Class 2 are cre-
ated by including all the trigger/protein pairs which
are not among the positive instances of that class.
Negative instances for Class 3 theme and Class 3
cause are created by including all the trigger/protein
and trigger1/trigger2 pairs which are not among the
positive instances of that class. For example, (phos-
phorylation, CD40) is a negative instance for Class
1 and (inhibits, TRAF2) is a negative instance for
Class 3 theme and Class 3 cause.

2.2 Feature Extraction

2.2.1 Lexical and Part-of-Speech Features
We used the candidate trigger and its part-of-

speech, which was obtained by using the Stanford
Parser, as features, based on our observation that dif-
ferent candidate triggers might have different likeli-
hoods of being a real trigger for a certain event. For
example, “transcription” is a trigger for the Tran-
scription event 277 times in the training set and has
not been used as a trigger for other types of events.
On the other hand, “concentration” is used only
once as a trigger for a Transcription event and three
times as a trigger for Regulation events.

2.2.2 Positional Features
We used two features to represent the relative po-

sition of the participant with regard to the trigger
in the sentence. The first feature has two values,
namely “before” (the participant appears before the
trigger) or “after” (the participant appears after the
trigger). The second feature encodes the distance
between the trigger and the participant. Distance is
measured as the number of tokens between the trig-
ger and the participant. Our intuition is that, if a
candidate trigger and participant are far away from
each other, it is less likely that they characterize an
event.

2.2.3 Dependency Relation Features
A dependency parse tree captures the semantic

predicate-argument dependencies among the words
of a sentence. Dependency tree paths between pro-
tein pairs have successfully been used to identify
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protein interactions (Bunescu and Mooney, 2007;
Erkan et al., 2007). In this paper, we use the
dependency paths to extract events. For a given
trigger/participant pair, we extract the shortest path
from the trigger to the participant, from the depen-
dency parse of the sentence. We use the McClosky-
Charniak parses which are converted to the Stan-
ford Typed Dependencies format and provided to the
participants by the shared task organizers. Previous
approaches use both the words and the dependency
relation types to represent the paths (Bunescu and
Mooney, 2007; Erkan et al., 2007). Consider the de-
pendency tree in Figure 1. The path from “phospho-
rylation” to “CD40” is “nsubj inhibits acomp bind-
ing prep to domain num”. Due to the large num-
ber of possible words, using the words on the paths
might lead to data sparsity problems and to poor
generalization. Suppose we have a sentence with
similar semantics, where the synonym word “pre-
vents” is used instead of “inhibits”. If we use the
words on the path to represent the path feature, we
end up with two different paths for the two sen-
tences that have similar semantics. Therefore, in
this study we use only the dependency relation types
among the words to represent the paths. For ex-
ample, the path feature extracted for the (phospho-
rylation, CD40) negative trigger/participant pair is
“nsubj acomp prep to num” and the path feature ex-
tracted for the (phosphorylation, TRAF2) positive
trigger/participant pair is “prep of”.

inhibits

phosphorylation
binding

TRAF2 domain

cytoplasmic CD40 the

acomp

prep_of prep_to

amod
detnum

nsubj

Figure 1: The dependency tree of the sentence “The phos-
phorylation of TRAF2 inhibits binding to the CD40 cyto-
plasmic domain.”

2.3 Classification
We used the SV M light library (Joachims, 1999)
with two different kernel functions and feature sets
for learning the classification models. Our first ap-
proach is based on using linear SVM with the fea-
tures described in Section 2.2. In this approach
the path feature is used as a nominal feature. Our
second approach is based on integrating to SVM a
kernel function based on the word-based edit dis-
tance between the dependency relation paths, where
each dependency relation type on the path is treated
as a word. For example, the word-based edit dis-
tance between the paths “prep of” and “prep of
prep with” is 1, since 1 insertion operation (i.e., in-
serting “prep with” to the first path) is sufficient to
transform the first path to the second one. The edit-
distance based similarity between two paths pi and
pj and the corresponding kernel function are defined
as follows (Erkan et al., 2007).

edit sim(pi, pj) = e−γ(edit distance(pi,pj)) (1)

3 Experimental Results

The data provided for the shared task is prepared
from the GENIA corpus (Kim et al., 2008). We used
the training and the development sets for training.

The candidate triggers are detected by using a dic-
tionary based approach, where the dictionary is ex-
tracted from the training set. We filtered out the
noisy trigger candidates such as “with”, “+”, “:”, and
“-”, which are rarely used as real triggers and com-
monly used in other contexts. The candidate trig-
ger/participant pairs are classified by using the clas-
sifiers learned for Class 1, Class 2, and/or Class 3
depending on whether the candidate trigger matched
one of the triggers in these classes. The SVM score
is used to disambiguate the event types, if a candi-
date trigger matches a trigger in more than one of the
event classes. A trigger which is ambiguous among
the event types in the same class is assigned to the
event type for which it is most frequently used as a
trigger.

The results that we submitted to the shared task
were obtained by using the linear SVM approach
with the set of features described in Section 2.2.
After submitting the results, we noticed that we
made an error in pre-processing the data set. While
aligning the provided dependency parses with the

113



sentence, we incorrectly assumed that all the sen-
tences had dependency parses and ended up using
the wrong dependency parses for most of the sen-
tences. The overall performance scores for our of-
ficial submission are 30.42% recall, 14.11% preci-
sion, and 19.28% F-measure. The results obtained
after correcting the error are reported in Table 1.
Correcting the error significantly improved the per-
formance of the system. Table 2 shows the re-
sults obtained by using SVM with dependency path
edit kernel. The two SVM models achieve similar
performances. The performance for the regulation
events is considerably lower, since errors in identi-
fying the events are carried to identifying the event
participants of a regulation event. The performances
for the events which have multiple participants, i.e.,
binding and regulation events, are lower compared
to the events with a single participant. The perfor-
mance is higher when computed by decomposing
the events (49.00 and 31.82 F-measure for binding
and regulation events, respectively). This suggests
that even when participants of events are identified
correctly, there is significant amount of error in com-
posing the events.

Event Type Recall Precision F-measure
Localization 41.95 60.83 49.66
Binding 31.41 34.94 33.08
Gene expression 61.36 69.00 64.96
Transcription 37.23 30.72 33.66
Protein catabolism 64.29 64.29 64.29
Phosphorylation 68.15 80.70 73.90
Event Total 50.82 56.80 53.64
Regulation 15.12 19.82 17.15
Positive regulation 24.21 33.33 28.05
Negative regulation 21.64 32.93 26.11
Regulation Total 22.02 30.72 25.65
All Total 35.86 44.69 39.79

Table 1: Approximate span & recursive matching results
using linear SVM with the set of features described in
Section 2.2 (after correcting the error in pre-processing
the data set).

4 Conclusion

We described a supervised approach to extract bio-
molecular events. We grouped the event types into
three general classes based on the number and types
of participants that they can involve and learned sep-
arate SVM models for each class. We used various

Event Type Recall Precision F-measure
Localization 49.43 64.18 55.84
Binding 31.70 35.03 33.28
Gene expression 66.34 69.72 67.99
Transcription 39.42 25.59 31.03
Protein catabolism 78.57 73.33 75.86
Phosphorylation 76.30 80.47 78.33
Event Total 55.13 56.62 55.86
Regulation 17.87 16.46 17.13
Positive regulation 26.45 26.03 26.24
Negative regulation 25.33 32.54 28.49
Regulation Total 24.68 25.34 25.01
All Total 39.31 40.37 39.83

Table 2: Approximate span & recursive matching results
using SVM with dependency relation path edit kernel.

types of linguistic features that represent the context
of the candidate event trigger/participant pairs. We
achieved an F-measure of 39.83% on the shared task
test data. Error analysis suggests that improving the
approach of event composition for types of events
with multiple participants and improving the strat-
egy for detecting and disambiguating triggers can
enhance the performance of the system.
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Abstract 

This paper reports on a system developed for 
the BioNLP'09 shared task on detection and 
characterisation of biomedical events. Event 
triggers and types were recognised using a 
conditional random field classifier and a set of 
rules, while event participants were identified 
using a rule-based system that relied on rela-
tive distances between candidate entities and 
the trigger in the associated parse tree. The re-
sults on previously unseen test data were en-
couraging: for non-regulatory events, the F-
score was almost 50% (with precision above 
60%), with the overall F-score of around 30% 
(49% precision). The performance on more 
complex regulatory events was poor  
(F-measure of 7%). Among the 24 teams 
submitting the test results, our results were 
ranked 12th for the overall F-score and 8th for 
the F-score of non-regulation events. 

1 Introduction 

The aim of the BioNLP'09 shared task 1 was to 
characterise molecular events being reported in a 
Medline abstract by identifying the textual trigger, 
event type and participating entities (Kim et al. 
2009). Nine event types were considered: gene 
expression, transcription, protein catabolism, lo-
calisation, phosporylation, binding, regulation, 
positive regulation, and negative regulation. De-
pending on the event type, the task included the 
identification of either one (for the first five event 
types mentioned above) or more (e.g. for binding) 
participating proteins. Information requested for 
regulatory events was more complex: in addition to 
one theme (a protein or another event), these 
events could also have a cause (a protein or an-
other event) that needed to be identified. 

 
The organisers have distributed a training 

dataset of 800 abstracts, with gene and gene prod-
uct mentions pre-annotated in text. In addition, a 
development set (150 abstracts) was provided to 
assess the quality of the extractions during the 
training and development phases. 

2 Methods 

The system developed for the challenge consists of 
three main modules: (1) event trigger and type de-
tection, (2) event participant detection, and  
(3) post-processing of the results. 

2.1 Event Trigger and Type Detection 

Our view of the event trigger and type detection 
subtask was that each token in a sentence needed 
to be tagged either as a trigger for one of the nine 
event types, or as a non-trigger/event token. We 
therefore decided to identify event types and trig-
gers in a single step by training a conditional ran-
dom field (CRF) classifier that assigned one of ten 
(nine types plus non-trigger) tags to each token. 
CRFs have been shown to be particularly suitable 
for tagging sequential data such as natural lan-
guage text, because they take into account features 
and tags of neighbouring tokens when evaluating 
the probability of a tag for a given token.  

Tokens and their part-of-speech (POS) tags 
were recognised using the Genia Tagger (Tsuruoka 
et al. 2005). Each stemmed token was represented 
using a feature vector consisting of the following 
features:  

• A binary feature indicating whether the to-
ken is a protein; 

• A binary feature indicating whether the to-
ken is a known protein-protein interaction 
word (we used a pre-complied dictionary of 
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such words collected from previous studies 
(Fu et al. 2008; Yang et al. 2008); 

• The token's POS tag; 
• The log-frequencies of the token being a 

trigger for each event type in the training 
data (nine features); 

• The number of proteins in the given sen-
tence. 

