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John Pestian, Jun’ichi Tsujii, and Bonnie Webber

1 Introduction

Yearly BioNLP workshops have been
held in conjunction with Association for
Computational Linguistics and North American
Association for Computational Linguistics
conferences since 2002. Whereas other
venues, such as NLP sessions at biomedical
informatics and computational biology meetings,
provide excellent opportunities for presenting
applications of NLP in the biomedical domain,
the ACL BioNLP workshop has become the
venue that is most characterized by representation
of work in a wide variety of areas of NLP. The
BioNLP workshop has consistently been a venue
for presenting work that is innovative, novel,
and challenging from an NLP perspective. In
addition to providing a venue for fundamental
BioNLP research, this workshop exposes
BioNLP researchers to the latest achievements in
other NLP areas and facilitates dissemination of
knowledge acquired in the BioNLP domain to
the wider NLP community.

Compared to previous years, BioNLP 2009
was novel in two ways. The first is that
it is the first workshop since formation of
the SIGBIOMED Association for Computational
Linguistics Special Interest Group. The second
is that for the first time, there was a shared task
associated with the workshop. This shared task is
documented in a separate proceedings volume.

2 Submissions, acceptance rate,
and themes

The workshop received 29 submissions, of
which twelve were accepted as full papers
and an additional twelve were accepted as
posters. A number of themes were evident
in this year’s papers and posters. Lexical
semantics was especially well-represented this
year, with papers on ontology selection [10],
lexicon construction [12], and synonymy [3].
Information extraction was also well-represented,
with papers in this area tackling both the
genomic [2, 8], and the clinical [1] domain. This
included work that is novel in the biomedical
domain in terms of dealing with speech and
with the dental domain [1]. This year
also saw continued work on contextual issues
in biomedical text mining [6, 7]. Finally,
the program was rounded out with work
on a new formulation of the named entity
recognition problem [11], the hot topic of
species identification [5], and word sense
disambiguation [9] and summarization [4].
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Abstract

We propose a static relation extraction task to
complement biomedical information extrac-
tion approaches. We argue that static re-
lations such as part-whole are implicitly in-
volved in many common extraction settings,
define a task setting making them explicit, and
discuss their integration into previously pro-
posed tasks and extraction methods. We fur-
ther identify a specific static relation extrac-
tion task motivated by the BioNLP’09 shared
task on event extraction, introduce an anno-
tated corpus for the task, and demonstrate the
feasibility of the task by experiments showing
that the defined relations can be reliably ex-
tracted. The task setting and corpus can serve
to support several forms of domain informa-
tion extraction.

1 Introduction

Relation Extraction (RE) is a key task in biomedi-
cal Information Extraction (IE). The automatic de-
tection of relevant types of relations — for various
definitions of relevant — between entities has been
one of the primary focus points for significant do-
main research efforts over the past decade, and a
substantial number of biomedical RE methods and
annotated corpora have been published (Zweigen-
baum et al., 2007). Motivated by the needs of biolo-
gists and e.g. database curation efforts, most domain
RE efforts target relations involving biologically rel-
evant changes in the involved entities, commonly to
the complete exclusion of static relations. However,
static relations such as entity membership in a fam-
ily and one entity being a part of another are not only

relevant IE targets in themselves but can also play an
important supporting role in IE systems not primar-
ily targeting them.

In this paper, we investigate the role of static re-
lations in causal RE and event extraction. Here,
we use relation extraction in the MUC and ACE
(Sundheim, 1995; Doddington et al., 2004) sense to
refer to the task of extracting binary relations, or-
dered pairs of entities, where both participating enti-
ties must be specified and their roles (agent, patient,
etc.) are fixed by the relation. By contrast, event ex-
traction is understood to involve events (things that
happen) and representations where the number and
roles of participants may vary more freely. We re-
fer to relations where one one entity causes another
to change as causal relations; typical domain exam-
ples are phosphorylation and activation. Static rela-
tions, by contrast, hold between two entities without
implication of change or causality: examples from
the ACE IE task include Physical.Located and Part-
Whole.Artifact.

2 Task definition

In the following, we argue that static relations are
relevant to much of current biomedical IE work,
present a task setting making these relations explicit,
and discuss applications of static relation annotation
and extraction methods.

2.1 Named entity-driven IE and static relations

Named entities (NEs) provide a simple anchor con-
necting text to entities in the real world and thus a
natural starting point for IE. Named entity recog-
nition (NER) is well studied and several biomed-
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ical NER systems are available (see e.g. (Wilbur
et al., 2007; Leaman and Gonzalez, 2008)), and
most domain IE approaches are NE-driven: a typi-
cal way to cast the RE task is as deciding for each
pair of co-occurring NEs whether a relevant rela-
tion is stated for them in context. Like the previ-
ous LLL and BioCreative2-PPI relation extraction
tasks (Nédellec, 2005; Krallinger et al., 2007), the
BioNLP’09 shared task on event extraction (Kim et
al., 2009) similarly proceeds from NEs, requiring
participants to detect events and determine the roles
given NEs play in them.

Any domain IE approach targeting nontrivial
causal NE relations or events necessarily involves
decisions relating to static relations. Consider, for
example, the decision whether to extract a relation
between NE1 and NE2 in the following cases (affects
should here be understood as a placeholder for any
relevant statement of causal relation):

1) NE1 affects NE2 gene
2) NE1 affects NE2 promoter
3) NE1 affects NE2 mutant
4) NE1 affects NE2 antibody
5) NE1 affects NE2 activator

The decision here depends on the interpretation of
the noun compounds (NCs) NE2 gene, NE2 pro-
moter, etc. Depending on the IE setting, one might,
for example, judge that statements (1)–(3) justify the
extraction of an (NE1, NE2) relation, while (4) and
(5) do not. This question is rarely formalized as
a separate (sub)task in domain studies, and meth-
ods targeting e.g. the LLL, BioCreative2-PPI and
BioNLP’09 shared task relations and events must
learn to resolve this question together with the sep-
arate issue of which words and syntactic structures
express relevant causal relations.

2.2 Task setting

The relation extraction problems represented by ex-
amples (1)–(5) above are closely related to the well-
studied issue of NC semantics. However, the prob-
lem extends past simple binary NCs to include judg-
ments on the relations of arbitrary base NPs (nouns
with premodifiers) to contained NEs,

NE1 affects truncated NE2

NE1 affects NE2/NE3 complexes
NE1 affects NE2-dependent phosphatase

and further to relations of NPs with NEs that are syn-
tactically less immediately attached:

NE1 affects first exon of NE2

NE1 affects an element in the NE2 promoter
NE1 affects members of the immediate-early acti-

vation genes family such as NE2

The problem thus encompasses also more general
relations between nominals.

While these different cases could also be studied
as separate tasks, in the current IE context they can
be seen as presenting a continuum of different syn-
tactic realizations of similar relations that also carry
the same implications for further processing. We
propose to treat them together, formulating the spe-
cific task studied in this paper as follows:

Given: named entity NE and another entity E
with their context in text,
Determine: whether there is a relevant static re-
lation R(NE, E) and its type.

Here, relevant relations are defined as those that jus-
tify an inference of some role for the NE in causal re-
lations/events involving E. Additionally, the level of
granularity chosen for typing is chosen according to
the need to determine the role of the NE in the rela-
tions/events. These choices are intentionally depen-
dent on the IE context: we do not expect to be able
to formulate a universally accepted set of relevance
criteria or relations. Our choice of relation scope
and types here follows the perspective of a currently
highly relevant IE problem, the BioNLP’09 shared
task on event extraction. We aim to recognize a set
of relations sufficient to capture the relevant rela-
tionships of the NEs provided as given information
in the shared task (all of protein/gene/RNA type)
and the terms annotated in the GENIA Event corpus
(Kim et al., 2008) as participants in events.

We note that this task setting excludes the recog-
nition of candidate NEs and other entities. The as-
sumption that they are given is analogous to the
common NE-NE causal relation extraction setting.
Further, requiring their recognition would, in our
view, unnecessarily complicate the task with aspects
of NER and NP chunking, well-studied separate
tasks.

We next sketch a formulation of an causal rela-
tion/event extraction task incorporating static rela-
tions and briefly present one possible way in which
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static relation extraction could be applied in IE set-
tings not explicitly targeting such relations.

2.3 Applications of static relations

In the following, we assume that NEs are detected in
a prior processing step. Consider, then, the task of
extracting relevant information from the following
sentence:

NE1 is a subunit of the complex that inhibits the
expression of mutant forms of NE2

An example causal relation extraction target here
could be

Inhibit(NE1,NE2)

while an event extraction task might aim to recog-
nize the events

E1:Expression(NE2)
E2:Inhibit(NE1, E1)

An IE system directly targeting either representa-
tion will need to simultaneously address issues re-
lating to the causal statements and static relations.
Static relation annotation makes this explicit (square
brackets are used to mark non-NE entities):

Part-Whole.Component-Object(NE1, [complex])
Variant(NE2, [mutant forms])

This type of static relation detection as prior step to
causal relation or event extraction could be applied
in at least two different ways: primarily augment-
ing the extracted information, or alternatively assist-
ing in the extraction of the information considered
above. Assuming the successful extraction of the
above static relations, the input can be reformulated
as

NE1 is a subunit of the [complex] that inhibits the
expression of [mutant forms] of NE2

Then, under the augmented extraction model, the
causal relation and event extraction targets would be,
respectively,

Inhibit([complex],[mutant forms])

and

E1:Expression([mutant forms])
E2:Inhibit([complex], E1)

Taken together with the static relations, this provides

a more detailed representation of the information
stated in the example sentence. Further, simple rules
would suffice to derive the simplified representations
involving only the NEs, and such rules would have
the further benefit of making explicit which inter-
vening static relations are taken to support the infer-
ence that an NE is involved in a stated causal relation
or event.

Alternatively, under the assisted extraction model,
with the assumption that the static relations are taken
to allow the inference that any relation or event hold-
ing of the other entities holds for the NEs, the input
to the causal relation or event extraction system can
be recast as

NE1 is a subunit of the NE′1 that inhibits the ex-
pression of NE′2 of NE2

where NE′1 and NE′2 should be understood as
aliases for NE1 and NE2, respectively. Now, un-
der the causal relation extraction model, each of
the (NE1,NE2), (NE′1, NE2), (NE1,NE′2), (NE′1,NE′2)
pairs can serve as an example of the desired rela-
tion, both for the purposes of training and actual
extraction (the event extraction case can be treated
analogously). By increasing the number of positive
cases, this application of information on static rela-
tions would be expected to have a positive effect on
the performance of the primary causal relation/event
extraction method.

While these two alternatives are only rough
sketches of possible uses of static relation annota-
tion, we expect either could be developed into a
practical implementation. Further, these examples
by no means exhaust the possibilities of this class
of annotation. As static relation extraction can thus
be seen to have multiple potential benefits for both
causal relation and event extraction, we believe the
efforts to pursue static relations as a separate task
and to develop resources specific to this task are jus-
tified.

3 Relations

Based on an analysis of the shared task data (see
Section 4.1), we recognize the static relations illus-
trated in Table 1. In the following, we briefly discuss
the types and their selection.
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Name Examples
Variant Bcl-6 gene, IL-1 mRNA, wild-type SHP1, TRADD mutant, human IL-1beta,

[cell-surface isoforms] of CD43, phosphorylated CREB protein
PW.Object-Component IL-6 promoter, GR N-terminal transactivation domain, SAA promoter sequence,

proximal IL-2 promoter-enhancer, [transcriptional enhancers] including IFNB
PW.Component-Object NF-kappa B1/RelA heterodimer, p65 homodimer, p50-p65 complex,

STAT1-containing [DNA-binding complex], [heterodimer] of p50 and p65
PW.Member-Collection CREB/ATF family, p21ras small GTP binding proteins,

[non-heat shock genes] such as IL1B, [cellular genes] including GM-CSF
PW.Place-Area beta-globin locus

Table 1: Relations. In examples, NEs are underlined and square brackets are used to mark the extent of non-NE entities
that do not span the entire example text.

3.1 Selection criteria

Relations could be recognized and split into differ-
ent types at a number of different granularities. Mo-
tivated by practical IE applications, we aimed to de-
fine a static relation extraction subtask that fits natu-
rally into existing IE frameworks and to create an-
notation that supplements existing annotation and
avoids overlap in annotated information. The practi-
cal goals also motivate our aim to recognize a min-
imal set of different relation types that can satisfy
other goals, fewer distinctions implying an easier
task and more reliable extraction.

To decide whether to use a single relation type or
introduce several subtypes to annotate a given set of
cases, we aimed to introduce coherent relation types,
each implying consistent further processing. More
specifically, we required that each relation R(NE,
entity) must uniquely and consistently define the re-
lation and roles of the participants, and that in the
relevant IE context the relation alone is sufficient to
decide how to interpret the role of the NE in other
relations/events. Specific examples are given in the
introduction of the chosen relation types below.

In the following, we follow in part the relation
taxonomy and relation definitions of (Winston et al.,
1987). However, we recognize that there is no clear
agreement on how to subdivide these relations and
do not suggest this to be the only appropriate choice.

3.2 Part-whole relations

Part-whole, or meronymic, relations are, not surpris-
ingly, the most common class of static relations in
our data: a single generic Part-Whole relation could
capture more than half of the relevant relations in
the corpus. However, although the relations be-

tween the NE and entity in, for example, [complex]
containing NE and [site] in NE are both types of
Part-Whole (below PW) relations, the roles of par-
ticipants are not consistently defined: in PW(NE,
[site]) the entity is a component of the NE, while
in PW(NE, [complex]) the roles are reversed. We
thus recognize separate PW.Object-Component and
PW.Component-Object relations. By contrast, while
the relation between a NE representing a gene and a
site on that gene is is arguably different from the re-
lation between a protein NE and a site on the protein,
we do not distinguish these relations as the annota-
tion would duplicate information available in as part
of the entity typing in the corpus and would further
imply a static relation extraction task that incorpo-
rates aspects of NE recognition.

Also frequent in the data are relations such as
that between a protein and a protein family it be-
longs to. While many cases are clearly identifiable
as PW.Member-Collection relations, others could al-
ternatively be analysed as Class-Member. As in our
context the relations in e.g. P, a member of the [type
F protein family] and P, a [type F protein] imply
the same processing, we will apply the PW.Member-
Collection label to both, as well as to ad hoc col-
lections such as [cellular genes] such as NE, even
if this requires a somewhat relaxed interpretation of
the relation label. Finally, there are a few cases in
our data (e.g. NE locus) that we view as instances of
the PW.Place-Area relation.

3.3 Variant relations

To avoid unnecessary division of relations that im-
ply in our context similar interpretation and process-
ing, we define a task-specific Variant relation that
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encompasses a set of possible relation types holding
between an NE and its variants along multiple dif-
ferent axes. One significant class of cases annotated
as Variant includes expressions such as NE gene and
NE protein, under the interpretation that NE refers
to the abstract information that is “realized” as ei-
ther DNA, RNA or protein form, and the entity to
one of these realizations (for alternative interpreta-
tions, see e.g. (Rosario and Hearst, 2001; Heimonen
et al., 2008)).

The Variant relation is also used to annotate NE-
entity relations where the entity expresses a different
state of the NE, such as a phosphorylated or mutated
state. While each possible post-translational modifi-
cation, for example, could alternatively be assigned
a specific relation type, in the present IE context
these would only increase the difficulty of the task
without increasing the applicability of the resulting
annotation.

3.4 Other/Out annotation

We apply a catch-all category, Other/Out, for anno-
tating candidate (NE, entity) pairs between which
there is no relevant static relation. This label is thus
applied to a number of quite different cases: causal
relations, both implied (e.g. NE receptors, NE re-
sponse element) and explicitly stated (NE binds the
[site]), relations where the entity is considered too
far removed from the NE to support reliable infer-
ence of a role for the NE in causal relations/events
involving the entity (e.g. [antibodies] for NE), and
cases where no relation is stated (e.g. NE and other
[proteins]). The diversity of this generic category
of irrelevant cases is a necessary consequence of the
aim to avoid annotation involving decisions directly
relating to other tasks by creating distinctions be-
tween e.g. causal and no relation.

3.5 Sufficiency of the setting and relation types

We have cast the static relation extraction task as al-
ways involving an NE, which in the present context
is further always of a protein, gene or RNA type.
This restriction considerably simplifies the task con-
ceptually and reduces annotation effort as well as ex-
pected extraction difficulty, as the type of only one
of the entities involved in the relation can vary sig-
nificantly. However, it is not obvious that the restric-
tion allows coherent relations types to be defined. If

the corpus contained frequent cases where the stated
relationship of the NE to the entity involved different
types of relevant relations (e.g. collections of parts
of an NE), it would be necessary to either recog-
nized “mixed” or combined relations or extend the
task to include general entity-entity relations.

Interestingly, during annotation we encountered
only two cases (less than 0.1% of those annotated)
involving two of the recognized relation types at
once: mutant NE promoter and 5’ truncation mu-
tants of the NE promoter1. While this result is likely
affected by a number of complex factors (annota-
tion criteria, NE and entity types, granularity of re-
lations, etc.), we find the outcome — which was nei-
ther planned for nor forced on the data — a very en-
couraging sign of the sufficiency of the task setting
for this and related domain IE tasks.

4 Data

We created the data set by building on the annota-
tion of the GENIA Event corpus (Kim et al., 2008),
making use of the rich set of annotations already
contained in the corpus: term annotation for NEs
and other entities (Ohta et al., 2002), annotation of
events between these terms, and treebank structure
closely following the Penn Treebank scheme (Tateisi
et al., 2005).

4.1 Annotation

The existing GENIA annotations served as the basis
of the new annotation. We initially selected as can-
didates entities annotated as participating in events
considered in the BioNLP’09 shared task.

As the term annotation includes nesting of en-
tities, NEs contained within these relevant entities
were used as the starting point for the annotation.
We first performed a preliminary study of the rele-
vant static relations occurring between the entities
and NEs occurring within them to determine the
set of relations to annotate. Next, all unique cases
where a selected entity contained an NE were anno-
tated with the appropriate relation based on the con-
tained text of the entity, with the text of the contained
NE normalized away. For the present study, we ex-
cluded from consideration cases where the annota-

1To resolve these cases, we simply ignored the implied Vari-
ant relation.
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tion indicated simple aliasing (e.g. [CREB/ATF]), a
relation irrelevant to our purpose and found in the
selected data only due to the annotation specifying
one entity but two NEs in these cases. In this step,
830 unique cases representing a total of 1601 entities
containing NEs were annotated.

The nesting structure of the term annotation does
not, however, capture all relevant static relations:
the term annotation scheme disallows discontinuous
terms and annotation of terms with structure more
complex than base NPs. Thus, the possible relations
of NEs to entities to which they were connected e.g.
by a prepositional phrase cannot be directly derived
from the existing annotation. As an example, the
nesting in [NE region] directly suggest the existence
of a relation, while no such connection appears in
[region] of NE. To annotate relations for entities for
which the term annotation does not identify a can-
didate related NE, it is necessary to form (NE, en-
tity) pairs with co-occurring NEs. Even when the
candidate NEs were restricted to those occurring in
the same sentence, the number of such pairs in the
corpus was over 17,000, beyond the scope of what
could be annotated as part of this effort. Further, as
the great majority of co-occurring (NE, entity) pairs
will have no relevant static relation, we used heuris-
tics to increase the proportion of relevant and near-
miss cases in the annotated data.

We first converted the gold standard annotation of
the GENIA treebank (Tateisi et al., 2005) into a de-
pendency representation using the Stanford parser
tools (de Marneffe et al., 2006) and then deter-
mined the shortest paths in the dependency analy-
ses connecting each relevant entity with each NE.
The (NE, entity) pairs were then ordered according
to the length of these paths, on the assumption that
syntactically more closely related entities are more
likely to have a relevant static relation. Annotation
then proceeded on the ordered list of pairs. Dur-
ing the annotation, we further developed more or-
dering heuristics, such as giving higher ranking to
candidate pairs connected by a path that contains
a subpath known to connect pairs with relevant re-
lations. Such known paths were first derived from
the BioInfer static relation annotation (Pyysalo et al.,
2007) and later extracted from previously annotated
cases. In this annotation process, judgments were
performed with reference to the full sentence con-

Annotated instances
Relation cont. nonc. total
PW.Object-Component 394 133 527
PW.Component-Object 299 44 343
Variant 253 20 273
PW.Member-Collection 25 124 149
PW.Place-Area 4 1 5
Other/Out 626 778 1404
total 1601 1100 2701

Table 2: Statistics for annotated data. Number of in-
stances given separately for relations annotated between
entities with contained (cont.) and non-contained (nonc.)
NEs.

text. In total, 1100 cases were annotated in this way.
All stages of the annotation process involved only
lists formatted as simple text files for markup and
custom-written software for processing.

