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Abstract

One of the most neglected areas of biomed-
ical Text Mining (TM) is the development
of systems based on carefully assessed user
needs. We investigate the needs of an im-
portant task yet to be tackled by TM — Can-
cer Risk Assessment (CRA) — and take the
first step towards the development of TM for
the task: identifying and organizing the sci-
entific evidence required for CRA in a taxon-
omy. The taxonomy is based on expert annota-
tion of 1297 MEDLINE abstracts. We report
promising results with inter-annotator agree-
ment tests and automatic classification experi-
ments, and a user test which demonstrates that
the resources we have built are well-defined,
accurate, and applicable to a real-world CRA
scenario. We discuss extending and refining
the taxonomy further via manual and machine
learning approaches, and the subsequent steps
required to develop TM for the needs of CRA.
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needs rather than technical developments (Zweigen-
baum et al. 2007). Shared tasks (e.g. BioCreative
and the TREC Genomics track) targeting the work-
flow of biomedical researchers have appeared along
with studies exploring the TM needs of specific tasks
(Karamanis et al. 2008, Demaine et al. 2006). How-
ever, the understanding of user needs is still one of
the neglected areas of BIO-TM, and further user-
centered evaluations and systems grounded in real-
life tasks are required to determine which tools and
services are useful (Cohen et al. 2008).

We investigate the user needs of a challenging
task yet to be tackled by TM but identified as an
important potential application for it (Lewin et al.
2008): Cancer Risk Assessment (CRA). Over the
past years, CRA has become increasingly important
as the link between environmental chemicals and
cancer has become evident. It involves examining
published evidence to determine the relationship be-
tween exposure to a chemical and the likelihood of

) developing cancer from that exposure (EPA, 2005).

1 Introduction Performed manually by experts in health related in-
Biomedical Text Mining (TM) has become increas-stitutions worldwide, CRA requires searching, lo-
ingly popular due to the pressing need to provideating and interpreting information in biomedical
access to the tremendous body of texts availabjeurnal articles. It can be extremely time-consuming
in biomedical sciences. Considerable progress hagscause the data for a single carcinogen may be scat-
been made in the development of basic resourcégred across thousands of articles.
(e.g. ontologies, annotated corpora) and techniquesGiven the exponentially growing volume of
(e.g. Information Retrieval (IR), Information Ex- biomedical literature and the rapid development of
traction (IE)) in this area, and research has beganolecular biology techniques, the task is now get-
to focus on increasingly challenging tasks, e.g. sunting too challenging to manage via manual means.
marization and the discovery of novel information inFrom the perspective of BIO-TM, CRA is an excel-
biomedical literature (Hunter and Cohen 2006, Analent example of real-world task which could greatly
niadou et al. 2006, Zweigenbaum et al. 2007). benefit from a dedicated TM tool. However, the de-

In recent past, there has been an increasing deslopment of a truly useful tool requires careful in-
mand for research which is driven by actual usevestigation of risk assessors needs.
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This paper reports our investigation of the usefhis evidence — which forms the basis of all the
needs of CRA and the creation of basic TM resubsequent steps of CRA — is described in the
sources for the task. Expanding on our preliminarguideline documents of major international CRA
experiments (Lewin et al. 2008), we present a taxoragencies, e.g. European Chemicals Agency (ECHA,
omy which specifies the scientific evidence neede2l008) and the United States Environmental Protec-
for CRA at the level of detail required for TM. The tion Agency (EPA, 2005). However, although these
taxonomy is based on expert annotation of a corpwocuments constitute the main reference material in
of 1297 MEDLINE abstracts. We report promis-CRA, they cover the main types of evidence only,
ing results with inter-annotator agreement tests, ado not specify the evidence at the level of detail
tomatic classification of corpus data into taxonomyequired for comprehensive data gathering, and are
classes, and a user test in a near real-world CRéot updated regularly (i.e. do not incorporate the lat-
scenario which shows that the taxonomy is highlest developments in biomedical sciences). The risk
accurate and useful for practical CRA. We discusassessors admitted that rather than relying on these
refining and extending it further via manual and madocuments, they rely on their experience and expert
chine learning approaches, and the subsequent sté&p®wledge when looking for the evidence. We de-
required to develop TM for the needs of CRA. cided that our starting point should be to compose
a more adequate specification of the scientific evi-

