
Proceedings of the Workshop on BioNLP, pages 19–27,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

ONYX: A System for the Semantic Analysis of Clinical Text 
 

Lee M. Christensen, Henk Harkema, Peter J. Haug,  
Jeannie Y. Irwin, Wendy W. Chapman 

Department of Biomedical Informatics 
University of Pittsburgh University of Utah 

Pittsburgh, PA 15214, USA Salt Lake City, Utah, 84143, USA 
lmc61 heh23 rey3 wec6 @pitt.edu Peter.Haug@intermountainmail.org 

 

 

 

 

Abstract 

This paper introduces ONYX, a sentence-
level text analyzer that implements a number 
of innovative ideas in syntactic and semantic 
analysis. ONYX is being developed as part of 
a project that seeks to translate spoken dental 
examinations directly into chartable findings. 
ONYX integrates syntax and semantics to a 
high degree. It interprets sentences using a 
combination of probabilistic classifiers, 
graphical unification, and semantically anno-
tated grammar rules. In this preliminary 
evaluation, ONYX shows inter-annotator 
agreement scores with humans of 86% for as-
signing semantic types to relevant words, 80% 
for inferring relevant concepts from words, 
and 76% for identifying relations between 
concepts. 

1 Introduction 

This paper describes ONYX, a sentence-level 
medical language analyzer currently under devel-
opment at the University of Pittsburgh. Since 
ONYX contains a number of innovative ideas at an 
early stage of development, the objective of this 
paper is to paint a broad picture of ONYX and to 
present preliminary evaluation results rather than 
analyzing any single aspect in detail. 
 
ONYX is being developed as part of a project 
aimed at extracting information from spoken dental 
examinations. Currently, dental findings must be 
charted after an exam is completed or may be 
charted by an assistant who acts as a transcription-
ist during the exam. Our goal is to design a system 
capable of automatically extracting chartable find-

ings directly from spoken exams, potentially also 
supporting automated decision support and quality 
control. We are also developing tools to enable the 
system to be ported to other clinical domains and 
settings.  
 
Extracting information from unedited speech tran-
scriptions presents a number of challenges. Sen-
tences may be fragmented or telegraphic, and 
much of the speech may be irrelevant for our pur-
poses. The following example illustrates some of 
these difficulties: 
 

"Okay. Okay. Open. Okay. No. 1 is missing. Two oc-
clusal distal amalgam. Actually, make that occlusal. 
Also, one palatal amalgam. Can you close just 
slightly? And perfect. Okay, now open again." 

 
The relevant findings in this example are that tooth 
number one is missing and tooth number two has 
amalgam fillings on the occlusal and palatal sur-
faces. Our ultimate challenge is to create a system 
that can recognize relevant sentences and perform 
competently in the face of the inherent ambiguity 
and noise commonly found in conversational 
speech. ONYX does not yet address all of these 
challenges, although we have clear directions we 
are pursuing as described in the Future Work sec-
tion of this paper. Our goal in this paper is to de-
scribe the current state of ONYX and the 
innovations we feel will enable it to be adapted to 
complex NLP tasks in the future. 

2 Overview of ONYX  

ONYX is the middle component of a pipelined 
architecture as illustrated in figure 1. The entry 
point to this architecture is a speech-to-text ana-
lyzer, which takes input from a microphone worn 

19



by the dentist and produces a transcription that 
ONYX analyzes for semantic content. ONYX's 
output is then passed to a discourse analyzer that 
applies dental knowledge to assemble ONYX's 
sentence-level semantic representations into 
chartable exam findings. 

 

 
Figure 1. Speech-to-chart pipeline. 

 
ONYX looks for dental conditions such as caries, 
fractures and translucencies; restorations such as 
fillings and crowns; tooth locations; and modifiers 
such as tooth part, tooth surface, and condition ex-
tent. It produces templates of words and concepts. 
Table 1 shows a summary of four templates (Den-
tal Condition, Tooth Location, Surface and State) 
representing the meaning of "eight mesio might 
have a slight translucency."  
 

