
Proceedings of the Workshop on BioNLP, pages 46–54,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Extraction of Named Entities from Tables in Gene Mutation Literature

Wern Wong∗, David Martinez∗∗, Lawrence Cavedon∗∗

∗∗NICTA Victoria Research Laboratory
∗Dept of Computer Science and Software Engineering

The University of Melbourne

{wongwl,davidm,lcavedon}@csse.unimelb.edu.au

Abstract We investigate the challenge of extract-
ing information about genetic mutations from ta-
bles, an important source of information in scien-
tific papers. We use various machine learning algo-
rithms and feature sets, and evaluate performance in
extracting fields associated with an existing hand-
created database of mutations. We then show how
classifying tabular information can be leveraged for
the task of named entity detection for mutations.1

Keywords Information extraction; tables;
biomedical applications.

1 Introduction

We are interested in applying information extraction
and text mining techniques to aiding the construc-
tion of databases of biomedical information, in par-
ticular information about genetic mutations. Such
databases are currently constructed by hand: a long,
involved, time-consuming and human-intensive pro-
cess. Each paper considered for inclusion in the
database must be read, the interesting data identified
and then entered by hand into a database.2

However, the biomedical domain throws up many
new and serious challenges to information extraction
and text mining. Unusual terminology and under-
developed standards for nomenclature present prob-
lems for tokenisation and add complexity to stan-
dard information extraction tasks, such as named en-
tity recognition (NER). A lack of resources (at least

1A short version of this paper was presented at the Aus-
tralasian Document Computing Symposium, 2008. All copy-
rights from that event were retained by the authors.

2Karamis et al (2008) illustrate how even simple tools can
have an impact on improving the database-curation process.

compared to other domains), such as collections of
annotated full-text documents and relevance judge-
ments for various tasks, are a bottleneck to develop-
ing and evaluating the core techniques required.

In this paper, we report on work performed on
extracting information from tables in biomedical
research papers. Tables present a succinct and
information-rich format for providing information,
and are particularly important when reporting re-
sults in biological and medical research papers.
For example, the Human Genome Variation Society
(HGVS), in its general recommendations for muta-
tion nomenclature, recommends making use of tab-
ular listings when several changes are described in
a manuscript.3 A specific premise of our work is
that the highly-structured nature of tabular informa-
tion allows leverage of some techniques that are not
so sensitive to the well-reported problems inherent
in biomedical terminology, which complicate NER
tasks in this domain. In particular, we describe
initial techniques for extending NER performance
through the analysis of tables: columns/rows are
classified as containing items of the entities of inter-
est, thereby allowing those entities to be recognized
as of the target type. Since a significant amount of
such entities may be found in tables in biomedical
scientific papers, this can have positive impact on
the performance of base NER techniques.

NER tools specifically targeted at recognising
mutations have been developed (e.g. (Horn et al.,
2004; Baker and Witte, 2006; Caporaso et al., 2007;
Lee et al., 2007)); however, they only detect a sub-
class of mutations, so-called single-point mutations,

3http://www.hgvs.org/mutnomen/recs.html#general

46



i.e. those that affect a single base. MutationFinder
(Caporaso et al., 2007) is the only publicly available
tool, built with around 700 automatically-generated
rules (both for different nomenclatures and natural
language). However, most of the mutations that
we find in our dataset are not point mutations or
do not follow point-mutation nomenclature, limiting
the usefulness of MutationFinder (and related tools)
over our document collection.

In the next section, we describe the setting of our
task, the Mismatch Repair (MMR) Database, and
outline the task of extraction from tables. In Sec-
tion 3, we describe the preparation of our document
collection, and in Section 4, we analyse the amount
of mutation-related information that is in the associ-
ated tables. Section 5 describes the main task, which
is classifying table rows and columns as containing
mutations, and Section 6 leverages this technique to
detect mutations of interest to the MMR Database.
We discuss the results in Section 7.

2 Background

In this section, we discuss the MMR database—the
setting for our task and from which we construct
our document collection—and previous approaches
to table processing.