2 User Needs of Cancer Risk Assessment dence needed for CRA.

We interviewed 14 experienced risk assessors wor
ing for a number of authorities in Swedeasking

a range of questions related to different aspects ®¥e recruited three experienced risk assessors to help
their work. The risk assessors described the followeonstruct the resources described in sections below:
ing steps of CRA: (1) identifying the journal articles(i) a representative corpus of CRA literature for
relevant for CRA of the chemical in question, (2)parts of hazard identification (i.e. the assessment of
identifying the scientific evidence in these articleavhether a chemical is capable of causing cancer),
which help to determine whether/how the chemica(ii) a tool for expert annotation of the corpus, (iii) an
causes cancer, (3) classifying and analysing the rannotated corpus, and (iv) a taxonomy which classi-
sulting (partly conflicting) evidence to build the tox-fies and organizes the scientific evidence discovered
icological profile for the chemical, and (4) prepar-in the corpus.

ing the risk assessmgnt report. These step_s are coéni CRA corpus

ducted manually, relying only on standard literature
search engines (e.g. PubMed) and word processorgarious human, animalir{ vivo), cellular {n vitro)

The average time required for CRA of a singleand other mechanistic data provide evidence for haz-
chemical was reported to be two years when dor@fd identification and the assessment of the Mode of
(as usual) on a part time basis. Risk assessors wekgtion (MOA) (i.e. the sequence of key events that
unanimous about the need to increase productivifigsult in cancer formation, e.g. mutagenesis and in-
to meet the current CRA demand. They reportegreased cell proliferation) in CRA. The experts se-
that locating and classifying the scientific evidencéected eight chemicals which are (i) well-researched
in literature is the most time consuming part of theitsing a range of scientific tests and (ii) represent the
work and that a tool capable of assisting it and ensufwo most frequently used MOAs genotoxicand
ing that all the potentially relevant evidence is foundon-genotoxié. 15 journals were identified which
would be particularly helpful. are used frequently for CRA and jointly provide a

It became clear that a prerequisite for the devegood coverage of relevant scientific evidence (e.g.
opment of such a tool would be an extensive spe&ancer Research, Chemico-biological Interaction,
ification of the scientific evidence used for CRA Mutagenesis, Toxicological Sciences). From these

5_ Cancer Risk Assessment Taxonomy

lnstitute of Environmental Medicine at Karolinska Insti-  2Chemicals acting by a genotoxic MOA interact with DNA,
tutet, Swedish Chemical Inspectorate, Scientific Committe while chemicals acting by a nongenotoxic MOA induce cancer
Occupational Exposure Limits (EU), Swedish Criteria Group without interfering directly with DNA.
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42. Relevant (title)

Lack of genotoxic effect in workers exposed to very low doses of 1,3-butadiene. 3.3 Annotation

i and Soleo  Arch Toxicol 2006 Jun 80 :6
Load PubMed XML File . H H H H
on nents-  Evi:general(words-related-to-cancer-RA)  E G ven a Set Of Inltlal gUIdellnes ag I'eed by the ex-
elevant Article (judged on title alone) e Bomadonsti ol eh . Y
O Retevant Aricle (uage on te and abstract) perts, one of the experts annotated a subset of the
O Irrelevant Article (judged on title alone) umans, has been shown to have an ill-defined genotoxici .
O iretevant Aricte udged on tite and abstract) {xposure to very low doses orBD and weizrere sk COPUS, the other two evaluated the result, disagree-
() Unsure (judged on title and abstract) exchanges (SCE), chromosomal aberrations (CA) and ce . . .
Mt it y-seven mile workers employed maperecnenal pin— [NMENES Were then discussed, and the guidelines were
D values, there was a significant difference between expt . . .
L | neviaw H workers (median BD value 0.4, min-max <0.1-3.8 micr Improved where needed. This process (CrUC|a~| for
Background information joups. The frequency of SCE was higher in smokers than . . . .
rees smoked per diy and bt SCE =04 =000 MNAINtAINING  quality) was repeated several times.
Scientific Evidence + Hl the influence of cigarette smoking on the level of SCE 2

The guidelines described below are the final result
of this work.