 
ONYX’s interpretations are represented as binary 
predicates that take the templates as arguments (for 
convenience, only the summary concepts from the 
templates are shown): 

ConditionAt(*translucency, *numberEight) & 
LocationHasSurface(*numberEight, *mesial) &  
StateOf(*translucency, *possible)  
 

ONYX builds on ideas from MPLUS (Christensen 
et al, 2002), which was used primarily to interpret 
radiology reports. MPLUS uses Bayesian networks 
(BNs) to produce filled templates. Through a train-
ing process, words from the corpus of training 
documents are manually associated with states of 
terminal nodes in a BN, and concepts are associ-
ated with states of nonterminal nodes. When 
MPLUS interprets a sentence, it instantiates the 
BNs with words from the sentence and infers the 
most probable concepts consistent with those 
words. It then generates templates filled with those 
words and concepts.  
 
BNs have proven useful in semantic analysis (e.g. 
Ranum 1989, Koehler 1998, Christensen 2002): 
their performance degrades gracefully in the face 
of various types of lexical and syntactic noise. The 
main disadvantage with using BNs is their inherent 
computational complexity. ONYX employs a se-
mantics-intensive form of parsing, interpreting 
each phrase as it is constructed rather than waiting 
until the syntactic analysis is completed to do the 
interpretation. For this reason we have developed 
an experimental probabilistic classifier for ONYX 
called a Concept Model (CM). CMs support a tree-
structured representation of related words and con-
cepts (figure 5), structurally similar to the BNs 
used by MPLUS, but using a more efficient model 
of computation. In essence CMs are trees of Naïve 
Bayes classifiers, although they contain enhance-
ments, not described in this study, which in general 
make them more accurate than strict Naïve Bayes. 
Each node together with its children constitutes a 
single classifier. When a CM is applied to words in 
a sentence, word-level CM states are assigned a 
probability based on training data. Probabilities are 
propagated upwards through the CM, calculating 
probabilities for all concepts that depend directly 
or indirectly on the words of the sentence.  

3 ONYX Syntactic Analyzer 

For this project we desired a parser that was fast, 
flexible and robust. We designed a variation on a 
bottom-up chart parser (Kay, 1980) and hand-
crafted an initial set of 52 context-free grammar 

Dental Condition 
  Condition Concept *translucency 
  Condition Term "translucency" 
  Severity Concept *superficial 
  Severity Term "slight" 
Tooth Location 
  Location Concept *numberEight 
  Tooth Number "eight" 
Surface 
  Surface Concept *mesial 
  Front/Back Term "mesio" 
State 
  State Concept *possible 
  State Term "might" 
Table 1: ONYX templates for "eight mesio might 
have a slight translucency." Terms with an * are in-
ferred concepts. 
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rules. Chart parsers based on Kay’s algorithm 
maintain an agenda of “edges,” which correspond 
to partially or completely instantiated grammar 
rules. In the original algorithm, for each new 
phrase added to the chart an edge is created for 
each rule that can begin with that phrase. In addi-
tion, each existing edge that abuts and can be ex-
tended with that phrase is duplicated with a pointer 
to the new phrase. When an edge has no more un-
matched components, it is regarded as a new 
phrase that can begin or extend other edges. Since 
edges are used to anticipate all possible continua-
tions of phrases vis-à-vis the grammar, the number 
of edges grows quickly relative to the number of 
words in the sentence. Charniak et al. (1998) noted 
that exhaustively parsing maximum-40-word sen-
tences from the Penn II treebank requires an aver-
age of 1.2 million edges per sentence.  
 
ONYX’s parse algorithm replaces edges with bi-
nary links. We briefly describe this new algorithm. 
A set of binary link templates is defined for each 
grammar rule. For instance, the rule S->NP AUX 
VP (labeled S1) would produce the templates 
[s1:np,aux] and [s1:aux,vp]. When a phrase is 
added to the chart, binary links for all applicable 
rules are added from that phrase to juxtaposed 
phrases to the left and right on the chart. When a 
right or left-terminating link is added (all links for 
rules with two or three components are right or left 
terminating), a quick search is done in the other 
direction for links belonging to the same rule. Each 
complete set of links defines a new phrase of the 
target type, as shown in figure 2. 
 