Table 2 contains statistics for the annotated data,
showing separately the number of annotated re-
lations of entities to contained and non-contained
NEs. There are interesting differences in the rela-
tion type distribution between these two categories,
reflecting the different ways in which relations are
typically stated. This difference in distribution sug-
gests that it may be beneficial to give the two cases
different treatment in extraction.

4.2 Representation

For simplicitly of use, we provide the annotated data
in two equivalent representations: a simple inline
XML format and a standoff format. The XML for-
mat closely resembles the representation used for the
SemEval-2007 Semantic Relations between Nomi-
nals task (Girju et al., 2007). Here, each NE-Entity
pair is given its own entry with its sentence con-
text in which only the pair is marked. In the alter-
nate standoff representation, all entities appearing in
each sentence are tagged, and the annotated relations
given separately. These representations are easily
processed and should be usable with little modifica-
tion with many existing relation extraction methods.

We further split the data into training,
development-test and test sets according to the
same division applied in the BioNLP’09 shared
task on event extraction. This division allows the
dataset to be easily integrated into settings using the
shared task data, combining static relation and event
extraction approaches.
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5 Experiments

The selected task setting and representation form a
natural basis for two alternative classification prob-
lems: a binary classification problem for detecting
the presence of any relevant relation, and a multi-
class classification problem where the correct rela-
tion type must also be determined. In the following,
we describe experiments using the dataset in these
two settings. While we apply a state-of-the-art ma-
chine learning method and a fairly expressive repre-
sentation, the aim of the experiments is only to de-
termine the relative difficulty of the relation extrac-
tion task and to establish a moderately competitive
baseline result for the newly created dataset.

We use a linear Support Vector Machine (SVM)
classifier (Chang and Lin, 2001) with N-gram fea-
tures defined over token sequences delimited by the
beginning and end of the entity and the position of
the NE. The NE is treated as a single token and
its text content blinded from the classifier to avoid
overfitting on specific names. Features are gener-
ated from two sequences of tokens: those inside
the entity and, when the NE is not contained in the
entity, those between the entity and the NE (inclu-
sive of the entity and NE at the sequence bound-
aries). In preliminary experiments on the develop-
ment test set we found no clear benefit from includ-
ing N-gram features extracted from a broader con-
text, supporting an assumption that the problem can
be mostly addressed on the basis of local features.
By contrast, preliminary experiments supported the
use of the simple Porter algorithm (Porter, 1980) for
stemming, the inclusion of uni-, bi- and trigram fea-
tures, and normalization of the feature vectors to unit
length; these were adopted for the final experiment.
The SVM regularization parameter was optimized
using a sparse search with evaluation on the devel-
opment test set.

We first reduced the annotated data into a binary
classification problem with the Other/Out class rep-
resenting negative (irrelevant) and the other rela-
tions positive (relevant) cases. The results for this
experiment were very encouraging, giving both a
high classification accuracy of 86.8% and an F-score
of 84.1%. The test set contains 179 positive and
269 negative cases, giving a majority baseline ac-
curacy of 60.0% and an all-true baseline F-score of

P R F
Relevant 81.2 87.2 84.1
PW.Object-Component 94.2 75.4 83.8
PW.Component-Object 60.0 71.2 65.1
Variant 88.0 57.9 69.8
PW.Member-Collection 54.5 37.5 44.4

Table 3: Classification results with (P)recision, (R)ecall
and (F)-score for the binary Relevant/Irrelevant exper-
iment and classwise results for the relevant classes
(PW.Place-Area excluded for lack of data).

57.1%. The classifier notably and statistically sig-
nificantly (McNemar’s test, p < 0.01) outperforms
these simple baselines. We then performed a sep-
arate multiclass classification experiment, predict-
ing the specific type of the relation, also including
the Other/Out type. In this experiment, accuracy re-
mained relatively high at 81.9%, while per-class pre-
cision and recall results (considering each class in
turn positive and all others negative, see Table 3) in-
dicate some remaining challenges. The results vary
somewhat predictably with the number of exam-
ples per relation type (Table 2): while PW.Object-
Component relations can be predicted at high pre-
cision and fair recall, performance for PW.Member-
Collection relations falls behind expectations for a
local relation extraction problem.

To briefly relate these results to domain causal RE
results, we note that the recently proposed state-of-
the-art method of (Airola et al., 2008) was reported
to achieve F-scores ranging between 56.4–76.8% on
five different causal RE corpora in a binary classi-
fication setting. As our relatively simple method
achieves a notably higher 84.1% F-score at the bi-
nary static RE task, we can conclude that this static
RE task is not as difficult as the causal RE tasks.
This is encouraging for the prospects of static RE in
support of domain causal RE and event extraction.

6 Related work

Relations of types that we have here termed static
have figured prominently in the MUC and ACE se-
ries of events that have largely defined the “gen-
eral domain” IE research program (Sundheim, 1995;
Doddington et al., 2004). In this line of research,
event-type annotation is used (as the name implies)
to capture events, defined as “[...] something that
happens [...] [that] can frequently be described as a
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change of state” (LDC, 2005) and relation-type an-
notation is applied for relevant non-causal relation-
ships. General static relations have been studied ex-
tensively also in broader, non-IE contexts (see e.g.
(Girju et al., 2007)).

In the biomedical domain, static relations have re-
ceived relatively little attention. Domain noun com-
pound semantics, including static relations, have
been considered in studies by (Rosario and Hearst,
2001) and (Nakov et al., 2005), but in IE settings
static relations tend to appear only implicitly, as in
the RelEx causal RE system of (Fundel et al., 2007),
or through the causal relations they imply: for ex-
ample, in the AIMed corpus (Bunescu et al., 2005)
statements such as NE1/NE2 complex are annotated
as a binding relation between the two NEs, not Part-
Whole relations with the broader entity. By contrast,
there has been considerable focus on the extraction
of “things that happen,” dominantly making use of
relation-type corpus annotation and extraction ap-
proaches: a study of five corpora containing primar-
ily causal relation annotation is found in (Pyysalo et
al., 2008); more complete lists of domain corpora
are maintained by Kevin Cohen2 and Jörg Haken-
berg3. For a thorough review of recent work in do-
main RE, we refer to (Zweigenbaum et al., 2007).

BioInfer (Pyysalo et al., 2007), to the best of our
knowledge the first domain corpus to include event-
type annotation, also includes annotation for a set
of static relation types. The design of the BioIn-
fer corpus and relationship type ontology as well as
work applying the corpus in jointly targeting event
extraction and static relation extraction (Heimonen
et al., 2008; Björne et al., 2008) have considerably
influenced the present study. A key difference in fo-
cus is that BioInfer primarily targets NE-NE rela-
tions, while our concern here has been the relations
of NEs with other, non-NE entities, specifically fo-
cusing on the requirements of the BioNLP’09 shared
task. A class of static relations, connecting Mu-
tants and Fragments with their parent proteins, is
annotated in the recently introduced ITI TXM cor-
pora (Alex et al., 2008). While somewhat limited
in the scope of static relations, this annotation cov-
ers an extensive number of instances, over 20,000,

2http://compbio.uchsc.edu/ccp/corpora/obtaining.shtml
3http://www2.informatik.hu-

berlin.de/∼hakenber/links/benchmarks.html

and could likely support the development of high-
reliability methods for the extraction extraction of
these specific static relations. As discussed in detail
in Section 4.1, previously published versions of the
GENIA corpus (Kim et al., 2008) contain NE, term
and event annotation, but no static relations have
been annotated in GENIA prior to this effort.

While previously introduced corpora thus cover
aspects of the annotation required to address the
static relation extraction task considered in this pa-
per, we are not aware of previously published re-
sources that would address this task specifically or
contain annotation supporting the entire task as en-
visioned here.

7 Conclusions and future work

In this paper, we have argued for a position for static
relations in biomedical domain IE, specifically
advancing the subtask of extracting static relations
between named entities and other entities appearing
in their context. We explored this subtask in the
specific IE context of the BioNLP’09 shared task on
event extraction, identifying possible instances of
static relations relevant to the task setting. We then
studied these instances of detail, defining a minimal
set of basic static relations argued to be sufficient
to support the type of IE envisioned in the shared
task. We annotated 2701 instances of candidate
static relations, creating the first domain corpus
of static relations explicitly designed to support
IE, and performed experiments demonstrating that
the static relation extraction task can be performed
accurately, yet retains challenges for future work.
The newly annotated corpus is publicly available at
www-tsujii.is.s.u-tokyo.ac.jp/GENIA
to encourage further research on this task.
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Abstract 

Determining whether a condition is historical 
or recent is important for accurate results in 
biomedicine. In this paper, we investigate four 
types of information found in clinical text that 
might be used to make this distinction. We 
conducted a descriptive, exploratory study us-
ing annotation on clinical reports to determine 
whether this temporal information is useful 
for classifying conditions as historical or re-
cent. Our initial results suggest that few of 
these feature values can be used to predict 
temporal classification. 

1 Introduction 

Clinical applications for decision support, biosur-
veillance and quality of care assessment depend on 
patient data described in unstructured, free-text 
reports.  For instance, patient data in emergency 
department reports contain valuable indicators for 
biosurveillance applications that may provide early 
signs and symptoms suggestive of an outbreak. 
Quality assurance departments can use free-text 
medical record data to assess adherence to quality 
care guidelines, such as determining whether an 
MI patient was given an aspirin within twenty-four 
hours of arrival. In either application, one must 
consider how to address the question of time, but 
each of the applications requires a different level of 
temporal granularity: the biosurveillance system 
needs a coarse-grained temporal model that dis-
cerns whether the signs and symptoms are histori-
cal or recent. In contrast, the quality assurance 
system needs a fine-grained temporal model to 
identify the admission event, when (or if) aspirin 
was given, and the order and duration of time be-
tween these events. One important problem in nat-

ural language processing is extracting the appro-
priate temporal granularity for a given task. 

Many solutions exist for extracting temporal in-
formation, and each is designed to address ques-
tions of various degrees of temporal granularity, 
including determining whether a condition is his-
torical or recent, identifying explicit temporal ex-
pressions, and identifying temporal relations 
among events in text. (Chapman et al., 2007; Zhou 
et al., 2008; Irvine et al., 2008;  Verhagen and Pus-
tejovsky, 2008; Bramsen et al., 2006). We pre-
viously extended the NegEx algorithm in ConText, 
a simple algorithm that relies on lexical cues to 
determine whether a condition is historical or re-
cent (Chapman et al., 2007). However, ConText 
performs with moderate recall (76%) and precision 
(75%) across different report types implying that 
trigger terms and simple temporal expressions are 
not sufficient for the task of identifying historical 
conditions.  

In order to extend work in identifying historical 
conditions, we conducted a detailed annotation 
study of potentially useful temporal classification 
features for conditions found in six genres of clini-
cal text. Our three main objectives were: (1) cha-
racterize the temporal similarity and differences 
found in different genres of clinical text; (2) de-
termine which features successfully predict wheth-
er a condition is historical, and (3) compare 
ConText to machine learning classifiers that ac-
count for this broader set of temporal features. 

2 Temporality in Clinical Text 

For several decades, researchers have been study-
ing temporality in clinical records (Zhou and 
Hripcsak, 2007). Readers use a variety of clues to 
distinguish temporality from the clinical narrative, 
and we wanted to identify features from other tem-
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poral models that may be useful for determining 
whether a condition is historical or recent.  

There are a number of automated systems for 
extracting, representing, and reasoning time in a 
variety of text. One system that emerged from the 
AQUAINT workshops for temporal modeling of 
newspaper articles is TARSQI. TARSQI processes 
events annotated in text by anchoring and ordering 
them with respect to nearby temporal expressions 
(Verhagen and Pustejovsky, 2008). A few recent 
applications, such as TimeText and TN-TIES 
(Zhou et al., 2008; Irvine et al., 2008), identify 
medically relevant events from clinical texts and 
use temporal expressions to order the events. One 
method attempts to order temporal segments of 
clinical narratives (Bramsen et al., 2006). One key 
difference between these previous efforts and our 
work is that these systems identify all temporal 
expressions from the text and attempt to order all 
events. In contrast, our goal is to determine wheth-
er a clinical condition is historical or recent, so we 
focus only on temporal information related to the 
signs, symptoms, and diseases described in the 
text. Therefore, we ignore explicit temporal ex-
pressions that do not modify clinical conditions. If 
a condition does not have explicit temporal mod-
ifiers, we still attempt to determine the historical 
status for that condition (e.g., “Denies cough”). In 
order to improve the ability to determine whether a 
condition is historical, we carried out this annota-
tion study to identify any useful temporal informa-
tion related to the clinical conditions in six clinical 
genres. Building on work in this area, we explored 
temporal features used in other temporal annota-
tion studies. 

TimeML is a well-known standard for complex, 
temporal annotation. TimeML supports the annota-
tion of events defined as “situations that happen or 
occur” and temporal expressions such as dates and 
durations in order to answer temporal questions 
about these events and other entities in news text 
(Saur´ı, et al., 2006). One notable feature of the 
TimeML schema is its ability to capture verb tense 
such as past or present and verb aspect such as 
perfective or progressing. We annotated verb tense 
and aspect in medical text according to the Time-
ML standard. 

Within the medical domain, Zhou et al. (2006) 
developed an annotation schema used to identify 
temporal expressions and clinical events. They 
measured the prevalence of explicit temporal ex-

pressions and key medical events like admission or 
transfer found in discharge summaries. We used 
the Zhou categorization scheme to explore tempor-
al expressions and clinical events across genres of 
reports. 

A few NLP systems rely on lexical cues to ad-
dress time. MediClass is a knowledge-based sys-
tem that classifies the content of an encounter 
using both free-text and encoded information from 
electronic medical records (Hazelhurst et al., 
2005). For example, MediClass classifies smoking 
cessation care delivery events by identifying the 
status of a smoker as continued, former or history 
using words like continues. ConText, an extension 
of the NegEx algorithm, temporally classifies con-
ditions as historical, recent, or hypothetical using 
lexical cues such as history, new, and if, respec-
tively (Chapman et al., 2007). Drawing from these 
applications, we used state and temporal trigger 
terms like active, unchanged, and history to cap-
ture coarse, temporal information about a condi-
tion.  

Temporal information may also be implied in 
the document structure, particularly with regards to 
the section in which the condition appears. SecTag 
marks explicit and implicit sections found 
throughout patient H&P notes (Denny et al., 2008). 
We adopted some section headers from the SecTag 
terminology to annotate sections found in reports.  

Our long-term goal is to build a robust temporal 
classifier for information found in clinical text 
where the output is classification of whether a con-
dition is historical or recent (historical categoriza-
tion). An important first step in classifying 
temporality in clinical text is to identify and cha-
racterize temporal features found in clinical re-
ports. Specifically, we aim to determine which 
expressions or features are predictive of historical 
categorization of clinical conditions in dictated 
reports. 

3 Historical Assignment and Temporal 
Features 

We conducted a descriptive, exploratory study of 
temporal features found across six genres of clini-
cal reports. We had three goals related to our task 
of determining whether a clinical condition was 
historical or recent. First, to develop a temporal 
classifier that is generalizable across report types, 
we compared temporality among different genres 
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of clinical text. Second, to determine which fea-
tures predict whether a condition is historical or 
recent, we observed common rules generated by 
three different rule learners based on manually an-
notated temporal features we describe in the fol-
lowing section. Finally, we compared the 
performance of ConText and automated rule learn-
ers and assessed which features may improve the 
ConText algorithm.  

Next, we describe the temporal features we as-
sessed for identification of historical signs, symp-
toms, or diseases, including temporal expressions, 
lexical cues, verb tense and aspect, and sections.  

(1) Temporal Expressions: Temporal expres-
sions are time operators like dates (May 5th 2005) 
and durations (for past two days), as well as clini-
cal processes related to the encounter (discharge, 
transfer). For each clinical condition, we annotated 
whether a temporal expression modified it and, if 
so, the category of temporal expression. We used 
six major categories from Zhou et al. (2006) in-
cluding: Date and Time, Relative Date and Time, 
Durations, Key Events, Fuzzy Time, and No Tem-
poral Expression. These categories also have 
types. For instance, Relative Date and Time has a 
type Yesterday, Today or Tomorrow.  For the con-
dition in the sentence “The patient had a stroke in 
May 2006”, the temporal expression category is 
Date and Time with type Date. Statements without 
a temporal expression were annotated No Tempor-
al Expression with type N/A. 

(2) Tense and Aspect: Tense and aspect define 
how a verb is situated and related to a particular 
time. We used TimeML Specification 1.2.1 for 
standardization of tense and aspect where exam-
ples of tense include Past or Present and aspect 
may be Perfective, Progressive, Both or None as 
found in Saur´ı, et al. (2006). We annotated the 
verb that scoped a condition and annotated its tense 
and aspect. The primary verb may be a predicate 
adjective integral to interpretation of the condition 
(Left ventricle is enlarged), a verb preceding the 
condition (has hypertension), or a verb following a 
condition (Chest pain has resolved). In “her chest 
pain has resolved,” we would mark “has resolved” 
with tense Present and aspect Perfective. State-
ments without verbs (e.g., No murmurs) would be 
annotated Null for both.  

(3) Trigger Terms: We annotated lexical cues 
that provide temporal information about a condi-
tion. For example, in the statement, “Patient has 

past history of diabetes,” we would annotate “his-
tory” as Trigger Term: Yes and would note the ex-
act trigger term. 
     (4) Sections: Sections are “clinically meaning-
ful segments which act independently of the 
unique narrative” for a patient (Denny et al. 2008). 
Examples of report sections include Review of Sys-
tems (Emergency Department), Findings (Opera-
tive Gastrointestinal and Radiology) and 
Discharge Diagnosis (Emergency Department and 
Discharge Summary).  

We extended Denny’s section schema with ex-
plicit, report-specific section headers not included 
in the original terminology. Similar to Denny, we 
assigned implied sections in which there was an 
obvious change of topic and paragraph marker. For 
instance, if the sentence “the patient is allergic to 
penicillin” followed the Social History section, we 
annotated the section as Allergies, even if there 
was not a section heading for allergies. 

4 Methods 

4.1 Dataset Generation 

We randomly selected seven reports from each of 
six genres of clinical reports dictated at the Univer-
sity of Pittsburgh Medical Center during 2007 
These included Discharge Summaries, Surgical 
Pathology, Radiology, Echocardiograms, Opera-
tive Gastrointestinal, and Emergency Department 
reports. The dataset ultimately contained 42 clini-
cal reports and 854 conditions. Figure 1 show our 
annotation process, which was completed in 
GATE, an open-source framework for building 
NLP systems (http://gate.ac.uk/). A physician 
board-certified in internal medicine and infectious 
diseases annotated all clinical conditions in the set 
and annotated each condition as either historical or 
recent. He used a general guideline for annotating 
a condition as historical if the condition began 
more than 14 days before the current encounter and 
as recent if it began or occurred within 14 days or 
during the current visit. However, the physician 
was not bound to this definition and ultimately 
used his own judgment to determine whether a 
condition was historical. 

Provided with pre-annotated clinical conditions 
and blinded to the historical category, three of the 
authors annotated the features iteratively in groups 
of six (one of each report type) using guidelines we 
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developed for the first two types of temporal fea-
tures (temporal expressions and trigger terms.) 
Between iterations, we resolved disagreements 
through discussion and updated our guidelines. 
Cohen’s kappa for temporal expressions and trig-
ger terms by the final iteration was at 0.66 and 0.69 
respectively. Finally, one author annotated sec-
tions, verb tense, and aspect.  Cases in which as-
signing the appropriate feature value was unclear 
were resolved after consultation with one other 
author-annotator.  

4.2 Data Analysis 

 

We represented each condition as a vector with  
temporal features and their manually-assigned val-
ues as input features for predicting the binary out-
come value of historical or recent. We trained three 
rule learning algorithms to classify each condition 
as historical or recent: J48 Decision Tree, Ripper, 
and Rule Learner (RL) (Witten and Frank, 2005; 
Clearwater and Provost, 1990). Rule learners per-
form well at classification tasks and provide expli-
cit rules that can be viewed, understood, and 
potentially implemented in existing rule-based ap-
plications. We used Weka 3.5.8, an openly-
available machine learning application for predic-
tion modeling, to implement the Decision Tree 
(J48) and Ripper (JRip) algorithms, and we applied 
an in house version of RL retrieved from 
www.dbmi.pitt.edu\probe. For all rule learners, we 
used the default settings and ran ten-fold cross-
validation. The J48 algorithm produces mutually 
exclusive rules for predicting the outcome value. 