Other features (e.g. separating the known inter-
action words according to the nine event types) 
were explored during the development phase, but 
were not included in the final feature list since they 
increased the sparseness of the data and did not 
improve the overall results. The CRF parameters 
were adjusted for maximum performance, includ-
ing the choice of training algorithms, the number 
of training steps, the size of the window within 
which the tokens can affect any certain token, and 
the number of training abstracts used in each train-
ing step. It was interesting to notice that there were 
no significant improvements in the performance 
after training on 100, 400 or 800 abstracts from the 
training set (data not shown).  

2.2 Locating Event Themes 

After detecting potential triggers and associated 
event types, the next task was to locate possible 
participants (i.e. ‘themes’ and ‘causes’) for each 
event. It was obvious that participants did not have 
to be the nearest to the trigger on the surface level, 
so our approach was based on distances within the 
parse trees associated with the sentences contain-
ing candidate events. Parse tree distances have 
been studied previously in clustering and automatic 
translation tasks (Emms 2008), so we hypothesised 
that we could use them to identify the most likely 
participants. The training data was analysed for the 
proximities between the triggers and the (correct) 
event participants in the parse tree of the sentence.1 
Figure 1 gives a detailed density function of these 
distances (ignoring non-protein nodes). The analy-
sis showed that a theme was usually amongst the 
nearest proteins to the trigger in terms of parse tree 
distances: for example, in 60% of all single theme 
events (e.g. localisation, phosphorylation) the cor-
rect protein participant was the trigger’s nearest or 
second nearest protein in the parse tree. A further 

                                                           
1 The parse trees were produced by the GDep parser (Sagae 
and Tsujii, 2007) and supplied by the challenge organisers. 

analysis demonstrated that it was more likely for a 
theme to appear in the sub-tree of the correspond-
ing trigger, with 70% of all single theme events 
having a theme which appeared in the sub-tree of 
the trigger. Furthermore, specific analyses of the 
parse trees associated to the binding events (which 
can have more than one theme) suggested a linear 
relationship between the parse tree distance and 
binding event participant number (participant1 is 
the nearest, participant2 is the second nearest, etc.). 
 

 
Figure 1: Probability density function of the distance 
between the trigger and the theme in the parse tree  

(ignoring the tokens that are not proteins) 
 

We used this distributional analysis (derived 
from the training data) to design a rule-based 
method for the identification of participating 
themes. The rules were manually derived for each 
of the nine event classes, by defining:  

• a threshold for the maximum distance  to the 
trigger in the sub-tree for the given event 
type; 

• a threshold for the difference between the 
maximum distance in the whole tree and the 
given sub-tree for the given event type; 

• the number of nearest proteins to be re-
ported for each trigger. 

 

All entities that satisfied a distance-based rule 
for a given trigger were selected as the correspond-
ing theme(s). For example, if the event type is 
binding, then up to the second closest protein in the 
sub-tree, and the first closest protein in the rest of 
the tree are reported as themes.  
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Figure 2 provides an example of the method ap-
plied to a sentence with multiple events. Regulates 
and secretion are correctly identified as triggers for 
a regulation and a localization event in the first 
phase. Using the rules for localization, the themes 
for two localization events are correctly recognised 
as proteins T2 and T3, whereas T1 was ignored 
since it did not appear in the trigger's sub-tree.  

Engineering and applying rules for non-
regulatory events was relatively straightforward. 
However, regulatory events can have different 
kinds of participants (a protein or an event). In the 
case of an event, we were trying to locate the near-
est trigger for the event (being regulated) in the 
parse tree. For example, in Figure 2, the nearest 
option to the regulation trigger (secretion) was the 
trigger of the two localization events, and both 
events should be (correctly) reported as the themes 
of two regulation events. Therefore, we require a 
number of recursions in the application of the rules 
to represent higher-order regulatory dependences. 
For the purposes of this challenge, only regulations 
up to the second “order” were detected, allowing 
other events to act as themes and causes as well as 
proteins. Attempts to find more complicated regu-
latory events using this method resulted in a de-
creased precision and/or F-score.  

 

2.3 Post-processing Event Profiles 

The performance of the first two phases was 
studied on the development dataset: we noted a 
number of false-positive and false-negative results 
that were mostly due to a set of recurring triggers. 
We therefore decided to perform a post-processing 
step to improve the identification of event triggers 
and associated types. In the first step (improving 
the event trigger and type detection), the output of 
the CRF was overridden in cases where the triggers 
appeared in a list of negatively discriminated trig-
ger words which was collected after the manual 
analysis of the false positive results on the training 
and development data. Similarly, in cases where 
the CRF missed a highly indicative trigger (from a 
manually collected set) for a given event type, the 
trigger was added as part of post-processing. In the 
latter case, the sentence was then processed for the 
event theme detection (as described in 2.2).  

In the second step of the pre-processing phase, 
we forced highly indicative regulation triggers (if 
not previously identified) to be associated with an 

 
Figure 2: The parse tree of sentence Monocyte tethering 
by P-selectin regulates monocyte chemotactic protein-1 
and tumor necrosis factor-alpha secretion. The triggers 

are shown in boxes, and the entities are numbered.  
 

event by assigning proteins appearing in the sen-
tence to them, even when no protein in the sen-
tence satisfied the theme or cause criteria described 
in Section 2.2. This was aimed at improving the 
extremely low recall for regulatory events. 

Finally, since triggers could consist of more than 
one consecutive token, a set of simple rules were 
applied to remove typical false-negative constitu-
ents identified by the CRF as part of triggers (e.g. 
sometimes linking words appeared within triggers). 

3 Results and discussion 

The task 1 assessment was based on the output of 
the system when applied to the test dataset of 260 
previously unseen abstracts. An event was counted 
as a true positive if its type, trigger and all partici-
pants had been correctly identified. The overall F-
score for our system was 30.35% with 48.61% pre-
cision (approximate span matching, see Table 1). 
The best performing event types were phosphory-
lation (the best F-score and the best recall) and 
gene expression (the best precision with a reasona-
bly good F-measure). While the results for non-
regulatory events were encouraging, they were low 
for regulatory events. Among the 24 teams submit-
ting the test results, our results were ranked 12th for 
the overall F-score and 8th for the F-score of non-
regulation events. 

A preliminary analysis of the results was per-
formed on the development data (as the test data is 
not available), which had around 5% higher overall 
F-score than the test data (9% for non-regulation 
events, see Table 2 for details). 
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Event Class #Gold R P F-score 
Localisation 174 44.83 53.06 48.60 

Binding 347 12.68 40.37 19.30 

Gene expression 722 52.63 69.34 59.84 

Transcription 137 15.33 67.74 25.00 

Protein catabolism 14 42.86 50.00 46.15 

Phosphorylation 135 78.52 53.81 63.86 
Non-reg total 1529 41.53 60.82 49.36 

Regulation 291 3.09 19.15  5.33 

Positive regulation 983 1.12 8.87 1.99 

Neg. regulation 379 12.4 20.52 15.46 

Regulatory total 1653 4.05 16.75 6.53 

All total 3182 22.06 48.61 30.35 
 

Table 1: Evaluation of the test data (260 abstracts), 
(approximate span matching; #Gold = the number of  

examples in the gold standard) 
 

 

In order to assess the effects of different steps 
in our approach, we evaluated the performance of 
the event trigger and event participant detection 
steps separately. The results presented in Table 3 
indicated that the performance of the CRF module 
was not much better than the overall performance 
of the system (an F-score of 43% vs. 35%), sug-
gesting that the CRF part was mostly responsible 
for the errors, by both missing triggers and falsely 
reporting them. This was particularly the case with 
non-regulatory events (even for binding). Con-
versely, when considering only those events whose 
triggers were correctly identified, their participants 
were also correctly recognised in most cases. 
Overall, the analysis suggested that the parse tree 
distance method performed reasonable well, de-
spite a reduction in recall of approximately 12%.  

There are a number of possibilities for im-
provements. We believe applying the CRF model 
in two stages would be a better approach to detect 

 

Event Class #Gold R P F-score 
Localisation 40 77.50 47.69 59.05 

Binding 180 33.33 54.55 41.38 

Gene expression 282 76.60 58.54 66.36 

Transcription 68 58.82 18.60 28.27 

Protein catabolism 19 84.21 88.89 86.49 

Phosphorylation 40 97.50 81.25 88.64 
Non-reg total 629 63.91 48.73 55.30 

Regulation 138 13.04 62.07 21.56 

Positive regulation 462 13.85 54.24 22.07 

Neg. regulation 153 29.41 45.92 35.86 

All total 1382 38.28 49.44 43.15 
 

Table 3: Trigger-only evaluation of the development data  

Event Class #Gold R P F-score 
Localisation 53 67.92 46.75 55.38 

Binding 312 21.47 63.81 32.13 

Gene expression 356 64.61 76.33 69.98 

Transcription 82 53.66 89.80 67.18 

Protein catabolism 21 90.48 67.86 77.55 
Phosphorylation 47 91.49 53.09 67.19 

Non-reg total 871 50.4 68.44 58.05 

Regulation 172 5.23 33.33 9.05 

Positive regulation 632 3.48 21.36 5.99 

Neg. regulation 201 9.45 15.08 11.62 

Regulatory total 1005 4.98 19.53 7.93 

All total 1876 26.07 54.46 35.26 
 

Table 2: Evaluation of the development data (150 abstracts) 
(approximate span matching; #Gold as in Table 1) 

 

events: first identify triggers and then link them to 
event classes. In addition, the rules employed for 
determining themes need to be more specific to 
reflect both event type and grammatical structure.  
In the case of regulatory events, however, signifi-
cantly better results were noticed in the trigger de-
tection part when compared to the overall scores, 
indicating that it was difficult to identify regulatory 
participants, as any of those participants could be 
either a protein or another event.  

Overall, the results achieved by our system 
suggest that combining parse tree results, rules and 
CRFs is a promising approach for the identification 
of non-regulatory events in the literature, while 
more work would be needed for regulatory events. 
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Abstract

We explore a rule-based methodology for the
BioNLP’09 Shared Task on Event Extrac-
tion, using dependency parsing as the under-
lying principle for extracting and characteriz-
ing events. We approach the speculation and
negation detection task with the same princi-
ple. Evaluation results demonstrate the util-
ity of this syntax-based approach and point out
some shortcomings that need to be addressed
in future work.

1 Introduction

Exponential increase in the amount of genomic data
necessitates sophisticated approaches to accessing
knowledge in molecular biology literature, which re-
mains the primary medium for disseminating new
knowledge in molecular biology. Extracting rela-
tions and events directly from free text facilitates
such access. Advances made in foundational areas,
such as parsing and named entity recognition, boosts
the interest in biological event extraction (Zweigen-
baum et al., 2007). The BioNLP’09 Shared Task on
Event Extraction illustrates this shift and is likely to
inform future endeavors in the field.