2.1 The MMR Database
Our extraction task is grounded in the specific con-
text of the Mismatch Repair (MMR) Database com-
piled at the Memorial University of Newfoundland
(Woods et al., 2007)—a database of known genetic
mutations related to hereditary non-polyposis col-
orectal cancer (HNPCC), a hereditary form of bowel
cancer. The MMR Database contains information
on genetic mutations known to be related to HN-
PCC, along with links to the research papers from
which the database has been constructed.4 From the
database and its links to papers, we were able to con-
struct a collection of tables related to HNPCC muta-
tions, and then use the MMR database records them-
selves as a gold standard for evaluating our tech-
niques. As of May 2008, the MMR database con-
tained a total of 5,491 records on mutations that oc-

4I.e. a team of geneticists manually trawled the biomedical
literature for information on HNPCC-related mutation informa-
tion, and added links to any papers relevant to those mutations
in the context of HNPCC.

cur on any one of four genes that have been identi-
fied as related to colon cancer. An example record
from the MMR database is the following:

MLH1 | Exon13 | c.1491delG | Yamamoto et al. | 9500462

Respectively, this record contains: gene; exon;
mutation; citation of the paper the information was
sourced from;5 and the paper’s PubMedID. These
fields are important because they contain informa-
tion researchers are directly interested in (gene,
exon, mutation) and the paper said information was
found in. Note that if a gene/mutation pair is refer-
enced in multiple papers, then there are correspond-
ingly multiple entries in the database. Conversely, if
a single paper mentions multiple (relevant) genes,
then that paper is mentioned in multiple database
records.

2.2 Table Processing
An important but less-researched sub-problem in
text mining is information extraction from tables.
This is particularly important in the biomedical do-
main since much important data is present in tabu-
lar form, such as experimental results, relations be-
tween entities, and other information that may not
be contained elsewhere in the text. For example, the
table shown in Figure 1 (taken from an article in our
collection) contains much of the same data that was
present in database records, in a similar format.

Tabular information extraction can be divided into
two broad sub-tasks:

• table detection: identifying tables within docu-
ments;

• table processing: extraction of data from tables.

Several systems have been developed to handle both
tasks, some are designed only to handle table de-
tection, and others focus only on extracting data.
Both machine learning and heuristic / rule-based ap-
proaches have been proposed.

Table detection techniques depend heavily on the
input format. Most work that tackles this problem
tends to assume one homogeneous input format, but
tables generally come in one of two varieties:6

5This field has been abbreviated. We have also omitted fields
such as “internal id”.

6We don’t consider the possibility of processing bitmaps or
other images from scanned documents.

47



Figure 1: Sample table containing mutation information related to HNPCC

• raw text tables: generally ASCII text in
monospace font, delimited by whitespace
and/or special characters;

• rich text tables: those formatted using LaTeX,
PDF, HTML and other such formats.

Tables in plain text tend to be more difficult to
detect, as the detection system must be sensitive to
whitespace and symbols used to align cells in tables.
Efforts to handle rich text formats generally focus on
HTML-based representations. Raw HTML is easier
to parse than raw LaTeX or PDF, and most formats
are easily converted to HTML. HTML tables can
theoretically be trivially detected using <table>

tags. However, Lerman et al (2004) note that in
HTML files taken from the web, only a fraction of
tabular data was presented using <table> tags, and
those tags were also used to format multi-column
text, images and other non-table applications. Hurst
(2001) attests that less than 30% of HTML tables on
the web contain actual tabular content; for many, the
HTML table tags are often used simply for format-
ting purposes.

Zanibbi et al (2004) present a survey of table
recognition in general. Of greatest relevance to us
here are approaches that adopt a machine learning

approach to detecting and/or extracting table data.
Cohen et al (2002) use features based on HTML

table tags, number of rows and columns of spe-
cific lengths, and ratios of single-square cells to to-
tal number of cells, to perform table detection, and
then form a geometric representation of the data us-
ing algorithms based on table-rendering techniques
implemented by browsers.