Thus, two rules cannot cover or apply to any one 
case. In contrast, both JRip and RL generate non-
mutually-exclusive rules for predicting the out-
come value. Although J48 and JRip are sensitive to 
bias in outcome values, RL accounts for skewed 
distribution of the data.  

We also applied ConText to the test cases to 
classify them as historical or recent. ConText looks 
for trigger terms and a limited set of temporal ex-
pressions within a sentence. Clinical conditions 
within the scope of the trigger terms are assigned 
the value indicated by the trigger terms (e.g., his-
torical for the term history). Scope extends from 
the trigger term to the end of the sentence or until 
the presence of a termination term, such as pre-
senting. For instance, in the sentence “History of 
CHF, presenting with chest pain,” CHF would be 
annotated as historical.  

5 Evaluation 

To characterize the different reports types, we es-
tablished the overall prevalence and proportion of 
conditions annotated as historical for each clinical 
report genre.  We assessed the prevalence of each 
feature (temporal expressions, trigger terms, tense 
and aspect, and sections) by report genre to deter-
mine the level of similarity or difference between 
genres. To determine which features values are 
predictive of whether a condition is historical or 
recent, we observed common rules found by more 
than one rule learning algorithm. Amongst com-
mon rules, we identified new rules that could im-
prove the ConText algorithm.  

We also measured predictive performance with 
95% confidence intervals of the rule learners and 
ConText by calculating overall accuracy, as well as 
recall and precision for historical classifications 
and recall and precision for recent classifications.  
Table 1 describes equations for the evaluation me-
trics. 

 
Table 1. Description of evaluation metrics. RLP = rule 
learner prediction. RS = Reference Standard 

 
 

Figure 1. Annotation process for dataset and objectives 
for evaluation. 
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Recall:                 number of TP              
(number of TP + number of FN) 

 
Precision:           number of TP              

(number of TP + number of FP) 
 

Accuracy:   number of instances correctly classified 
                      total number of possible instances  

6 Results 

Overall, we found 854 conditions of interest across 
all six report genre. Table 2 illustrates the preva-
lence of conditions across report genres. Emergen-
cy Department reports contained the highest 
concentration of conditions. Across report genres, 
87% of conditions were recent (741 conditions). 
All conditions were recent in Echocardiograms, in 
contrast to Surgical Pathology reports in which 
68% were recent.  
 
Table 2. Prevalence and count of conditions by temporal 
category and report genre. DS = Discharge Summary, 
Echo = Echocardiogram, ED = Emergency Department, 
GI = Operative Gastrointestinal, RAD = Radiology and 
SP = Surgical Pathology. (%) = percent; Ct = count.  

 

6.1 Prevalence of Temporal Features 

Table 3 shows that most conditions were not mod-
ified by a temporal expression or a trigger term. 
Conditions were modified by a temporal expres-
sion in Discharge Summaries more often than in 
other report genres. Similarly, Surgical Pathology 
had the highest prevalence of conditions modified 
by a trigger term. Operative Gastrointestinal and 
Radiology reports showed the lowest prevalence of 
both temporal expressions and trigger terms. Nei-
ther temporal expressions nor trigger terms oc-
curred in Echocardiograms. Overall, the 
prevalence of conditions scoped by a verb varied 
across report types ranging from 46% (Surgical 
Pathology) to 81% (Echocardiogram). 

Table 3. Prevalence of conditions modified by temporal 
features. All conditions were assigned a section and are 
thereby excluded. TE = temporal expression; TT = trig-
ger term; V = scoped by verb.  

 

6.2 Common Rules 

Rule learners generated a variety of rules. The J48 
Decision Tree algorithm learned 27 rules, six for 
predicting conditions as historical and the remain-
ing for classifying the condition as recent. The 
rules predominantly incorporated the trigger term 
and verb tense and aspect feature values. JRip 
learned nine rules, eight for classifying the histori-
cal temporal category and one ‘otherwise’ rule for 
the majority class. The JRip rules most heavily 
incorporated the section feature. The RL algorithm 
found 79 rules, 18 of which predict the historical 
category. Figure 2 illustrates historical rules 
learned by each rule learner. JRip and RL pre-
dicted the following sections alone can be used to 
predict a condition as historical: Past Medical His-
tory, Allergies and Social History. Both J48 and 
RL learned that trigger terms like previous, known 
and history predict historical. There was only one 
common, simple rule for the historical category 
found amongst all three learners: the trigger term 
no change predicts the historical category. All al-
gorithms learned a number of rules that include 
two features values; however, none of the com-
pound rules were common amongst all three algo-
rithms.    

 
Figure 2. Historical rules learned by each rule learner 
algorithm. Black dots represent simple rules whereas 
triangles represent compound rules. Common rules 
shared by each algorithm occur in the overlapping areas 
of each circle. 
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6.3 Predictive Performance 

Table 4 shows predictive performance for each 
rule learner and for ConText. The RL algorithm 
outperformed all other algorithms in almost all 
evaluation measures. The RL scores were com-
puted based on classifying the 42 cases (eight his-
torical) for which the algorithm did not make a 
prediction as recent. ConText and J48, which ex-
clusively relied on trigger terms, had lower recall 
for the historical category.  

All of the rule learners out-performed ConText. 
JRip and RL showed substantially higher recall for 
assigning the historical category, which is the most 
important measure in a comparison with ConText, 
because ConText assigns the default value of re-
cent unless there is textual evidence to indicate a 
historical classification. Although the majority 
class baseline shows high accuracy due to high 
prevalence of the recent category, all other classifi-
ers show even higher accuracy, achieving fairly 
high recall and precision for the historical cases 
while maintaining high performance on the recent 
category. 

 
Table 4. Performance results with 95% confidence in-
tervals for three rule learners trained on manually anno-
tated features and ConText, which uses automatically 
generated features. Bolded values do not have overlap-
ping confidence intervals with ConText. MCB = Ma-
jority Class Baseline (recent class)   

 

7 Discussion 

Our study provides a descriptive investigation of 
temporal features found in clinical text. Our first 
objective was to characterize the temporal similari-
ties and differences amongst report types. We 
found that the majority of conditions in all report 
genres were recent conditions, indicating that a 
majority class classifier would produce an accura-
cy of about 87% over our data set.  According to 

the distributions of temporal category by report 
genre (Table 2), Echocardiograms exclusively de-
scribe recent conditions. Operative Gastrointestinal 
and Radiology reports contain similar proportions 
of historical conditions (9% and 6%). Echocardio-
grams appear to be most similar to Radiology re-
ports and Operative Gastrointestinal reports, which 
may be supported by the fact that these reports are 
used to document findings from tests conducted 
during the current visit. Emergency Department 
reports and Discharge Summaries contain similar 
proportions of historical conditions (17% and 19% 
respectively), which might be explained by the fact 
that both reports describe a patient’s temporal pro-
gression throughout the stay in the Emergency De-
partment or the hospital.  

Surgical Pathology reports may be the most 
temporally distinct report in our study, showing the 
highest proportion of historical conditions. This 
may seem counter-intuitive given that Surgical 
Pathology reports also facilitate the reporting of 
findings described from a recent physical speci-
men. However, we had a small sample size (28 
conditions in seven reports), and most of the his-
torical conditions were described in a single ad-
dendum report. Removing this report decreased the 
prevalence of historical conditions to 23% (3/13).  

Discharge Summaries and Emergency Depart-
ment reports displayed more variety in the ob-
served types of temporal expressions (9 to 14 
subtypes) and trigger terms (10 to 12 terms) than 
other report genres. This is not surprising consider-
ing the range of events described in these reports. 
Other reports tend to have between zero and three 
subtypes of temporal expressions and zero and 
seven different trigger terms. In all report types, 
temporal expressions were mainly subtype past, 
and the most frequent trigger term was history. 

Our second objective was to identify which fea-
tures predict whether a condition is historical or 
recent. Due to high prevalence of the recent cate-
gory, we were especially interested in discovering 
temporal features that predict whether a condition 
is historical. With one exception (date greater than 
four weeks prior to the current visit), temporal ex-
pression features always occurred in compound 
rules in which the temporal expression value had to 
co-occur with another feature value. For instance, 
any temporal expression in the category key event 
had to also occur in the secondary diagnosis sec-
tion to classify the condition as historical. For ex-
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ample, in “SECONDARY DIAGNOSIS: Status 
post Coronary artery bypass graft with complica-
tion of mediastinitis” the key event is the coronary 
artery bypass graft, the section is secondary diag-
nosis, and the correct classification is historical.  

Similarly, verb tense and aspect were only use-
ful in conjunction with other feature values. One 
rule predicted a condition as historical if the condi-
tion was modified by the trigger term history and 
fell within the scope of a present tense verb with 
no aspect. An example of this is “The patient is a 
50 year old male with history of hypertension.” 
Intuitively, one would think that a past tense verb 
would always predict historical; however, we 
found the presence of a past tense verb with no 
aspect was a feature only when the condition was 
in the Patient History section.  Sometimes the ab-
sence of a verb in conjunction with another feature 
value predicted a condition as historical. For ex-
ample, in the sentences “PAST MEDICAL 
HISTORY: History of COPD. Also diabetes…” 
also functioned as a trigger term that extended the 
scope of a previous trigger term, history, in the 
antecedent sentence.  

A few historical trigger terms were discovered 
as simple rules by the rule learners: no change, 
previous, known, status post, and history. A few 
rules incorporated both a trigger term and a partic-
ular section header value. One rule predicted his-
torical if the trigger term was status post and the 
condition occurred in the History of Present Illness 
section. This rule would classify the condition 
CABG as historical in “HISTORY OF PRESENT 
ILLNESS: The patient is...status post CABG.” 
One important detail to note is that a number of the 
temporal expressions categorized as Fuzzy Time 
also act as trigger terms, such as history and status 
post—both of which were learned by J48. A histor-
ical trigger term did not always predict the catego-
ry historical. In the sentence “No focal sensory or 
motor deficits on history,” history may suggest that 
the condition was not previously documented, but 
was interpreted as not presently identified during 
the current physical exam.   

Finally, sections appeared in the majority of 
JRip and RL historical rules: 4/8 simple rules and 
13/18 compound rules. A few sections were con-
sistently classified as historical: Past Medical His-
tory, Allergies, and Social History.  One important 
point to address is that these sections were manual-
ly annotated.  

Our results revealed a few unexpected observa-
tions. We found at least two trigger terms indicated 
in the J48 rules, also and status post, which did not 
have the same predictive ability across report ge-
nres.  For instance, in the statement “TRANSFER 
DIAGNOSIS: status post coiling for left posterior 
internal carotid artery aneurysm,” status post indi-
cates the reason for the transfer as an inpatient 
from the Emergency Department and the condition 
is recent. In contrast, status post in a Surgical Pa-
thology report was interpreted to mean historical 
(e.g., PATIENT HISTORY: Status post double 
lung transplant for COPD.) In these instances, 
document knowledge of the meaning of the section 
may be useful to resolve these cases.  

One other unexpected finding was that the trig-
ger term chronic was predictive of recent rather 
than historical. This may seem counterintuitive; 
however, in the statement “We are treating this as 
chronic musculoskeletal pain with oxycodone”, the 
condition is being referenced in the context of the 
reason for the current visit. Contextual information 
surrounding the condition, in this case treating or 
administering medication for the condition, may 
help discriminate several of these cases.  

Our third objective was to assess ConText in re-
lation to the rules learned from manually annotated 
temporal features. J48 and ConText emphasized 
the use of trigger terms as predictors of whether a 
condition was historical or recent and performed 
with roughly the same overall accuracy. JRip and 
RL learned rules that incorporated other feature 
values including sections and temporal expres-
sions, resulting in a 12% increase in historical re-
call over ConText and a 31% increase in historical 
recall over J48. 

Many of the rules we learned can be easily ex-
tracted and incorporated into ConText (e.g., trigger 
terms previous and no change). The ConText algo-
rithm largely relies on the use of trigger terms like 
history and one section header, Past Medical His-
tory. By incorporating additional section headers 
that may strongly predict historical, ConText could 
potentially predict a condition as historical when a 
trigger term is absent and the header title is the 
only predictor as in the case of “ALLERGIES: 
peanut allergy”. Although these sections header 
may only be applied to Emergency Department 
and Discharge Summaries, trigger terms and tem-
poral expressions may be generalizable across ge-
nre of reports.  Some rules do not lend themselves 
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to ConText’s trigger-term-based approach, particu-
larly those that require sophisticated representation 
and reasoning. For example, ConText only reasons 
some simple durations like several day history. 
ConText cannot compute dates from the current 
visit to reason that a condition occurred in the past 
(e.g., stroke in March 2000).  The algorithm per-
formance would gain from such a function; how-
ever, such a task would greatly add to its 
complexity.   

8 Limitations 

The small sample size of reports and few condi-
tions found in three report genres (Operative Ga-
strointestinal, Radiology, and Surgical Pathology) 
is a limitation in this study. Also, annotation of 
conditions, temporal category, sections, verb tense 
and aspect were conducted by a single author, 
which may have introduced bias to the study. Most 
studies on temporality in text focus on the temporal 
features themselves. For instance, the prevalence 
of temporal expressions reported by Zhou et al. 
(2006) include all temporal expressions found 
throughout a discharge summary, whereas we an-
notated only those expressions that modified the 
condition. This difference makes comparing our 
results to other published literature challenging.  

9 Future Work  

Although our results are preliminary, we be-
lieve our study has provided a few new insights 
that may help improve the state of the art for his-
torical categorization of a condition. The next step 
to building on this work includes automatically 
extracting the predictive features identified by the 
rule learners. Some features may be easier to ex-
tract than others. Since sections appear to be strong 
indicators for historical categorization we may start 
by implementing the SecTag tagger. Often a sec-
tion header does not exist between text describing 
the past medical history and a description of the 
current problem, so relying merely on the section 
heading is not sufficient. The SecTag tagger identi-
fies both implicit and explicit sections and may 
prove useful for this task. To our knowledge, Sec-
Tag was only tested on Emergency Department 
reports, so adapting it to other report genres will be 
necessary. Both JRip and RL produced high per-
formance, suggesting a broader set of features may 

improve historical classification; however, because 
these features do not result in perfect performance, 
there are surely other features necessary for im-
proving historical classification. For instance, hu-
mans use medical knowledge about conditions that 
are inherently chronic or usually experienced over 
the course of a patient’s life (i.e., HIV, social ha-
bits like smoking, allergies etc). Moreover, physi-
cians are able to integrate knowledge about chronic 
conditions with understanding of the patient’s rea-
son for visit to determine whether a chronic condi-
tion is also a recent problem. An application that 
imitated experts would need to integrate this type 
of information. We also need to explore adding 
features captured at the discourse level, such as 
nominal and temporal coreference. We have begun 
work in these areas and are optimistic that they 
will improve historical categorization.  

10 Conclusion 

Although most conditions in six clinical report ge-
nres are recent problems, identifying those that are 
historical is important in understanding a patient’s 
clinical state. A simple algorithm that relies on lex-
ical cues and simple temporal expressions can 
classify the majority of historical conditions, but 
our results indicate that the ability to reason with 
temporal expressions, to recognize tense and as-
pect, and to place conditions in the context of their 
report sections will improve historical classifica-
tion. We will continue to explore other features to 
predict historical categorization. 
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Abstract 

This paper introduces ONYX, a sentence-
level text analyzer that implements a number 
of innovative ideas in syntactic and semantic 
analysis. ONYX is being developed as part of 
a project that seeks to translate spoken dental 
examinations directly into chartable findings. 
ONYX integrates syntax and semantics to a 
high degree. It interprets sentences using a 
combination of probabilistic classifiers, 
graphical unification, and semantically anno-
tated grammar rules. In this preliminary 
evaluation, ONYX shows inter-annotator 
agreement scores with humans of 86% for as-
signing semantic types to relevant words, 80% 
for inferring relevant concepts from words, 
and 76% for identifying relations between 
concepts. 

1 Introduction 

This paper describes ONYX, a sentence-level 
medical language analyzer currently under devel-
opment at the University of Pittsburgh. Since 
ONYX contains a number of innovative ideas at an 
early stage of development, the objective of this 
paper is to paint a broad picture of ONYX and to 
present preliminary evaluation results rather than 
analyzing any single aspect in detail. 
 
ONYX is being developed as part of a project 
aimed at extracting information from spoken dental 
examinations. Currently, dental findings must be 
charted after an exam is completed or may be 
charted by an assistant who acts as a transcription-
ist during the exam. Our goal is to design a system 
capable of automatically extracting chartable find-

ings directly from spoken exams, potentially also 
supporting automated decision support and quality 
control. We are also developing tools to enable the 
system to be ported to other clinical domains and 
settings.  
 
Extracting information from unedited speech tran-
scriptions presents a number of challenges. Sen-
tences may be fragmented or telegraphic, and 
much of the speech may be irrelevant for our pur-
poses. The following example illustrates some of 
these difficulties: 
 

"Okay. Okay. Open. Okay. No. 1 is missing. Two oc-
clusal distal amalgam. Actually, make that occlusal. 
Also, one palatal amalgam. Can you close just 
slightly? And perfect. Okay, now open again." 

 
The relevant findings in this example are that tooth 
number one is missing and tooth number two has 
amalgam fillings on the occlusal and palatal sur-
faces. Our ultimate challenge is to create a system 
that can recognize relevant sentences and perform 
competently in the face of the inherent ambiguity 
and noise commonly found in conversational 
speech. ONYX does not yet address all of these 
challenges, although we have clear directions we 
are pursuing as described in the Future Work sec-
tion of this paper. Our goal in this paper is to de-
scribe the current state of ONYX and the 
innovations we feel will enable it to be adapted to 
complex NLP tasks in the future. 

2 Overview of ONYX  

ONYX is the middle component of a pipelined 
architecture as illustrated in figure 1. The entry 
point to this architecture is a speech-to-text ana-
lyzer, which takes input from a microphone worn 
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by the dentist and produces a transcription that 
ONYX analyzes for semantic content. ONYX's 
output is then passed to a discourse analyzer that 
applies dental knowledge to assemble ONYX's 
sentence-level semantic representations into 
chartable exam findings. 

 

 
Figure 1. Speech-to-chart pipeline. 

 
ONYX looks for dental conditions such as caries, 
fractures and translucencies; restorations such as 
fillings and crowns; tooth locations; and modifiers 
such as tooth part, tooth surface, and condition ex-
tent. It produces templates of words and concepts. 
Table 1 shows a summary of four templates (Den-
tal Condition, Tooth Location, Surface and State) 
representing the meaning of "eight mesio might 
have a slight translucency."  
 

 
ONYX’s interpretations are represented as binary 
predicates that take the templates as arguments (for 
convenience, only the summary concepts from the 
templates are shown): 

ConditionAt(*translucency, *numberEight) & 
LocationHasSurface(*numberEight, *mesial) &  
StateOf(*translucency, *possible)  
 

ONYX builds on ideas from MPLUS (Christensen 
et al, 2002), which was used primarily to interpret 
radiology reports. MPLUS uses Bayesian networks 
(BNs) to produce filled templates. Through a train-
ing process, words from the corpus of training 
documents are manually associated with states of 
terminal nodes in a BN, and concepts are associ-
ated with states of nonterminal nodes. When 
MPLUS interprets a sentence, it instantiates the 
BNs with words from the sentence and infers the 
most probable concepts consistent with those 
words. It then generates templates filled with those 
words and concepts.  
 
BNs have proven useful in semantic analysis (e.g. 
Ranum 1989, Koehler 1998, Christensen 2002): 
their performance degrades gracefully in the face 
of various types of lexical and syntactic noise. The 
main disadvantage with using BNs is their inherent 
computational complexity. ONYX employs a se-
mantics-intensive form of parsing, interpreting 
each phrase as it is constructed rather than waiting 
until the syntactic analysis is completed to do the 
interpretation. For this reason we have developed 
an experimental probabilistic classifier for ONYX 
called a Concept Model (CM). CMs support a tree-
structured representation of related words and con-
cepts (figure 5), structurally similar to the BNs 
used by MPLUS, but using a more efficient model 
of computation. In essence CMs are trees of Naïve 
Bayes classifiers, although they contain enhance-
ments, not described in this study, which in general 
make them more accurate than strict Naïve Bayes. 
Each node together with its children constitutes a 
single classifier. When a CM is applied to words in 
a sentence, word-level CM states are assigned a 
probability based on training data. Probabilities are 
propagated upwards through the CM, calculating 
probabilities for all concepts that depend directly 
or indirectly on the words of the sentence.  

