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Abstract

One of the most neglected areas of biomed-
ical Text Mining (TM) is the development
of systems based on carefully assessed user
needs. We investigate the needs of an im-
portant task yet to be tackled by TM — Can-
cer Risk Assessment (CRA) — and take the
first step towards the development of TM for
the task: identifying and organizing the sci-
entific evidence required for CRA in a taxon-
omy. The taxonomy is based on expert annota-
tion of 1297 MEDLINE abstracts. We report
promising results with inter-annotator agree-
ment tests and automatic classification experi-
ments, and a user test which demonstrates that
the resources we have built are well-defined,
accurate, and applicable to a real-world CRA
scenario. We discuss extending and refining
the taxonomy further via manual and machine
learning approaches, and the subsequent steps
required to develop TM for the needs of CRA.

1 Introduction

Biomedical Text Mining (TM) has become increas-
ingly popular due to the pressing need to provide
access to the tremendous body of texts available
in biomedical sciences. Considerable progress has
been made in the development of basic resources
(e.g. ontologies, annotated corpora) and techniques
(e.g. Information Retrieval (IR), Information Ex-
traction (IE)) in this area, and research has began
to focus on increasingly challenging tasks, e.g. sum-
marization and the discovery of novel information in
biomedical literature (Hunter and Cohen 2006, Ana-
niadou et al. 2006, Zweigenbaum et al. 2007).

In recent past, there has been an increasing de-
mand for research which is driven by actual user

needs rather than technical developments (Zweigen-
baum et al. 2007). Shared tasks (e.g. BioCreative
and the TREC Genomics track) targeting the work-
flow of biomedical researchers have appeared along
with studies exploring the TM needs of specific tasks
(Karamanis et al. 2008, Demaine et al. 2006). How-
ever, the understanding of user needs is still one of
the neglected areas of BIO-TM, and further user-
centered evaluations and systems grounded in real-
life tasks are required to determine which tools and
services are useful (Cohen et al. 2008).

We investigate the user needs of a challenging
task yet to be tackled by TM but identified as an
important potential application for it (Lewin et al.
2008): Cancer Risk Assessment (CRA). Over the
past years, CRA has become increasingly important
as the link between environmental chemicals and
cancer has become evident. It involves examining
published evidence to determine the relationship be-
tween exposure to a chemical and the likelihood of
developing cancer from that exposure (EPA, 2005).
Performed manually by experts in health related in-
stitutions worldwide, CRA requires searching, lo-
cating and interpreting information in biomedical
journal articles. It can be extremely time-consuming
because the data for a single carcinogen may be scat-
tered across thousands of articles.

Given the exponentially growing volume of
biomedical literature and the rapid development of
molecular biology techniques, the task is now get-
ting too challenging to manage via manual means.
From the perspective of BIO-TM, CRA is an excel-
lent example of real-world task which could greatly
benefit from a dedicated TM tool. However, the de-
velopment of a truly useful tool requires careful in-
vestigation of risk assessors needs.
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This paper reports our investigation of the user
needs of CRA and the creation of basic TM re-
sources for the task. Expanding on our preliminary
experiments (Lewin et al. 2008), we present a taxon-
omy which specifies the scientific evidence needed
for CRA at the level of detail required for TM. The
taxonomy is based on expert annotation of a corpus
of 1297 MEDLINE abstracts. We report promis-
ing results with inter-annotator agreement tests, au-
tomatic classification of corpus data into taxonomy
classes, and a user test in a near real-world CRA
scenario which shows that the taxonomy is highly
accurate and useful for practical CRA. We discuss
refining and extending it further via manual and ma-
chine learning approaches, and the subsequent steps
required to develop TM for the needs of CRA.

2 User Needs of Cancer Risk Assessment

We interviewed 14 experienced risk assessors work-
ing for a number of authorities in Sweden1 asking
a range of questions related to different aspects of
their work. The risk assessors described the follow-
ing steps of CRA: (1) identifying the journal articles
relevant for CRA of the chemical in question, (2)
identifying the scientific evidence in these articles
which help to determine whether/how the chemical
causes cancer, (3) classifying and analysing the re-
sulting (partly conflicting) evidence to build the tox-
icological profile for the chemical, and (4) prepar-
ing the risk assessment report. These steps are con-
ducted manually, relying only on standard literature
search engines (e.g. PubMed) and word processors.