The difficulty of extracting biological events from
scientific literature is due to several factors. First,
sentences are long and often have long-range depen-
dencies. In addition, the biological processes de-
scribed are generally complex, involving multiple
genes or proteins as well as other biological pro-
cesses. Furthermore, biological text is rich in higher
level phenomena, such as speculation and negation,

which need to be dealt with for correct interpreta-
tion of the text. Despite all this complexity, how-
ever, a closer look at various biological corpora also
suggests that beneath the complexity lie regularities,
which may potentially be exploited using relatively
simple heuristics.

We participated in Task 1 and Task 3 of the
Shared Task on Event Extraction. Our approach
draws primarily from dependency parse representa-
tion (Mel’čuk, 1988; deMarneffe et al., 2006). This
representation, with its ability to reveal long-range
dependencies, is suitable for building event extrac-
tion systems. Dependencies typed with grammatical
relations, in particular, benefit such applications. To
detect and characterize biological events (Task 1),
we constructed a dictionary of event triggers based
on training corpus annotations. Syntactic depen-
dency paths between event triggers and event partic-
ipants in the training corpus served in developing a
grammar for participant identification. For specula-
tion and negation recognition (Task 3), we extended
and refined our prior work in speculative language
identification, which involved dependency relations
as well. Our results show that dependency relations,
despite their imperfections, provide a good founda-
tion, on which accurate and reliable event extraction
systems can be built and that the regularities of bio-
logical text can be adequately exploited with a lim-
ited set of syntactic patterns.

2 Related Work

Co-occurrence based approaches (Jenssen et al.,
2001; Ding et al., 2002) to biological relation ex-
traction provide high recall at the expense of low
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precision. Shallow parsing and syntactic templates
(Blaschke et al., 1999; Rindflesch et al., 2000; Fried-
man et al., 2001; Blaschke and Valencia, 2001;
Leroy et al., 2003; Ahlers et al., 2007), as well as
full parsing (Daraselia et al., 2004; Yakushiji et al.,
2005), have also been explored as the basis for re-
lation extraction. In contrast to co-occurrence based
methods, these more sophisticated approaches pro-
vide higher precision at the expense of lower recall.
Approaches combining the strengths of complemen-
tary models have also been proposed (Bunescu et al.,
2006) for high recall and precision.

More recently, dependency parse representation
has found considerable use in relation extraction,
particularly in extraction of protein-protein interac-
tions (PPI). Fundel et al. (2007) use Stanford depen-
dency parses of Medline abstracts as the basis for
rules that extract gene/protein interactions. Rinaldi
et al. (2007) extract relations combining a hand-
written grammar based on dependency parsing with
a statistical language model. Airola et al. (2008) ex-
tract protein-protein interactions from scientific lit-
erature using supervised machine learning based on
an all-dependency-paths kernel.

The speculative aspect of the biomedical literature
(also referred to as hedging) has been the focus of
several recent studies. These studies primarily dealt
with distinguishing speculative sentences from non-
speculative ones. Supervised machine learning tech-
niques mostly dominate this area of research (Light
et al., 2004; Medlock and Briscoe, 2007; Szarvas,
2008). A more linguistically-based approach, rely-
ing on lexical and syntactic patterns, has been ex-
plored as well (Kilicoglu and Bergler, 2008). The
scope of speculative statements is annotated in the
BioScope corpus (Vincze et al., 2008); however, ex-
periments in detecting speculation scope have yet to
be reported.

Recognizing whether extracted events are negated
is crucial, as negation reverses the meaning of a
proposition. Most of the work on negation in
the biomedical domain focused on finding negated
terms or concepts. Some of these systems are
rule-based and rely on lexical or syntactic informa-
tion (Mutalik et al., 2001; Chapman et al., 2001;
Sanchez-Graillet and Poesio, 2007); while others
(Averbuch et al., 2004; Goldin and Chapman, 2003)
experiment with machine learning techniques. A re-

cent study (Morante et al., 2008) focuses on learn-
ing negation scope using memory-based classifiers
trained on the BioScope corpus.

Our approach to Task 1 is most similar to work
of Fundel et al. (2007) as it builds on dependency-
based heuristics. However, we address a larger num-
ber of event classes, including regulatory events al-
lowing participation of other events. In addition,
event triggers are central to our approach, contrast-
ing with their system and most other PPI systems
that rely on finding dependency paths between enti-
ties. We extended prior work for Task 3 and obtained
state of the art results.

3 Event Detection and Characterization

As preparation for biological event extraction, we
combined the provided annotations, tokenized in-
put and dependency parses in an XML representa-
tion. Next, we determined good trigger words for
event classes and scored them. Finally, we devel-
oped a dependency-based grammar for event partici-
pant identification, which drives our event extraction
system.

3.1 Data Preprocessing
Our event detection and characterization pipeline re-
quires XML representation of a document as in-
put. Here, the XML representation of a document
contains sentences, their offset positions and de-
pendency parses as well as entities (Proteins) and
their offset positions in addition to word information
(tokens, part-of-speech tags, indexes and lemmas).
We used the Stanford Lexicalized Parser (Klein and
Manning, 2003) to extract word-related information,
as well as for dependency parsing.

3.2 Event Triggers
After parsing the training corpus and creating an en-
riched document representation, we proceeded with
constructing a dictionary of event triggers, draw-
ing from training corpus annotations of triggers and
making further refinements, as described below.

We view event triggers essentially as predicates
and thus restricted event triggers to words carrying
verb, noun or adjective part-of-speech tags. Our
analysis suggests that, in general, trigger words with
other POS tags are tenuously annotated event trig-
gers and in fact require more context to qualify as
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event triggers. In Example (1), by is annotated
as trigger for a Positive regulation event;
however, it seems that the meaning of the entire
prepositional phrase introduced with by contributes
to trigger such an event:

(1) These data suggest a general role for Tax in-
duction of IL-1alpha gene transcription by the
NF-kappaB pathway.

We refined the event trigger list further through
limited term expansion and filtering, based on sev-
eral observations:

1. The event triggers with prefixes, such as
co, down and up, (e.g., coexpression, down-
regulate) were expanded to include both hy-
phenated and non-hyphenated forms.

2. For a trigger that has inflectional/derivational
forms acting as triggers in the development cor-
pus but not in the training corpus, we added
these forms as event triggers. Examples include
adding dimerization after dimerize and dimin-
ished(adj) after diminish, among others.

3. We removed several event triggers, which, we
considered, required more context to qualify
as event triggers for the corresponding event
classes. (e.g., absence, absent, follow, lack)

Finally, we did not consider multi-word event
triggers. We observed that core trigger meaning
generally came from a single word token (gener-
ally head of a noun phrase) in the fragment an-
notated as event trigger. For instance, for trigger
transcriptional activation, the annotated event class
is Positive regulation, which suggests that
the head activation carries the meaning in this in-
stance (since transcriptional is an event trigger for
the distinct Transcription event class). In an-
other instance, the trigger binding activity is anno-
tated as triggering a Binding event, indicating that
the head word activity is semantically empty. We
noted some exceptions to this constraint (e.g., neg-
atively regulate, positive regulation) and dealt with
them in the postprocessing step.

For the remaining event triggers, we computed a
“goodness score” via maximum likelihood estima-
tion. For a given event class C and event trigger t,
the ”goodness score” G(t,C) then is:

G(t,C) = w(C:t)/w(t)

where w(C:t) is the number of times t occurs as a
trigger for event class C and w(t) is the frequency
of trigger t in the training corpus. The newly added
event triggers were assigned the same scores as the
trigger they are derived from.

In the event extraction step, we do not consider
event triggers with a score below an empirically de-
termined threshold.

3.3 Dependency relations for event participant
identification

To identify the event participants Theme and Cause,
we developed a grammar based on the “collapsed”
version of Stanford Parser dependency parses of
sentences. Grammar development was driven by
extraction and ranking of typed dependency rela-
tion paths connecting event triggers to correspond-
ing event participants in the training data. We then
analyzed these paths and implemented as rules those
deemed to be both correct and sufficiently general.

More than 2,000 dependency paths were ex-
tracted; however, their distribution was Zipfian, with
approximately 70% of them occurring only once.
We concentrated on the most frequent, therefore
general, dependency paths. Unsurprisingly, the most
frequent dependency path involved the dobj (direct
object) dependency between verbal event triggers
and Theme participants, occurring 826 times. Next
was the nn (nominal modifier) dependency between
nominal event triggers and their Theme participants.
The most frequent dependency for Cause partici-
pants was, again unsurprisingly, nsubj (nominal sub-
ject). The ranking of dependency paths indicated
that path length is inversely proportional to reliabil-
ity. We implemented a total of 27 dependency path
patterns.

Some of these patterns specifically address de-
ficiencies of the Stanford Parser. Prepositional
phrases are often attached incorrectly, causing prob-
lems in participant identification. Consider, for ex-
ample, one of the more frequent dependency paths,
dobj-prep on (direct object dependency followed by
prepositional modifier headed in on), occurring be-
tween the event trigger (effect) and participant (ex-
pression, itself a sub-event trigger):

(2) We have examined the effect of leukotriene B4
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(LTB4), a potent lipid proinflammatory medi-
ator, on the expression of the proto-oncogenes
c-jun and c-fos.
dobj(examined,effect)
prep on(examined,expression)

This dependency path occurs almost exclusively
with PP attachment errors involving on, leading us
to stipulate a “corrective” dependency path, imple-
mented for certain trigger words (e.g., effect, influ-
ence, impact in this case). Postnominal preposi-
tional attachment heuristics detailed in Schuman and
Bergler (2006) helped determine 6 such patterns.

Two common verbs (require and involve) deserve
special attention, as the semantic roles of their sub-
ject/object constituents differ from typical verbs.
The prototypical Cause dependency, nsubj, indicates
a Theme in the following sentence:

(3) Regulation of interleukin-1beta transcription
by Epstein-Barr virus involves a number of la-
tent proteins via their interaction with RBP.
nsubj(involves,Regulation)

For these two verbs, participant identification rules
are reversed.

An interesting phenomenon is NPs with hyphen-
ated adjectival modifiers, occurring frequently in
molecular biology texts (e.g., “... LPS-mediated
TF expression...”). The majority of these cases in-
volve regulatory events. Such cases do not in-
volve a dependency path, as the participant (in
this case, LPS) and the event trigger (mediated)
form a single word. An additional rule ad-
dresses these cases, stipulating that the substring
preceding the hyphen is the Cause of the regu-
latory event triggered by the substring following
the hyphen. (Positive regulation (Trig-
ger=mediated,Theme=TF expression,Cause=LPS)).

Events allowing event participants (regulatory
events) are treated essentially the same way as
events taking entity participants. The main differ-
ence is that, when sub-events are considered, a de-
pendency path is found between the trigger of the
main event and the trigger of its sub-event, rather
than an annotated entity, as was shown above in Ex-
ample (2).

3.4 Extracting Events
The event detection and characterization pipeline
(Task 1) consists of three steps:

1. Determining whether a word is an event trigger.

2. If the word is an event trigger, identifying its
potential participant(s).

3. If the event trigger corresponds to a regula-
tory event and it has a potential sub-event
participant, determining in a recursive fashion
whether the sub-event is a valid event.