Mode of Action > genotexic » strand breaks
Toxicokinetics »|  nongenctoxic  »

Remove word tags

adducts

chromosomal changes &

Figure 1: Screenshot of the annotation tool 3.3.1 Relevance annotation

An abstract is classified as (i) relevant when it (or
journals, all the PubMed abstracts from 1998-2008s title) contains evidence relevant for CRA and (ii)
which include one of the 8 chemicals were downifrelevant when it (or its title) contains no evidence
loaded. The resulting corpus of 1297 abstracts @ contains "negative” evidence (e.g. diseases or

distributed per chemical as shown in Table 1. endpoints unrelated to cancer). Abstracts containing
vague, conflicting or complex evidence (e.g. stud-
3.2  Annotation tool ies on chemicals in complex mixtures) or evidence

whose association with cancer is currently unclear
Risk assessors typically (i) read each abstract réere dealt on case by case basis. All the potentially
trieved by PubMed to determine its relevance fofelevant abstracts were included for further assess-
CRA, and (ii) classify each relevant abstract base@ent as not to lose data valuable for CRA.
on the type of evidence it provides for CRA. We ex- The experts annotated the 1297 abstracts in the
tended the tool designed for expert annotation of atgorpus. 89.4% were classified as relevant, 10.1% as
stracts in our earlier work (Lewin et al. 2008) so thatrrelevant, and 0.5% as unsure. We used the Kappa
imitates this process as closely as possible. statistics (Cohen 1960) to measure inter-annotator
agreement on unseen data which two experts an-

. The tool provides two types of_functlonallty. Thelnotated independently. 208 abstracts were selected
first enables the experts to classify abstracts as rele- , .
randomly from the 15 journals and from 16 jour-

vant, irrelevant or unsure. The second enables them

to annotate such keywords (words or phrases) in aggls likely to be irrelevant for CRA. The latter were

stracts and their titles which indicate the scientificmcmded to make the task harder as the proportion

evidence relevant for the task. Keyword annotatior?]c relevant abstracts was high in our corpus. Our

was chosen because the experts found it intuitive }ﬁ[appa resultis 0.68 —a figure which indicates sub-
P ' stantial agreement (Landis and G.Koch 1977).

did not require linguistic training, and it specifies the’
d g g b The experts disagreed on 24 (11.5% of the) ab-
stracts. Half of the disagreements are due to one

scientific evidence more precisely than larger spans
of the annotators failing to notice relevant evidence.

of text.

Initially a very shallow taxonomy (including only sych cases are likely to decrease when annotators
human, animal, and cellular data) and the two type&gain more experience. The other half are caused by
of MOA was integrated inside the tool. This wasyague or conflicting evidence. Many of these could

gradually extended as the annotation progressege addressed by further development of guidelines.
The tool permits annotating any number of relevant

keywords in the abstracts, attaching them to an%‘
class in the taxonomy, and classifying the same text Keyword annotation focussed on the types of sci-
in more than one way. It was implemented inside thentific evidence experts typically look for in CRA:
familiar Mozilla Firefox browser using its extension carcinogenic activity (human, animal, cellular, and
facility. A screenshot illustrating the tool is providedother mechanistic dataMode of Action (MOA)

in Figure 1. (data for a specific MOA type — genotoxic or non-

3.2 Keyword annotation
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Chemical Retrieved| Relevant of them undeICA. Table 6 shows the total number
1,3-butadiene 195 187 of abstracts and keywords per class: 82.4% of the
phenobarbital | 270 240 abstracts include keywords f@A, and 50.3% and
d!ethylanrosam|ne 221 214 28.1% forMOA andTOX, respectively.
diethylstilbestrol | 145 110 ’ ) )
benzoapyrene 201 192 We calculated inter-annotator agreement for as-
fumonisin 80 70 signing abstracts to taxonomy classes. For each of
chloroform 96 84 the 8 chemicals, 10 abstracts were randomly cho-
styrene 162 132 sen from the 15 journals. The average agreement
Total 1297 1164 between two annotators is the highest witA and
Table 1: Total of abstracts per chemical MOA (78%) and the lowest witiTOX (62%). The

overall agreement is 76%. This result is good, par-

genotoxic), and relevant partstoiicokinetics (.9. ticularly considering the high number of classes and
metabolic activation). The experts annotated thge chance agreement of 1.5%. The disagreements
keywords which they considered as the most impokyre mostly due to one of the experts annotating as
tant and which jointly identify the types of scientific many keywords as possible, and the other one an-
data offered by the abstract. They focussed on neMptating only the ones that classify each abstract as
(rather than previously published) data on the chemyrecisely as possible. This was not a serious prob-
ical in question. lem for us, but it demonstrates the importance of de-