 
Figure 2. Binary links for the rule S1:S->NP AUX VP 
used to generate new phrases of type S1 from juxta-
posed NP, AUX, and VP phrases on the chart. 
 
Although we have not analyzed the time and space 
complexity of this algorithm, it has proven to be 

more efficient than the edge-based parser used by 
MPLUS. Time and space complexity for chart 
parsers is calculated based on the number of edges 
produced, which has been shown to be O(n3), with 
n words in a sentence. Since binary links, unlike 
edges, are only used to record grammatical rela-
tions between juxtaposed phrases on the chart 
(rather than anticipating possible continuations), 
are not duplicated, and can participate in the crea-
tion of multiple new phrases, the number of binary 
links grows more slowly than the number of edges.  
On the other hand, the need to search for com-
pleted link sets increases processing time. We plan 
to formally analyze the time and space require-
ments of this algorithm in a future study. 

4� ONYX Semantic Analyzer 

In ONYX syntax and semantics are highly inte-
grated. Rather than waiting for a completed parse 
tree to begin the interpretation process, ONYX 
semantically interprets each phrase as it is created 
and before it is placed on the chart. Each phrase is 
assigned a “goodness” score based in part on the 
goodness of its semantic interpretation, and this 
score is used in determining the order in which 
phrases are expanded, resulting in a semantically 
guided best-first search. 
 
To represent semantic relations between templates, 
ONYX uses a custom-built first-order predicate 
language with a syntax based roughly on the 
Knowledge Interchange Format (Genesareth & 
Fikes, 1992). ONYX interpretations are conjuncts 
of binary predicates formulated in this language, 
with templates as arguments. This language is for 
internal use only; ONYX will use standard lan-
guage protocols for communicating with external 
systems. We decided to implement our own lan-
guage rather than using an existing implementation 
in order to have access to the underlying data 
structures, which we use in three ways not tradi-
tionally applied to symbolic languages: 1- We have 
extended our language to include Java objects as 
constants and Java methods as functions and rela-
tions. In particular, CM templates are treated as 
constants in the language, and CMs are semanti-
cally typed functions that map words to templates. 
2- As described next, ONYX's default mode of 
semantic interpretation is based on a form of graph 
unification. Binary predicates are treated as unifi-
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able links in a graph as shown in figure 3. 3- 
ONYX uses the predicate structure of an interpre-
tation to pass information between CMs. For in-
stance, if an interpretation contains the relation 
ConditionAt(Condition, Location), ONYX inserts 
the summary concept from the Location CM into 
the Condition CM. This allows the Condition CM 
to factor tooth location into its determination of the 
most probable Condition concept. 
 
Figure 3 illustrates ONYX’s unification-based in-
terpretation process. ONYX relies on a semantic 
network that defines types and relations in the den-
tal domain (figure 4). As dental concepts are 
brought together in a phrase, links connecting 
those concepts are extracted from the semantic 
network and formulated into binary predicates in 
an interpretation. As phrases are joined together in 
larger phrases, their relations and templates are 
merged, resulting in an interpretation tree denoting 
a dental object (e.g. dental condition, tooth loca-
tion, tooth surface) with possibly multiple levels of 
modifiers. For instance, the interpretation for 
"eight mesio might have a slight translucency" can 
be generated from the partial interpretations of the 
phrases "eight mesio", "might" and "slight translu-
cency" as shown in figure 3.  

 
Figure 3. Interpreting “eight mesio might have a slight trans-
lucency” using graph unification.  
 
There are two primary justifications for using uni-
fication in this way. First, conjoined phrases, par-
ticularly noun phrases, often contain unifiable 
partial descriptions of a single object. Second, if 
concepts appear together in a phrase, there is a 
good chance that relations connecting those con-
cepts in the semantic network are captured, explic-
itly or implicitly, in the meaning of the phrase.  