3 ONYX Syntactic Analyzer 

For this project we desired a parser that was fast, 
flexible and robust. We designed a variation on a 
bottom-up chart parser (Kay, 1980) and hand-
crafted an initial set of 52 context-free grammar 

Dental Condition 
  Condition Concept *translucency 
  Condition Term "translucency" 
  Severity Concept *superficial 
  Severity Term "slight" 
Tooth Location 
  Location Concept *numberEight 
  Tooth Number "eight" 
Surface 
  Surface Concept *mesial 
  Front/Back Term "mesio" 
State 
  State Concept *possible 
  State Term "might" 
Table 1: ONYX templates for "eight mesio might 
have a slight translucency." Terms with an * are in-
ferred concepts. 
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rules. Chart parsers based on Kay’s algorithm 
maintain an agenda of “edges,” which correspond 
to partially or completely instantiated grammar 
rules. In the original algorithm, for each new 
phrase added to the chart an edge is created for 
each rule that can begin with that phrase. In addi-
tion, each existing edge that abuts and can be ex-
tended with that phrase is duplicated with a pointer 
to the new phrase. When an edge has no more un-
matched components, it is regarded as a new 
phrase that can begin or extend other edges. Since 
edges are used to anticipate all possible continua-
tions of phrases vis-à-vis the grammar, the number 
of edges grows quickly relative to the number of 
words in the sentence. Charniak et al. (1998) noted 
that exhaustively parsing maximum-40-word sen-
tences from the Penn II treebank requires an aver-
age of 1.2 million edges per sentence.  
 
ONYX’s parse algorithm replaces edges with bi-
nary links. We briefly describe this new algorithm. 
A set of binary link templates is defined for each 
grammar rule. For instance, the rule S->NP AUX 
VP (labeled S1) would produce the templates 
[s1:np,aux] and [s1:aux,vp]. When a phrase is 
added to the chart, binary links for all applicable 
rules are added from that phrase to juxtaposed 
phrases to the left and right on the chart. When a 
right or left-terminating link is added (all links for 
rules with two or three components are right or left 
terminating), a quick search is done in the other 
direction for links belonging to the same rule. Each 
complete set of links defines a new phrase of the 
target type, as shown in figure 2. 
 

 
Figure 2. Binary links for the rule S1:S->NP AUX VP 
used to generate new phrases of type S1 from juxta-
posed NP, AUX, and VP phrases on the chart. 
 
Although we have not analyzed the time and space 
complexity of this algorithm, it has proven to be 

more efficient than the edge-based parser used by 
MPLUS. Time and space complexity for chart 
parsers is calculated based on the number of edges 
produced, which has been shown to be O(n3), with 
n words in a sentence. Since binary links, unlike 
edges, are only used to record grammatical rela-
tions between juxtaposed phrases on the chart 
(rather than anticipating possible continuations), 
are not duplicated, and can participate in the crea-
tion of multiple new phrases, the number of binary 
links grows more slowly than the number of edges.  
On the other hand, the need to search for com-
pleted link sets increases processing time. We plan 
to formally analyze the time and space require-
ments of this algorithm in a future study. 

4� ONYX Semantic Analyzer 

In ONYX syntax and semantics are highly inte-
grated. Rather than waiting for a completed parse 
tree to begin the interpretation process, ONYX 
semantically interprets each phrase as it is created 
and before it is placed on the chart. Each phrase is 
assigned a “goodness” score based in part on the 
goodness of its semantic interpretation, and this 
score is used in determining the order in which 
phrases are expanded, resulting in a semantically 
guided best-first search. 
 
To represent semantic relations between templates, 
ONYX uses a custom-built first-order predicate 
language with a syntax based roughly on the 
Knowledge Interchange Format (Genesareth & 
Fikes, 1992). ONYX interpretations are conjuncts 
of binary predicates formulated in this language, 
with templates as arguments. This language is for 
internal use only; ONYX will use standard lan-
guage protocols for communicating with external 
systems. We decided to implement our own lan-
guage rather than using an existing implementation 
in order to have access to the underlying data 
structures, which we use in three ways not tradi-
tionally applied to symbolic languages: 1- We have 
extended our language to include Java objects as 
constants and Java methods as functions and rela-
tions. In particular, CM templates are treated as 
constants in the language, and CMs are semanti-
cally typed functions that map words to templates. 
2- As described next, ONYX's default mode of 
semantic interpretation is based on a form of graph 
unification. Binary predicates are treated as unifi-
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able links in a graph as shown in figure 3. 3- 
ONYX uses the predicate structure of an interpre-
tation to pass information between CMs. For in-
stance, if an interpretation contains the relation 
ConditionAt(Condition, Location), ONYX inserts 
the summary concept from the Location CM into 
the Condition CM. This allows the Condition CM 
to factor tooth location into its determination of the 
most probable Condition concept. 
 
Figure 3 illustrates ONYX’s unification-based in-
terpretation process. ONYX relies on a semantic 
network that defines types and relations in the den-
tal domain (figure 4). As dental concepts are 
brought together in a phrase, links connecting 
those concepts are extracted from the semantic 
network and formulated into binary predicates in 
an interpretation. As phrases are joined together in 
larger phrases, their relations and templates are 
merged, resulting in an interpretation tree denoting 
a dental object (e.g. dental condition, tooth loca-
tion, tooth surface) with possibly multiple levels of 
modifiers. For instance, the interpretation for 
"eight mesio might have a slight translucency" can 
be generated from the partial interpretations of the 
phrases "eight mesio", "might" and "slight translu-
cency" as shown in figure 3.  

 
Figure 3. Interpreting “eight mesio might have a slight trans-
lucency” using graph unification.  
 
There are two primary justifications for using uni-
fication in this way. First, conjoined phrases, par-
ticularly noun phrases, often contain unifiable 
partial descriptions of a single object. Second, if 
concepts appear together in a phrase, there is a 
good chance that relations connecting those con-
cepts in the semantic network are captured, explic-
itly or implicitly, in the meaning of the phrase.  

The dental semantic network is shown in figure 4. 
Terminal (white) nodes define concrete semantic 
types associated with dental CMs. For instance, the 
DentalCondition type is associated with the con-
cept model shown in figure 5. 

 
Figure 4. Semantic network for dental exams. 

Nonterminal (gray) nodes represent abstract types 
with no associated CMs. A concrete type may have 
more than one abstract parent type. For instance, a 
Restoration, such as a crown, is both a Condition 
and a Location. As such, it can exist at a tooth lo-
cation, e.g., "the crown on tooth 5," and it can be 
the location of condition, e.g., "the crack on the 
crown on tooth 5." Since a concrete type can have 
multiple parent types, ONYX often produces mul-
tiple alternative interpretations over words of a 
sentence. For instance, ONYX may produce two 
interpretations for "mesial amalgam"—one refer-
ring to the mesial surface of an amalgam filling, 
and one referring to an amalgam filling on the me-
sial surface of some unspecified tooth. ONYX uses 
probabilities derived from training cases to prefer 
the latter interpretation, which is the more likely of 
the two.  

 
Figure 5. Dental Condition Concept Model. 

Each concept model has a tree structure as illus-
trated in figure 5, which shows the structure of the 
Dental Condition CM. Nonterminal nodes repre-
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sent concepts, and terminal nodes represent words, 
with the exception of stub nodes. The value of a 
stub node is the summary concept (i.e., root node) 
from the CM of the same name.  
 
One problem with ONYX’s graph-based model of 
interpretation is that the semantic network does not 
capture all relations that might be expressed in a 
dental exam. The network was deliberately kept 
simple by including mostly relations that are cate-
gorically true (e.g., all teeth have surfaces) or that 
are frequently talked about (e.g., restorations are 
frequently mentioned as being locations of other 
conditions). This restriction helps keep the unifica-
tion process tractable and minimizes ambiguity, 
but interpretations may miss important points. For 
instance, the ONYX interpretation of "15 occlusal 
amalgam" is ConditionAt(*filling, *toothFifteen) & Loca-
tionHasSurface(*toothFifteen, *occlusal) which can be 
paraphrased as "a filling at tooth 15 and tooth 15 
has an occlusal surface". This interpretation misses 
the important fact that the filling is on the occlusal 
surface of tooth 15, which we would normally in-
fer from the fact that “occlusal” adjectivally modi-
fies “amalgam.” Another limitation is that although 
the semantic network as it stands can describe sin-
gle objects with their modifiers, it cannot be used 
to build up complex descriptions involving multi-
ple objects of the same type. 
 
To address these limitations we have added a sec-
ond, more specialized mode of interpretation that is 
contingent on lexical and syntactic information 
from the parse and that can introduce into an inter-
pretation predicates that do not exist in the seman-
tic network. This mode of interpretation uses 
semantic types and patterns attached to grammar 
rules. As an example, the rule NP -> AP NP can be 
semantically annotated thus: 
 
   NP<Restoration> -> AP<Surface> NP<Restoration> 
 => OnSurface(Restoration, Surface) 
 
This rule captures the idea that if a Surface-type 
adjectival phrase modifies a Restoration-type noun 
phrase, the restoration exists on that surface. Ap-
plied to “occlusal amalgam” this rule would pro-
duce an interpretation OnSurface(*filling, *occlusal), 
which is the relation missing from the previous 
example. Semantically annotated grammar rules 

can also connect objects of the same semantic type. 
For instance, we might define a rule  
 
   NP<Condition> -> NP<Condition1> "caused by"  
   NP<Condition2>  
    => CausedBy(condition1, condition2) 
 
This rule can match phrases such as "leakage 
caused by a crack along the lingual surface", and 
link the two conditions (leakage and crack) with a 
CausedBy relation. This mechanism enables 
ONYX to construct complex descriptions with 
multiple objects. 
 
We have added a mechanism to the ONYX train-
ing tool that allows semantically annotated gram-
mar rules to be generated semi-automatically 
during training. A human annotator with sufficient 
linguistic background can view the parse trees 
generated by ONYX for corpus sentences, repair 
those parse trees and/or add new semantic relations 
if necessary, then apply a function that creates cop-
ies of the rules embodied in those trees with se-
mantic types and predicates attached. 

5� Integrating Syntax and Semantics 

Although most NLP systems apply semantic analy-
sis to completed parse trees, in humans the two 
processes are more integrated. Syntactic expecta-
tions are greatly influenced by word meanings, as 
illustrated by “garden path” sentences such as “The 
man whistling tunes pianos.” In ONYX, syntax 
and semantics are highly interleaved. This is ac-
complished in several ways: 
 
1- ONYX’s parse algorithm permits words to be 
processed in any order, rather than strictly left-to-
right, since binary grammar links can be added to 
the phrase chart in any order. This allows ONYX 
to be instructed to focus on semantically interest-
ing words first, which can be used, among other 
things, to gather useful information from ungram-
matical speech or run-on sentences where attempt-
ing to look for complete sentences in strict left-to-
right fashion would be unsuccessful. 
 
2- ONYX implements a variation on a probabilistic 
context free grammar (PCFG) (Charniak, 1997) 
that associates grammar rules with semantic types. 
Based on training, a conditional probability is cal-
culated for each <rule, type> pair given specific 
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<rule, type> assignments to the rule’s components. 
The probability of a phrase is then calculated as the 
product of the probabilities of the phrase rule and 
its semantic type, given the rule and type of each 
of its child phrases. ONYX is then able to prefer 
phrases that best accommodate the semantic types 
of their constituents. Specifically, 
 

prob(phrase) =  
∏(prob(rule(phrase) + semtype(phrase) |  
       rule(childPhrase) + semtype(childPhrase))) 

 
3- One hard problem in parsing is determining the 
correct structure of conjunctive noun phrases. 
ONYX applies semantic guidance to solve this 
problem. For instance, in a chest radiology report 
the words "right and left lower lobe opacity" can 
be grouped in several different ways, and different 
groupings can produce different interpretations. 
The correct grouping should be something like: 
[[[right and left] [lower lobe]] opacity], rather than 
[[right and [left lower]] [lobe opacity]]. ONYX 
currently employs a simplistic representation of the 
meaning of a conjunctive phrase as a list of inter-
pretations. The correct interpretations for "right 
and left lower lobe opacity" would be two predi-
cate expressions covering the words (right, lower, 
lobe, opacity) and (left, lower, lobe, opacity). 
ONYX generates a measure of the similarity of 
these expressions based on the cosine similarity of 
the lists of non-null nodes in their CM templates. 
This measure is factored into the phrase's goodness 
score under the heuristic that semantically bal-
anced conjunctive phrases are more likely to be 
correct than imbalanced ones. 
 
4- As mentioned earlier, ONYX can utilize gram-
mar rules annotated with semantic types and pat-
terns. Semantically annotated rules constrain 
phrases to match particular semantic types, and can 
contribute predicates to the interpretation of those 
phrases. This gives ONYX's grammar the character 
of a semantic grammar. 
 
5- Phrases are weighted and preferred by ONYX 
according to their goodness score, which is based 
on three measures: the probability of the phrase as 
determined by the PCFG formula, the conjunct 
cosine similarity score, if applicable, and the 
goodness score of the phrase's semantic interpreta-
tion. The PCFG and conjunct similarity formulas 

are based on semantic criteria, as mentioned ear-
lier. Interpretation goodness scores are calculated 
as a simple product of the probabilities of the se-
mantic relation predicates they contain. Relation 
probabilities are in turn derived from training data, 
and are conditioned on the concepts they contain. 
The probability of a relation is calculated as the 
number of times a pair of concepts appears to-
gether in the target relation divided by the number 
of times they appear together in any set of rela-
tions. The goodness score of a phrase is thus highly 
semantically determined. 
 

goodness(phrase) = F(prob(phrase, PCFG),  
   conjunctSimilarity(phrase),  
   goodness(interp(phrase)) 
goodness(interp(phrase)) =  
  ∏prob(relations(interp(phrase))) 
prob(relation) =  
 count(relation + concepts(relation)) / 
 count(anyConnection(concepts(relation))) 

6� Evaluation 

We performed a preliminary evaluation of ONYX 
for the extraction of relevant dental concepts and 
relations on a set of twelve documents in our cur-
rent training corpus.  
 
Reference Standard. Each document was inde-
pendently annotated by three human annotators 
(authors LC, JI and HH), who used the ONYX 
training tool to fill in templates representing dental 
conditions, tooth locations and other relevant con-
cepts, as well as to select the semantic relations 
linking those templates. The annotators then re-
viewed disagreements and by consensus created a 
reference standard set of templates and relations. 
Where the annotators did not have sufficient dental 
knowledge to reach an agreement they consulted 
dental clinicians. 
 
Outcome Metrics. To evaluate ONYX on the rela-
tively small corpus of documents, we applied a 
leave-one-out approach: for each sentence in the 
reference standard, ONYX was trained using the 
templates from the remaining reference standard 
sentences. ONYX was then applied to the target 
sentence, and the resulting templates and relations 
were compared to the reference standard. We 
measured inter-annotator agreement (IAA) be-
tween ONYX and the reference standard using the 
formula described in Roberts et al (2007): 

24



 
IAA = (2 * correct) / (spurious + missing + correct) 

 
We calculated IAA separately for CM words, con-
cepts, and semantic relations. A correct match is a 
word, concept or relation generated by both the 
reference standard and ONYX; a spurious item is 
one ONYX generated that did not exist in the ref-
erence standard; and a missing item is one that ex-
isted in the reference standard but was not 
generated by ONYX. In addition to IAA we identi-
fied the concepts and relations most commonly in 
error and calculated percentages for those errors.  
 
We compared ONYX’s performance on the target 
documents with that of a simple baseline parser we 
created for this purpose. The baseline parser proc-
esses the words of a sentence from left to right, 
creating phrases for sets of juxtaposed words that 
can be interpreted together using the semantic net-
work. No grammar rules are employed, there is no 
analysis of conjunctive phrases, and goodness 
scores are not calculated. Our goal was to get a feel 
for how much these factors contribute to generat-
ing correct interpretations. There is no precedence 
for this particular approach as far as we are aware, 
so we regard this comparison as informative but 
not definitive. 

7 Results 

IAA results for ONYX and the baseline parser are 
shown in table 2. ONYX performs best at inserting 
words into appropriate nodes in the CMs, with 
IAA of 86%, and less well for inferring the best 
concept (80%) and identifying relations among 
concepts (76%). ONYX consistently out-performs 
the baseline parser. 
 
Table 2: IAA for assignment of words, concepts, and 
relations. 
 IAA 

ONYX  86% Words (n = 904) Baseline  57% 
ONYX  80% Concepts (n = 1186) Baseline  53% 
ONYX  76% Relations (n = 297) Baseline  41% 

 
Although this study does not examine all the rea-
sons for the differences in performance between 
ONYX and the baseline parser, some reasons can 

be illustrated with an example. Conjunctive 
phrases are common in dental discourse, and a 
failure to handle conjuncts can result in both con-
cept and relation errors. For instance, given the 
sentence "4, 5, 6, 7 fine" ONYX generates separate 
interpretations covering the word groupings (4, 
fine), (5, fine), (6, fine), and (7, fine), which would 
yield four ConditionAt relations, four Location 
concepts (*numberFour, *numberFive, 
*numberSix, *numberSeven) and one Condition 
concept (*normalTooth) appearing in each relation. 
The baseline parser in contrast does not discover 
this distribution of terms and so omits all but the 
ConditionAt relation over (7, fine). Trying to 
merge juxtaposed tooth numbers, the baseline 
parser also infers that at least some of these denote 
tooth ranges instead of individual teeth (e.g. inter-
preting “4, 5” as “4 to 5” instead of “4 and 5”), 
which causes it to misclassify Location concepts. 
The ability to generate correct parse trees and to 
use the structure of those parse trees in the inter-
pretation process is important in generating correct 
interpretations. 
 
Tables 3 and 4 show breakdowns by percentage of 
the concepts and relations most commonly in error 
in ONYX’s interpretations (errors accounting for 
more than 15%). 
 

Table 3: Per-concept error percentages  
Dental Condition Summary Concept 18% 
Tooth Location Summary Concept 17% 
Dental Condition Intermediate Concept 16% 
Surface Summary Concept 15% 
Total  66% 

 
Table 4: Per-relation error percentages. 
Surface of Part 47% 
Location of Condition 23% 
Total 70% 

 

8  Related Work 

ONYX is a new application inspired by SPRUS 
(Ranum, 1989), Symtext (Koehler, 1998), and 
MPLUS (Christensen, 2002), which all used Baye-
sian Networks to infer relevant findings from text. 
Other medical language processing systems im-
plement different approaches to encode clinical 
concepts and their modifiers, along with relations 
between concepts, including MedLEE (Friedman, 
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1994), a largely statistical system by Taira and col-
leagues (Taira, 2007), and MedSyndikate (Hahn, 
2002).  
 
Many of ONYX’s components leverage research in 
the general and clinical NLP domains, including 
the use of chart parsing (Kay, 1980) and probabil-
istic context free grammars (Charniak, 1997). 
ONYX's use of semantically annotated grammar 
rules was inspired in part by MedLEE (Friedman et 
al, 1994), which uses a semantic grammar.  
 
Although incorporating ideas and approaches from 
others, we feel that ONYX is unique in several 
ways, including its high level of syntactic/semantic 
integration and the ways in which it blends sym-
bolic and probabilistic representations of domain 
knowledge. We plan to make ONYX available 
through open source when the system is more 
complete.  

9 Limitations 

There are several limitations to this study. Al-
though ONYX introduces several innovations, 
these are not described in detail in this study and 
are not individually evaluated for their effect on 
ONYX’s performance. Instead, this study presents 
a broad overview of ONYX and evaluates ONYX's 
overall performance against a reference standard 
on a small test sample. Another limitation of our 
study is the baseline system—because similar sys-
tems generate different output than ONYX and do 
not model the same domain, finding a competitive 
baseline application is difficult. In spite of its im-
perfection, we believe the baseline we imple-
mented to be reasonable. 

10 Future Work 

One limitation of a system like ONYX is the over-
head of manually creating complex training cases. 
To address this shortcoming, the ONYX training 
tool invokes ONYX to automatically create tem-
plates and relations for corpus sentences, and hu-
man trainers correct any mistakes. A semi-
automated approach greatly speeds up the training 
process and facilitates agreement among human 
trainers. We plan to further automate this process 
using an approach derived from Thelen & Riloff 
(2002), which uses a classifier with features based 

on extraction patterns derived from Autoslog 
(Riloff, 1996). We plan to adapt this approach to 
automatically classify CM word assignments, and 
also to automatically classify semantic relations 
between CM templates. We will add this function-
ality to the training tool to enable it to find and an-
notate relevant sentences automatically where 
possible. We will also apply this functionality to 
enable ONYX to recognize relevant sentences in 
new documents based on their similarity to training 
sentences, and we will use semantic patterns stored 
with training sentences to aid in interpreting noisy 
segments of text that ONYX cannot parse. We plan 
to compare the performance of grammar-based and 
feature-based semantic analysis in future studies. 
With more fully automated training, we also hope 
to make ONYX more easily portable to new do-
mains and clinical settings in the future.  
 