All the 1164 abstracts deemed relevant were anailed guidelines. Also, some of the classes were too
notated. A total of 1742 unique keywords werdmprecise to yield unique distinctions. Future work
identified, both simple nouns and complex nomishould focus on refining them further.
nals / phrases. Figure 1 shows an example of aH\ Automatic classification
annotated abstract where the keywarigromoso-
mal aberrationsis identified as evidence for geno- To examine whether the classification created by ex-
toxic MOA. Since the experts were not required tgerts provides a good representation of the corpus
annotate every relevant keyword, calculating interdata and is machine learnable, we conducted a se-
annotator agreement was not meaningful. Howevetigs of abstract classification experiments.
the keyword annotation was evaluated jointly with, 1 nethods

taxonomy classification (the following section). _
4.1.1 Feature extraction

3.4 The taxonomy and the resulting corpus . o .
y g corp The first step of text categorization (TC) is to

During keyword annotation, the initial taxonomytransform documents into a feature vector represen-

was extended and refined with new classes and claggion. We experimented with two document rep-

members. The resulting taxonomy relies solely oresentation techniques. The first one is the sim-

expert knowledge. Experts were merely advisegle 'bag of words’ approachBOW) which consid-

on the main principles of taxonomy creation: theers each word in the document as a separate feature.

classes should be conceptually coherent and their lBOWwas evaluated using three methods which have

erarchical organization should be in terms of coheproved useful in previous TC work: (i) stemming

ent sub- and superordinate relations. (using the Porter (1980) stemmer) which removes
The taxonomy contains three top level classesiffixes from words, (ii) the TFIDF weighting (Kib-

1) Carcinogenic activity ©A), 2) Mode of Action riya et al. 2004), and (iii) stop word removal.

(MOA) and 3) ToxicokineticsTOX). 1) and 2) are  The second technique is the recent ’bag of sub-

organized by TYPE-OF relatione(kemias atype strings’ BOS method by (Wang et al. 2008) which

of carcinogenic evidence) and 3) by PART-OF relaeonsiders the whole abstract as a string and extracts

tions piodegradations a part of Metabolism). Each from it all the lengthp substrings without affix re-

top level class divides into sub-classes. Figure goval. BOS has proved promising in biomedical

showsCA taxonomy with three keyword examplesTC (Han et al. 2006, Wang et al. 2008) and un-

per class. The taxonomy has 48 classes in total; hdilke a traditional grammatical stemmer, does not re-
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Scientific evidence for
carcinogenic activity

Human study/Epidemiology
Workers
Cohort
Subjects

Subcellular systems
Cell-free system
Computational modeling

Tumor related
Leukemia

Malignant neoplasm
Hepatocellular carcinoma

Polymorphism
Glutathione S-transferase M1
NER genotypes
Epoxide hydrolase
Biomarkers
Urinary biomarkers
Haemoglobin adducts

Study on microorganisms
Ames Salmonella test
SOS Chromotest
Salmonella typhimurium

Morphological effect on
tissue/organ
Birth weight

Cell E

Prostate weight Urinary metabolites Animal study Lymphocytes cellbiological effects
Fibrosis - gjochemical/cellbiological effects Rodents i) Cell cycle regulation

Cell cycle arrest Mice P53 stabilisation
Cells
Gene expression Rats DNA
Protein kinase C Study length
20 weeks
23 weeks
3days

Type of animal
Rainbowtrout > Genetically modified animals
Rats Xpe-null mice
Medaka Transgenic Big Blue mouse
Knockout mice
Biochemical/

cellbiological effects
Multiple drug resistance gene

G1 checkpoint
Signal transduction

2-year cancer bioassay
2-year Tumors
wo-year Neoplasia
17-24 months Lung neoplasm
Short- and medium-term exposure study ~ Pancreatic carcinoma
4 weeks
10 days lesions ical effect on
6-8h Hepatic foci i ical markers
Nodule Liver weight Urinary M1 and M2 metabolites
GSTP-positive AHF Hyperplasia Genotoxic markers
Uterus weight