The dental semantic network is shown in figure 4. 
Terminal (white) nodes define concrete semantic 
types associated with dental CMs. For instance, the 
DentalCondition type is associated with the con-
cept model shown in figure 5. 

 
Figure 4. Semantic network for dental exams. 

Nonterminal (gray) nodes represent abstract types 
with no associated CMs. A concrete type may have 
more than one abstract parent type. For instance, a 
Restoration, such as a crown, is both a Condition 
and a Location. As such, it can exist at a tooth lo-
cation, e.g., "the crown on tooth 5," and it can be 
the location of condition, e.g., "the crack on the 
crown on tooth 5." Since a concrete type can have 
multiple parent types, ONYX often produces mul-
tiple alternative interpretations over words of a 
sentence. For instance, ONYX may produce two 
interpretations for "mesial amalgam"—one refer-
ring to the mesial surface of an amalgam filling, 
and one referring to an amalgam filling on the me-
sial surface of some unspecified tooth. ONYX uses 
probabilities derived from training cases to prefer 
the latter interpretation, which is the more likely of 
the two.  

 
Figure 5. Dental Condition Concept Model. 

Each concept model has a tree structure as illus-
trated in figure 5, which shows the structure of the 
Dental Condition CM. Nonterminal nodes repre-
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sent concepts, and terminal nodes represent words, 
with the exception of stub nodes. The value of a 
stub node is the summary concept (i.e., root node) 
from the CM of the same name.  
 
One problem with ONYX’s graph-based model of 
interpretation is that the semantic network does not 
capture all relations that might be expressed in a 
dental exam. The network was deliberately kept 
simple by including mostly relations that are cate-
gorically true (e.g., all teeth have surfaces) or that 
are frequently talked about (e.g., restorations are 
frequently mentioned as being locations of other 
conditions). This restriction helps keep the unifica-
tion process tractable and minimizes ambiguity, 
but interpretations may miss important points. For 
instance, the ONYX interpretation of "15 occlusal 
amalgam" is ConditionAt(*filling, *toothFifteen) & Loca-
tionHasSurface(*toothFifteen, *occlusal) which can be 
paraphrased as "a filling at tooth 15 and tooth 15 
has an occlusal surface". This interpretation misses 
the important fact that the filling is on the occlusal 
surface of tooth 15, which we would normally in-
fer from the fact that “occlusal” adjectivally modi-
fies “amalgam.” Another limitation is that although 
the semantic network as it stands can describe sin-
gle objects with their modifiers, it cannot be used 
to build up complex descriptions involving multi-
ple objects of the same type. 
 
To address these limitations we have added a sec-
ond, more specialized mode of interpretation that is 
contingent on lexical and syntactic information 
from the parse and that can introduce into an inter-
pretation predicates that do not exist in the seman-
tic network. This mode of interpretation uses 
semantic types and patterns attached to grammar 
rules. As an example, the rule NP -> AP NP can be 
semantically annotated thus: 
 
   NP<Restoration> -> AP<Surface> NP<Restoration> 
 => OnSurface(Restoration, Surface) 
 
This rule captures the idea that if a Surface-type 
adjectival phrase modifies a Restoration-type noun 
phrase, the restoration exists on that surface. Ap-
plied to “occlusal amalgam” this rule would pro-
duce an interpretation OnSurface(*filling, *occlusal), 
which is the relation missing from the previous 
example. Semantically annotated grammar rules 

can also connect objects of the same semantic type. 
For instance, we might define a rule  
 
   NP<Condition> -> NP<Condition1> "caused by"  
   NP<Condition2>  
    => CausedBy(condition1, condition2) 
 
This rule can match phrases such as "leakage 
caused by a crack along the lingual surface", and 
link the two conditions (leakage and crack) with a 
CausedBy relation. This mechanism enables 
ONYX to construct complex descriptions with 
multiple objects. 
 
We have added a mechanism to the ONYX train-
ing tool that allows semantically annotated gram-
mar rules to be generated semi-automatically 
during training. A human annotator with sufficient 
linguistic background can view the parse trees 
generated by ONYX for corpus sentences, repair 
those parse trees and/or add new semantic relations 
if necessary, then apply a function that creates cop-
ies of the rules embodied in those trees with se-
mantic types and predicates attached. 