The first step is a simple dictionary lookup. Pro-
vided that a word is tagged as noun, verb or adjec-
tive, we check whether it is in our dictionary, and if
so, determine the event class for which it has a score
above the given threshold. This word is considered
the clue for an event.

We then apply our dependency-based rules to de-
termine whether any entity or event trigger (in the
case of regulatory events) in the sentence qualifies
as an argument of the event clue. Grammar rules are
applied in the order of simplicity; rules that involve
a direct dependency between the clue and any word
of the entity are considered first.

Once a list of potential participants is obtained
by consecutive application of the rules, one of
two things may happen: Provided that sub-events
are not involved and appropriate participants have
been identified (e.g., a Theme is found for a
Localization event), the event is simply added
to the extracted event list. Otherwise, we proceed
recursively to determine whether the sub-event par-
ticipant can be resolved to a simple event. If this
yields no such simple event in the end, the event in
question is rejected. In the following example, the
event triggered by inhibit is invalid even though its
Cause JunB is recognized, because its Theme, sub-
event triggered by activation, cannot be assigned a
Theme and therefore is considered invalid.

(4) ..., JunB, is shown to inhibit activation medi-
ated by JunD.

After events are extracted in this manner, two
postprocessing rules ensure increased accuracy.
One rule deals with a limited set of multi-
word event triggers. If a Regulation event
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has been identified and the event trigger is
modified by positive or negative (or inflec-
tional forms positively, negatively), the event
class is updated to Positive regulation or
Negative regulation, respectively. The sec-
ond rule deals with the limitation of not allowing
multiple events on the same trigger and adds to
the extracted event list a Positive regulation
event, if a Gene expression event was recog-
nized for certain triggers, including overexpression
and several others related to transfection (e.g., trans-
fect, transfection, cotransfect).

Two grammatical constructions are crucial to de-
termining the event participants: coordination and
apposition. We summarize how they affect event ex-
traction below.

3.4.1 Coordination
Coordination plays two important roles in event

extraction:

1. When the event trigger is conjoined with an-
other word token, dependency relations con-
cerning the other conjunct are also considered
for participant identification.

2. When an event is detected and its participant
is found to be coordinated with other entities,
new events are created with the event trigger
and each of these entities. An exception are
Binding events, which may have multiple
Themes. In this case, we add conjunct entities
as the Themes of the base event.

Coordination between words is largely determined
by dependency relations. The participants of a de-
pendency with a type descending from conj (con-
junct) are considered coordinated (e.g., conj and,
conj or).

Recognizing that Stanford dependency parsing
misses some expressions of coordinated entities typ-
ical of biological text (in particular, those involving
parentheses), we implemented a few additional rules
to better resolve coordinated entities. These rules
stipulate that entities that have between them:

1. Only a comma (,) or a semi-colon (;)

2. A word with CC (coordinating conjunction)
part-of-speech tag

3. A complete parenthetical expression

4. Any combination of the above

are coordinated. For instance, in Example (5), we
recognize the coordination between interleukin-2
and IL-4, even though the parser does not:

(5) The activation of NFAT by TCR signals has
been well described for interleukin-2 (IL-2)
and IL-4 gene transcription in T cells.
conj and(interleukin-2,transcription)

3.4.2 Apposition
Words in an apposition construction are con-

sidered equivalent for event extraction purposes.
Therefore, if an appropriate dependency exists be-
tween a word and the trigger and the word is in ap-
position with an entity, that entity is marked as the
event participant. In Example 6, the appos (apposi-
tive) dependency shown serves to extract the event
Positive regulation (Trigger=upregulation,
Theme=intercellular adhesion molecule-1):

(6) ... upregulation of the lung vascular adhesion
molecule, intercellular adhesion molecule-1,
was greatly reduced by...
appos(molecule,molecule-1)
prep of(upregulation,molecule)

The dependencies that we consider to encode ap-
position constructions are: appos (appositive), ab-
brev (abbreviation), prep {including, such as, com-
pared to, compared with, versus} (prepositional
modifier marked with including, such as, compared
to, compared with or versus).

3.5 Speculation and Negation Detection
Once an event list is obtained for a sentence,
our speculation and negation module determines
whether these events are speculated and/or negated,
using additional dependency-based heuristics that
consider the dependencies between the event trigger
and speculation/negation cues.

3.5.1 Speculation Recognition
We refined an existing speculation detection mod-

ule in two ways for Task 3. First, we noted that
modal verbs (e.g., may) and epistemic adverbs (e.g.,
probably) rarely mark speculative contexts in the
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training corpus, demonstrating the lack of a stan-
dardized notion of speculation among various cor-
pora. For Task 3, we ignored lexical cues in these
classes completely for increased accuracy. Sec-
ondly, corpus analysis revealed a new syntactic pat-
tern for speculation recognition. This pattern in-
volves the class of verbs that we called active cogni-
tion verbs (e.g., examine, evaluate, analyze, study,
investigate). We search for a Theme dependency
pattern between one of these verbs and an event trig-
ger and mark the event as speculated, if such a pat-
tern exists. Nominalizations of these verbs are also
considered. In Example (7), the event triggered by
effects is speculated, since effects is the direct object
(therefore, Theme) of studied:

(7) We have studied the effects of prednisone
(PDN), ... on the production of cytokines (IL-2,
IL-6, TNF-alpha, IL-10) by peripheral T lym-
phocytes...

3.5.2 Negation Detection
Negation detection is similar to speculation detec-

tion. Several classes of negation cues have been de-
termined based on corpus analysis and the negation
module negates events if there is an appropriate de-
pendency between one of these cues and the event
triggers. The lexical cues and the dependencies that
are sought are given in Table 1.

Negation Cue Dependency
lack, absence prep of(Cue,Trigger)
unable, <not> able, fail xcomp(Cue,Trigger)
inability, failure infmod(Cue, Trigger)
no, not, cannot det(Trigger, Cue)

Table 1: Negation cues and the corresponding depen-
dencies (xcomp: clausal complement, infmod: infinitival
modifier, det: determiner)

Additionally, participation of event triggers
in dependencies of certain types is sufficient
for negating the event it triggers. Such depen-
dency types are neg (negation) and conj negcc
(negated coordination). A neg dependency ap-
plies to event triggers only, while conj negcc is
sought between event participants, as well as
event triggers. Therefore, in Example (8), an event
(Positive regulation(Trigger=transactivate,

Theme: GM-CSF, Cause=ELF1)) is negated, based
on the dependencies below:

(8) Exogenous ETS1, but not ELF1, can transacti-
vate GM-CSF, ..., in a PMA/ionomycin depen-
dent manner.
conj negcc(ETS1, ELF1)
nsubj(transactivate, ETS1)
dobj(transactivate, GM-CSF)

Finally, if none of the above applies and the word
preceding the event trigger or one of the event partic-
ipants is a negation cue (no, not, cannot), the event
is negated.

4 Results and Discussion

Our event extraction system had one of the best per-
formances in the shared task. With the approxi-
mate span matching/approximate recursive match-
ing evaluation criteria, in Task 1, we were ranked
third, while our speculation and negation detection
module performed best among the six participating
systems in Task 3. Not surprisingly, our system fa-
vors precision, typical of rule-based systems. Full
results are given in Table 2.

The results reported are at goodness score thresh-
old of .08. Increasing the threshold increases preci-
sion, while lowering recall. The threshold was de-
termined empirically.

Our results confirm the usefulness of dependency
relations as foundation for event extraction systems.
There is much room for improvement, particularly in
terms of recall, and we believe that incremental na-
ture of our system development accommodates such
improvements fairly easily.

Our view of event triggers (“once a trigger, always
a trigger”), while simplistic, provides a good start-
ing point by greatly reducing the number of trigger
candidates in a sentence and typed dependencies to
consider. However, it also leads to errors. One such
example is given in Example (9):

(9) We show that ..., and that LPS treatment en-
hances the oligomerization of TLR2.

where we identify the event Binding (Trig-
ger=oligomerization,Theme=TLR2). We consider
oligomerization a reliable trigger, since it occurs
twice in the training corpus, both times as event trig-
gers. However, in this instance, it does not trigger
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Event Class Recall Precis. F-score
Localization 35.63 92.54 51.45
Binding 20.46 40.57 27.20
Gene expression 55.68 79.45 65.47
Transcription 15.33 60.00 24.42
Protein catabolism 64.29 56.25 60.00
Phosphorylation 69.63 95.92 80.69
EVT-TOTAL 43.10 73.47 54.33

Regulation 24.05 45.75 31.53
Positive regulation 28.79 50.45 36.66
Negative regulation 26.65 51.53 35.13
REG-TOTAL 27.47 49.89 35.43

Negation 14.98 50.75 23.13
Speculation 16.83 50.72 25.27
MOD-TOTAL 15.86 50.74 24.17

ALL-TOTAL 32.68 60.83 42.52

Table 2: Evaluation results

an event. This narrow view also leads to recall er-
rors, in which we do not recognize an event trigger
as such, simply because we have not encountered it
in the training corpus, or it does not have an appro-
priate part-of-speech tag. A more sophisticated trig-
ger learning approach could aid in better detecting
event triggers.

We dealt with some deficiencies of Stanford de-
pendency parsing through additional rules, as de-
scribed in Section 3.3. However, many depen-
dency errors are still generated, due to the com-
plexity of biological text. For instance, in Exam-
ple (10), there is a coordination construction be-
tween NF-kappaB nuclear translocation and tran-
scription of E-selectin and IL-8. However, this con-
struction is missed and an erroneous prep of de-
pendency is found, leading to two false positive
errors: Localization (Trigger=translocation,
Theme=E-selectin) and Localization (Trig-
ger=translocation, Theme=IL-8).

(10) ... leading to NF-kappaB nuclear translocation
and transcription of E-selectin and IL-8, which
results in ...
conj and(transcription, translocation)
prep of(translocation, E-selectin)

conj and(E-selectin, IL-8)

These errors can be corrected via other “corrective”
dependency paths; however, first, a closer examina-
tion of such error patterns is necessary.

In other instances, the required dependency is
completely missed by the parser, leading to recall
errors. For instance, in Example (11), we are un-
able to recognize two events (Regulation
(Trigger=regulation, Theme=4E-BP1) and
Regulation (Trigger=regulation, Theme=4E-
BP2)), due to lack of apposition dependencies
between repressors and 4E-BP1 or 4E-BP2:

(11) ... specific regulation of two repressors of
translation initiation, 4E-BP1 and 4E-BP2.
prep of(regulation,repressors)
prep of(repressors, initiation)
conj and(intiation, 4E-BP1)
conj and(initiation, 4E-BP2)

Typical of rule-base systems, we miss events ex-
pressed using less frequent patterns. Event partic-
ipants expressed as prepositional modifiers marked
with from is one such case. An example is given
below:

(12) Calcineurin activates transcription from the
GM-CSF promoter ...