The average time required for CRA of a single
chemical was reported to be two years when done
(as usual) on a part time basis. Risk assessors were
unanimous about the need to increase productivity
to meet the current CRA demand. They reported
that locating and classifying the scientific evidence
in literature is the most time consuming part of their
work and that a tool capable of assisting it and ensur-
ing that all the potentially relevant evidence is found
would be particularly helpful.

It became clear that a prerequisite for the devel-
opment of such a tool would be an extensive spec-
ification of the scientific evidence used for CRA.

1Institute of Environmental Medicine at Karolinska Insti-
tutet, Swedish Chemical Inspectorate, Scientific Committee on
Occupational Exposure Limits (EU), Swedish Criteria Group.

This evidence — which forms the basis of all the
subsequent steps of CRA — is described in the
guideline documents of major international CRA
agencies, e.g. European Chemicals Agency (ECHA,
2008) and the United States Environmental Protec-
tion Agency (EPA, 2005). However, although these
documents constitute the main reference material in
CRA, they cover the main types of evidence only,
do not specify the evidence at the level of detail
required for comprehensive data gathering, and are
not updated regularly (i.e. do not incorporate the lat-
est developments in biomedical sciences). The risk
assessors admitted that rather than relying on these
documents, they rely on their experience and expert
knowledge when looking for the evidence. We de-
cided that our starting point should be to compose
a more adequate specification of the scientific evi-
dence needed for CRA.

3 Cancer Risk Assessment Taxonomy

We recruited three experienced risk assessors to help
construct the resources described in sections below:
(i) a representative corpus of CRA literature for
parts of hazard identification (i.e. the assessment of
whether a chemical is capable of causing cancer),
(ii) a tool for expert annotation of the corpus, (iii) an
annotated corpus, and (iv) a taxonomy which classi-
fies and organizes the scientific evidence discovered
in the corpus.

3.1 CRA corpus

Various human, animal (in vivo), cellular (in vitro)
and other mechanistic data provide evidence for haz-
ard identification and the assessment of the Mode of
Action (MOA) (i.e. the sequence of key events that
result in cancer formation, e.g. mutagenesis and in-
creased cell proliferation) in CRA. The experts se-
lected eight chemicals which are (i) well-researched
using a range of scientific tests and (ii) represent the
two most frequently used MOAs –genotoxicand
non-genotoxic2. 15 journals were identified which
are used frequently for CRA and jointly provide a
good coverage of relevant scientific evidence (e.g.
Cancer Research, Chemico-biological Interaction,
Mutagenesis, Toxicological Sciences). From these

2Chemicals acting by a genotoxic MOA interact with DNA,
while chemicals acting by a nongenotoxic MOA induce cancer
without interfering directly with DNA.
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Figure 1: Screenshot of the annotation tool

journals, all the PubMed abstracts from 1998-2008
which include one of the 8 chemicals were down-
loaded. The resulting corpus of 1297 abstracts is
distributed per chemical as shown in Table 1.

3.2 Annotation tool

Risk assessors typically (i) read each abstract re-
trieved by PubMed to determine its relevance for
CRA, and (ii) classify each relevant abstract based
on the type of evidence it provides for CRA. We ex-
tended the tool designed for expert annotation of ab-
stracts in our earlier work (Lewin et al. 2008) so that
imitates this process as closely as possible.

The tool provides two types of functionality. The
first enables the experts to classify abstracts as rele-
vant, irrelevant or unsure. The second enables them
to annotate such keywords (words or phrases) in ab-
stracts and their titles which indicate the scientific
evidence relevant for the task. Keyword annotation
was chosen because the experts found it intuitive, it
did not require linguistic training, and it specifies the
scientific evidence more precisely than larger spans
of text.