5� Integrating Syntax and Semantics 

Although most NLP systems apply semantic analy-
sis to completed parse trees, in humans the two 
processes are more integrated. Syntactic expecta-
tions are greatly influenced by word meanings, as 
illustrated by “garden path” sentences such as “The 
man whistling tunes pianos.” In ONYX, syntax 
and semantics are highly interleaved. This is ac-
complished in several ways: 
 
1- ONYX’s parse algorithm permits words to be 
processed in any order, rather than strictly left-to-
right, since binary grammar links can be added to 
the phrase chart in any order. This allows ONYX 
to be instructed to focus on semantically interest-
ing words first, which can be used, among other 
things, to gather useful information from ungram-
matical speech or run-on sentences where attempt-
ing to look for complete sentences in strict left-to-
right fashion would be unsuccessful. 
 
2- ONYX implements a variation on a probabilistic 
context free grammar (PCFG) (Charniak, 1997) 
that associates grammar rules with semantic types. 
Based on training, a conditional probability is cal-
culated for each <rule, type> pair given specific 
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<rule, type> assignments to the rule’s components. 
The probability of a phrase is then calculated as the 
product of the probabilities of the phrase rule and 
its semantic type, given the rule and type of each 
of its child phrases. ONYX is then able to prefer 
phrases that best accommodate the semantic types 
of their constituents. Specifically, 
 

prob(phrase) =  
∏(prob(rule(phrase) + semtype(phrase) |  
       rule(childPhrase) + semtype(childPhrase))) 

 
3- One hard problem in parsing is determining the 
correct structure of conjunctive noun phrases. 
ONYX applies semantic guidance to solve this 
problem. For instance, in a chest radiology report 
the words "right and left lower lobe opacity" can 
be grouped in several different ways, and different 
groupings can produce different interpretations. 
The correct grouping should be something like: 
[[[right and left] [lower lobe]] opacity], rather than 
[[right and [left lower]] [lobe opacity]]. ONYX 
currently employs a simplistic representation of the 
meaning of a conjunctive phrase as a list of inter-
pretations. The correct interpretations for "right 
and left lower lobe opacity" would be two predi-
cate expressions covering the words (right, lower, 
lobe, opacity) and (left, lower, lobe, opacity). 
ONYX generates a measure of the similarity of 
these expressions based on the cosine similarity of 
the lists of non-null nodes in their CM templates. 
This measure is factored into the phrase's goodness 
score under the heuristic that semantically bal-
anced conjunctive phrases are more likely to be 
correct than imbalanced ones. 
 
4- As mentioned earlier, ONYX can utilize gram-
mar rules annotated with semantic types and pat-
terns. Semantically annotated rules constrain 
phrases to match particular semantic types, and can 
contribute predicates to the interpretation of those 
phrases. This gives ONYX's grammar the character 
of a semantic grammar. 
 
5- Phrases are weighted and preferred by ONYX 
according to their goodness score, which is based 
on three measures: the probability of the phrase as 
determined by the PCFG formula, the conjunct 
cosine similarity score, if applicable, and the 
goodness score of the phrase's semantic interpreta-
tion. The PCFG and conjunct similarity formulas 

are based on semantic criteria, as mentioned ear-
lier. Interpretation goodness scores are calculated 
as a simple product of the probabilities of the se-
mantic relation predicates they contain. Relation 
probabilities are in turn derived from training data, 
and are conditioned on the concepts they contain. 
The probability of a relation is calculated as the 
number of times a pair of concepts appears to-
gether in the target relation divided by the number 
of times they appear together in any set of rela-
tions. The goodness score of a phrase is thus highly 
semantically determined. 
 

goodness(phrase) = F(prob(phrase, PCFG),  
   conjunctSimilarity(phrase),  
   goodness(interp(phrase)) 
goodness(interp(phrase)) =  
  ∏prob(relations(interp(phrase))) 
prob(relation) =  
 count(relation + concepts(relation)) / 
 count(anyConnection(concepts(relation))) 

6� Evaluation 

We performed a preliminary evaluation of ONYX 
for the extraction of relevant dental concepts and 
relations on a set of twelve documents in our cur-
rent training corpus.  
 