Pinto, Wei, and their colleagues have used condi-
tional random fields (CRFs) to both detect and pro-
cess tables simultaneously. Pinto et al (2003) com-
pare the output of their CRF system with a previ-
ous effort using hidden Markov machines (HMMs).
These systems use features such as: presence of
whitespace of varying length (different lengths of
whitespace are used as separate features); domain-
specific lexical features (such as month names, year
strings, specified keywords); separator characters
(e.g. ’+’, ’-’, etc). In subsequent work they develop
a system for performing question answering over ta-
ble data (Wei et al., 2004) by treating each extracted
data cell as a discrete document.

To our knowledge, no previous system has at-
tempted to extract data from tables in biomedical
literature. This is possibly because of a combina-
tion of the lack of resources for this domain (e.g.

48



collections of full-text documents; relevance judge-
ments), as well as the lesser focus on text mining
in general in this area. As will be seen in the next
section, the vagaries of the construction of our col-
lection of tables means we were effectively able to
ignore the issue of table detection and focus directly
on the problem of processing.

3 Experimental Setting

Our experiments were designed to identify mentions
of mutations in the biomedical literature, focusing
on tabular content. In this section, we first describe
our target dataset, built from the hand-curated MMR
database (Woods et al., 2007); we then explain the
table extraction process; finally, we introduce the
task design.

3.1 Mutation Mention Dataset
We relied on the MMR Database and MEDLINE in
order to build our test collection. First we collected
all the information available in the hand-curated
MMR records, obtaining a total of 5,491 mutations
linked to 719 distinct PubMedIDs7.

Our next step was to crawl the full-text articles
from MEDLINE. We used an automatic crawler that
followed the links from the PubMed interface, and
downloaded those papers that had a full-text HTML
version, and which contained at least one content ta-
ble.

The tables were then extracted from the full text
HTML files. It is important to note that the tables
were already present as links to separate HTML files
rather than being presented as inline tables, making
this process easier. Papers that did not contain tables
in HTML format were discarded.

Our final collection consisted of 70 papers out of
the original 719 PubMedIDs. Some of the papers
were not available in full text, and for others our
crawling script failed to extract the full version. Our
approach was conservative, and our collection could
be augmented in the future, but we decided to fo-
cus on this dataset for the experiments presented in
this paper. This set of articles is linked to 717 MMR
records (mutations), which constitutes our gold stan-
dard hand-curated annotation. The collection con-
tains 197 tables in all.

7Data was downloaded from the web interface in May 2008.

3.2 Table extraction
Once scraped, the tables were then pre-processed
into a form that more readily allowed experimenta-
tion. The tables were therefore split into three parts:
column headers, row headers, and data cells. This
was done based on the HTML formatting, which
was consistent throughout the data set as the tables
were automatically generated.

The first step was to deconstruct the HTML ta-
bles into nested lists of cells based on HTML ta-
ble tags. Inconsistencies introduced by colspan and
rowspan attributes were resolved by replicating a
cell’s contents across its spanned lengths. That is, a
cell with colspan=3 would be duplicated across the
three columns, and likewise for cells spanning mul-
tiple rows. Single-cell rows at the top or bottom of a
table were assumed to be captions and discarded.

The remaining HTML was stripped, save for the
following tags which contained important informa-
tion:

• img tags were replaced by their alternate text,
where available. Such images often represent
a mathematical symbol, which is important in-
formation to retain;

• hr tags proved to be an important indicator for
dividing header cells from data cells.

Tables were broken up into row headers, column
headers, and data cells by making use of the hr tags,
denoting horizontal lines, to detect column headers.
Such tags tend to be present as a separator between
column header cells and data cells; in fact, the only
tables in our collection that did not have the separa-
tors did not have column headers either. The hr tags
were subsequently stripped after this use. Detecting
row headers was performed by checking if the top
left cell of the table was blank, a pattern which oc-
curred in all row-major tables. The vast majority of
tables had column headers rather than row headers,
although some had both and a small proportion had
only row headers. We acknowledge that this pro-
cessing may be specific to the vagaries of the specific
format of the HTML generation used by PubMed
(from which we sourced the tables). However, our
whole task is specific to this domain; further, our fo-
cus is on the extraction task rather than the actual
detection of row/column headers.