Initially a very shallow taxonomy (including only
human, animal, and cellular data) and the two types
of MOA was integrated inside the tool. This was
gradually extended as the annotation progressed.
The tool permits annotating any number of relevant
keywords in the abstracts, attaching them to any
class in the taxonomy, and classifying the same text
in more than one way. It was implemented inside the
familiar Mozilla Firefox browser using its extension
facility. A screenshot illustrating the tool is provided
in Figure 1.

3.3 Annotation

Given a set of initial guidelines agreed by the ex-
perts, one of the experts annotated a subset of the
corpus, the other two evaluated the result, disagree-
ments were then discussed, and the guidelines were
improved where needed. This process (crucial for
maintaining quality) was repeated several times.
The guidelines described below are the final result
of this work.

3.3.1 Relevance annotation

An abstract is classified as (i) relevant when it (or
its title) contains evidence relevant for CRA and (ii)
irrelevant when it (or its title) contains no evidence
or contains ”negative” evidence (e.g. diseases or
endpoints unrelated to cancer). Abstracts containing
vague, conflicting or complex evidence (e.g. stud-
ies on chemicals in complex mixtures) or evidence
whose association with cancer is currently unclear
were dealt on case by case basis. All the potentially
relevant abstracts were included for further assess-
ment as not to lose data valuable for CRA.

The experts annotated the 1297 abstracts in the
corpus. 89.4% were classified as relevant, 10.1% as
irrelevant, and 0.5% as unsure. We used the Kappa
statistics (Cohen 1960) to measure inter-annotator
agreement on unseen data which two experts an-
notated independently. 208 abstracts were selected
randomly from the 15 journals and from 16 jour-
nals likely to be irrelevant for CRA. The latter were
included to make the task harder as the proportion
of relevant abstracts was high in our corpus. Our
Kappa result is 0.68 — a figure which indicates sub-
stantial agreement (Landis and G.Koch 1977).

The experts disagreed on 24 (11.5% of the) ab-
stracts. Half of the disagreements are due to one
of the annotators failing to notice relevant evidence.
Such cases are likely to decrease when annotators
gain more experience. The other half are caused by
vague or conflicting evidence. Many of these could
be addressed by further development of guidelines.

3.3.2 Keyword annotation

Keyword annotation focussed on the types of sci-
entific evidence experts typically look for in CRA:
carcinogenic activity (human, animal, cellular, and
other mechanistic data),Mode of Action (MOA)
(data for a specific MOA type — genotoxic or non-
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Chemical Retrieved Relevant
1,3-butadiene 195 187
phenobarbital 270 240
diethylnitrosamine 221 214
diethylstilbestrol 145 110
benzoapyrene 201 192
fumonisin 80 70
chloroform 96 84
styrene 162 132
Total 1297 1164

Table 1: Total of abstracts per chemical

genotoxic), and relevant parts oftoxicokinetics (e.g.
metabolic activation). The experts annotated the
keywords which they considered as the most impor-
tant and which jointly identify the types of scientific
data offered by the abstract. They focussed on new
(rather than previously published) data on the chem-
ical in question.

All the 1164 abstracts deemed relevant were an-
notated. A total of 1742 unique keywords were
identified, both simple nouns and complex nomi-
nals / phrases. Figure 1 shows an example of an
annotated abstract where the keywordchromoso-
mal aberrationsis identified as evidence for geno-
toxic MOA. Since the experts were not required to
annotate every relevant keyword, calculating inter-
annotator agreement was not meaningful. However,
the keyword annotation was evaluated jointly with
taxonomy classification (the following section).

3.4 The taxonomy and the resulting corpus

During keyword annotation, the initial taxonomy
was extended and refined with new classes and class
members. The resulting taxonomy relies solely on
expert knowledge. Experts were merely advised
on the main principles of taxonomy creation: the
classes should be conceptually coherent and their hi-
erarchical organization should be in terms of coher-
ent sub- and superordinate relations.