Reference Standard. Each document was inde-
pendently annotated by three human annotators 
(authors LC, JI and HH), who used the ONYX 
training tool to fill in templates representing dental 
conditions, tooth locations and other relevant con-
cepts, as well as to select the semantic relations 
linking those templates. The annotators then re-
viewed disagreements and by consensus created a 
reference standard set of templates and relations. 
Where the annotators did not have sufficient dental 
knowledge to reach an agreement they consulted 
dental clinicians. 
 
Outcome Metrics. To evaluate ONYX on the rela-
tively small corpus of documents, we applied a 
leave-one-out approach: for each sentence in the 
reference standard, ONYX was trained using the 
templates from the remaining reference standard 
sentences. ONYX was then applied to the target 
sentence, and the resulting templates and relations 
were compared to the reference standard. We 
measured inter-annotator agreement (IAA) be-
tween ONYX and the reference standard using the 
formula described in Roberts et al (2007): 
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IAA = (2 * correct) / (spurious + missing + correct) 

 
We calculated IAA separately for CM words, con-
cepts, and semantic relations. A correct match is a 
word, concept or relation generated by both the 
reference standard and ONYX; a spurious item is 
one ONYX generated that did not exist in the ref-
erence standard; and a missing item is one that ex-
isted in the reference standard but was not 
generated by ONYX. In addition to IAA we identi-
fied the concepts and relations most commonly in 
error and calculated percentages for those errors.  
 
We compared ONYX’s performance on the target 
documents with that of a simple baseline parser we 
created for this purpose. The baseline parser proc-
esses the words of a sentence from left to right, 
creating phrases for sets of juxtaposed words that 
can be interpreted together using the semantic net-
work. No grammar rules are employed, there is no 
analysis of conjunctive phrases, and goodness 
scores are not calculated. Our goal was to get a feel 
for how much these factors contribute to generat-
ing correct interpretations. There is no precedence 
for this particular approach as far as we are aware, 
so we regard this comparison as informative but 
not definitive. 

7 Results 

IAA results for ONYX and the baseline parser are 
shown in table 2. ONYX performs best at inserting 
words into appropriate nodes in the CMs, with 
IAA of 86%, and less well for inferring the best 
concept (80%) and identifying relations among 
concepts (76%). ONYX consistently out-performs 
the baseline parser. 
 
Table 2: IAA for assignment of words, concepts, and 
relations. 
 IAA 

ONYX  86% Words (n = 904) Baseline  57% 
ONYX  80% Concepts (n = 1186) Baseline  53% 
ONYX  76% Relations (n = 297) Baseline  41% 

 
Although this study does not examine all the rea-
sons for the differences in performance between 
ONYX and the baseline parser, some reasons can 

be illustrated with an example. Conjunctive 
phrases are common in dental discourse, and a 
failure to handle conjuncts can result in both con-
cept and relation errors. For instance, given the 
sentence "4, 5, 6, 7 fine" ONYX generates separate 
interpretations covering the word groupings (4, 
fine), (5, fine), (6, fine), and (7, fine), which would 
yield four ConditionAt relations, four Location 
concepts (*numberFour, *numberFive, 
*numberSix, *numberSeven) and one Condition 
concept (*normalTooth) appearing in each relation. 
The baseline parser in contrast does not discover 
this distribution of terms and so omits all but the 
ConditionAt relation over (7, fine). Trying to 
merge juxtaposed tooth numbers, the baseline 
parser also infers that at least some of these denote 
tooth ranges instead of individual teeth (e.g. inter-
preting “4, 5” as “4 to 5” instead of “4 and 5”), 
which causes it to misclassify Location concepts. 
The ability to generate correct parse trees and to 
use the structure of those parse trees in the inter-
pretation process is important in generating correct 
interpretations. 
 