In this case, the event Transcription (Trig-
ger=transcription, Theme=GM-CSF) is missed. It is
fairly easy to add a rule to address such occurrences.

We have not attempted to resolve anaphoric ex-
pressions for the shared task, which led to a fair
number of recall errors. In a similar vein, we ig-
nored events spanning multiple sentences. We ex-
pect that several studies addressing anaphora res-
olution in biomedical text (Castaño et al., 2002;
Gasperin and Briscoe, 2008) will inform our near
future efforts in this area.

Evaluation results regarding Task 3 may seem
poor at first; however, most of the errors concern
misidentified or missed base events. Thus, in this
section, we focus on errors specifically triggered by
speculation and negation module. In the develop-
ment corpus, we identified 39 speculation instances,
4 of which were errors due to speculation process-
ing. Of 95 annotated speculation instances, 7 were
missed due to deficiencies in speculation processing.
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Similarly, negation processing led to 5 false posi-
tives in 31 negation instances we identified and to 5
false negatives in 107 annotated negation instances.

We found that speculation false positive er-
rors are exclusively cases for which speculation
could be argued. For instance, in Example (13),
we recognize that appears to scopes over event
Negative regulation (Trigger=negatively
regulate, Theme=IL-2R), rendering it speculative.
However, it is not annotated as such. This is
further evidence for the difficulty of annotating such
phenomena correctly and consistently, since the
exact meaning is somewhat elusive.

(13) An unidentified Ets family protein binds to the
EBS overlapping the consensus GAS motif and
appears to negatively regulate the human IL-
2R alpha promoter.

Negation pattern that involves negation cues
(no,not,cannot) in the token preceding an event trig-
ger or participant, a pattern initially considered to
increase recall, caused most of negation false posi-
tive errors. An example is given in (14):

(14) The finding that HL-60/vinc/R cells respond to
TPA with induction of a monocytic phenotype,
but not c-jun expression, suggests that ...

Complex and less frequent patterns of expressing
speculation and negation were responsible for more
recall errors. Two such examples are given below:

(15) (a) These results ... and suggest a molecular
mechanism for the inhibition of TLR2 by
DN variants.

(b) Galectin-3 is ... and is expressed in many
leukocytes, with the notable exception of
B and T lymphocytes.

In (15a), speculation is detected; however, we are
unable to recognize that it scopes over the event
triggered by inhibition. In (15b), the prepositional
phrase, with the notable exception, is not considered
to indicate negation.

5 Conclusions and Future Work

We explored a rule-based approach to biological
event detection driven by typed dependency rela-
tions. This study marks our first foray into bio-event

extraction in a general way and, thus, we consider
the results very encouraging. In one area we investi-
gated before, speculation detection, our system per-
formed best and this confirms the portability and ex-
tensibility of our approach.

Modest recall figures point to areas of improve-
ment. We plan to address anaphora resolution and
multiple sentence spanning events in the near fu-
ture. Our naı̈ve approach to event triggers needs
refinement and we believe that sophisticated super-
vised machine learning techniques may be helpful.
In addition, biomedical lexical resources, includ-
ing UMLS SPECIALIST Lexicon (McCray et al.,
1994), may be useful in improving event trigger
detection. Finally, dependency relations based on
the Stanford Parser provided better performance in
our case, in contrast to general consensus that those
based on Charniak Parser (Charniak and Johnson,
2005) are superior, and this, too, deserves further in-
vestigation.
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Abstract

The BioNLP’09 Shared Task on Event Ex-
traction is a challenge which concerns the de-
tection of bio-molecular events from text. In
this paper, we present a detailed account of
the challenges encountered during the con-
struction of a machine learning framework for
participation in this task. We have focused
our work mainly around the filtering of false
positives, creating a high-precision extraction
method. We have tested techniques such as
SVMs, feature selection and various filters for
data pre- and post-processing, and report on
the influence on performance for each of them.
To detect negation and speculation in text,
we describe a custom-made rule-based sys-
tem which is simple in design, but effective in
performance.

1 Introduction

BioNLP recently emerged from the combined exper-
tise of molecular biology and computational linguis-
tics. At first, the community was mainly focused
on named entity recognition (NER) and simple rela-
tion extraction, such as protein-protein interactions
(Plake et al., 2005; Giuliano et al., 2006; Fundel et
al., 2007; Saetre et al., 2008). However, the future
of BioNLP lies in the ability to extract more com-
plex events from text, in order to fully capture all
available information (Altman et al., 2008).

Two recent community-wide challenges, Biocre-
ative I (Hirschman et al., 2005) and II (Krallinger et
al., 2008) have shown their merits by providing com-
mon benchmarking data and a meaningful compari-

son of various techniques. In contrast to the mono-
lithic Biocreative tasks, the BioNLP’09 Shared Task
has a more modular nature (Kim et al., 2009). It
is not concerned with named entity recognition or
normalization, but focuses on the task of event ex-
traction itself.

This article is organized as follows: we first de-
scribe the Shared Task in a little more detail. Next,
we present the methods used in our machine learn-
ing framework, carefully discussing our choices in
design and their influence on performance. We then
present the final results of our approach. Finally, we
draw conclusions from our participation in this task,
and suggest some future work for our own research
as well as on a community-wide level.

2 BioNLP’09 Shared Task

2.1 Subtasks

The BioNLP’09 Shared Task was divided into three
subtasks, of which only the first one was mandatory.
We have participated in tasks 1 and 3, and will there-
fore only briefly discuss task 2. In accordance with
the provided gold entity annotation, we will refer to
all genes and gene products as proteins.

Task 1 represents the core of the challenge: de-
tection and characterization of bio-molecular events
from text. There are 9 distinct event types. Six
events influence proteins directly, and we will refer
to them as ‘Protein events’. Five of them are unary:
Localization, Gene expression, Transcription, Pro-
tein catabolism and Phosphorylation. The Binding
event can be related to one protein (e.g. protein-
DNA binding), two proteins (e.g. protein-protein in-

128



teraction) or more (e.g. a complex). On top of these
event types, there are three Regulation events: Reg-
ulation, Positive regulation and Negative regulation.
Each of them can be unary or binary. In the latter
case, an extra argument specifying the cause of the
regulation is added. Each argument of a Regulation
event can be either a protein or any other event.

Participants in task 2 had to recognise extra ar-
guments for the events from task 1. For example,
the cellular location should be added to a Localiza-
tion event, and Site arguments had to be specified
for Phosphorylation, Binding and Regulation.

Finally, task 3 was about detecting negation and
speculation in text.

2.2 Examples
Suppose we are dealing with this sentence:

“MAD-3 masks the nuclear localization signal
of p65 and inhibits p65 DNA binding.”

There are three proteins in this sentence:

• T1 : Protein : ‘MAD-3’
• T2 : Protein : ‘p65’ (first occurrence)
• T3 : Protein : ’p65’ (second occurrence)

There are also three triggers, which are defined by
a contiguous stream of characters from the original
text, and point to a specific event type:

• T27 : Negative regulation : ‘masks’
• T29 : Negative regulation : ‘inhibits’
• T30 : Binding : ‘binding’

In this example, we see there is one binding event
which involves trigger T30 and protein T3. Further-
more, this binding event is being influenced by pro-
tein T1, using trigger T29 which implies a Negative
regulation event. Similarly, T1 has a negative effect
on protein T2, which is expressed by trigger T27.
When participating in subtask 2, one should also find
the extra Site argument T28 for this last event:

• T28 : Entity : ‘nuclear localization signal’

Now look at the following example:

“NF-kappa B p50 is not directly regulated by
I kappa B.”

This sentence expresses a Regulation event involv-
ing the trigger ‘regulated’ and protein ‘p50’. Partic-
ipation in subtask 3 requires detecting the negation
of this event.

2.3 Datasets

Both training and testing data consist of PubMed ab-
stracts extracted from the GENIA corpus (Kim et al.,
2008). All proteins are annotated and extra informa-
tion is provided, such as analysis of sentence seg-
mentation and tokenization, dependency graphs and
phrase structure parses.

The training data consists of 800 articles. The
development data contains an additional 150 arti-
cles with gold standard annotations. During devel-
opment (6 weeks), the system’s performance could
be estimated with this dataset, using an online sub-
mission system. Participants had one week time to
provide predictions for the final test dataset of 260
articles.

3 Methods

Our machine learning framework is tailored towards
specific properties of different events, but is still kept
sufficiently general to deal with new event types.
The nature of the event extraction task leads to un-
balanced datasets, with much more negative exam-
ples than positive ones. This is due to the fact
that proteins could be involved in all possible event
types, and each of the words in the text could be a
trigger for an event. Finding the right events thus
seems like looking for a needle in a haystack, which
is why it is crucial to start with a good definition
of candidate instances. This problem has motivated
us to try and filter out as many irrelevant negative
instances as possible by introducing specific pre-
processing methods and filters. This reduces un-
balancedness of the datasets and will lead to better
precision as there will be less false positives (FPs).
High-precision systems produce less noise and can
be considered to be more useful when a researcher
is trying to extract reliable interaction networks from
text. There is a considerable degree of information
redundancy in the original PubMed articles, which
makes up for low recall when using the system in
a real-world application. We have also tested a few
post-processing techniques in order to remove FPs
after classification.

Figure 1 shows a high-level overview of the dif-
ferent modules in our framework. More details are
described in the next sections.
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Figure 1: High-level overview of the modules used in our
framework.

3.1 Parsing
For sentence segmentation, we made use of the pro-
vided tokenization files. Analysis of part-of-speech
tags and dependency graphs was done using the
Stanford parser (de Marneffe et al., 2006).

3.2 Dictionaries of triggers
From the training data, we automatically compiled
dictionaries of triggers for each event type, applying
the Porter stemming algorithm (Porter, 1980) to each
trigger. This resulted in some entries in the dictio-
naries which were of limited use, such as ‘through’
for Binding, or ‘are’ for Localization. Such words
are too general or too vague, and lead to many neg-
ative and irrelevant instances. For this reason, we
manually cleaned the dictionaries, only keeping spe-
cific triggers for each event type (e.g. ‘interaction’
for Binding and ‘secretion’ for Localization).

During development, we noticed a significant
difference between the triggers for unary Bind-
ing events (e.g. ‘homodimer’, ‘binding site’) and
those for Binding events with multiple arguments
(e.g. ‘heterodimer’, ‘complex’). This motivated our
choice to create two separate dictionaries and classi-
fiers, thus discarding irrelevant candidate instances.
Such an example would be a candidate binary Bind-
ing event with the trigger ‘homodimer’, while ho-
modimerization is clearly a unary event. In the
rest of this article, we will refer to these two event
types as Single binding and Multiple binding events.
The revision of the dictionaries resulted in a signifi-

cant drop in the number of Binding instances in the
training data, and improved the balancedness of the
datasets: from a total of 34 612 instances (of which
2% positives) to 4708 Single binding instances (11%
positives) and 3861 Multiple binding instances (5%
positives).