The taxonomy contains three top level classes:
1) Carcinogenic activity (CA), 2) Mode of Action
(MOA) and 3) Toxicokinetics (TOX). 1) and 2) are
organized by TYPE-OF relations (leukemiais a type
of carcinogenic evidence) and 3) by PART-OF rela-
tions (biodegradationis a part of Metabolism). Each
top level class divides into sub-classes. Figure 2
showsCA taxonomy with three keyword examples
per class. The taxonomy has 48 classes in total; half

of them underCA. Table 6 shows the total number
of abstracts and keywords per class: 82.4% of the
abstracts include keywords forCA, and 50.3% and
28.1% forMOAandTOX, respectively.

We calculated inter-annotator agreement for as-
signing abstracts to taxonomy classes. For each of
the 8 chemicals, 10 abstracts were randomly cho-
sen from the 15 journals. The average agreement
between two annotators is the highest withCA and
MOA (78%) and the lowest withTOX (62%). The
overall agreement is 76%. This result is good, par-
ticularly considering the high number of classes and
the chance agreement of 1.5%. The disagreements
are mostly due to one of the experts annotating as
many keywords as possible, and the other one an-
notating only the ones that classify each abstract as
precisely as possible. This was not a serious prob-
lem for us, but it demonstrates the importance of de-
tailed guidelines. Also, some of the classes were too
imprecise to yield unique distinctions. Future work
should focus on refining them further.

4 Automatic classification

To examine whether the classification created by ex-
perts provides a good representation of the corpus
data and is machine learnable, we conducted a se-
ries of abstract classification experiments.

4.1 Methods

4.1.1 Feature extraction

The first step of text categorization (TC) is to
transform documents into a feature vector represen-
tation. We experimented with two document rep-
resentation techniques. The first one is the sim-
ple ’bag of words’ approach (BOW) which consid-
ers each word in the document as a separate feature.
BOWwas evaluated using three methods which have
proved useful in previous TC work: (i) stemming
(using the Porter (1980) stemmer) which removes
affixes from words, (ii) the TFIDF weighting (Kib-
riya et al. 2004), and (iii) stop word removal.

The second technique is the recent ’bag of sub-
strings’ (BOS) method by (Wang et al. 2008) which
considers the whole abstract as a string and extracts
from it all the lengthp substrings without affix re-
moval. BOS has proved promising in biomedical
TC (Han et al. 2006, Wang et al. 2008) and un-
like a traditional grammatical stemmer, does not re-
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Figure 2: Taxonomy of Carcinogenic Activity

quire domain tuning for optimal performance. Be-
causeBOSgenerates substrings with fixed lengthp,
a word shorter thanp−2 can get obscured by its con-
text3. For example, ‘mice‘ would be transformed to
’ mice a’, ’ mice b’, . . . , which is less informative
than the original word form. Therefore, we enriched
BOSfeatures with word forms shorter thanp− 2.

4.1.2 Feature selection

We employed two feature selection methods for
dimensionality reduction. The first is Information
Gain (IG) which has proved useful in TC (Yang
and Pedersen 1997). Given a feature’s distribu-
tion X and class label distributionY , IG(X) =
H(Y ) − H(Y |X), H(X) is the entropy ofX. The
second methodfscore optimises the number of fea-
tures (N ). Features are first ranked using the simple
fscore criterion (Chen and Lin 2006), andN is se-
lected based on the performance of the SVM classi-
fier using theN features.

4.1.3 Classification

Three classifiers were used: Naive Multino-
mial Bayesian (NMB), Complement Naive Bayesian
(CNB) (Rennie and Karger 2003) and Linear Sup-
port Vector Machines (L-SVM) (Vapnik 1995).

NMB is a widely used classifier in TC (Kib-
riya et al. 2004). It selects the classC with
the maximum probability given the documentd:
argmaxc Pr(C)

∏
w∈d Pr(X = w|C). Pr(C) can

3Minus 2 because of space characters.

be estimated from the frequency of documents inC.
Pr(X = w|C) is estimated as the fraction of tokens
in documents of classC that containw.

CNB extendsNMB by addressing the problems
it has e.g. with imbalanced data and weight
magnitude error. The classc of a document
is: argmaxc[logp(θc)−

∑
i filog

Nc̃i+αi

Nc̃+α ]. Nc̃i is the
number of times termi occurs in classes other than
c. α andαi are the smoothing parameters.p(θc) is
the prior distribution of classc.