Figure 2: Taxonomy of Carcinogenic Activity

quire domain tuning for optimal performance. Be-be estimated from the frequency of document€'in
causeBOSgenerates substrings with fixed length Pr(X = w|C) is estimated as the fraction of tokens
a word shorter thap—2 can get obscured by its con-in documents of clas§' that containw.

text®. For example, ‘mice* would be transformed to CNB extendsNMB by addressing the problems
'_micea’, '_miceb’, ..., which is less informative it has e.g. with imbalanced data and weight
than the original word form. Therefore, we enrichednagnitude error. The class of a document
BOSfeatures with word forms shorter than- 2. iS: argmax.[logp(0.) — >, fﬂog%]. Ng; is the
number of times term occurs in classes other than

_ c. a andq; are the smoothing parametergd.) is
We employed two feature selection methods fof,, prior distribution of class.

dimensionality reduction. The first is Information L-SVM is the basic type of SVM which pro-
Gain (G) which has proved useful in T,C (Yang gy ces a hyperplane that separates two-class samples
and Pedersen 1997). Given a feature’s distribyyii, 5 maximum margin. It handles high dimen-
tion X and class label distributiod’, IG(X) = gjona| data efficiently, and has shown to perform
A(Y) = H(Y|X), H(X) Is the entropy ofY. The el iy TC (Yang and Liu 1999). Given the data
second method score optimises the number of fea- o v _ (X1,91)s -+ s (Xnsyn) ¥i € {—1,+1}
tures W)._Fe'atures are first rgnked using the simple_gym requires a solutionw to the following un-

[ score criterion (Chen and Lin 2006), an¥l is se-  ~,nstrained optimisation probleminin(iw’w -+
lected based on the performance of the SVM classb S max(l — yiwTx;,0)2.  Cost pargmeteg

. . i=1 7 iy .

fier using theV features. was estimated within rang2?,..., 25 on training
4.1.3 Classification data using cross validation. Th& of the posi-

s . ; . tive class was weighted by class population ratio
Three classifiers were used: Naive Multino negative population

mial BayesianjiMB), Complement Naive Bayesian " = positive population
(CNB) (Rennie and Karger 2003) and Linear SUp21_1,4 Evaluation

port Vector MachinesL(-SVM (Vapnik 1995).
NMB is a widely used classifier in TC (Kib- We used the standard measures of recall (R), pre-

riya et al. 2004). It selects the clags with cision (P) and F measure (F) for evaluation. These
the maximum probability given the documedt are defined as follows:

4.1.2 Feature selection

TP TP 2x Rx P
argmaze Pr(C)[],cq. Pr(X = w|C). Pr(C) can R=gppny P=7prp F =355
3Minus 2 because of space characters. Our random baseline iﬁ%.
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P, /N: positive/ negative population TP: truth positive; FN: false negati/@: false positive MethOd Featu re Sel P R F
_ _ NMB BOW | 0.59] 0.75| 0.66
4.2 Experimental evaluation NMB BOS 062 | 0821 0.70
421 Data CNB BOW | 0.52] 0.74| 0.60
CNB BOS 0.57| 0.76 | 0.64
Our data was the expert annotated CRA corpus. SVM BOW 068 0.76 | 0.71
SVM BOS 0.71| 0.77| 0.74

4.2.2 Document preprocessing
Table 2: Performance of classifiers wBlOSBOW

We first evaluated th®OW preprocessing tech-

nigue with and without the use of (i) the Porter Class | Method | P R F
(1980) stemmer, (ii) TFIDF, (iii) stop word removal oA NMB ) 0.9410.89/ 0.91
; ! ] i ' CA CNB 0.92| 0.94| 0.93
and (iv) their combinations. The evaluation was CA svM | 093] 093] 0.93
done in the context of the binary relevance classifica- MOA | NMB | 0.88] 0.81| 0.84
tion of abstracts (not in the context of the main tax- MOA | CNB | 0.84| 0.82| 0.83
onomic classification task to avoid overfitting pre- MOA | SVM | 0.92| 0.80| 0.86
processing techniques to the taxonomy). Only (iii) TOX | NMB | 0.66| 0.83| 0.74
improved all the classifiers and was thus adopted TOX | CNB | 0.701 0.80| 0.75
for the main experiments. The poor performance TOX | SVM |0.76]0.79| 0.78
of (i) demonstrates that a standard stemmer is not Table 3: Result for the top level classes