49



Class Class Freq. Cell Freq.
Gene 64 1,618
Exon 48 1,004
Codon 23 435
Mutation 90 2,174
Statistic 482 8,788
Other 576 14,324
Total 1,283 28,343

Table 1: Frequency per class and number of cells in the
collection.

3.3 Task Design
In order to extract mutation information from
tables, we first performed classification of full
columns/rows into relevant entities. The content of a
column (or row, depending on whether the table was
row- or column-oriented) tends to be homogeneous;
this allowed us to build classifiers that can identify
full vectors of relevant entities in a single step. We
refer to this task as table vector classification.

We identified the following classes as relevant:
Gene, Exon, Mutation, Codon, and Statistic. The
first four were chosen directly from the MMR
Database. We decided to include “Statistic” after in-
specting the tabular dataset, since we found that this
provides relevant information about the importance
of a given mutation. Of the five classes, Mutation
is the most informative for our final information ex-
traction goal.

The next step was to hand-annotate the headers
of the 197 tables in our collection by using the five
classes and the class “Other” as the tagset. Some
headers belonged to more that one class, since the
classes were collapsed into a single field of the ta-
ble. The frequency per class and the number of cells,
across the collection of tables, is shown in Table 1.

3.4 Evaluation
We evaluated our systems in two ways:

• Header classification: performance of different
systems on predicting the classes of each col-
umn/row of the tables;

• Mutation extraction: recall of our system over
the subset of the hand-curated MMR database.

Evaluation for the header classification step was
performed using precision, recall and f-score, micro-
averaged amongst the classes. Micro-averaging in-
volves multiplying the score of a class by the number
of instances of the class in the gold standard, and di-
viding by the total number of instances. For the ma-
chine learning algorithms, evaluation was performed
using 10-fold cross-validation. For mutation extrac-
tion we focus on a single class, and produce recall
and a lower-bound on precision.

4 Mutation Mentions in Tables

In order to determine the value of processing tab-
ular data for mutation-mining purposes, we ob-
tained a sample of 100 documents that were hand-
annotated by curators prior to their introduction in
the database—the curators highlighted relevant mu-
tations found in each paper. We found that for 59
of the documents, only the tabular parts of the paper
were selected; 33 of the documents had only textual
parts highlighted; and for 8 documents both tables
and text were selected. This is an indicator of the
importance of tabular data in this context.

Our next step was to measure the amount of in-
formation that we could potentially extract from the
tables in our collection. Since we are interested in
mutations, we extracted all cells from the vectors
that were manually annotated as “Mutation” in or-
der to compare them to the goldstandard, and mea-
sure the recall. This comparison was not straight-
forward, because mutation mentions have different
nomenclatures. Ideally we would normalise the dif-
ferent references into a standard form, and then per-
form the comparison. However, normalisation is a
complex process in itself, and we resorted to evalu-
ation by hand at this point.

We found that 198 of the 717 goldstandard muta-
tions were present in tables (28%). This is a signif-
icant amount, taking into account that their extrac-
tion should be much easier than parsing the raw text.
We also tested MutationFinder over the full text, and
found that only 6 of the goldstandard mutations were
retrieved (0.8%), which indicates that point mutation
identification is not sufficient for this task.

Finally, we measured the amount of information
that could be extracted by a simple string look-up
system separately over the tabular and textual parts

50



of the articles. We were looking for mutation men-
tions that correspond exactly to the goldstandard
record from each article, which meant that mentions
in different nomenclatures would be missed. We
found that a total of 177 mentions (24.7%) could be
found with the same spelling; of those 142 (80.1%)
were found in tables only, and the remaining 35
(20.9%) were found in both tables and text; i.e., no
mention was found in text only.

These results indicate that we can find relevant in-
formation in tables that is not easy to detect in run-
ning text.

5 Table Vector Classification

We built automatic classifiers to detect relevant en-
tities in tables. Two separate approaches were at-
tempted for vector classification: applying heuristic
rules, and machine learning (ML) techniques. These
are described here, along with an analysis of their
performance.