Conclusions 
 
This paper describes ONYX, which is being devel-
oped as part of a system for extracting chartable 
findings from spoken dental examinations. ONYX 
contains a number of innovative ideas including a 
novel adaptation of Kay's (1980) parse algorithm; a 
symbolic language extended to include probabilis-
tic and procedural elements; an integration of syn-
tax and semantics that includes a semantically 
weighted probabilistic context free grammar and 
interpretation based both on a semantic network 
and a semantic grammar. Considering ONYX’s 
early stage of development it performed reasonably 
well in this limited evaluation but must be ex-
tended to address challenges in extracting findings 
from spoken dental exams. 
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Abstract

Identifying hedged information in biomedical
literature is an important subtask in informa-
tion extraction because it would be mislead-
ing to extract speculative information as fac-
tual information. In this paper we present a
machine learning system that finds the scope
of hedge cues in biomedical texts. The sys-
tem is based on a similar system that finds the
scope of negation cues. We show that the same
scope finding approach can be applied to both
negation and hedging. To investigate the ro-
bustness of the approach, the system is tested
on the three subcorpora of the BioScope cor-
pus that represent different text types.

1 Introduction

Research on information extraction of biomedical
texts has grown in the recent years. Most work
concentrates on finding relations between biologi-
cal entities, like genes and proteins (Krauthammer
et al., 2002; Mitsumori et al., 2006; Krallinger et
al., 2008a; Krallinger et al., 2008b). Determining
which information has been hedged in biomedical
literature is an important subtask of information ex-
traction because extracted information that falls in
the scope of hedge cues cannot be presented as fac-
tual information. It should be discarded or presented
separately with lower confidence. The amount of
hedged information present in texts cannot be un-
derstimated. Vincze et al. (2008) report that 17.70%
of the sentences in the abstracts section of the Bio-
Scope corpus and 19.44% of the sentences in the
full papers section contain hedge cues. Light et al.

(2004) estimate that 11% of sentences in MEDLINE
abstracts contain speculative fragments. Szarvas
(2008) reports that 32.41% of gene names men-
tioned in the hedge classification dataset described
in Medlock and Briscoe (2007) appears in a specu-
lative sentence.

In this paper we present a machine learning sys-
tem that finds the scope of hedge cues in biomedical
texts. Finding the scope of a hedge cue means deter-
mining at sentence level which words in the sentence
are affected by the hedge cue. The system combines
several classifiers and works in two phases: in the
first phase hedge cues (i.e., words indicating spec-
ulative language) are identified, and in the second
phase the full scope of these hedge cues is found.
This means that for a sentence like the one in Ex-
ample (1) taken from the BioScope corpus (Szarvas
et al., 2008), the system performs two actions: first,
it detects that suggest, might, and or are hedge sig-
nals; second, it detects that suggest has as its scope
expression of c-jun, jun B and jun D genes might be
involved in terminal granulocyte differentiation or in
regulating granulocyte functionality, that might has
as its scope be involved in terminal granulocyte dif-
ferentiation or in regulating granulocyte functional-
ity, and that or has as its scope in regulating granu-
locyte functionality.
(1) These results <xcope id=“X7.5.3” ><cue type= “spec

ulation” ref=“X7.5.3”> suggest </cue> that <xcope
id= “X7.5.2”>expression of c-jun, jun B and jun D
genes <cue type= “speculation” ref= “X7.5.2”> might
</cue> be involved <xcope id=“X7.5.1”>in terminal
granulocyte differentiation <cue type= “speculation”
ref=“X7.5.1” >or</cue> in regulating granulocyte
functionality </xcope></xcope></xcope>.
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Contrary to current practice to only detect modal-
ity, our system also determines the part of the sen-
tence that is hedged. We are not aware of other sys-
tems that perform this task. The system is based on a
similar system that finds the scope of negation cues
(Morante and Daelemans, 2009). We show that the
system performs well for this task and that the same
scope finding approach can be applied to both nega-
tion and hedging. To investigate the robustness of
the approach, the system is tested on three subcor-
pora of the BioScope corpus that represent different
text types. Although the system was developed and
tested on biomedical text, the same approach can
also be applied to text from other domains.

The paper is organised as follows. In Section 2,
we summarise related work. In Section 3, we de-
scribe the corpus on which the system has been de-
veloped. In Section 4, we introduce the task to be
performed by the system, which is described in Sec-
tion 5. Results are presented and discussed in Sec-
tion 6. Finally, Section 7 puts forward some conclu-
sions.

2 Related work

Hedging has been broadly treated from a theoretical
perspective. The term hedging is originally due to
Lakoff (1972), who introduces it in relation to pro-
totype theory. Palmer (1986) defines a term related
to hedging, epistemic modality, which expresses the
speaker’s degree of commitment to the truth of a
proposition. Saurı́ et al. (2006) research the modal-
ity of events, which “expresses the speaker’s degree
of of commitment to the events being referred to in
a text”. They treat a wide spectrum of modal types
and present the codification of modality information
with the specification language TimeML, which al-
lows to mark modality cues at a lexical level and at
a syntactic level.

As for research that focuses specifically on scien-
tific texts with descriptive purposes, Hyland (1998)
describes hedging in scientific research articles,
proposing a pragmatic classification of hedge ex-
pressions based on an exhaustive analysis of a cor-
pus. The catalogue of hedging cues includes modal
auxiliaries, epistemic lexical verbs, epistemic ad-
jectives, adverbs, and nouns. Additionally, it in-
cludes also a variety of non–lexical cues. Light et

al. (2004) analyse the use of speculative language
in MEDLINE abstacts. They studied the expression
of levels of belief (hypothesis, tentative conclusions,
hedges, and speculations) and annotated a corpus
of abstracts in order to check if the distinction be-
tween high speculative, low speculative and definite
sentences could be made reliably. They found that
the speculative vs. definite distinction was reliable,
but the distinction between low and high speculative
was not. Thompson et al. (2008) report on a list of
words and phrases that express modality in biomed-
ical texts and put forward a categorisation scheme.
The list and the scheme are validated by annotating
202 MEDLINE abstracts.

Some NLP applications incorporate modality in-
formation. Friedman et al. (1994) develop a med-
ical text processor “that translates clinical informa-
tion in patient documents into controlled vocabulary
terms”. The system uses a semantic grammar that
consists of rules that specify well-formed semantic
patterns. The extracted findings are assigned one
of five types of modality information: no, low cer-
tainty, moderate certainty, high certainty and cannot
evaluate. Di Marco and Mercer (2005) use hedging
information to classify citations. They observe that
citations appear to occur in sentences marked with
hedging cues.

Work on hedging in the machine learning field
has as a goal to classify sentences into speculative
or definite (non speculative). Medlock and Briscoe
(2007) provide a definition of what they consider to
be hedge instances and define hedge classification
as a weakly supervised machine learning task. The
method they use to derive a learning model from
a seed corpus is based on iteratively predicting la-
bels for unlabeled training samples. They report ex-
periments with SVMs on a dataset that they make
publicly available1. The experiments achieve a re-
call/precision break even point (BEP) of 0.76. They
apply a bag-of-words (BOG) approach to sample
representation. Medlock (2008) presents an exten-
sion of this work by experimenting with more fea-
tures (part-of-speech (PoS), lemmas, and bigrams).
Experiments show that the PoS representation does
not yield significant improvement over the results in

1Available at
http://www.benmedlock.co.uk/hedgeclassif.html.
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Medlock and Briscoe (2007), whereas with a lemma
representation the system achieves a peak perfor-
mance of 0.8 BEP, and with bigrams of 0.82 BEP.
Szarvas (2008) follows Medlock and Briscoe (2007)
in classifying sentences as being speculative or non-
speculative. Szarvas develops a MaxEnt system that
incorporates bigrams and trigrams in the feature rep-
resentation and performs a complex feature selection
procedure in order to reduce the number of keyword
candidates. It achieves up to 0.85 BEP and 85.08
F1 by using an external dictionary. Kilicoglu and
Bergler (2008) apply a linguistically motivated ap-
proach to the same clasification task by using knowl-
edge from existing lexical resources and incorpo-
rating syntactic patterns. Additionally, hedge cues
are weighted by automatically assigning an informa-
tion gain measure and by assigning weights semi–
automatically depending on their types and central-
ity to hedging. The system achieves results of 0.85
BEP.

As mentioned earlier, we are not aware of re-
search that has focused on learning the scope of
hedge signals inside or outside of the biomedical do-
main, which makes a direct comparison with the ap-
proaches described here impossible.

3 Hedge cues in the BioScope Corpus

The system has been developed using the BioScope
corpus (Szarvas et al., 2008; Vincze et al., 2008)2,
a freely available resource that consists of medical
and biological texts. In the corpus, every sentence is
annotated with information about negation and spec-
ulation. The annotation indicates the boundaries of
the scope and the keywords, as shown in (1) above.
In the annotation, scopes are extended to the biggest
syntactic unit possible, so that scopes have the max-
imal length, and the speculation cue is always in-
cluded in the scope.

The BioScope corpus consists of three parts: clin-
ical free-texts (radiology reports), biological full pa-
pers and biological paper abstracts from the GENIA
corpus (Collier et al., 1999). Table 1 shows statistics
about the corpora. Hedge cues are represented by
one or more tokens, as (2) shows, where the hedge
cues that appear in the three corpora are listed. The
complete list of all hedge cues comprises 176 cues.

2Web page: www.inf.u-szeged.hu/rgai/bioscope.

In the same corpora the number of negation cues is
lower, 38.
(2) apparent, apparently, appear, assume, can, consider,

consistent with, could, either, indicate, likely, may, no
evidence, not, or, perhaps, possible, possibly,
presumably, probable, probably, should, suggestion,
support, think, unclear, whether, would

35 hedge cues that occur in the clinical reports
subcorpus do not occur in the abstracts subcorpus,
and 34 hedge cues that appear in the papers subcor-
pus do not appear in the abstracts subcorpus. Only
15.90% of the total of hedge cues appear in the three
subcorpora. The most frequent hedge cues in the ab-
stracts subcorpus are may (19.15 %), appear (5.30
%), and or (4.45 %); in the papers subcorpus, sug-
gest (10.26 %), may (9.97 %), and might (5.86 %);
and in the clinical subcorpus, or (24.27 %), suggest
(5.62 %), and evaluate for (5.27 %).

Clinical Papers Abstracts
#Documents 1954 9 1273
#Sentences 6383 2670 11871
#Words 41985 60935 282243
#Lemmas 2320 5566 14506
Av. length sentences 7.73 26.24 26.43
%Hedge sentences 13.39 19.44 17.70
# Hedge cues 1189 714 2769
Av. length scopes 5.92 14.37 16.27
Av. length scopes 5.15 13.00 15.44
to the right
Av. length scopes 2.46 5.94 5.60
to the left
% Scopes to the right 73.28 76.55 82.45
% Scopes to the left 26.71 23.44 17.54

Table 1: Statistics about the subcorpora in the BioScope
corpus and the hedge scopes (“Av”. stands for average).

The texts have been processed with the GENIA
tagger (Tsuruoka and Tsujii, 2005; Tsuruoka et al.,
2005), a bidirectional inference based tagger that an-
alyzes English sentences and outputs the base forms,
part-of-speech tags, chunk tags, and named entity
tags in a tab-separated format. Additionally, we con-
verted the annotation about scope of negation into a
token-per-token representation, following the stan-
dard format of the 2006 CoNLL Shared Task (Buch-
holz and Marsi, 2006), where sentences are sepa-
rated by a blank line and fields are separated by a
single tab character. A sentence consists of a se-
quence of tokens, each one starting on a new line.
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4 Finding the scope of hedge cues

We model this task in the same way that we mod-
elled the task for finding the scope of negation
(Morante and Daelemans, 2009), i.e., as two con-
secutive classification tasks: a first one that consists
of classifying the tokens of a sentence as being at the
beginning of a hedge signal, inside or outside. This
allows the system to find multiword hedge cues. The
second classification task consists of classifying the
tokens of a sentence as being the first element of the
scope, the last, or neither. This happens as many
times as there are hedge cues in the sentence.

5 System description

The two classification tasks (identifying hedge cues
and finding the scope) are implemented using super-
vised machine learning methods trained on part of
the annotated corpus.

5.1 Identifying hedge cues
In this phase, a classifier predicts for all tokens in a
sentence whether a token is the first token of a hedge
cue (B-cue), inside a hedge cue (I-cue), or outside of
it (O-cue). For sentence (3) the system assigns the
B-cue class to indicate, the I-cue class to that and
the O-cue class to the rest of tokens.

(3) These results indicate that a component or
components of NF–AT have the potential to
reconstitute NF(P)

The instances represent all tokens in the corpus
and they have features about the token: lemma,
word, part-of-speech (POS) and IOB3 chunk tag;
and features about the token context: Word, POS
and IOB chunk tag of 3 tokens to the right and 3 to
the left.

We use IGTREE as implemented in TiMBL (ver-
sion 6.1.2) (Daelemans et al., 2007). We also ex-
perimented with IB1, but it produced lower results.
The classifier was parameterised by using gain ratio
for feature weighting. According to the gain ratio
scores, the most informative features are the lemma
and word of the token in focus, followed by the word
of the token to the right and of the token to the left.

We performed two experiments. In one, the test
file is preprocessed using a list of hedge cues ex-

3I stands for ‘inside’, B for ‘beginning’, and O for ‘outside’.

tracted from the training corpus. The list comprises
the following hedge cues listed in (4). Instances with
these hedge cues are directly assigned their class.
The classifier predicts the class of the rest of tokens.
In the other experiment we don’t preprocess the test
file.
(4) appear, apparent, apparently, believe, either, estimate,

hypothesis, hypothesize, if, imply, likely, may, might, or,
perhaps, possible, possibly, postulate, potential,
potentially, presumably, probably, propose, putative,
should, seem, speculate, suggest, support, suppose,
suspect, think, uncertain, unclear, unkwown, unlikely,
whether, would

5.2 Scope finding
In this phase three classifiers predict for all tokens
in the sentence whether a token is the first token in
the scope sequence (F-scope), the last (L-scope), or
neither (NONE). For the sentence in 3, the classi-
fiers assign the class F-scope to indicate, L-scope to
NF(P), and NONE to the rest of tokens. A fourth
classifier is a metalearner that uses the predictions
of the three classifiers to predict the scope classes.
An instance represents a pair of a hedge cue and a
token from the sentence. This means that all tokens
in a sentence are paired with all hedge cues that oc-
cur in the sentence. Hedge cues are those that have
been classified as such in the previous phase. Only
sentences that have hedge cues are selected for this
phase. The three object classifiers that provide input
to the metalearner were trained using the following
machine learning methods:

• Memory-based learning as implemented in
TiMBL (Daelemans et al., 2007), a supervised
inductive algorithm for learning classification tasks
based on the k-nearest neighbor classification
rule (Cover and Hart, 1967). In this lazy learning
approach, all training data is kept in memory
and classification of a new item is achieved by
extrapolation from the most similar remembered
training items.

• Support vector machines (SVM) as implemented in
SVMlightV6.01 (Joachims, 1999). SVMs are de-
fined on a vector space and try to find a decision
surface that best separates the data points into two
classes. This is achieved by using quadratic pro-
gramming techniques. Kernel functions can be used
to map the original vectors to a higher-dimensional
space that is linearly separable.
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• Conditional random fileds (CRFs) as implemented
in CRF++-0.51 (Lafferty et al., 2001). CRFs de-
fine a conditional probability distribution over label
sequences given a particular observation sequence
rather than a joint distribution over label and ob-
servation sequences, and are reported to avoid the
label bias problem of HMMs and other learning ap-
proaches.

The memory-based learning algorithm was pa-
rameterised in this case by using overlap as the sim-
ilarity metric, gain ratio for feature weighting, using
7 k-nearest neighbors, and weighting the class vote
of neighbors as a function of their inverse linear dis-
tance. The SVM was parameterised in the learning
phase for classification, cost factor of 1 and biased
hyperplane, and it used a linear kernel function. The
CRFs classifier used regularization algorithm L2 for
training, the hyper-parameter and the cut-off thresh-
old of features were set to 1.

We have used the same features used for the sys-
tem that finds the scope of negation. The features of
the first three classifers are:

• Of the hedge signal: Chain of words.

• Of the paired token: Lemma, POS, chunk IOB tag,
type of chunk; lemma of the second and third tokens
to the left; lemma, POS, chunk IOB tag, and type of
chunk of the first token to the left and three tokens
to the right; first word, last word, chain of words,
and chain of POSs of the chunk of the paired token
and of two chunks to the left and two chunks to the
right.

• Of the tokens between the hedge cue and the token
in focus: Chain of POS types, distance in number
of tokens, and chain of chunk IOB tags.

• Others: A feature indicating the location of the to-
ken relative to the hedge cue (pre, post, same).

The fourth classifier, a metalearner, is also a CRFs
as implemented in CRF++. The features of this clas-
sifier are:

• Of the hedge signal: Chain of words, chain of POS,
word of the two tokens to the right and two tokens to
the left, token number divided by the total of tokens
in the sentence.

• Of the paired token: Lemma, POS, word of two to-
kens to the right and two tokens to the left, token
number divided by the total of tokens in the sen-
tence.

• Of the tokens between the hedge cue and the to-
ken in focus: Binary features indicating if there are
commas, colons, semicolons, verbal phrases or one
of the following words between the hedge cue and
the token in focus: Whereas, but, although, nev-
ertheless, notwithstanding, however, consequently,
hence, therefore, thus, instead, otherwise, alterna-
tively, furthermore, moreover.

• About the predictions of the three classifiers: pre-
diction, previous and next predictions of each of
the classifiers, full sequence of previous and full se-
quence of next predictions of each of the classifiers.

• Others: A feature indicating the location of the to-
ken relative to the hedge cue (pre, post, same).

Hedge cues in the BioScope corpus always scope
over a consecutive block of tokens, including the cue
token itself. However, the classifiers only predict
the first and last element of the scope. We need to
process the output of the classifers in order to build
the complete sequence of tokens that constitute the
scope. We apply the following postprocessing:

(5) - If one token has been predicted as FIRST and one
as LAST, the sequence is formed by the tokens
between first and last.

- If one token has been predicted as FIRST and
none has been predicted as LAST, the sequence is
formed by the token predicted as FIRST.

- If one token has been predicted as LAST and
none as FIRST, the sequence will start at the hedge
cue and it will finish at the token predicted as
LAST.

- If one token has been predicted as FIRST and
more than one as LAST, the sequence will end with
the first token predicted as LAST after the token
predicted as FIRST, if there is one.

- If one token has been predicted as LAST and
more than one as FIRST, the sequence will start at
the hedge signal.

- If no token has been predicted as FIRST and
more than one as LAST, the sequence will start at
the hedge cue and will end at the first token
predicted as LAST after the hedge signal.

6 Results

The results provided for the abstracts part of the cor-
pus have been obtained by performing 10-fold cross
validation experiments, whereas the results provided
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for papers and clinical reports have been obtained by
training on the full abstracts subcorpus and testing
on the papers and clinical reports subcorpus. The
latter experiment is therefore a test of the robustness
of the system when applied to different text types
within the same domain. The evaluation is made us-
ing the precision and recall measures (Van Rijsber-
gen, 1979), and their harmonic mean, F-score. We
report micro F1.

In the hedge finding task, a hedge token is cor-
rectly classified if it has been classified as being at
the beginning or inside the hedge signal. We also
evaluate the percentage of hedge cues that have been
correctly identified. In the scope finding task, a to-
ken is correctly classified if it has been correctly
classified as being inside or outside of the scope of
all the hedge cues that there are in the sentence. This
means that when there is more than one hedge cue
in the sentence, the token has to be correctly as-
signed a class for as many hedge signals as there
are. Additionally, we evaluate the percentage of cor-
rect scopes (PCS). A scope is correct if all the tokens
in the sentence have been assigned the correct scope
class for a specific hedge signal. The evaluation in
terms of precision and recall measures takes as unit a
token, whereas the evaluation in terms of PCS takes
as unit a scope.

6.1 Hedge cue finding
An informed baseline system has been created by
tagging as hedge cues the tokens with the words
listed in (4) above. The list has been extracted from
the training corpus. The results are shown in Table 2.