optimal for our data. As highlightgd by (Han et a,l'against other” classifiers\MB, CNB and L-SVM
2006, Wang et al. 2008), semantically related bio- . . .
: i were trained and tested using 10-fold cross valida-
logical terms sharing the same stem are not alwa Sh
reducible to the stem form. '
Results Table 2 shows the average performance
for the whole taxonomy. The performance BDS
We evaluated the feature selection methods adB better than that dBOWaccording to all the three
two taxonomy classes: the most balanced class ‘Ameasures. On averagB0SoutperformsBOW by
imal study’ (positive/negative 1:1.4) and an imbal-4% in P and F, and 3% in RSVMyields the best
anced class ‘Adducts’ (positive/negative 1:6.5s  overall P and F@.71and0.74) with BOS Surpris-
was used for the fixedll setting andscorefor the ingly, NMB outperformsCNB with all the settings.
dynamic Nsetting. Each combination of classifiersNMB yields the best overall R witBOS(0.82) but
(NMB/CNB/SVN\, document representatiorBQW, its P is notably lower than that &M
BOYS and settings foN (dynamic, ..., 83098) was  Table 3 shows the average P, R and F for the top
evaluated. The results show that thexamicsetting level classes using the best performing feature set
yields consistent improvement on all the setups (aBOSwith the three classifiersCA has the best F
though the impact oi$VMs is not big). Also the (0.93). Its positive population is the highest (posi-
optimalN varies by the data and the classifier. Thusive/negative: 5:1) TOXwith a lower positive pop-
we used thedynamicfeature selection in the taxo- ylation (1:2.6) has still good F (0.78). R and P are
nomic classification. balanced with an average difference of 0.06.
4.2.4 Taxonomic classification Table 4 shows the distribution of F across the

] . taxonomy. There is a clear correlation between
Experimental setup We ran two sets of experi-

ments on the corpus, using BDWand 2)BOSfor representative for the class population.
feature extraction. Without feature selecti@QW

4.2.3 Feature selection

had c. 9000 features arBOSc. 83000. Features | N0 Of abstracts(f) Classes) F | Random
. . f > 300 9 0.80 0.38

were selected usinfscore For each class with 100 < £ < 300 12 073 013

more than 20 abstracts (37 in tofalthree “"one 20 < f < 100 16 | 068! 004

“The classes with less than 20 abstracts may have less th@iable 4: Mean F and random baseline for taxonomic
2 positive abstracts in each fold of 10 fold CV, which is notclasses in three frequency ranges.
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frequency and performance: the average F dg¢-Name MOA | ¥ P || Class| P

creases with descending frequency range, revealing\flatoxinB1 | geno | 1891 0.95 ) CA | 0.94
increased classification difficulty. Classes with morg 2€n#€Nne geno | 461 0.99 | MOA | 0.95
than 300 abstracts have the highest average F (0.8 ;:n?oxifen 222 ;g; 8:32 TOX | 0.99
with standard deviationSD) 0.08). Classes with | t¢pp non | 641 | 0.96
20-100 abstracts have the average F 0S98@.11),

which is lower but still fairly good. No class has F
lower than 0.46, which is much higher than the ave Conclusion and Future Work

erage random baseline of 0.11.

Table 5: Chemicals and the results of the user test

The results of our inter-annotator agreement tests,
5 User Test automatic classification experiments and the user
test demonstrate that the taxonomy created by risk

A user test was carried out to examine the practicalssessors is accurate, well-defined, and can be use-
usefulness of the automatic classification in a nedyl in a real-world CRA scenario. This is particu-
real-world scenario. The-SVMrBOSclassifier was |arly encouraging considering that the taxonomy is
applied to the PubMed abstract data (from 1998ased on biomedical annotation. As highlighted by
2008) of five unseen chemicals representing gengkim et al. 2008), expert annotation is more chal-
toxic (geno) and non-genotoxic (non) MOAs (sedenging and prone to inter-annotator disagreement
table 5). The results were displayed to two expertthan better-constrained linguistic annotation. We
in a friendly web interface. The experts were inbelieve that we obtained promising results because
vited to imagine that they have submitted a query tave worked in collaboration with risk assessors and
a system, the system has returned the classificatideveloped technology which imitates their current
of relevant abstracts for each chemical, and the tagkactices as closely as possible.
is to judge whether it is correct. The top 58S \Most related work focuses on binary classifica-
features per class were shown to aid the judgemenion e.g. BioCreative Il had a subtask (Krallinger