L-SVM is the basic type of SVM which pro-
duces a hyperplane that separates two-class samples
with a maximum margin. It handles high dimen-
sional data efficiently, and has shown to perform
well in TC (Yang and Liu 1999). Given the data
set X = (x1, y1), . . . , (xn, yn) yi ∈ {−1,+1},
L-SVM requires a solutionw to the following un-
constrained optimisation problem:min(1

2w
T w +

C
∑n

i=1 max(1 − yiwTxi, 0)2. Cost parameterC
was estimated within range22,. . . , 25 on training
data using cross validation. TheC of the posi-
tive class was weighted by class population ratio

r = negative population
positive population.

4.1.4 Evaluation

We used the standard measures of recall (R), pre-
cision (P) and F measure (F) for evaluation. These
are defined as follows:

R = TP
TP+FN P = TP

TP+FP F = 2×R×P
R+P

Our random baseline isP+
N+P+

.
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P+/N : positive/negative population TP: truth positive; FN: false negative, FP: false positive

4.2 Experimental evaluation

4.2.1 Data

Our data was the expert annotated CRA corpus.

4.2.2 Document preprocessing

We first evaluated theBOW preprocessing tech-
nique with and without the use of (i) the Porter
(1980) stemmer, (ii) TFIDF, (iii) stop word removal,
and (iv) their combinations. The evaluation was
done in the context of the binary relevance classifica-
tion of abstracts (not in the context of the main tax-
onomic classification task to avoid overfitting pre-
processing techniques to the taxonomy). Only (iii)
improved all the classifiers and was thus adopted
for the main experiments. The poor performance
of (i) demonstrates that a standard stemmer is not
optimal for our data. As highlighted by (Han et al.
2006, Wang et al. 2008), semantically related bio-
logical terms sharing the same stem are not always
reducible to the stem form.

4.2.3 Feature selection

We evaluated the feature selection methods on
two taxonomy classes: the most balanced class ‘An-
imal study‘ (positive/negative 1:1.4) and an imbal-
anced class ‘Adducts‘ (positive/negative 1:6.5).IG
was used for the fixedN setting andfscorefor the
dynamic Nsetting. Each combination of classifiers
(NMB/CNB/SVM), document representations (BOW,
BOS) and settings forN (dynamic, . . . , 83098) was
evaluated. The results show that thedynamicsetting
yields consistent improvement on all the setups (al-
though the impact onSVM’s is not big). Also the
optimalN varies by the data and the classifier. Thus,
we used thedynamicfeature selection in the taxo-
nomic classification.

4.2.4 Taxonomic classification

Experimental setup We ran two sets of experi-
ments on the corpus, using 1)BOWand 2)BOSfor
feature extraction. Without feature selection,BOW
had c. 9000 features andBOSc. 83000. Features
were selected usingfscore. For each class with
more than 20 abstracts (37 in total)4, three ”one

4The classes with less than 20 abstracts may have less than
2 positive abstracts in each fold of 10 fold CV, which is not

Method Feature Set P R F
NMB BOW 0.59 0.75 0.66
NMB BOS 0.62 0.82 0.70
CNB BOW 0.52 0.74 0.60
CNB BOS 0.57 0.76 0.64
SVM BOW 0.68 0.76 0.71
SVM BOS 0.71 0.77 0.74

Table 2: Performance of classifiers withBOS/BOW

Class Method P R F
CA NMB 0.94 0.89 0.91
CA CNB 0.92 0.94 0.93
CA SVM 0.93 0.93 0.93
MOA NMB 0.88 0.81 0.84
MOA CNB 0.84 0.82 0.83
MOA SVM 0.92 0.80 0.86
TOX NMB 0.66 0.83 0.74
TOX CNB 0.70 0.80 0.75
TOX SVM 0.76 0.79 0.78

Table 3: Result for the top level classes

against other” classifiers (NMB, CNB and L-SVM)
were trained and tested using 10-fold cross valida-
tion.