Tables 3 and 4 show breakdowns by percentage of 
the concepts and relations most commonly in error 
in ONYX’s interpretations (errors accounting for 
more than 15%). 
 

Table 3: Per-concept error percentages  
Dental Condition Summary Concept 18% 
Tooth Location Summary Concept 17% 
Dental Condition Intermediate Concept 16% 
Surface Summary Concept 15% 
Total  66% 

 
Table 4: Per-relation error percentages. 
Surface of Part 47% 
Location of Condition 23% 
Total 70% 

 

8  Related Work 

ONYX is a new application inspired by SPRUS 
(Ranum, 1989), Symtext (Koehler, 1998), and 
MPLUS (Christensen, 2002), which all used Baye-
sian Networks to infer relevant findings from text. 
Other medical language processing systems im-
plement different approaches to encode clinical 
concepts and their modifiers, along with relations 
between concepts, including MedLEE (Friedman, 
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1994), a largely statistical system by Taira and col-
leagues (Taira, 2007), and MedSyndikate (Hahn, 
2002).  
 
Many of ONYX’s components leverage research in 
the general and clinical NLP domains, including 
the use of chart parsing (Kay, 1980) and probabil-
istic context free grammars (Charniak, 1997). 
ONYX's use of semantically annotated grammar 
rules was inspired in part by MedLEE (Friedman et 
al, 1994), which uses a semantic grammar.  
 
Although incorporating ideas and approaches from 
others, we feel that ONYX is unique in several 
ways, including its high level of syntactic/semantic 
integration and the ways in which it blends sym-
bolic and probabilistic representations of domain 
knowledge. We plan to make ONYX available 
through open source when the system is more 
complete.  

9 Limitations 

There are several limitations to this study. Al-
though ONYX introduces several innovations, 
these are not described in detail in this study and 
are not individually evaluated for their effect on 
ONYX’s performance. Instead, this study presents 
a broad overview of ONYX and evaluates ONYX's 
overall performance against a reference standard 
on a small test sample. Another limitation of our 
study is the baseline system—because similar sys-
tems generate different output than ONYX and do 
not model the same domain, finding a competitive 
baseline application is difficult. In spite of its im-
perfection, we believe the baseline we imple-
mented to be reasonable. 

10 Future Work 

One limitation of a system like ONYX is the over-
head of manually creating complex training cases. 
To address this shortcoming, the ONYX training 
tool invokes ONYX to automatically create tem-
plates and relations for corpus sentences, and hu-
man trainers correct any mistakes. A semi-
automated approach greatly speeds up the training 
process and facilitates agreement among human 
trainers. We plan to further automate this process 
using an approach derived from Thelen & Riloff 
(2002), which uses a classifier with features based 

on extraction patterns derived from Autoslog 
(Riloff, 1996). We plan to adapt this approach to 
automatically classify CM word assignments, and 
also to automatically classify semantic relations 
between CM templates. We will add this function-
ality to the training tool to enable it to find and an-
notate relevant sentences automatically where 
possible. We will also apply this functionality to 
enable ONYX to recognize relevant sentences in 
new documents based on their similarity to training 
sentences, and we will use semantic patterns stored 
with training sentences to aid in interpreting noisy 
segments of text that ONYX cannot parse. We plan 
to compare the performance of grammar-based and 
feature-based semantic analysis in future studies. 
With more fully automated training, we also hope 
to make ONYX more easily portable to new do-
mains and clinical settings in the future.  
 
Conclusions 
 
This paper describes ONYX, which is being devel-
oped as part of a system for extracting chartable 
findings from spoken dental examinations. ONYX 
contains a number of innovative ideas including a 
novel adaptation of Kay's (1980) parse algorithm; a 
symbolic language extended to include probabilis-
tic and procedural elements; an integration of syn-
tax and semantics that includes a semantically 
weighted probabilistic context free grammar and 
interpretation based both on a semantic network 
and a semantic grammar. Considering ONYX’s 
early stage of development it performed reasonably 
well in this limited evaluation but must be ex-
tended to address challenges in extracting findings 
from spoken dental exams. 
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