Results were evaluated using precision (P) (rest al. 2008) on the relevance classification of ab-
call could not be calculated as not all of the positivestracts for protein interactions. The few works
polulation was known). Table 5 shows the averagthat have attempted multi-classification include e.g.
P for chemicals and top level classes. The resulthat of Aphinyanaphongs et al. (2005) who applied
are impressive: the only chemical with P lower thaltNMB, SVM and AdaBoost to classify abstracts of
0.90 is polychlorinated biphenyls (PCB). As PCBinternal medicine into four categories, and that of
has a well-known neuro-behavioural effect, the datdlan et al. (2006) who useBiOSandNMB/L-SVMto
includes many abstracts irrelevant for CRA. Mostlassify abstracts in five categories of protein post-
other errors are due to the lack of training data fotranslational modifications.
low frequency classes. For example, the CRA cor- |n the future, we plan to refine the taxonomy fur-
pus had only 27 abstracts in "DNA repair (damage)ther by careful analysis of keyword types found in
class, while the new corpus has many abstracts @he data and the taxonomic relationships defined by
DNA damage some of which are irrelevant for CRAexperts. This will help to transform the taxonomy

The experts found the tool easy to use and feifito a better-developed knowledge resource. We
that if such a tool was available to support real-world@lso need to extend the taxonomy. Although our
CRA, it could significantly increase their productiv-results show that the current taxonomy provides a
ity and also lead to more consistent and thoroug@iood basis for the classification of CRA literature,
CRA. Such a wide range of scientific evidence is difit is not comprehensive: more data is required espe-
ficult to gather via manual means, and chemical cagially for low frequency classes, and the taxonomy
cinogenesis is such a complex process that even tAeeds to be extended to cover more specific MOA
most experienced risk assessor is incapable of meiypes (e.g. further subtypes of non-genotoxic chem-
orizing the full range of relevant evidence withouticals).
the support of a thorough specification / taxonomy. The taxonomy can be extended by manual annota-
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Change in F| ¥ Classes Abstracts of class and named entity recognizers, e.g. (Corbett et al.

20100 | 100-200 | 200-1100 2007), and exploiting resources such as the BioLex-
Ap>1% | 16(43%) | 75% | 33% | 8% ion (Sasaki et al. 2008).

|Ap| <1% | 15(41%) | 6% | 44% | 75% .
Ap< 1% | 6(16%) | 19% | 33% | 17% Our long term goal is to develop a TM tool

specifically designed for CRA. Some tools have re-
cently been built to assist other critical activities of

Table 6: F gainf r) of MeSHcompared tdB0OS

Class > = biomedicine (e.g. literature curation for genetics).

Carcinogenic activity 1068 92.8 A few of them have been evaluated for their practi-
Human study/epidemiology 190  77.7 cal usefulness in a real-world scenario (Karamanis
Animal study 629 80.2 et al. 2008, Demaine et al. 2006). Such tools and
Cell experiments 319 78.5

evaluations act as an important proof of concept for

Mosdt:g%/:;igw:]croorgamsms 6543fl 82%2 biomedical TM and help to develop technology for
Genotoxic 421 891 the needs of practical applications.
Nongenotoxic 324 763 According to the interviews we conducted (Sec-

Toxicokinetics 356 77.7 tion 2), a tool capable of identifying, ranking and
Absorption, ... excretion 113  69.8 classifying articles based on the evidence they con-
Metabolism 268 764 tain, displaying the results to experts, and assisting
Toxicokinetic modeling 31 846 also in subsequent steps of CRA would be particu-
Table 7:3 abstracts and F of level 1,2 classes. larly welcome. Such a tool, if developed in close

collaboration with users, could significantly increase
tion, supplementing it with additional information in e productivity of CRA and enable risk assessors
knowledge resources and/or by automatic methodg, concentrate on what they are best at: the expert
One knowledge resource potentially useful is thgggement.
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