5.1 Heuristic Baseline
As a baseline method, we approached the task of
classifying headers by matching the header string to
the names of the classes in a case-insensitive man-
ner. When the class name was found as a substring
of the header, the class would be assigned to it. For
example, a header string such as “Target Mutation”
would be assigned the class “Mutation”. Some head-
ers had multiple annotations (E.g. “Gene/Exon”).

For better recall, we also matched synonyms for
the class “Mutation” (the terms “Variation” and
“Missense”) and the class “Statistic” (the terms
“No.”, “Number” and “%”). For the remaining
classes we did not identify other obvious synonyms.

The results are shown in Table 2. Precision
was reasonably high for the “Codon”, “Exon” and
“Statistic” classes. However, this was not the case
for “Mutation”, and this illustrates that different
types of information are provided under this head-
ing; illustrative examples include the heading “Mu-
tation Detected” on a “Gene” vector, or the heading
“Germline Mutation” referring to “Statistics”. The
recall was also low for “Mutation” and most other
classes, showing that more sophisticated approaches
are required in order to exploit the information con-
tained in the tables. Notice also that the micro-

Class Precision Recall FScore
Gene 0.537 0.620 0.575
Exon 0.762 0.615 0.681
Codon 0.850 0.654 0.739
Mutation 0.283 0.301 0.292
Statistic 0.911 0.324 0.478
Other 0.581 0.903 0.707
Micro Avg. 0.693 0.614 0.651

Table 2: Naive Baseline results across the different
classes and micro-averaged

Class Precision Recall FScore
Gene 0.537 0.611 0.571
Exon 0.762 0.615 0.681
Codon 0.850 0.654 0.739
Mutation 0.600 0.452 0.515
Statistic 0.911 0.340 0.495
Other 0.579 0.910 0.708
Micro Avg. 0.715 0.633 0.672

Table 3: Results integrating MutationFinder across the
different classes and micro-averaged

average is highly biased by the classes “Statistic”
and “Others”, since they contain most of the test in-
stances.

Our second step was to build a more informed
classifier for the class “Mutation” using the point
mutation NER system MutationFinder (Caporaso et
al., 2007). We applied this tool to the text in the
table-cells, and identified which table-vectors con-
tained at least one mutation mention. These vectors
were also classified as mutations. The results are
shown in Table 3. This approach caused the “Muta-
tion” results to improve, but the overall f-score val-
ues are still in the range 50%-70%.

We considered other heuristic rules that could
be applied, such as looking for different kinds of
patterns for each class: for instance, numbers for
“Exon”, or the normalised form c.N[symbol]N for
mutation, or trying to match against term lists (e.g.
using Gene dictionaries). Future work will explore
extending the ML approach below with features
such as these.

51



5.2 Classification Techniques
For the ML experiments we used the Weka (Witten
and Frank, 2005) toolkit, as it contains a wide se-
lection of in-built algorithms. We selected a variety
of well-known approaches in order to obtain a better
picture of the overall performance. As a baseline, we
applied the majority class from the training data to
all test instances. We applied the following ML sys-
tems:8 Naive Bayes (NB); Support Vector Machines
(SVM); Propositional Rule Learner (JRip); and De-
cision Trees (J48). We did not tune the parameters,
and relied on the default settings.

In order to define our feature sets, we used the
text in the headers and cells of the tables, without
tokenisation. Other possible sources of information,
such as captions or the running text referring to the
table were not employed at this stage. We applied
four feature sets:

• Basic (Basic): Four basic features, consisting
of the header string, the average and median
cell lengths, and a binary feature indicating
whether the data in the cells was numeric.

• Cell Bag-of-Words (C bow): Bag of words
over the tokens in the table cells.

• Header Bag-of-Words (H bow): Bag of
words over the tokens in the header strings.

• Header + Cell Bag-of-Words (HC bow):
Combination of bags of words formed by the
tokens in headers and cells, represented as sep-
arate types of features.

The micro-averaged results of the different learn-
ing methods and feature sets are shown in Table 4.
Regarding the feature sets, we can see that the best
performance is obtained by using the headers as bag-
of-words, while the content of the cells seems to be
too sparse to guide the learning methods. SVM is
the best algorithm for this dataset, with JRip and J48
following, and NB performing worst of the four in
most cases.