Following the same reasoning, Regulation was
also divided into unary and binary events. Further-
more, we have carefully analysed the nature of Bi-
nary regulation events, and noticed that a vast major-
ity of these events had a protein in the ‘cause’ slot.
We decided to split up the dictionaries of Binary reg-
ulations accordingly, differentiating between regu-
lation events caused by proteins and those caused
by other events. This keeps the more general words
(e.g. ‘causes’) out of the dictionaries of events reg-
ulated by proteins (e.g. ‘response’), again resulting
in better balance of the datasets.

3.3 Instance creation

In a machine learning framework, a classifier tries
to distinguish between positive instances (true bio-
molecular events) and negative instances (candidates
which should be discarded). To run such a frame-
work, one has to define candidate instances automat-
ically by scanning the text. The first step towards
instance creation consists of looking up triggers
in text, using the constructed dictionaries for each
event type. To this end, we have implemented a fast
algorithm using Radix trees1. Next, candidate argu-
ments have to be found. Initially, we have selected
all (combinations of) proteins that were mentioned
in the same sentence. However, this may result in
a lot of negative and irrelevant instances, mainly in
long sentences. This is why we have implemented a
Negative-instances (NI) filter, which checks whether
the length of the sub-sentence spanned by a candi-
date event does not exceed a certain value. Figure 2
shows the distribution of positive and negative Mul-
tiple binding events, according to the length of the
relevant sub-sentence. It seems reasonable to only
keep instances with a sub-sentence of less than 175
characters, as this includes almost all positive exam-
ples, while at the same time removing a significant
amount of irrelevant negatives.

1Java implementation by Tahseen Ur Rehman,
http://code.google.com/p/radixtree/
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Figure 2: Distribution of Multiple binding instances, ac-
cording to the length of the sub-sentence (training data).

Furthermore, for each instance, a minimal sub-
graph of the dependency graph was extracted, con-
taining the full trigger and all arguments. The size of
this subgraph was also used as a parameter for the NI
filter, as positive instances are usually expressed in a
smaller subtree than negative examples. In Figure 3
we see how the subgraphs of positive Multiple bind-
ing instances are never larger than 10 edges, while
negative instances can contain up to 18 edges. In this
case, only keeping instances with subgraphs smaller
than 8 edges will discard many irrelevant negatives,
while keeping most of the positive instances.

The NI filter further reduces noise in the data and
unbalancedness. We now end up with 4070 Sin-
gle binding instances (of which 13% positives) and
2365 Multiple binding instances (8% positives). Ta-
ble 1 shows the final distribution of instances for all
event types. Transcription, Localization and Mul-
tiple binding have the lowest percentage of posi-
tive instances, ranging between 7% and 8%, while
Phosphorylation has up to 48% positive instances. It
should be noted that the number of positive instances
in Table 1 is lower than the actual number of posi-
tive examples in the training set, due to limitations
of our instance definition method. However, a study
regarding maximal recall shows that we do not re-
move too many true positives (TPs) (more details in
Section 4.1).

3.4 Feature generation
For feature generation, we base our method on the
rich feature set we previously used in our work on

Figure 3: Distribution of Multiple binding instances, ac-
cording to the size of the subgraph (training data).

protein-protein interactions (Van Landeghem et al.,
2008). The goal of that study was to extract bi-
nary relations and only one path in the dependency
graph was analyzed for each instance. In the present
work however, we are processing larger and more
complex subgraphs. This is why we have excluded
‘edge walks’, i.e. patterns of two consecutive edges
and their common vertex (e.g. ‘nsubj VBZ prep’).
To compensate for the loss of information, we have
added trigrams to the feature set. These are three
stemmed consecutive words from the sub-sentence
spanning the event, e.g. ‘by induc transcript’, which
is the stemmed variant of ‘by inducing transcrip-
tion’. Other features include

• A BOW-approach by looking at all the words
which appear at a vertex of the subgraph. This
automatically excludes uninformative words
such as prepositions.

• Lexical and syntactic information of triggers.
• Size of the subgraph.

Event type # neg. # pos. % pos.
inst. inst. inst.

Localization 3415 249 7
Single binding 3548 522 13

Multiple binding 2180 185 8
Gene expression 5356 1542 22

Transcription 6930 489 7
Protein catabolism 175 96 35
Phosphorylation 163 153 48

Table 1: Distribution of instances
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Event type Features
Localization 18 121

Single binding 21 332
Multiple binding 11 228
Gene expression 31 332

Transcription 30 306
Protein catabolism 1 883
Phosphorylation 2 185

Table 2: Dimensionality of the datasets

• Length of the sub-sentence.
• Extra features for Regulation events, storing

whether the arguments are proteins or events,
specifying the exact event type.

• Vertex walks which consist of two vertices
and their connecting edge. For these patterns,
both lexical as well as syntactic information is
kept. When using lexical information, protein
names and triggers were blinded in order to ex-
tract more general patterns (e.g. ‘trigger nsubj
protx’ which expresses that the given protein is
the subject of a trigger). Blinding avoids over-
fitting of the classifier.

In the training phase, each instance generates dif-
ferent patterns, and each pattern is stored as a nu-
meric feature in the feature vector. During testing,
we count how many times each feature is found for
each instance. This results in very sparse and high-
dimensional datasets. Table 2 shows the dimen-
sionality of the datasets for all event types. Protein
catabolism has the lowest dimensionality with 1883
features, while Transcription and Gene expression
produce over 30 000 features.

3.5 Classification
To process our dataset, we had to find a classi-
fier able to deal with thousands of instances, thou-
sands of features, and an unbalancedness of up to
93% negative instances. We have used the Lib-
SVM implementation as provided by WEKA2, as a
few preliminary tests using different classifiers (such
as Random Forests) gave worse results. We inte-
grated an internal 5-fold cross-validation loop on
the training portion of the data to determine a use-
ful C-parameter. All other parameters were left un-

2Available at http://www.cs.waikato.ac.nz/ml/
weka/

changed, including the type of kernel which is a ra-
dial basis function by default.

In combination with the LibSVM, we have tried
applying feature selection (FS). At first sight, FS did
not seem to lead to gain in performance, although we
were not able to test this hypothesis more thoroughly
due to time limitations of the task. Finally, we have
also tested the influence of assigning higher weights
to positive training instances, in order to make up
for the unbalanced nature of the data, but this had
almost no effect on overall performance.

3.6 Post-processing

We have implemented a few custom-made post-
processing modules, designed to further reduce FPs
and improve precision of our method. We report
here on their influence on performance.

Overlapping triggers of different event types
Predictions for different event types were processed
in parallel and merged afterwards. This means that
two triggers of different event types might overlap,
based on the same words in the text. However, a
word in natural language can only have one mean-
ing at a time. When two such triggers lead to events
with different event types, this means that some of
these events should be FPs. When testing on the de-
velopment data, we found a few predictions where
this problem occurred. For example, the trigger ‘ex-
pression’ can lead to both a Transcription and a Gene
expression event, but not at the same time. In such a
case, we only select the prediction with the highest
SVM score. However, thanks to careful construc-
tion of the dictionaries (Section 3.2), their mutual
overlap is rather small, and thus this post-processing
module has almost no influence on performance.

Events based on the same trigger
One trigger might be involved in different events
from the same event type. For example, the sentence
‘it induces expression of STAT5-regulated genes in
CTLL-2, i.e. beta-casein, and oncostatin M (OSM)’
mentions two Gene expression events based on the
trigger ‘expression’, one involving beta-casein, and
one involving OSM. For these two events, the sub-
graphs will be very similar, resulting in similar fea-
tures and SVM scores. However, often a trigger
only leads to one true event, while all other candi-
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dates from the same event type are false positives.
We have carefully benchmarked this hypothesis, and
found that for Protein catabolism and Phosphoryla-
tion, we could achieve better performance by only
keeping the top-ranked prediction. Up to 5% in F-
score could be gained for these events. This is due to
the fact that for these two event types, usually only
one true event is linked to each trigger.

3.7 Negation

We found that there are three major categories of
event negation:

1. A negation construct is found in the close vicin-
ity of the trigger (e.g. ‘no’, ‘failure to’).

2. A trigger already expresses negation by itself
(e.g. ‘non-expressing’, ‘immobilization’).

3. A trigger in a certain sentence expresses both
positive as negative events. In this case, the
pattern ‘but not’ is often used (e.g. ‘overexpres-
sion of Vav, but not SLP-76, augments CD28-
induced IL-2 promoter activity’).

We have created a custom-made rule-based system
to process these three categories. The rules make
use of small dictionaries collected from the train-
ing data. For rule 1, we checked whether a nega-
tion word appears right in front of the trigger. To
apply rule 2, we used a list of inherent negative trig-
gers deduced from the training set. For rule 3, we
checked whether we could find patterns such as ‘but
not’ or ‘whereas’, negating only the event involving
the protein mentioned right after that pattern.

3.8 Speculation

We identified two major reasons why the description
of an event could be regarded as speculation instead
of a mere fact. These categories are:

1. Uncertainty: the authors state the interactions
or events they are investigating, without know-
ing the true results (yet). This is often indicated
with expressions such as ‘we have examined
whether (...)’.

2. Hypothesis: authors formulate a hypothesis to
try and explain the results of an experiment.
Specific speculation words such as ‘might’ or
‘appear to’ often occur right before the trigger.

Event type Maximal recall
Localization 84.91 %

Binding 78.23 %
Gene expression 91.57 %

Transcription 90.24 %
Protein catabolism 100 %
Phosphorylation 95.74 %

Regulation 46.15 %
Positive regulation 39.71 %
Negative regulation 43.88 %

Negation 28.97 %
Speculation 25.26 %

Table 3: Maximal recall for the development data

Similar to detecting negation, we compiled a list of
relevant expressions from the training data and have
used this to implement a simple rule-based system.
For rule 1, we checked the appearance of such an ex-
pression in a range of 60 characters before the trig-
ger and up to 60 characters after the trigger. Rule 2
was applied on a smaller range: only 20 characters
right before the trigger were scanned.

4 Results

Our final machine learning framework consists of all
the modules described in the previous section. To
summarize, these design choices were made: auto-
matically compiled dictionaries which were cleaned
manually, usage of the NI filter, no weights on pos-
itive instances, a LibSVM classifier and no feature
selection. We used both post-processing modules,
but the second one only for Protein catabolism and
Phosphorylation events. The best SVM cut-offs
were chosen by determining the best F-score on the
development data for each classifier.