Corpus Prec. Recall F1 % Correct
Abstracts 55.62 71.77 62.67 70.91
Papers 54.39 61.21 57.60 64.46
Clinical 66.55 40.78 50.57 51.38

Table 2: Baseline results of the hedge finding system.

The fact that the results are lower for the papers
and clinical subcorpora can be explained by the fact
that the list of cues has been extracted from the train-
ing corpus.

Table 3 shows the results of the system. The
results of the system for abstracts and papers are
higher than baseline, but for clinical they are lower.
This is due to the fact that in the baseline system the

hedge cue or that accounts for 24.53 % of the hedge
cues is 100 % correct, whereas the system achieves
only 0.72 % of correct predictions. The score ob-
tained by or is also the reason why the system pro-
duces lower results for the clinical subcorpus.

Corpus Prec. Recall F1 % Correct
Abstracts 90.81 79.84 84.77 78.67
Papers 75.35 68.18 71.59 69.86
Clinical 88.10 27.51 41.92 33.36

Table 3: Results of the hedge finding system without pre-
processing.

Table 4 shows the results of the system with pre-
processing. In terms of % of correct cues, the system
that uses a preprocessed test set gets higher scores,
but in terms of F1 it gets lower results, except for the
clinical subcorpus. The drop in F1 of this system is
caused by a drop in precision due to the excess of
false positives.

Corpus Prec. Recall F1 % Correct
Abstracts 60.74 94.83 74.05 96.03
Papers 56.56 84.03 67.61 88.60
Clinical 71.25 52.33 60.34 64.49

Table 4: Results of the hedge finding system with prepro-
cessing.

In the abstracts subcorpus the hedge cue that has
the biggest proportion of false positives is or. Of the
1062 accurrences of or, in 88.32% of the cases or is
not a hedge cue. The system that uses preprocessing
produces 938 false positives and 4 false negatives,
whereas the other system produces 21 false positives
and 108 false negatives. In the papers subcorpus, the
hedge cues if, or, can, indicate and estimate cause
67.38% of the false positives. In the clinical subcor-
pus the hedge cues evidence, evidence of, no and ap-
pear cause 88.27% of the false positives. In contrast
with the abstracts subcorpus, the hedge cue or has
only 5 false positives and scores an F1 of 99.10. So,
in the clinical corpus or is not ambiguous, whereas
in the abstracts subcorpus it is very ambiguous. An
example of or as hedge cue in the clinical subcorpus
is shown in (6). An example of or as hedge cue in
the abstracts subcorpus is shown in (7), and as a non
cue in (8).
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(6) Findings compatible with reactive airway disease
or viral lower respiratory tract infection.

(7) Nucleotide sequence and PCR analyses
demonstrated the presence of novel duplications or
deletions involving the NF-kappa B motif.

(8) In nuclear extracts from monocytes or
macrophages, induction of NF-KB occurred only if
the cells were previously infected with HIV-1.

Compared to negation cues, hedge cues are more
varied and more ambiguous. Both the system with-
out and with preprocessing for negation finding per-
formed better than the hedge finding system.

6.2 Scope finding
An informed baseline system has been created by
calculating the average length of the scope to the
right of the hedge cue in each corpus and tagging
that number of tokens as scope tokens. We take the
scope to the right for the baseline because it is much
more frequent than the scope to the left, as is shown
by the statistics contained in Table 1 of Section 3.
Baseline results are presented in Table 5. The low
PCS for the three subcorpora indicates that finding
the scope of hedge cues is not a trivial task. The fact
that, despite a very low PCS, precision, recall and
F1 are relatively high indicates that these measures
are in themselves not reliable to evaluate the perfor-
mance of the system.

Corpus Prec. Recall F1 PCS
Abstracts 78.92 62.19 69.56 3.15
Papers 72.03 50.43 59.33 2.19
Clinical 64.92 25.10 36.20 2.72

Table 5: Baseline results of the scope finding system.

The upper-bound results of the metalearner sys-
tem assuming gold standard identification of hedge
cues are shown in Table 6.

Corpus Prec. Recall F1 PCS PCS-2
Abstracts 89.71 89.09 89.40 77.13 78.21
Papers 77.78 77.10 77.44 47.94 58.21
Clinical 79.16 78.13 78.64 60.59 63.94

Table 6: Results of the scope finding system with gold-
standard hedge signals.

The percentage of correct scopes has been mea-
sured in two ways: PCS measures the proportion

of correctly classified tokens in the scope sequence,
whereas PCS-2 measures the proportion of nouns
and verbs that are correctly classifed in the scope
sequence. This less strict way of computing correct-
ness is motivated by the fact that being able to deter-
mine the concepts and relations that are speculated
(indicated by content words) is the most important
use of the hedge scope finder.

Results show that the system achieves a high per-
centage of fully correct scopes, and that, although
performance is lower for the papers and clinical cor-
pora, the system is portable. Table 7 shows the re-
sults of the negation scope finding system also with
gold standard negation cues. The comparison of re-
sults shows that for abstracts and papers the scores
are higher for the hedge system, which means that
the system can be used for finding both types of
scope.

Corpus Prec. Recall F1 PCS PCS-2
Abstracts 90.68 90.68 90.67 73,36 74.10
Papers 84.47 84.95 84.71 50.26 54.23
Clinical 91.65 92.50 92.07 87.27 87.95

Table 7: Results of the negation scope finding system
with gold-standard negation signals.

The results of the hedge system with predicted
hedge cues are presented in Table 8. The hedge cues
have been predicted by the system without the pre-
processing step presented in Subsection 6.1.

Corpus Prec. Recall F1 PCS PCS-2
Abstracts 85.77 72.44 78.54 65.55 66.10
Papers 67.97 53.16 59.66 35.92 42.37
Clinical 68.21 26.49 38.16 26.21 27.44

Table 8: Results of the scope finding system with pre-
dicted hedge signals.

In terms of PCS, which is a scope based measure,
results are considerably higher than baseline results,
whereas in terms of precision, recall and F1, which
are token based measures, results are lower. Eval-
uating the system in terms of a more relaxed mea-
sure (PCS-2) does not reflect a significant increase
in its performance. This suggests that when a scope
is incorrectly predicted, main content tokens are also
incorrectly left out of the scope or added.

Results also show that the system based on pre-
dicted hedge cues performs lower for all corpora,
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which is also a trend observed for the negation scope
finding system. The difference in performance for
abstracts and papers follows the same trends as in
the negation system, whereas the drop in perfor-
mance for the clinical subcorpus is bigger. This
can be explained by the results obtained in the cues
finding phase, where the clinical subcorpus obtained
only 41.92% F1. However, gold standard results
show that if the hedge cues are identified, then the
system is portable.

Abstracts Papers Clinical
# PCS # PCS # PCS

appear 143 58.04 39 28.20 - -
can 48 12.5 25 0.00 22 0.00
consistent with - - - - 67 0.00
could 67 11.94 28 14.28 36 22.22
either 28 0.00 - - - -
evaluate for - - - - 86 3.84
imply 21 90.47 - - - -
indicate 23 73.91 - - - -
indicate that 276 89.49 - - - -
likely 59 59.32 36 30.55 63 66.66
may 516 81.39 68 54.41 107 80.37
might 72 73.61 40 35.00 - -
or 120 0.00 - - 276 0.00
possible 50 66.00 24 54.16 26 80.76
possibly 25 52.00 - - - -
potential 45 28.88 - - - -
potentially 21 52.38 - - - -
propose 38 63.15 - - - -
putatitve 39 17.94 - - - -
rule out - - - - 61 0.00
suggest 613 92.33 70 62.85 64 90.62
think 35 31.42 - - - -
unknown 26 15.38 - - - -
whether 96 72.91 - - - -
would - - 21 28.57 - -

Table 9: PCS per hedge cue for hedge cues that occur
more than 20 times in one of the subcorpus.

Table 9 shows the PCS results per hedge cue. The
cues that get better scores in the clinical and papers
subcorpora are cues that appear in the abstracts sub-
corpus and get a good score. Cues that occur in the
clinical subcorpus and do not occur in the abstracts
(training) subcorpus, get 0.00 score or close to 0.00,
whereas cues that appear in both subcorpora tend to
get a similar or better score in the clinical subcor-
pus. This is a trend that we also observed in the
negation scope finding system. As with that system,
we also observed that the papers subcorpus tends to
get lower scores than the abstracts subcorpus.

The results of the system based on gold standard
hedge cues showed that the system can be applied

to negation scope finding and hedge scope finding,
but these results show that the results of the second
phase of the system depend on the results of the first
phase of the system, and that finding hedge cues
is a domain dependent task. The cues that are not
present in the training data cannot be learned in the
test data and the same applies to their scope. This
observation is consistent with the observation that
the portability of hedge classifiers is limited, made
by Szarvas (Szarvas, 2008).

7 Conclusions

In this paper we have presented a metalearning ap-
proach to processing the scope of hedge cues, based
on a system that finds the scope of negation cues. We
have shown that the same system can find both the
scope of negation and hedge cues. The performance
of the system is evaluated in terms of percentage of
correct scopes on three text types.

In the hedge finding phase, the system achieves
an F1 of 84.77% in the abstracts subcorpus. Ex-
isting systems that classify sentences as speculative
or not reach an 85.00 BEP. Although the tasks are
different, we consider that the results of our system
are competitive. In the scope finding phase, the sys-
tem that uses predicted hedge cues achieves 65.55%
PCS in the abstracts corpus, which is very similar
to the result obtained by the negation scope finding
system with predicted negation cues (66.07% PCS).
However, the results for the papers and clinical sub-
corpora are considerably lower than the results for
the abstracts subcorpus in the two phases. In the
case of the negation scope finding system, the evalu-
ation on the clinical subcorpus yielded a 4.23% PCS
higher result, whereas in the case of the hedge scope
finding system the results are almost 30.00% PCS
lower, confirming the observation that the portabil-
ity of hedge classifers is limited. Future research
will focus on trying to improve the first phase of the
system and anlysing errors in depth in order to get
insights into how to get a better performance.
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Abstract

We explore a rule system and a machine learn-
ing (ML) approach to automatically harvest
information on gene regulation events (GREs)
from biological documents in two different
evaluation scenarios – one uses self-supplied
corpora in a clean lab setting, while the other
incorporates a standard reference database of
curated GREs from REGULONDB, real-life
data generated independently from our work.
In the lab condition, we test how feasible
the automatic extraction of GREs really is
and achieve F-scores, under different, not di-
rectly comparable test conditions though, for
the rule and the ML systems which amount
to 34% and 44%, respectively. In the REGU-
LONDB condition, we investigate how robust
both methodologies are by comparing them
with this routinely used database. Here, the
best F-scores for the rule and the ML systems
amount to 34% and 19%, respectively.

1 Introduction

The extraction of binary relations from biomedical
text has caught much attention in the recent years.
Progress on this and other tasks has been monitored
in challenge competitions such as BIOCREATIVE I
and II,1 which dealt with gene/protein names and
and protein-protein interaction.

The BIOCREATIVE challenge and other related
ones have shown at several occasions that partici-
pants continue to use two fundamentally different

1http://biocreative.sourceforge.net/

systems: symbolic pattern-based systems (rule sys-
tems), on the one hand, and feature-based statisti-
cal machine learning (ML) systems, on the other
hand. This has led to some rivalry with regard to the
interpretation of their performance data, the costs
of human efforts still required and their scalability
for the various tasks. While rule systems are of-
ten hand-crafted and fine-tuned to a particular ap-
plication (making a major manual rewrite often nec-
essary when the application area is shifted), ML
systems are trained automatically on manually an-
notated corpora, i.e., without manual intervention,
and thus have the advantage to more easily adapt to
changes in the requested identification tasks. Time
costs (human workload) are thus shifted from rule
design and adaptation to metadata annotation.

Text mining systems as usually delivered by
BioNLP researchers render biologically relevant en-
tities and relations on a limited set of test documents
only. While this might be sufficient for the BioNLP
community, it is certainly insufficient for bioinfor-
maticians and molecular biologists since they re-
quire large-scale data with high coverage and reli-
ability. For our analysis, we have chosen the topic
of gene regulatory events in E. coli, which is a do-
main of very active research and grand challenges.2

Currently the gold standard of the existing body of
knowledge of such events is represented by the fact
database REGULONDB.3 Its content has been man-

2The field of gene regulation is one of the most prominent
topics of research and often mentioned as one of the core fields
of future research in molecular biology (cf, e.g., the Grand
Challenge I-2 described by Collins et al. (2003)).

3http://regulondb.ccg.unam.mx/
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ually gathered from the scientific literature and de-
scribes the curated computational model of mecha-
nisms of transcriptional regulation in E. coli. Having
this gold standard in mind, we face the challenging
task to automatically reproduce this content from the
available literature, to enhance this content with re-
liable additional information and to update this re-
source as part of a regular automatic routine.

Hence, we first explore the feasibility and per-
formance of a rule-based and an ML-based system
against special, independently created corpora that
were generated to enable measurements under clean
experimental lab conditions. This part, due to dif-
ferent experimental settings, is not meant as a com-
parison between both approaches though. We then
move to the even more demanding real-life scenario
where we evaluate and compare these solutions for
the identification of gene regulatory events against
the REGULONDB data resource. This approach tar-
gets the robustness of the proposed text mining so-
lutions from the perspectives of completeness, cor-
rectness and novelty of the generated results.

2 Related Work

Considering relation extraction (RE) in the biomed-
ical domain, there are only few studies which deal
primarily with gene regulation. Yang et al. (2008)
focus on the detection of sentences that contain
mentions of transcription factors (proteins regulat-
ing gene expression). They aim at the detection
of new transcription factors, while relations are not
taken into account. In contrast, Šarić et al. (2004)
extract gene regulatory networks and achieve in the
RE task an accuracy of up to 90%. They disregard,
however, ambiguous instances, which may have led
to the low recall around 20%. The Genic Interaction
Extraction Challenge (Nédellec, 2005) was orga-
nized to determine the state-of-the-art performance
of systems designed for the detection of gene regula-
tion interactions. The best system achieved a perfor-
mance of about 50% F-score. The results, however,
have to be taken with care as the LLL corpus used in
the challenge is of extremely limited size.

3 Extraction of Gene Regulation Events

Gene regulation is a complex cellular process that
controls the expression of genes. These genes are

then transcribed into their RNA representation and
later translated into proteins, which fulfill various
tasks such as maintaining the cell structure, enabling
the generation of energy and interaction with the en-
vironment.

The analysis of the gene regulatory processes is
ongoing research work in molecular biology and af-
fects a large number of research domains. In par-
ticular the interpretation of gene expression profiles
from microarray analyses could be enhanced using
our understanding of gene regulation events (GREs)
from the literature.

We approach the task of the automatic extraction
of GREs from literature from two different method-
ological angles. On the one hand, we provide a set of
hand-crafted rules – both for linguistic analysis and
conceptual inference (cf. Section 3.1), the latter be-
ing particularly helpful in unveiling only implicitly
stated biological knowledge. On the other hand, we
supply a machine learning-based system for event
extraction (cf. Section 3.2). No regularities are spec-
ified a priori by a human although, at least in the su-
pervised scenario we have chosen, this approach re-
lies on training data supplied by human (expert) an-
notators who provide sufficiently many instances of
ground truth decisions from which regularities can
automatically be learnt. At the level of system per-
formance, rules tend to foster precision at the cost
of recall and ML systems tend to produce inverse
figures, while there is no conclusive evidence for or
against any of these two approaches.

The extraction of GREs, independent of the ap-
proach one subscribes to, is a complex problem
composed of a series of subtasks. Abstracting away
from lots of clerical and infrastructure services (e.g.,
sentence splitting, tokenization) at the core of any
GRE extraction lie the following basic steps:

• the identification of pairs of gene mentions as
the arguments of a relation – the well-known
named entity recognition and normalization
task,

• the decision whether the entity pair really con-
stitutes a relation,

• and the identification of the roles of the argu-
ments in the relation which implicitly amounts
to characterize each argument as either agent or
patient.
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3.1 Rule-based Extraction

The rule-based system extracts GREs from text em-
ploying logical inference. The motivation of using
inference is that the events under scrutiny are often
expressed in text in either a compositional or an in-
complete way. We address this issue by composi-
tionally representing textual semantics and by log-
ically inferring implicit meanings of text over the
compositional representation of textual semantics.

Entity Identification. The system first recognizes
named entities of the types that can be participants of
the target events. We have collected 15,881 E. coli
gene/protein and operon names from REGULONDB
and UNIPROT. Most of the gene/protein names are
associated with UNIPROT identifiers. An operon in
prokaryotes is a DNA sequence with multiple genes
whose expression is controlled by a shared promoter
and which thus express together. We have mapped
the operon names to corresponding gene sets.

Named entity recognition relies on the use of dic-
tionaries. If the system recognizes an operon name,
it then associates the operon with its genes. The
system further recognizes multi-gene object names
(e.g., “acrAB”), divides them into individual gene
names (e.g., “acrA”, “acrB”) and associates the gene
names with the multi-gene object names.

Relation Identification. The system then iden-
tifies syntactic structures of sentences in an in-
put corpus by utilizing the ENJU parser (Sagae et
al., 2007). The ENJU parser generates predicate-
argument structures, and the system converts them
into dependency structures.

The system then analyzes the semantics of the
sentences by matching syntactic-semantic patterns
to the dependency structures. We constructed 1,123
patterns for the event extraction according to the fol-
lowing workflow. We first collected keywords re-
lated to gene regulation, from GENE ONTOLOGY,
INTERPRO, WORDNET, and several papers about
information extraction from biomedical literature
(Hatzivassiloglou and Weng, 2002; Kim and Park,
2004; Huang et al., 2004). Then we collected sub-
categorization frames for each keyword and created
patterns for the frames manually.

Each pattern consists of a syntactic pattern and
a semantic pattern. The syntactic patterns com-

ply with dependency structures. The system tries
to match the syntactic patterns to the dependency
structures of sentences in a bottom-up way, consid-
ering syntactic and semantic restrictions of syntac-
tic patterns. Once a syntactic pattern is successfully
matched to a sub-tree of the available dependency
structure, its corresponding semantic pattern is as-
signed to the sub-tree as one of its semantics. The
semantic patterns are combined according to the de-
pendency structures to form a compositional seman-
tic structure.

The system then performs logical inference over
the semantic structures by using handcrafted infer-
ence rules and extracts target information from the
results of the inference. We have manually created
28 inference rules that reflect the knowledge of the
gene regulation domain. Only relations where the
identified agent is one of those known TFs are kept,
while all others are discarded.

3.2 Generic, ML-based Extraction

Apart from the already mentioned clerical pre-
processing steps, the ML-based extraction of GREs
requires several additional syntactic processing
steps including POS-tagging, chunking, and full
dependency- and constituency-based parsing.4

Entity Identification. To identify gene names in
the documents, we applied GENO, a multi-organism
gene name recognizer and normalizer (Wermter
et al., 2009) which achieved a top-rank perfor-
mance of 86.4% on the gene normalization task
of BIOCREATIVE-II. GENO recognizes gene men-
tions by means of an ML-based named entity tag-
ger trained on publicly available corpora. Subse-
quently, it attempts to map all identified mentions to
organism-specific UNIPROT5 identifiers. Mentions
that cannot be mapped are discarded; only success-
fully mapped mentions are kept. We utilized GENO

in its original version, i.e., without special adjust-
ments to the E. coli organism. However, only those
mentions detected to be genes of E. coli were fed
into the relation extraction component.

4These tasks were performed with the OPENNLP tools
(http://opennlp.sourceforge.net/) and the
MST parser (http://sourceforge.net/projects/
mstparser), both retrained on biomedical corpora.

5http://www.uniprot.de
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Relation Identification. The ML-based approach
to GRE employs Maximum Entropy models and
constitutes and extension of the system proposed by
Buyko et al. (2008) as it also makes use of depen-
dency parse information including dependency tree
level features (Katrenko and Adriaans, 2006) and
shortest dependency path features (Kim et al., 2008).
In short, the feature set consists of:

• word features (covering words before, after and
between both entity mentions);

• entity features (accounting for combinations of
entity types, flags indicating whether mentions
have an overlap, and their mention level);

• chunking and constituency-based parsing fea-
tures (concerned with head words of the
phrases between two entity mentions; this class
of features exploits constituency-based parsing
as well and indicates, e.g., whether mentions
are in the same NP, PP or VP);

• dependency parse features (analyzing both the
dependency levels of the arguments as dis-
cussed by Katrenko and Adriaans (2006) and
dependency path structure between the argu-
ments as described by Kim et al. (2008));

• and relational trigger (key)words (accounting
for the connection of trigger words and men-
tions in a full parse tree).