Overall, the results show that the ML approach
is superior to the baselines when using the header
bag of words feature to classify the relevant entities.

8We applied a number of other ML algorithms as well, but
these showed significantly lesser performance.

Method
Feature Sets

Basic C bow H bow HC bow
Mj. Cl. 0.288
NB 0.614 0.454 0.678 0.581
SVM 0.717 0.599 0.839 0.816
JRip 0.564 0.493 0.790 0.749
J48 0.288 0.532 0.793 0.782

Table 4: Results for ML Algorithms - Micro-Averaged
FScores. Mj.Cl.: Majority Class. The best results per
column are given in bold.

Class Precision Recall FScore
Gene 0.778 0.737 0.757
Exon 0.786 0.707 0.745
Codon 0.833 0.882 0.857
Mutation 0.656 0.679 0.667
Statistic 0.919 0.853 0.885
Other 0.82 0.884 0.850
Micro Avg 0.839 0.841 0.839

Table 5: Results for SVM and the feature set H bow per
class and micro-averaged.

SVM is able to reach a high f-score of 83.9%, which
has been found to be significantly better than the best
baseline after applying a paired t-test (p-value under
0.0001).

We break down the results per class in Table 5,
using the outputs from SVM and feature-set H bow.
We can see that all classes show an improvement
over the heuristic baselines. There is a big increase
for the classes “Gene” and “Statistic”, and all classes
except mutation are above 70% f-score. “Muta-
tion” is the most difficult class to predict, but it
still reaches 66.7% f-score, which can be helpful for
some tasks, as we explore in the next section.

6 Automatic Mutation Extraction

We applied the results of our classifier to a practi-
cal application, i.e., the detection of mutations in
the literature for the MMR Database project. Ta-
ble vector classification allows us to extract lists of
candidate mutation names from tables to be added
to the database. We would like a system with high
recall that identifies all relevant candidates, but also
acceptable precision so that not all the tables need to

52



System Mut. Found TP % in MMR Rec.
Automatic 1,702 153 9.0 77.3
Gold standard 1,847 198 10.7 100

Table 6: Results for Mutation detection. TP indicates the
number of true positives, “% in MMR” shows the per-
centage of positives found in the database.

be hand-checked.
In order to test the viability of this approach, we

measured the results of the system in detecting the
existing hand-curated mutations in MMR. We cal-
culated the recall in retrieving those mutations, and
also the rate of false positives; however, note that
we also consider as false positives those valid muta-
tions that were not relevant for MMR, and therefore
the reported precision is artificially low.

Results for the automatic extraction and the gold-
standard annotation are given in Table 6. As ex-
pected, there is a high rate of false positives in the
goldstandard and automatic systems; this shows that
most of the mutations detected are not relevant for
the MMR database. More interestingly, we were
able to retrieve 77.3% of relevant mutation mentions
automatically using the ML approach, which corre-
sponds to 21.3% of all the hand-curated data.

The vector classifier discriminates 1,702 mutation
cells out of a total of 27,700 unique cells in the table
collection, and it effectively identifies 153 out of the
198 relevant mutations present in the tabular data.
This means that we only need to hand-check 6.1%
of the tabular content to retrieve 77.3% of relevant
mutations, saving the curators a significant amount
of time. The classifiers could also be biased towards
higher recall by parameter tuning—this is an area for
further investigation.

Finally, after the evaluation process we observed
that many false mutation candidates could be re-
moved by discarding those that do not contain two
consecutive digits or any of the following n-grams:
“c.”, “p.”, ’>’, “del”, “ins”, “dup”. This heuristic re-
duces the number of mutation candidates from 1,702
to 989 with no cost in recall.

7 Discussion

While this is early work, our preliminary results on
the task of identifying relevant entities from gene
mutation literature show that targeting tables can be

a fruitful approach for text mining. By relying on
ML methods and simple bag-of-words features, we
were able to achieve good performance over a num-
ber of selected entities, well above header word-
matching baselines. This allowed us to identify lists
of mentions of relevant entities with minimal effort.
An advantage of our approach is that the annotation
of examples for training and evaluation is consider-
ably easier, since many entities can be annotated in
a single step, opening the way to faster annotation of
other entities of interest in the biomedical domain.