Results Table 2 shows the average performance
for the whole taxonomy. The performance ofBOS
is better than that ofBOWaccording to all the three
measures. On average,BOSoutperformsBOWby
4% in P and F, and 3% in R.SVM yields the best
overall P and F (0.71and0.74) with BOS. Surpris-
ingly, NMB outperformsCNB with all the settings.
NMB yields the best overall R withBOS(0.82) but
its P is notably lower than that ofSVM.

Table 3 shows the average P, R and F for the top
level classes using the best performing feature set
BOSwith the three classifiers.CA has the best F
(0.93). Its positive population is the highest (posi-
tive/negative: 5:1).TOXwith a lower positive pop-
ulation (1:2.6) has still good F (0.78). R and P are
balanced with an average difference of 0.06.

Table 4 shows the distribution of F across the
taxonomy. There is a clear correlation between

representative for the class population.

No. of abstracts(f) Classes F Random
f > 300 9 0.80 0.38
100 < f ≤ 300 12 0.73 0.13
20 < f ≤ 100 16 0.68 0.04

Table 4: Mean F and random baseline for taxonomic
classes in three frequency ranges.
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frequency and performance: the average F de-
creases with descending frequency range, revealing
increased classification difficulty. Classes with more
than 300 abstracts have the highest average F (0.80
with standard deviation (SD) 0.08). Classes with
20-100 abstracts have the average F 0.68 (SD0.11),
which is lower but still fairly good. No class has F
lower than 0.46, which is much higher than the av-
erage random baseline of 0.11.

5 User Test

A user test was carried out to examine the practical
usefulness of the automatic classification in a near
real-world scenario. TheL-SVM+BOSclassifier was
applied to the PubMed abstract data (from 1998-
2008) of five unseen chemicals representing geno-
toxic (geno) and non-genotoxic (non) MOAs (see
table 5). The results were displayed to two experts
in a friendly web interface. The experts were in-
vited to imagine that they have submitted a query to
a system, the system has returned the classification
of relevant abstracts for each chemical, and the task
is to judge whether it is correct. The top 500BOS
features per class were shown to aid the judgement.

Results were evaluated using precision (P) (re-
call could not be calculated as not all of the positive
polulation was known). Table 5 shows the average
P for chemicals and top level classes. The results
are impressive: the only chemical with P lower than
0.90 is polychlorinated biphenyls (PCB). As PCB
has a well-known neuro-behavioural effect, the data
includes many abstracts irrelevant for CRA. Most
other errors are due to the lack of training data for
low frequency classes. For example, the CRA cor-
pus had only 27 abstracts in ”DNA repair (damage)”
class, while the new corpus has many abstracts on
DNA damage some of which are irrelevant for CRA.

The experts found the tool easy to use and felt
that if such a tool was available to support real-world
CRA, it could significantly increase their productiv-
ity and also lead to more consistent and thorough
CRA. Such a wide range of scientific evidence is dif-
ficult to gather via manual means, and chemical car-
cinogenesis is such a complex process that even the
most experienced risk assessor is incapable of mem-
orizing the full range of relevant evidence without
the support of a thorough specification / taxonomy.

Name MOA Σ P
Aflatoxin B1 geno 189 0.95
Benzene geno 461 0.99
PCB non 761 0.89
Tamoxifen non 382 0.96
TCDD non 641 0.96

Class P
CA 0.94
MOA 0.95
TOX 0.99

Table 5: Chemicals and the results of the user test

6 Conclusion and Future Work

The results of our inter-annotator agreement tests,
automatic classification experiments and the user
test demonstrate that the taxonomy created by risk
assessors is accurate, well-defined, and can be use-
ful in a real-world CRA scenario. This is particu-
larly encouraging considering that the taxonomy is
based on biomedical annotation. As highlighted by
(Kim et al. 2008), expert annotation is more chal-
lenging and prone to inter-annotator disagreement
than better-constrained linguistic annotation. We
believe that we obtained promising results because
we worked in collaboration with risk assessors and
developed technology which imitates their current
practices as closely as possible.