An advantage of ML-based systems is that they
allow for thresholding. To achieve higher recall
values for our system, we may set the confidence
threshold for the negative class (i.e., a pair of en-
tity mentions does not constitute a relation) to values
> 0.5. Clearly, this is at the cost of precision as the
system more readily assigns the positive class.

4 Intrinsic Evaluation of Feasibility

The following two sections aim at evaluating the
rule-based and ML-based GRE extraction systems.
The systems are first “intrinsically” evaluated, i.e.,
in a cross-validation manner on corpora annotated
with respect to GREs. Second, in a more realistic
scenario, both systems were evaluated against REG-
ULONDB, a database collecting knowledge about
gene regulation in E. coli. This scenario tests which

part of manually accumulated knowledge about gene
regulation in E. coli can automatically be identified
by our systems and at what level of quality.

4.1 Rule-based system

Corpus. For the training and evaluation of the
rule-based system, we annotated 209 MEDLINE ab-
stracts with three types of events: specific events
of gene transcription regulation, general events of
gene expression regulation, and physical events of
binding of transcription factors to gene regulatory
regions. Strictly speaking, only the first type is rele-
vant to REGULONDB. However, biologists often re-
port gene transcription regulation events in the sci-
entific literature as if they are gene expression regu-
lation events, which is a generalization of gene tran-
scription regulation, or the binding event, which it-
self is insufficient evidence for gene transcription
regulation. The two latter types may indicate that
the full-texts contain evidence of the first type.

We asked two curators to annotate the abstracts.
Curator A was trained with example annotations and
interactive discussions. Curator B was trained only
with example annotations and guidelines. For cross-
checking of annotations, we asked them to annotate
an unseen corpus of 97 abstracts and found that Cu-
rator A made 10.8% errors, misjudging three event
additions and, in the other 14 errors, mistaking in
annotating event types, event attributes, and pas-
sage boundaries, while Curator B made 32.4% er-
rors as such. This result indicates that the annotation
of GREs requires intensive and interactive training.
The curators have discussed and agreed on the final
release of the corpora.6

Results. The system has successfully extracted 79
biologically meaningful events among them (21.1%
recall) and incorrectly produced 15 events (84.0%
precision) which constitutes an overall F-score of
33.6%. Among the 79 events, the system has cor-
rectly identified event types of 39 events (49.4% pre-
cision), polarity of 46 events (58.2% precision), and
directness of 51 events (64.6% precision). Note that
the system employed a fully automatic module for
named entity recognition. The event type recogni-
tion is impaired, because it often fails to recognize

6The resultant annotated corpora are available at http://
www.ebi.ac.uk/˜kim/eventannotation/.
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the specific event type of transcription regulation,
but only identifies the general event type of gene ex-
pression regulation due to the lack of identified evi-
dence.

4.2 ML-based system

GeneReg corpus. The GENEREG corpus (Buyko
et al., 2008) constitutes a selection of 314 MED-
LINE abstracts related to gene regulation in E. coli.
These abstracts were randomly drawn from a set of
32,155 selected by MESH term queries from MED-
LINE using keywords such as Escherichia coli, Gene
Expression and Transcription Factors. These 314
abstracts were manually annotated for named enti-
ties involved in gene regulatory processes (such as
transcription factor, including co-factors and regu-
lators, and genes) and pairwise relations between
transcription factors (TFs) and genes, as well as trig-
gers (e.g., clue verbs) essential for the description of
gene regulation relations. As for the relation types,
the GENEREG corpus distinguishes between (a) un-
specified regulation of gene expression, (b) positive,
and (c) negative regulation of gene expression. Out
of the 314 abstracts a set of 65 were randomly se-
lected and annotated by a second annotator to iden-
tify inter-annotator agreement (IAA) values. For the
task of correct identification of the pair of interacting
named entities in gene regulation processes, an IAA
of 78.4% (R), 77.3% (P ), 77.8% (F) was measured ,
while 67% (R), 67.9% (P), 67.4% (F) were achieved
for the identification of interacting pairs plus the 3-
way classification of the interaction relation.

Experimental Setting. The ML-based extraction
system merges all of the above mentioned three
types (unspecific, negative and positive) into one
common type “relation of gene expression”. So, it
either finds that there is a relation of interest be-
tween a pair of gold entity mentions or not. We
evaluated our system by a 5-fold cross-validation on
the GENEREG corpus. The fold splits were done
on the abstract-level to avoid the otherwise unrealis-
tic scenario where a system is trained on sentences
from an abstract and evaluated on other sentences
but from the same abstract (Pyysalo et al., 2008).
As our focus here is only on the performance of the
GRE extraction component, gold entity mentions as
annotated in the respective corpus were used.

Results. For the experimental settings given
above, the system achieved an F-score of 42% with
a precision of 59% and a recall of 33%. Increasing
the confidence threshold for the negative class in-
creases recall as shown for two different thresholds
in Table 1. As expected this is at the cost of preci-
sion. It shows, that using an extremely high thresh-
old of 0.95 results in a dramatically increased recall
of 73% compared to 33% with the default threshold.
Although at the cost of diminished precision of 32%
compared to originally 59%, the lifted threshold in-
creases the overall F-score (44%) by 2 points.

threshold R P F
default (0.5) 0.33 0.59 0.42
0.80 0.54 0.43 0.48
0.95 0.73 0.32 0.44

Table 1: Different confidence thresholds for the ML-
based system achieved by intrinsic evaluation

5 Extrinsic Evaluation of Robustness

REGULONDB is the primary and largest reference
database providing manually curated knowledge of
the transcriptional regulatory network of E. coli
K12. On K12, approximately for one-third of K12’s
genes, information about their regulation is avail-
able. REGULONDB is updated with content from
recent research papers on this issue. While REG-
ULONDB contains much more, for this paper our
focus was solely on REGULONDB’s information
about gene regulation events in E. coli. In the fol-
lowing, the term REGULONDB refers to this part of
the REGULONDB database. REGULONDB includes
e.g., the following information for each regulation
event: regulatory gene (the “agent” in such an event,
a transcription factor), the regulated gene (the “pa-
tient”), the regulatory effect on the regulated gene
(activating, suppression, dual, unknown), and evi-
dence that supports the existence of the regulatory
interaction.

Evaluation against REGULONDB constitutes a
real-life scenario. Thus, the complete extraction sys-
tems were run, including gene name recognition and
normalization as well as relation detection. Hence,
the systems’ overall recall values are highly affected
by the gene name identification. REGULONDB is
here taken as a “true” gold standard and thus as-

41



sumed to be correct and exhaustive with respect to
the GREs contained. As, however, every manu-
ally curated database is likely to be incomplete and
might contain some errors, we supplement our eval-
uation against REGULONDB with a manual analy-
sis of false positives errors caused by our system (cf.
Section 5.4).

5.1 Evaluation Scenario and Experimental
Settings

To evaluate our extraction systems against REG-
ULONDB we first processed a set of input docu-
ments (see below), collected all unique gene reg-
ulation events extracted and compared this set of
events against the full set of known events in REG-
ULONDB. A true positive (TP) hit is obtained, when
an event found automatically corresponds to one in
REGULONDB, i.e., having the same agent and pa-
tient. The type of regulation is not considered. A
false positive (FP) hit is counted, if an event was
found which does not occur in the same way in
REGULONDB, i.e., either patient or agent (or both)
are wrong. False negatives (FN) are those events
covered by REGULONDB but not found by a sys-
tem automatically. From these hit values, standard
precision, recall, and F-score values are calculated.
Of course, the systems’ performance largely depend
on the size of the base corpus collection processed.
Thus, for both systems and all three document sets
we got separate performance scores.

Table 2 gives an overview to the document col-
lections used for evaluating the robustness of our
systems: The “ecoli-tf” variants are documents fil-
tered both with E. coli TF names and with relevance
to E. coli. Abstracts are taken from Medline cita-
tions, while full texts are from a corpus of different
biomedical journals. The third document set, “regu-
lon ra”, is a set containing abstracts from the REG-
ULONDB references.

name type # documents
ecoli-tf.abstracts abstract 4,347
ecoli-tf.fulltext full texts 1,812
regulon ra abstracts 2,704

Table 2: Document sets for REGULONDB evaluation

5.2 Rule-based-System

Table 3 shows the evaluation results of the rule-
based system against REGULONDB. Though the
system distinguishes the three types of events, we
have considered them all as events of gene tran-
scription regulation for the evaluation. For instance,
the system has extracted 718 unique events with
single-unit participants (i.e., excluding operons), not
considering event types and attributes (e.g., polar-
ity), from the “ecoli-tf.fulltext” corpus. Among the
events, 347 events are found in Regulon (9.7% re-
call, 48.3% precision). If we only consider the
events that are specifically identified as gene tran-
scription regulation, the system has extracted 379
unique events among which 201 are also found in
Regulon (5.6% recall, 53.0% precision).

participant document set R P F
single-unit ecoli-tf.abstracts 0.09 0.60 0.15
multi-unit ecoli-tf.abstracts 0.24 0.61 0.34
single-unit ecoli-tf.fulltext 0.10 0.48 0.16
multi-unit ecoli-tf.fulltext 0.25 0.49 0.33
single-unit regulon ra 0.07 0.73 0.13
multi-unit regulon ra 0.18 0.70 0.28

Table 3: Results of evaluation against REGULONDB of
rule-based system.

When we split multi-unit participants into individ-
ual genes, the rule-based system shows better per-
formance, as shown in Table 3 with the participant
type “multi-unit”. This may indicate that the gene
regulatory events of E. coli are often described as
interactions of operons. At best, the system shows
34% F-score with the “ecoli-tf.abstracts” corpus.

5.3 ML-based System

The ML-based system was designed to recognize
all types of gene regulation events. REGULONDB,
however, contains only the subtype, i.e., regulation
of transcription. Thus, the ML-based system was
evaluated against REGULONDB in two modes: by
default, all events extracted by the systems are con-
sidered; in the “TF-filtered” mode, only relations
with an agent from the list of all known TFs in E.
coli are considered (as done for the rule-based sys-
tem by default). Thus, comparing to the rule-based
system, only the results obtained in the “TF-filtered”
mode should be considered.
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5.3.1 Raw performance scores
The results for the ML-based system are shown in

Table 4. Recall values here range between 7 and
10%, while precision is between 29 and 78% de-
pending on both the document set as well as the
application of the TF filter. The low recall of the
ML-based system is partially due to the fact that the
system does not recognize multi-gene object names
(e.g., “acrAB”), in this configuration the recall is
similar to the recall of the rule-based system in a
“single-unit modus” (see Table 3).

mode document set R P F
TF-filtered ecoli-tf.abstracts 0.09 0.70 0.16

default ecoli-tf.abstracts 0.09 0.45 0.15
TF-filtered ecoli-relevant.fulltext 0.10 0.54 0.17

default ecoli-relevant.fulltext 0.10 0.29 0.15
TF-filtered regulon ra 0.07 0.78 0.13

default regulon ra 0.07 0.47 0.12

Table 4: Results of evaluation against REGULONDB of
ML-based system

As already shown in the intrinsic evaluation,
application of different confidence thresholds in-
creases the recall of the ML-based system. This was
also done for the evaluation against REGULONDB.
Table 5 shows the impact of increased confidence
thresholds for the negative class on the “regulon ra”
set for the “TF-filtered” evaluation mode. Given an
extremely high threshold of 0.95, the recall is in-
creased from 7 to 11% which constitutes a relative
increase of over 60%. Precision obviously drops,
however, the overall F-score has improved from 13
to 19%. These results emphasize that an ML-based
system has an important handle which allows to ad-
just recall according to the application needs.

threshold R P F
default (0.5) 0.07 0.78 0.13
0.8 0.09 0.70 0.16
0.95 0.11 0.63 0.19

Table 5: Different confidence thresholds for the ML-
based system tested on the “regulon ra” set

5.4 Manual analysis of false positives
REGULONDB was taken as an absolute gold stan-
dard in this evaluation. If a system correctly extracts

an event which is not contained in REGULONDB
for some reason, this constitutes a FP. Moreover, all
kinds of error (e.g., agent and patient mixed up) were
subsumed as FP errors. To analyze the cause and
distribution of FPs in more detail, a manual analysis
of the FP errors was performed and original FP hits
were assigned to one out of four FP error categories:

Cat1: Not a GRE This is really an FP error, as the
extracted relation does not at all constitute a
gene regulation event.

Cat2a: GRE but other than transcription
Unlike REGULONDB which contains only one
subtype of GREs, namely transcriptions, the
ML-based system identifies all kinds of GREs.
Therefore, the ML-based system clearly
identifies events which cannot be contained in
REGULONDB and, therefore, are not really
FPs.

Cat 3: Partially correct transcription event This
category deals with incorrect arguments of
GREs. We distinguish three types of FPs: (a)
the patient and the agent role are interchanged,
(b) the patient is wrong, while the agent is
right, and (c) the agent is wrong, while the
patient is right. In all these three cases, though
errors were committed human curators might
find the partially incorrect information useful
to speed up the curation process.

Cat4: Relation missing in REGULONDB Those
are relations which should be contained in
REGULONDB but are missing for some
reason. The agent is a correctly identified
transcription factor and the sentence contains
a mention of a transcription event. There are
several reasons why this relation was not found
in REGULONDB as we will discuss in the
following.

Table 6 shows the results of the manual FP anal-
ysis of the ML-based system (no TF filter applied)
on the “ecoli-tf-abstracts” and “ecoli-tf-fulltexts”.
It shows that the largest source of error is due
to Cat1, i.e., an identified relation is completely
wrong. As fulltext documents are generally more
complex, the relative amount of this kind of errors
is higher here than on abstracts (54.5 % compared
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category abstracts (%) fulltexts (%)
Cat 1 44.5 54.5
Cat 2 11.2 10.9
Cat 3a 3.8 3.9
Cat 3b 8.5 4.4
Cat 3c 8.2 5.4
Cat 4 23.8 21.0

Table 6: Manual analysis of false positive errors (FP).
Percentages of FPs by category are reported on “ecoli-tf-
abstracts” and “ecoli-tf-fulltexts”

to 44.5 %). However, on abstracts and fulltexts, a
bit more than 10 % of the FP are because the sys-
tem found too general GREs which, by definition,
are not contained in REGULONDB (Cat2). Iden-
tified GREs that were partially correct constitute
20.5 % (abstracts) or 13.7 % (fulltexts) of the FP er-
rors (Cat3).

Finally, 23.8% and 21.0% of the FPs for abstracts
and fulltext, respectively, are correct transcription
events but could not be found in REGULONDB
(Cat4). This is due to several reasons. For instance,
identified gene names were incorrectly normalized
so that they could not be found in REGULONDB,
REGULONDB curators have not yet added a relation
or simply overlooked it; relations are correctly iden-
tified as such in the narrow context of a paragraph of
a document but were actually of speculative nature
only (this includes relations whose status is unsure,
often indicated by “likely” or “possibly”).

Summarizing, the manual FP analysis shows that
about 50% of all FPs are not completely erroneous.
These numbers must clearly be kept in mind when
interpreting the raw numbers (especially for preci-
sion) reported on in the previous subsection.

5.5 Integration of text mining results

We have integrated the results of the two different
text mining systems and found that both systems are
complementary to each other such that their result
sets do not heavily overlap. For instance, from the
“ecoli-tf.abstract” corpus, the rule-based system ex-
tracts 992 events, while the ML-based system ex-
tracts 705 events. For the integration, we have con-
sidered only the events whose participants are as-
sociated with UNIPROT identifiers. Among the ex-
tracted events, only 285 events are extracted by both

systems. We might speculate that the overlapping
events are more reliable than the rest of the extracted
events. It also leaves 71.3% of the results from
the rule-based system and 59.6% of results from the
ML-based system as unique contributions from each
of the approaches for the integration.

6 Conclusions

We have explored a rule-based and a machine
learning-based approach to the automatic extrac-
tion of gene regulation events. Both approaches
were evaluated under well-defined lab conditions us-
ing self-supplied corpora, and under real-life condi-
tions by comparing our results with REGULONDB,
a well-curated reference data set. While the re-
sults for the first evaluation scenario are state of the
art, performance figures in the real-life scenario are
not so shiny (the best F-scores for the rule-based
and the ML-based system are on the order of 34%
and 19%, respectively). This holds, in particular,
for the comparison with the work of Rodrı́guez-
Penagos et al. (2007). Still, at least the ML-based
approach is much more general than the very specifi-
cally tuned manual rule set from Rodrı́guez-Penagos
et al. (2007) and has potential for increases in perfor-
mance. Also, this has been the first extra-mural eval-
uation of automatically generating content for REG-
ULONDB.

Still, the analysis of false positives reveals that
the strict criteria we applied for our evaluation may
appear in another light for human curators. Con-
founded agents and patients (21% on the abstracts,
14% on full texts) and information not contained in
REGULONDB (24% on the abstracts, 21% on full
texts) might be useful from a heuristic perspective to
focus on interesting data during the curation process.
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Abstract We investigate the challenge of extract-
ing information about genetic mutations from ta-
bles, an important source of information in scien-
tific papers. We use various machine learning algo-
rithms and feature sets, and evaluate performance in
extracting fields associated with an existing hand-
created database of mutations. We then show how
classifying tabular information can be leveraged for
the task of named entity detection for mutations.1

Keywords Information extraction; tables;
biomedical applications.

1 Introduction

We are interested in applying information extraction
and text mining techniques to aiding the construc-
tion of databases of biomedical information, in par-
ticular information about genetic mutations. Such
databases are currently constructed by hand: a long,
involved, time-consuming and human-intensive pro-
cess. Each paper considered for inclusion in the
database must be read, the interesting data identified
and then entered by hand into a database.2

However, the biomedical domain throws up many
new and serious challenges to information extraction
and text mining. Unusual terminology and under-
developed standards for nomenclature present prob-
lems for tokenisation and add complexity to stan-
dard information extraction tasks, such as named en-
tity recognition (NER). A lack of resources (at least

1A short version of this paper was presented at the Aus-
tralasian Document Computing Symposium, 2008. All copy-
rights from that event were retained by the authors.

2Karamis et al (2008) illustrate how even simple tools can
have an impact on improving the database-curation process.

compared to other domains), such as collections of
annotated full-text documents and relevance judge-
ments for various tasks, are a bottleneck to develop-
ing and evaluating the core techniques required.

In this paper, we report on work performed on
extracting information from tables in biomedical
research papers. Tables present a succinct and
information-rich format for providing information,
and are particularly important when reporting re-
sults in biological and medical research papers.
For example, the Human Genome Variation Society
(HGVS), in its general recommendations for muta-
tion nomenclature, recommends making use of tab-
ular listings when several changes are described in
a manuscript.3 A specific premise of our work is
that the highly-structured nature of tabular informa-
tion allows leverage of some techniques that are not
so sensitive to the well-reported problems inherent
in biomedical terminology, which complicate NER
tasks in this domain. In particular, we describe
initial techniques for extending NER performance
through the analysis of tables: columns/rows are
classified as containing items of the entities of inter-
est, thereby allowing those entities to be recognized
as of the target type. Since a significant amount of
such entities may be found in tables in biomedical
scientific papers, this can have positive impact on
the performance of base NER techniques.

NER tools specifically targeted at recognising
mutations have been developed (e.g. (Horn et al.,
2004; Baker and Witte, 2006; Caporaso et al., 2007;
Lee et al., 2007)); however, they only detect a sub-
class of mutations, so-called single-point mutations,

3http://www.hgvs.org/mutnomen/recs.html#general
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i.e. those that affect a single base. MutationFinder
(Caporaso et al., 2007) is the only publicly available
tool, built with around 700 automatically-generated
rules (both for different nomenclatures and natural
language). However, most of the mutations that
we find in our dataset are not point mutations or
do not follow point-mutation nomenclature, limiting
the usefulness of MutationFinder (and related tools)
over our document collection.

In the next section, we describe the setting of our
task, the Mismatch Repair (MMR) Database, and
outline the task of extraction from tables. In Sec-
tion 3, we describe the preparation of our document
collection, and in Section 4, we analyse the amount
of mutation-related information that is in the associ-
ated tables. Section 5 describes the main task, which
is classifying table rows and columns as containing
mutations, and Section 6 leverages this technique to
detect mutations of interest to the MMR Database.
We discuss the results in Section 7.

2 Background

In this section, we discuss the MMR database—the
setting for our task and from which we construct
our document collection—and previous approaches
to table processing.