4.1 Benchmarking on the development data

Protein events
To evaluate maximal recall of our instance extrac-
tion method, we executed an evaluation using an
all-true classifier. As can be seen in Table 3, maxi-
mal recall is quite high for almost all Protein events,
meaning that dictionary coverage is good, our NI fil-
ter does not remove too many TPs, and not too many
events are expressed across sentences and thus not
picked up by our method. Binding and Localization
are the only events with less than 90% recall. Due to
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Event type Recall Precision F-score
Localization 77.36 91.11 83.67

Binding 45.16 37.21 40.80
Gene expression 70.79 79.94 75.08

Transcription 60.98 75.76 67.57
Protein catabolism 80.95 89.47 85.00
Phosphorylation 68.09 88.89 77.11

Total 62.45 64.40 63.41
Regulation 23.67 41.67 30.19

Positive regulation 21.56 38.00 27.51
Negative regulation 30.10 41.26 34.81

Total 23.63 39.39 29.54
Task 1 41.03 53.50 46.44

Negation 15.89 45.95 23.61
Speculation 20.00 26.87 22.93

Total 17.82 33.65 23.30
Task 3 38.77 52.24 44.51

Table 4: Final performance of all events for the develop-
ment data

time constraints, we were not able to test which of
our modules leads to false negative (FN) instances.

For each event, we have determined the best clas-
sifier cut-offs to achieve maximal F-score. Results
of the final performance for the predictions of Pro-
tein events on the development data, can be seen in
Table 4. For most events, we achieve very high pre-
cision, thanks to our careful definition of instances
in combination with the NI-filter.

Looking at the F-measures, Transcription, Gene
expression and Phosphorylation all perform be-
tween 67 and 77%, while Localization and Protein
catabolism have an F-score of more than 83%. It be-
comes clear that Binding is the most difficult event
type, with a performance of 41% F. Unfortunately,
this group of events contains 44% of all Protein
events, greatly influencing total performance. Aver-
age performance of predicting Protein events results
in 63.41% F.

Regulation
When evaluating the predictions of Regulation
events, one has to take into account that the perfor-
mance greatly depends on the ability of our system
to predict Protein events. Indeed, one FN Protein
event can lead to multiple FN Regulation events, and
the same holds for FPs. Furthermore, we do not try
to extract events across sentences, which may lead

to more FNs. To study maximal recall of the Regu-
lation events, we have again applied an all-true clas-
sifier. Table 3 shows that the highest possible recall
of the Regulation events is never above 50%, greatly
limiting the performance of our method.

As regulation events can participate in new regu-
lation events, one should run the regulation pipeline
repeatedly until no more new events are found. In
our experiments, we have found that even the first re-
cursive run did not lead to much better performance,
and only a few more Regulation events were found.

Final results are shown in Table 4. With recall
being rather low, between 21% and 30%, at least
we achieve relatively good precision: around 40%
for each of the three regulation types. On average,
the F-score is almost 30% for the regulation events,
which is significantly lower than the performance of
Protein events. On average, we obtain an F-score of
46.44% on the development data for task 1.

Negation and speculation
The performance of this subtask depends heavily on
the performance of subtask 1. Again we have ap-
plied an all-true classifier to determine maximal re-
call (Table 3). Less than 30% of the events necessary
for task 3 can be found with our setup; all of these
FNs are due to FNs in task 1.

Final results are shown in Table 4. Performance
of around 23% F-score is achieved on the develop-
ment data. We take into consideration that according
to the maximal recall study, only 29% of the neces-
sary events for Negation were extracted by task 1. In
the final results, 16% of all the negation events were
found. This means that our rule-based method by
itself achieves about 55% recall for Negation. Sim-
ilarly, the system has a recall of 80% for Specula-
tion when only considering events found in task 1.
We conclude that our simple rule-based system per-
forms reasonably well.

4.2 Scoring and ranking on final test set

Finally, our system was applied to the test data.
Achieving a global F-score of 40.54% for subtask 1,
we obtain a 5th place out of 24 participating teams.
For subtask 3 of finding negation and speculation,
we obtain a second place with a 37.80% F-score.

Final results for each of the event types are shown
in Table 5. As on the development data, we see
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Event type Recall Precision F-score
Localization 43.68 78.35 56.09

Binding 38.04 38.60 38.32
Gene expression 59.42 81.56 68.75

Transcription 39.42 60.67 47.79
Protein catabolism 64.29 60.00 62.07
Phosphorylation 56.30 89.41 69.09

Total 50.75 67.24 57.85
Regulation 10.65 22.79 14.52

Positive regulation 17.19 32.19 22.41
Negative regulation 22.96 35.22 27.80

Total 17.36 31.61 22.41
Task 1 33.41 51.55 40.54

Negation 10.57 45.10 17.13
Speculation 8.65 15.79 11.18

Total 9.66 24.85 13.91
Task 3 30.55 49.57 37.80

Table 5: Performance of all events for the final test set

that the Binding event performs worst, and the same
trend is found when analyzing results of other teams.
In general however, we achieve a high precision:
67% for Protein events, 52% on average on subtask
1, and 50% on average on subtask 3. Another trend
which is confirmed by other teams, is the fact that
predicting Protein events achieves much higher per-
formance than the prediction of Regulation events.

Compared to our results on the development data
(Table 4), we notice a drop of performance for the
Protein events of about 0.06F. This loss is prop-
agated to the Regulation events and to Negation
and Speculation, each also performing about 0.06F
worse than on the development data. We believe
this drop in performance might be due to overfitting
of the system during training. It is difficult to find
the best SVM cut-offs to achieve maximal perfor-
mance. We have tuned these cut-offs on the devel-
opment data, but they might not be ideal for the final
test set. For this reason, we believe that it might be
more representative to use evaluation schemes such
as the area under the receiver operating character-
istics curve (AUC) measure (Hanley and McNeil,
1982; Airola et al., 2008).

5 Conclusions and future work

We have participated in the BioNLP’09 Shared Task,
joining the rest of the community in the progression
of relation-based extraction towards the extraction

of events from bio-molecular texts. Out of the 24
participants, we see quite some teams with a very
good performance, with the highest result achieving
an F-score of nearly 52%. We believe the commu-
nity is off to a good start in this task, and we hope
work in this field will continue afterwards.

In our own study, we notice that the task
of extracting bio-molecular events leads to high-
dimensional and unbalanced datasets. We carefully
designed our system in order to improve balance of
the datasets and to avoid false positives. For feature
generation, we have made use of a modified bag-of-
words approach, included trigrams extracted from
the sentence, and derived patterns from dependency
graphs. Our high-precision framework achieves a
fifth position out of 24 participating teams in sub-
task 1, and second position out of six for subtask 3.

In the future, we would like to investigate the use
of feature selection to produce better models for the
classification task. Another interesting topic would
be how to combine coreference resolution with de-
pendency graphs in order to process events which
span multiple sentences in text.

For the community as a whole, we think the next
step would be to work on full articles instead of mere
abstracts. Also, it might be interesting to investigate
the use of text-bound annotation which is not neces-
sarily contiguous, such as is the case in the Bioinfer
corpus (Pyysalo et al., 2007), to be able to fully cap-
ture the semantics of a certain event.
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K. Fundel, R. Küffner and R. Zimmer. 2007. RelEx—
Relation extraction using dependency parse trees.
Bioinformatics, 23(3):365-371

C. Giuliano, A. Lavelli and L. Romano 2006. Exploiting
shallow linguistic information for relation extraction
from biomedical literature. Proceedings of the 11th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics (EACL), 401-408

J. Hanley and B. J. McNeil. 1982. The meaning and
use of the area under a receiver operating characteristic
(roc) curve. Radiology, 143(1):29-36

L. Hirschman, A. Yeh, C. Blaschke and A. Valencia.
2005. Overview of BioCreAtIvE: critical assessment
of information extraction for biology. BMC Bioinfor-
matics, 6(Suppl 1):S1

J.-D. Kim, T. Ohta and J. Tsujii. 2008. Corpus anno-
tation for mining biomedical events from literature.
BMC Bioinformatics, 19(Suppl 1):i180-i182

J.-D. Kim, T. Ohta, S. Pyssalo, Y. Kano and J. Tsujii.
2009. Overview of BioNLP’09 Shared Task on Event
Extraction, Proceedings of Natural Language Pro-
cessing in Biomedicine (BioNLP) NAACL 2009 Work-
shop, to appear

M. Krallinger, A. Morgan, L. Smith, F. Leitner, L.
Tanabe, J. Wilbur, L. Hirschman and A. Valencia.
2008. Evaluation of text-mining systems for biology:
overview of the Second BioCreative community chal-
lenge. Genome Biology, 9(Suppl 2):S1

MC. de Marneffe, B. MacCartney and C.D. Manning.
2006. Generating typed dependency parses from
phrase structure parses. Proceedings of the 5th In-
ternational Conference on Language Resources and
Evaluation (LREC), 449-454

C. Plake, J. Hakenberg and U. Leser. 2005. Optimizing
syntax patterns for discovering protein-protein inter-
actions. Proceedings of the 2005 ACM symposium on
Applied computing (SAC), 195-201

M.F. Porter. 1980. An algorithm for suffix stripping.
Program, 14(3), 130-137

S. Pyysalo, F. Ginter, J. Heimonen, J. Björne, J. Boberg,
J. Järvinen and T. Salakoski. 2007. BioInfer: A corpus
for information extraction in the biomedical domain.
BMC Bioinformatics, 8(50)

R. Saetre, K. Sagae and J. Tsujii. 2008. Syntactic fea-
tures for protein-protein interaction extraction. Pro-
ceedings of the 2nd International Symposium on Lan-
guages in Biology and Medicine (LBM), 6.1-6.14

S. Van Landeghem, Y. Saeys, B. De Baets and Y. Van
de Peer. 2008. Extracting protein-protein interactions
from text using rich feature vectors and feature selec-
tion. Proceedings of the Third International Sympo-
sium on Semantic Mining in Biomedicine (SMBM), 77-
84.

136



Proceedings of the Workshop on BioNLP: Shared Task, pages 137–140,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Exploring ways beyond the simple supervised learning approach for
biological event extraction
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Abstract

Our paper presents the comparison of a
machine-learnt and a manually constructed
expert-rule-based biological event extraction
system and some preliminary experiments to
apply a negation and speculation detection
system to further classify the extracted events.
We report results on the BioNLP’09 Shared
Task on Event Extraction evaluation datasets,
and also on an external dataset for negation
and speculation detection.

1 Introduction

When we consider the sizes of publicly available
biomedical scientific literature databases for re-
searchers, valuable biological knowledge is acces-
sible today in enormous amounts. The efficient pro-
cessing of these large text collections is becoming
an increasingly important issue in Natural Language
Processing. For a survey on techniques used in bio-
logical Information Extraction, see (Tuncbag et al.,
2009).

The BioNLP’09 Shared Task (Kim et al., 2009)
involved the recognition of bio-molecular events in
scientific abstracts. In this paper we describe our
systems submitted to the event detection and charac-
terization (Task1) and the recognition of negations
and speculations (Task3) subtasks. Our experiments
can be regarded as case studies on i) how to define
a framework for a hybrid human-machine biological
information extraction system, ii) how the linguis-
tic scopes of negation/speculation keywords relate
to biological event annotations.

∗On leave from RGAI of Hungarian Acad. Sci.

2 Event detection

We formulated the event extraction task as a classifi-
cation problem for each event-trigger-word/protein
pair. A domain expert collected 140 keywords
which he found meaningful and reliable by manual
inspection of the corpus. This set of high-precision
keywords covered 69.8% of the event annotations in
the training data.