Most related work focuses on binary classifica-
tion, e.g. BioCreative II had a subtask (Krallinger
et al. 2008) on the relevance classification of ab-
stracts for protein interactions. The few works
that have attempted multi-classification include e.g.
that of Aphinyanaphongs et al. (2005) who applied
NMB, SVM and AdaBoost to classify abstracts of
internal medicine into four categories, and that of
Han et al. (2006) who usedBOSandNMB/L-SVMto
classify abstracts in five categories of protein post-
translational modifications.

In the future, we plan to refine the taxonomy fur-
ther by careful analysis of keyword types found in
the data and the taxonomic relationships defined by
experts. This will help to transform the taxonomy
into a better-developed knowledge resource. We
also need to extend the taxonomy. Although our
results show that the current taxonomy provides a
good basis for the classification of CRA literature,
it is not comprehensive: more data is required espe-
cially for low frequency classes, and the taxonomy
needs to be extended to cover more specific MOA
types (e.g. further subtypes of non-genotoxic chem-
icals).

The taxonomy can be extended by manual annota-
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Change in F Σ Classes
Abstracts of class

20-100 100 - 200 200 - 1100

∆F > 1% 16 (43%) 75% 33% 8%
|∆F | ≤ 1% 15 (41%) 6% 44% 75%
∆F < −1% 6 (16%) 19% 33% 17%

Table 6: F gain(∆F ) of MeSHcompared toBOS

Class Σ F
Carcinogenic activity 1068 92.8

Human study/epidemiology 190 77.7
Animal study 629 80.2
Cell experiments 319 78.5
Study on microorganisms 44 85.2

Mode of Action 653 85.5
Genotoxic 421 89.1
Nongenotoxic 324 76.3

Toxicokinetics 356 77.7
Absorption, . . . ,excretion 113 69.8
Metabolism 268 76.4
Toxicokinetic modeling 31 84.6

Table 7:Σ abstracts and F of level 1,2 classes.

tion, supplementing it with additional information in
knowledge resources and/or by automatic methods.
One knowledge resource potentially useful is the
Medical Subject Headings (MeSH) taxonomy (Nel-
son et al. 2002) which classifies PubMed abstracts
according to manually defined terms. We performed
a small experiment to investigate the usefulness of
MeSH for supplementing our current classification.
MeSH terms were first retrieved for each abstract us-
ing EFetch (NCBI 2005) and then appended to the
BOSfeature vector. Best features were then selected
using fscore and classified usingL-SVM. The fig-
ures in table 6 show that the results improved sig-
nificantly for 43% of the low frequency classes. Al-
though this demonstrates the potential usefulness of
additional resources, given the rapidly evolving na-
ture of CRA data, the best approach long term is
to develop technology for automatic updating of the
taxonomy from literature. Given the basic resources
we have constructed, the development of such tech-
nology is now realistic and can be done using unsu-
pervised or semi-supervised machine learning tech-
niques, e.g. (Cohen and Hersh 2005, Blaschko and
Gretton 2009).

The automatic classification could be improved
by the use of more sophisticated features extracted
using NLP tools that have been tuned for biomedi-
cal texts, such as parsers, e.g. (Tsuruoka et al. 2005),

and named entity recognizers, e.g. (Corbett et al.
2007), and exploiting resources such as the BioLex-
ion (Sasaki et al. 2008).

Our long term goal is to develop a TM tool
specifically designed for CRA. Some tools have re-
cently been built to assist other critical activities of
biomedicine (e.g. literature curation for genetics).
A few of them have been evaluated for their practi-
cal usefulness in a real-world scenario (Karamanis
et al. 2008, Demaine et al. 2006). Such tools and
evaluations act as an important proof of concept for
biomedical TM and help to develop technology for
the needs of practical applications.

According to the interviews we conducted (Sec-
tion 2), a tool capable of identifying, ranking and
classifying articles based on the evidence they con-
tain, displaying the results to experts, and assisting
also in subsequent steps of CRA would be particu-
larly welcome. Such a tool, if developed in close
collaboration with users, could significantly increase
the productivity of CRA and enable risk assessors
to concentrate on what they are best at: the expert
judgement.
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