The approach of using table vector classification
for the named entity task also has promise. In partic-
ular, the wide variety and non-standard terminology
of biomedical entities (i.e. genes, proteins, muta-
tions) is one of the challenges to NER in this do-
main. However, since a column of homogeneous
information may include representatives of the het-
erogeneous nomenclature schemes, classification of
a whole column or row potentially helps nullify the
effect of the terminological variability.

For future work, we plan to study different types
of features for better representing the entities tar-
geted in this work. Specially for mutation mentions,
we observed that the presence of certain ngrams (e.g.
”del”) can be a strong indicator for this class. An-
other issue we plan to address is that of the normal-
isation of mutation mentions into a standard form,
for which we have started developing a collection
of regular expressions. Another of our goals is to
increase the size of our dataset of articles by im-
proving our web crawler, and by hand-annotating
the retrieved table vectors for further experimenta-
tion. Finally, we also aim to explore the potential of
using tabular data for NER of different entities in the
biomedical domain, such as gene mentions.

Acknowledgements NICTA is funded by the Aus-
tralian Government as represented by the Depart-
ment of Broadband, Communications and the Dig-
ital Economy and the Australian Research Council
through the ICT Centre of Excellence program.
Thanks to Mike Woods and his colleagues at the
Memorial University of Newfoundland for making
the MMR database and their curation data available
to us. Eric Huang wrote several of the scripts men-
tioned in Section 3 for creating the table collection.

53



References
C. J. O. Baker and R. Witte. 2006. Mutation mining–a

prospector’s tale. J. of Information Systems Frontiers,
8(1):45–57.

J. G. Caporaso, W. A. Baumgartner Jr., D. A. Randolph,
K. B. Cohen, and L. Hunter. 2007. Mutationfinder: A
high-performance system for extracting point mutation
mentions from text. Bioinformatics, 23(14):1862–
1865.

W. W. Cohen, M. Hurst, and L. S. Jensen. 2002. A flex-
ible learning system for wrapping tables and lists in
html documents. In WWW ’02: Proc. 11th Int’l Conf.
on World Wide Web, pages 232–241, Honolulu.

F. Horn, A. L. Lau, and F. E. Cohen. 2004. Auto-
mated extraction of mutation data from the literature:
Application of MuteXt to g protein-coupled recep-
tors and nuclear hormone receptors. Bioinformatics,
20(4):557–568.

M. Hurst. 2001. Layout and language: Challenges
for table understanding on the web. Technical report,
WhizBang!Labs.

N. Karamanis, R. Seal, I. Lewin, P. McQuilton, A. Vla-
chos, C. Gasperin, R. Drysdale, and T. Briscoe. 2008.
Natural language processing in aid of flybase curators.
BMC Bioinformatics, 9:193–204.

Lawrence C. Lee, Florence Horn, and Fred E. Cohen.
2007. Automatic extraction of protein point muta-
tions using a graph bigram association. PLoS Com-
putational Biology, 3(2):e16+, February.

K. Lerman, L. Getoor, S. Minton, and C. Knoblock.
2004. Using the structure of web sites for automatic
segmentation of tables. In SIGMOD’04, pages 119–
130, Paris.

D. Pinto, A. McCallum, X. Wei, and W. B. Croft. 2003.
Table extraction using conditional random fields. In
SIGIR ’03, pages 235–242.

X. Wei, W.B. Croft, and D. Pinto. 2004. Question
answering performance on table data. Proceedings
of National Conference on Digital Government Re-
search.

I. H. Witten and E. Frank. 2005. Data Mining: Prac-
tical machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 2nd edition.

M.O. Woods, P. Williams, A. Careen, L. Edwards,
S. Bartlett, J. McLaughlin, and H. B. Younghusband.
2007. A new variant database for mismatch repair
genes associated with lynch syndrome. Hum. Mut.,
28:669–673.

R. Zanibbi, D. Bolstein, and J. R. Cordy. 2004. A survey
of table recognition. Int’l J. on Document Analysis
and Recognition, 7(1).

54