We analysed each occurrence of these keywords
in two different approaches. We used C4.5 deci-
sion tree classifier to predict one of the event types
considered in the shared task or the keyword/protein
pair being unrelated; and we also developed a hand-
crafted expert system with a biological expert. We
observed that the two systems extract markedly dif-
ferent sets of true positive events. Our final submis-
sion was thus the union of the events extracted by
the expert-rule-based and the statistical systems (we
call this hybrid system later on).

2.1 The statistical event classifier
The preprocessing of the data was performed us-
ing the UltraCompare (Kano et al., 2008) repository
provided by the organizers of the challenge: Genia
sentence splitter, Genia tagger for POS coding and
NER.

The statistical system classified each key-
word/protein pair into 9 event and 2 non-event
classes. A pair was either labeled according to
the predicted event type (the keyword as an event
trigger and the protein name as the theme of the
event), non-event (keyword not an event trigger)
or wrong-protein (the theme of the event is a
different protein). We chose to use two non-event
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classes to make the decision tree more human read-
able (the negative cases being separated). This made
the comparison of the statistical model and the rule-
based system easier.

The features we used were the following: 1) the
words and POS codes in a window (± 3 tokens)
around the keyword, preserving position informa-
tion relative to the keyword; 2) the distances be-
tween the keyword and the two nearest annotated
proteins (left and right) and the theme candidate as
numeric features1. The protein annotations were re-
placed by the term $protein, Genia tagger anno-
tations by $genia-protein (mainly complexes),
to enable the classifier to learn the difference be-
tween events involved in the shared task, and events
out of the scope of the task. Events with protein
complexes and families often had the same linguistic
structure as events with annotated proteins. As com-
plexes did not form events in the shared task, they
sometimes misled our local-context-based classifier.
For example ’the binding of ISGF3’ was not anno-
tated as an event because the theme is not a ”protein”
(as defined by the shared task guidelines), while ’the
binding of TRAF2’ was (TRAF2 being a protein,
and not a complex as in the former example).

We trained a C4.5 decision tree classifier using
Weka (Witten and Frank, 2005). The human read-
able models and fast training time motivated our
selection of a learning algorithm which allowed a
straightforward comparison with the expert system.

2.2 Expert-rule-based system
The expert system was constructed by a biologist
who had over 4 years of experience in similar tasks.
The main idea was to define rules – which have a
very high precision – in order to compare them with
the learnt decision trees and to increase the cover-
age of the final system by adding these annotations
to the output of the statistical system. We only man-
aged to prepare expert rules for the Phosphorylation
and Gene expression classes due to time constraints
(a total of 46 patterns). The expert was asked to
construct high-precision rules (they were tested on
the train set to keep the false positive rate near zero)
in order to gain insight into the structure of reliable

1More information on the features
and parameters used can be found at
www.inf.u-szeged.hu/rgai/BioEventExtraction

rules.
Here each rule is bound to a specific keyword. Ev-

ery rule is a sequence of ”word patterns” (with or
without a suffix). A word pattern can match a pro-
tein, an arbitrary word, an exact word or the key-
word. Every pattern can have a Regular Expression
style suffix:

Table 1: Word pattern types and suffixes
<keyword> matching the keyword of the event
"word" matching regular words

matching any token
$protein matching any annotated protein
? zero or one of the word pattern

* zero or more of the word pattern
+ one or more of the word pattern
{a,b} definite number of word patterns

For example the ’<expression> ? "of"
? $protein’ pattern recognizes an event with

the keyword expression, followed by an arbitrary
word and then the word of, or immediately by of and
then a protein (or immediately by the protein name).

An obvious drawback of this system is that nega-
tion is not allowed, so the expert was unable to de-
fine a word pattern like !"of" to match any to-
ken besides of. This extension would have been a
straightforward way of improving the system.

2.3 Experimental results

We expected the recall of the hybrid system to be
near the sum of the recalls of the individual systems,
meaning that they had recognized different events,
as the pattern matching was mainly based on the
order of the tokens, while the statistical classifier
learned position-oriented contextual clues. Thanks
to the high precision of the rule-based system, the
overall precision also increased. The two event
classes which were included in the expert system
had a significantly better precision score. The cov-
erage of the Phosphorylation class was lower than
that for the Gene expression class because its pat-
terns were still incomplete2.

2A discussion on comparing the contribution of the
two approaches and individual rules can be found at
www.inf.u-szeged.hu/rgai/BioEventExtraction
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Table 2: Results of rule based-system compared to the
statistical and combined systems (R/P/fscore)

All Event Gene exp. Phosph.
stat. 16 / 31 / 21 36 / 41 / 38 73 / 37 / 49
rule 5 / 80 / 10 20 / 85 / 33 17 / 58 / 26
hybrid 22 / 37 / 27 56 / 51 / 54 81 / 40 / 53

3 Recognition of negations and
speculations

For negation and speculation detection, we applied
a model trained on a different dataset (Vincze et al.,
2008) of scientific abstracts, which had been spe-
cially annotated for negative and uncertain keywords
and their linguistic scope. Due to time constraints
we used our model to produce annotations for Task3
without any sort of fine tuning to the shared task gold
standard annotations.

The only exception here was a subclass of specu-
lative annotations that were not triggered by a word
used to express uncertainty, but were judged to be
speculative because the sentence itself reported on
some experiments performed, the focus of the in-
vestigations described in the article, etc. That is,
it was not the meaning of the text that was uncer-
tain, but – as saying that something has been exam-
ined does not mean it actually exists – the sentence
implicitly contained uncertain information. Since
such sentences were not covered by our corpus, for
these cases we collected the most reliable text cues
from the shared task training data and applied a
dictionary-lookup-based approach. We did this so
as to get a comprehensive model for the Genia nega-
tion and speculation task.

As for the explicit uncertain and negative state-
ments, we applied a more sophisticated approach
that exploited the annotations of the BioScope cor-
pus (Vincze et al., 2008). For each frequent and am-
biguous keyword found in the approximately 1200
abstracts annotated in BioScope, we trained a sepa-
rate classifier to discriminate keyword/non-keyword
uses of each term, using local contextual patterns
(neighbouring lemmas, their POS codes, etc.) as
features. In others words, for the most common
uncertain and negative keywords, we attempted a
context-based disambiguation, instead of a simple
keyword lookup. Having the keywords, we pre-

dicted their scope using simple heuristics (’to the
end of the sentence’, ’to the next punctation mark
in both directions’, etc.). In the shared task we ex-
amined each extracted event and they were said to
be negated or hedged when some of their arguments
(trigger word, theme or clause) were within a lin-
guistic scope.

3.1 Experimental results
First we evaluated our negation and speculation
keyword/non-keyword classification models on the
BioScope corpus by 5-fold cross-validation. We
trained models for 15 negation and 41 speculative
keywords. We considered different word forms of
the same lemma to be different keywords because
they may be used in a different meaning/context.
For instance, different keyword/non-keyword deci-
sion rules must be used for appear, appears and ap-
peared. We trained a C4.5 decision tree using word
uni- and bigram features and POS codes to discrim-
inate keyword/non-keyword uses and compared the
results with the most frequent class (MFC) baseline.

Overall, our context-based classification method
outperformed the baseline algorithm by 3.7% (giv-
ing an error reduction of 46%) and 3.1% (giving an
error reduction of 27%) on the negation and specula-
tion keywords, respectively. The learnt models were
typically very small decision trees i.e. they repre-
sented very simple rules indicating collocations (like
’hypothesis is a keyword if and only if followed by
that, etc.). More complex rules (e.g. ’clear is a key-
word if and only if not is in ±3 environment’) were
learnt just in a few cases.

Our second set of experiments focused on Task3
of the shared task (Kim et al., 2009). As the offi-
cial evaluation process of Task3 was built upon the
detected events of Task1, it did not provide any use-
ful feedback about our negation and speculation de-
tection approach. Thus instead of our Task1 out-
put, we evaluated our model on the gold standard
Task1 annotation of the training and the develop-
ment datasets. The statistical parts of the system
were learnt on the BioScope corpus, thus the train
set was kept blind as well. Table 3 summarises the
results obtained by the explicit negation, speculation
and by the full speculation (both explicit and implicit
keywords) detection methods.

Analysing the errors of the system, we found that
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Table 3: Negation and speculation detection results
Train (R/P/F) Dev. (R/P/F)

negation 46.9 / 61.3 / 52.8 42.8 / 57.9 / 49.2
exp. spec. 15.4 / 39.5 / 23.6 15.4 / 32.6 / 20.1
full spec. 25.5 / 71.1 / 37.5 27.9 / 65.3 / 39.1

most of the false positives came from the different
approaches of the BioScope and the Genia annota-
tions (see below for a detailed discussion). Most of
the false negative predictions were a consequence of
the incompleteness of our keyword list.

3.2 Discussion

We applied this negation and speculation detection
model more as a case study to assess the usability
of the BioScope corpus. This means that we did not
fine-tune the system to the Genia annotations. Our
experiments revealed some fundamental and inter-
esting differences between the Genia-interpretation
of negation and speculation, and the corpus used by
us. The chief difference is that the BioScope corpus
was constructed following more linguistic-oriented
principles than the Genia negation and speculation
annotation did, which sought to extract biological
information. These differences taken together ex-
plain the relatively poor results we got for the shared
task.

There are significant differences in the interpreta-
tion of both at the keyword level (i.e. what triggers
negation/uncertainty and what does not) and in the
definition of the scope of keywords. For example,
in a sentence like ’have NO effect on the inducibil-
ity of the IL-2 promoter’, Genia annotation just con-
siders the effect to be negated. This means that the
inducibility of IL-2 is regarded as an assertive event
here. In BioScope, the complements of effect are
also placed within the scope of no, thus it would also
be annotated as a negative one. We argue here that
the above example is not a regular sentence to ex-
press the fact: IL-2 is inducible. We rather think
that if the paper has some result (evidence) regard-
ing this event, it should be stated elsewhere in the
text, and we should not retrieve this information as a
fact just based on the above sentence. Thus we argue
that more sophisticated guidelines are needed for the
consistent annotation and efficient handling of nega-

tion and uncertainty in biomedical text mining.

4 Conclusions

We described preliminary experiments on two dif-
ferent approaches which take us beyond the ”take-
goldstandard-data, extract-some-features, train-a-
classifier” approach for biomedical event extraction
from scientific texts (incorporating rule-based sys-
tems and linguistic negation/uncertainty detection).
The systems introduced here participated in the Ge-
nia Event annotation shared task. They achieved rel-
atively poor results on this dataset, mainly due to
1) the special annotation guidelines of the shared
task (like disregarding events with protein complex
or family arguments, and treating subevents as as-
sertive information) and 2) the limited resources we
had to allocate for the task during the challenge
timeline. We consider that the lessons learnt here
are still useful and we also plan to improve our sys-
tem in the near future.
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