2.1 The MMR Database
Our extraction task is grounded in the specific con-
text of the Mismatch Repair (MMR) Database com-
piled at the Memorial University of Newfoundland
(Woods et al., 2007)—a database of known genetic
mutations related to hereditary non-polyposis col-
orectal cancer (HNPCC), a hereditary form of bowel
cancer. The MMR Database contains information
on genetic mutations known to be related to HN-
PCC, along with links to the research papers from
which the database has been constructed.4 From the
database and its links to papers, we were able to con-
struct a collection of tables related to HNPCC muta-
tions, and then use the MMR database records them-
selves as a gold standard for evaluating our tech-
niques. As of May 2008, the MMR database con-
tained a total of 5,491 records on mutations that oc-

4I.e. a team of geneticists manually trawled the biomedical
literature for information on HNPCC-related mutation informa-
tion, and added links to any papers relevant to those mutations
in the context of HNPCC.

cur on any one of four genes that have been identi-
fied as related to colon cancer. An example record
from the MMR database is the following:

MLH1 | Exon13 | c.1491delG | Yamamoto et al. | 9500462

Respectively, this record contains: gene; exon;
mutation; citation of the paper the information was
sourced from;5 and the paper’s PubMedID. These
fields are important because they contain informa-
tion researchers are directly interested in (gene,
exon, mutation) and the paper said information was
found in. Note that if a gene/mutation pair is refer-
enced in multiple papers, then there are correspond-
ingly multiple entries in the database. Conversely, if
a single paper mentions multiple (relevant) genes,
then that paper is mentioned in multiple database
records.

2.2 Table Processing
An important but less-researched sub-problem in
text mining is information extraction from tables.
This is particularly important in the biomedical do-
main since much important data is present in tabu-
lar form, such as experimental results, relations be-
tween entities, and other information that may not
be contained elsewhere in the text. For example, the
table shown in Figure 1 (taken from an article in our
collection) contains much of the same data that was
present in database records, in a similar format.

Tabular information extraction can be divided into
two broad sub-tasks:

• table detection: identifying tables within docu-
ments;

• table processing: extraction of data from tables.

Several systems have been developed to handle both
tasks, some are designed only to handle table de-
tection, and others focus only on extracting data.
Both machine learning and heuristic / rule-based ap-
proaches have been proposed.

Table detection techniques depend heavily on the
input format. Most work that tackles this problem
tends to assume one homogeneous input format, but
tables generally come in one of two varieties:6

5This field has been abbreviated. We have also omitted fields
such as “internal id”.

6We don’t consider the possibility of processing bitmaps or
other images from scanned documents.
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Figure 1: Sample table containing mutation information related to HNPCC

• raw text tables: generally ASCII text in
monospace font, delimited by whitespace
and/or special characters;

• rich text tables: those formatted using LaTeX,
PDF, HTML and other such formats.

Tables in plain text tend to be more difficult to
detect, as the detection system must be sensitive to
whitespace and symbols used to align cells in tables.
Efforts to handle rich text formats generally focus on
HTML-based representations. Raw HTML is easier
to parse than raw LaTeX or PDF, and most formats
are easily converted to HTML. HTML tables can
theoretically be trivially detected using <table>

tags. However, Lerman et al (2004) note that in
HTML files taken from the web, only a fraction of
tabular data was presented using <table> tags, and
those tags were also used to format multi-column
text, images and other non-table applications. Hurst
(2001) attests that less than 30% of HTML tables on
the web contain actual tabular content; for many, the
HTML table tags are often used simply for format-
ting purposes.

Zanibbi et al (2004) present a survey of table
recognition in general. Of greatest relevance to us
here are approaches that adopt a machine learning

approach to detecting and/or extracting table data.
Cohen et al (2002) use features based on HTML

table tags, number of rows and columns of spe-
cific lengths, and ratios of single-square cells to to-
tal number of cells, to perform table detection, and
then form a geometric representation of the data us-
ing algorithms based on table-rendering techniques
implemented by browsers.

Pinto, Wei, and their colleagues have used condi-
tional random fields (CRFs) to both detect and pro-
cess tables simultaneously. Pinto et al (2003) com-
pare the output of their CRF system with a previ-
ous effort using hidden Markov machines (HMMs).
These systems use features such as: presence of
whitespace of varying length (different lengths of
whitespace are used as separate features); domain-
specific lexical features (such as month names, year
strings, specified keywords); separator characters
(e.g. ’+’, ’-’, etc). In subsequent work they develop
a system for performing question answering over ta-
ble data (Wei et al., 2004) by treating each extracted
data cell as a discrete document.

To our knowledge, no previous system has at-
tempted to extract data from tables in biomedical
literature. This is possibly because of a combina-
tion of the lack of resources for this domain (e.g.
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collections of full-text documents; relevance judge-
ments), as well as the lesser focus on text mining
in general in this area. As will be seen in the next
section, the vagaries of the construction of our col-
lection of tables means we were effectively able to
ignore the issue of table detection and focus directly
on the problem of processing.

3 Experimental Setting

Our experiments were designed to identify mentions
of mutations in the biomedical literature, focusing
on tabular content. In this section, we first describe
our target dataset, built from the hand-curated MMR
database (Woods et al., 2007); we then explain the
table extraction process; finally, we introduce the
task design.

3.1 Mutation Mention Dataset
We relied on the MMR Database and MEDLINE in
order to build our test collection. First we collected
all the information available in the hand-curated
MMR records, obtaining a total of 5,491 mutations
linked to 719 distinct PubMedIDs7.

Our next step was to crawl the full-text articles
from MEDLINE. We used an automatic crawler that
followed the links from the PubMed interface, and
downloaded those papers that had a full-text HTML
version, and which contained at least one content ta-
ble.

The tables were then extracted from the full text
HTML files. It is important to note that the tables
were already present as links to separate HTML files
rather than being presented as inline tables, making
this process easier. Papers that did not contain tables
in HTML format were discarded.

Our final collection consisted of 70 papers out of
the original 719 PubMedIDs. Some of the papers
were not available in full text, and for others our
crawling script failed to extract the full version. Our
approach was conservative, and our collection could
be augmented in the future, but we decided to fo-
cus on this dataset for the experiments presented in
this paper. This set of articles is linked to 717 MMR
records (mutations), which constitutes our gold stan-
dard hand-curated annotation. The collection con-
tains 197 tables in all.

7Data was downloaded from the web interface in May 2008.

3.2 Table extraction
Once scraped, the tables were then pre-processed
into a form that more readily allowed experimenta-
tion. The tables were therefore split into three parts:
column headers, row headers, and data cells. This
was done based on the HTML formatting, which
was consistent throughout the data set as the tables
were automatically generated.

The first step was to deconstruct the HTML ta-
bles into nested lists of cells based on HTML ta-
ble tags. Inconsistencies introduced by colspan and
rowspan attributes were resolved by replicating a
cell’s contents across its spanned lengths. That is, a
cell with colspan=3 would be duplicated across the
three columns, and likewise for cells spanning mul-
tiple rows. Single-cell rows at the top or bottom of a
table were assumed to be captions and discarded.

The remaining HTML was stripped, save for the
following tags which contained important informa-
tion:

• img tags were replaced by their alternate text,
where available. Such images often represent
a mathematical symbol, which is important in-
formation to retain;

• hr tags proved to be an important indicator for
dividing header cells from data cells.

Tables were broken up into row headers, column
headers, and data cells by making use of the hr tags,
denoting horizontal lines, to detect column headers.
Such tags tend to be present as a separator between
column header cells and data cells; in fact, the only
tables in our collection that did not have the separa-
tors did not have column headers either. The hr tags
were subsequently stripped after this use. Detecting
row headers was performed by checking if the top
left cell of the table was blank, a pattern which oc-
curred in all row-major tables. The vast majority of
tables had column headers rather than row headers,
although some had both and a small proportion had
only row headers. We acknowledge that this pro-
cessing may be specific to the vagaries of the specific
format of the HTML generation used by PubMed
(from which we sourced the tables). However, our
whole task is specific to this domain; further, our fo-
cus is on the extraction task rather than the actual
detection of row/column headers.

49



Class Class Freq. Cell Freq.
Gene 64 1,618
Exon 48 1,004
Codon 23 435
Mutation 90 2,174
Statistic 482 8,788
Other 576 14,324
Total 1,283 28,343

Table 1: Frequency per class and number of cells in the
collection.

3.3 Task Design
In order to extract mutation information from
tables, we first performed classification of full
columns/rows into relevant entities. The content of a
column (or row, depending on whether the table was
row- or column-oriented) tends to be homogeneous;
this allowed us to build classifiers that can identify
full vectors of relevant entities in a single step. We
refer to this task as table vector classification.

We identified the following classes as relevant:
Gene, Exon, Mutation, Codon, and Statistic. The
first four were chosen directly from the MMR
Database. We decided to include “Statistic” after in-
specting the tabular dataset, since we found that this
provides relevant information about the importance
of a given mutation. Of the five classes, Mutation
is the most informative for our final information ex-
traction goal.

The next step was to hand-annotate the headers
of the 197 tables in our collection by using the five
classes and the class “Other” as the tagset. Some
headers belonged to more that one class, since the
classes were collapsed into a single field of the ta-
ble. The frequency per class and the number of cells,
across the collection of tables, is shown in Table 1.

3.4 Evaluation
We evaluated our systems in two ways:

• Header classification: performance of different
systems on predicting the classes of each col-
umn/row of the tables;

• Mutation extraction: recall of our system over
the subset of the hand-curated MMR database.

Evaluation for the header classification step was
performed using precision, recall and f-score, micro-
averaged amongst the classes. Micro-averaging in-
volves multiplying the score of a class by the number
of instances of the class in the gold standard, and di-
viding by the total number of instances. For the ma-
chine learning algorithms, evaluation was performed
using 10-fold cross-validation. For mutation extrac-
tion we focus on a single class, and produce recall
and a lower-bound on precision.

4 Mutation Mentions in Tables

In order to determine the value of processing tab-
ular data for mutation-mining purposes, we ob-
tained a sample of 100 documents that were hand-
annotated by curators prior to their introduction in
the database—the curators highlighted relevant mu-
tations found in each paper. We found that for 59
of the documents, only the tabular parts of the paper
were selected; 33 of the documents had only textual
parts highlighted; and for 8 documents both tables
and text were selected. This is an indicator of the
importance of tabular data in this context.

Our next step was to measure the amount of in-
formation that we could potentially extract from the
tables in our collection. Since we are interested in
mutations, we extracted all cells from the vectors
that were manually annotated as “Mutation” in or-
der to compare them to the goldstandard, and mea-
sure the recall. This comparison was not straight-
forward, because mutation mentions have different
nomenclatures. Ideally we would normalise the dif-
ferent references into a standard form, and then per-
form the comparison. However, normalisation is a
complex process in itself, and we resorted to evalu-
ation by hand at this point.

We found that 198 of the 717 goldstandard muta-
tions were present in tables (28%). This is a signif-
icant amount, taking into account that their extrac-
tion should be much easier than parsing the raw text.
We also tested MutationFinder over the full text, and
found that only 6 of the goldstandard mutations were
retrieved (0.8%), which indicates that point mutation
identification is not sufficient for this task.

Finally, we measured the amount of information
that could be extracted by a simple string look-up
system separately over the tabular and textual parts
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of the articles. We were looking for mutation men-
tions that correspond exactly to the goldstandard
record from each article, which meant that mentions
in different nomenclatures would be missed. We
found that a total of 177 mentions (24.7%) could be
found with the same spelling; of those 142 (80.1%)
were found in tables only, and the remaining 35
(20.9%) were found in both tables and text; i.e., no
mention was found in text only.

These results indicate that we can find relevant in-
formation in tables that is not easy to detect in run-
ning text.

5 Table Vector Classification

We built automatic classifiers to detect relevant en-
tities in tables. Two separate approaches were at-
tempted for vector classification: applying heuristic
rules, and machine learning (ML) techniques. These
are described here, along with an analysis of their
performance.

5.1 Heuristic Baseline
As a baseline method, we approached the task of
classifying headers by matching the header string to
the names of the classes in a case-insensitive man-
ner. When the class name was found as a substring
of the header, the class would be assigned to it. For
example, a header string such as “Target Mutation”
would be assigned the class “Mutation”. Some head-
ers had multiple annotations (E.g. “Gene/Exon”).

For better recall, we also matched synonyms for
the class “Mutation” (the terms “Variation” and
“Missense”) and the class “Statistic” (the terms
“No.”, “Number” and “%”). For the remaining
classes we did not identify other obvious synonyms.

The results are shown in Table 2. Precision
was reasonably high for the “Codon”, “Exon” and
“Statistic” classes. However, this was not the case
for “Mutation”, and this illustrates that different
types of information are provided under this head-
ing; illustrative examples include the heading “Mu-
tation Detected” on a “Gene” vector, or the heading
“Germline Mutation” referring to “Statistics”. The
recall was also low for “Mutation” and most other
classes, showing that more sophisticated approaches
are required in order to exploit the information con-
tained in the tables. Notice also that the micro-

Class Precision Recall FScore
Gene 0.537 0.620 0.575
Exon 0.762 0.615 0.681
Codon 0.850 0.654 0.739
Mutation 0.283 0.301 0.292
Statistic 0.911 0.324 0.478
Other 0.581 0.903 0.707
Micro Avg. 0.693 0.614 0.651

Table 2: Naive Baseline results across the different
classes and micro-averaged

Class Precision Recall FScore
Gene 0.537 0.611 0.571
Exon 0.762 0.615 0.681
Codon 0.850 0.654 0.739
Mutation 0.600 0.452 0.515
Statistic 0.911 0.340 0.495
Other 0.579 0.910 0.708
Micro Avg. 0.715 0.633 0.672

Table 3: Results integrating MutationFinder across the
different classes and micro-averaged

average is highly biased by the classes “Statistic”
and “Others”, since they contain most of the test in-
stances.

Our second step was to build a more informed
classifier for the class “Mutation” using the point
mutation NER system MutationFinder (Caporaso et
al., 2007). We applied this tool to the text in the
table-cells, and identified which table-vectors con-
tained at least one mutation mention. These vectors
were also classified as mutations. The results are
shown in Table 3. This approach caused the “Muta-
tion” results to improve, but the overall f-score val-
ues are still in the range 50%-70%.

We considered other heuristic rules that could
be applied, such as looking for different kinds of
patterns for each class: for instance, numbers for
“Exon”, or the normalised form c.N[symbol]N for
mutation, or trying to match against term lists (e.g.
using Gene dictionaries). Future work will explore
extending the ML approach below with features
such as these.
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5.2 Classification Techniques
For the ML experiments we used the Weka (Witten
and Frank, 2005) toolkit, as it contains a wide se-
lection of in-built algorithms. We selected a variety
of well-known approaches in order to obtain a better
picture of the overall performance. As a baseline, we
applied the majority class from the training data to
all test instances. We applied the following ML sys-
tems:8 Naive Bayes (NB); Support Vector Machines
(SVM); Propositional Rule Learner (JRip); and De-
cision Trees (J48). We did not tune the parameters,
and relied on the default settings.

In order to define our feature sets, we used the
text in the headers and cells of the tables, without
tokenisation. Other possible sources of information,
such as captions or the running text referring to the
table were not employed at this stage. We applied
four feature sets:

• Basic (Basic): Four basic features, consisting
of the header string, the average and median
cell lengths, and a binary feature indicating
whether the data in the cells was numeric.

• Cell Bag-of-Words (C bow): Bag of words
over the tokens in the table cells.

• Header Bag-of-Words (H bow): Bag of
words over the tokens in the header strings.

• Header + Cell Bag-of-Words (HC bow):
Combination of bags of words formed by the
tokens in headers and cells, represented as sep-
arate types of features.

The micro-averaged results of the different learn-
ing methods and feature sets are shown in Table 4.
Regarding the feature sets, we can see that the best
performance is obtained by using the headers as bag-
of-words, while the content of the cells seems to be
too sparse to guide the learning methods. SVM is
the best algorithm for this dataset, with JRip and J48
following, and NB performing worst of the four in
most cases.

Overall, the results show that the ML approach
is superior to the baselines when using the header
bag of words feature to classify the relevant entities.

8We applied a number of other ML algorithms as well, but
these showed significantly lesser performance.

Method
Feature Sets

Basic C bow H bow HC bow
Mj. Cl. 0.288
NB 0.614 0.454 0.678 0.581
SVM 0.717 0.599 0.839 0.816
JRip 0.564 0.493 0.790 0.749
J48 0.288 0.532 0.793 0.782

Table 4: Results for ML Algorithms - Micro-Averaged
FScores. Mj.Cl.: Majority Class. The best results per
column are given in bold.

Class Precision Recall FScore
Gene 0.778 0.737 0.757
Exon 0.786 0.707 0.745
Codon 0.833 0.882 0.857
Mutation 0.656 0.679 0.667
Statistic 0.919 0.853 0.885
Other 0.82 0.884 0.850
Micro Avg 0.839 0.841 0.839

Table 5: Results for SVM and the feature set H bow per
class and micro-averaged.

SVM is able to reach a high f-score of 83.9%, which
has been found to be significantly better than the best
baseline after applying a paired t-test (p-value under
0.0001).

We break down the results per class in Table 5,
using the outputs from SVM and feature-set H bow.
We can see that all classes show an improvement
over the heuristic baselines. There is a big increase
for the classes “Gene” and “Statistic”, and all classes
except mutation are above 70% f-score. “Muta-
tion” is the most difficult class to predict, but it
still reaches 66.7% f-score, which can be helpful for
some tasks, as we explore in the next section.

6 Automatic Mutation Extraction

We applied the results of our classifier to a practi-
cal application, i.e., the detection of mutations in
the literature for the MMR Database project. Ta-
ble vector classification allows us to extract lists of
candidate mutation names from tables to be added
to the database. We would like a system with high
recall that identifies all relevant candidates, but also
acceptable precision so that not all the tables need to
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System Mut. Found TP % in MMR Rec.
Automatic 1,702 153 9.0 77.3
Gold standard 1,847 198 10.7 100

Table 6: Results for Mutation detection. TP indicates the
number of true positives, “% in MMR” shows the per-
centage of positives found in the database.

be hand-checked.
In order to test the viability of this approach, we

measured the results of the system in detecting the
existing hand-curated mutations in MMR. We cal-
culated the recall in retrieving those mutations, and
also the rate of false positives; however, note that
we also consider as false positives those valid muta-
tions that were not relevant for MMR, and therefore
the reported precision is artificially low.

Results for the automatic extraction and the gold-
standard annotation are given in Table 6. As ex-
pected, there is a high rate of false positives in the
goldstandard and automatic systems; this shows that
most of the mutations detected are not relevant for
the MMR database. More interestingly, we were
able to retrieve 77.3% of relevant mutation mentions
automatically using the ML approach, which corre-
sponds to 21.3% of all the hand-curated data.

The vector classifier discriminates 1,702 mutation
cells out of a total of 27,700 unique cells in the table
collection, and it effectively identifies 153 out of the
198 relevant mutations present in the tabular data.
This means that we only need to hand-check 6.1%
of the tabular content to retrieve 77.3% of relevant
mutations, saving the curators a significant amount
of time. The classifiers could also be biased towards
higher recall by parameter tuning—this is an area for
further investigation.

Finally, after the evaluation process we observed
that many false mutation candidates could be re-
moved by discarding those that do not contain two
consecutive digits or any of the following n-grams:
“c.”, “p.”, ’>’, “del”, “ins”, “dup”. This heuristic re-
duces the number of mutation candidates from 1,702
to 989 with no cost in recall.

7 Discussion

While this is early work, our preliminary results on
the task of identifying relevant entities from gene
mutation literature show that targeting tables can be

a fruitful approach for text mining. By relying on
ML methods and simple bag-of-words features, we
were able to achieve good performance over a num-
ber of selected entities, well above header word-
matching baselines. This allowed us to identify lists
of mentions of relevant entities with minimal effort.
An advantage of our approach is that the annotation
of examples for training and evaluation is consider-
ably easier, since many entities can be annotated in
a single step, opening the way to faster annotation of
other entities of interest in the biomedical domain.

The approach of using table vector classification
for the named entity task also has promise. In partic-
ular, the wide variety and non-standard terminology
of biomedical entities (i.e. genes, proteins, muta-
tions) is one of the challenges to NER in this do-
main. However, since a column of homogeneous
information may include representatives of the het-
erogeneous nomenclature schemes, classification of
a whole column or row potentially helps nullify the
effect of the terminological variability.

For future work, we plan to study different types
of features for better representing the entities tar-
geted in this work. Specially for mutation mentions,
we observed that the presence of certain ngrams (e.g.
”del”) can be a strong indicator for this class. An-
other issue we plan to address is that of the normal-
isation of mutation mentions into a standard form,
for which we have started developing a collection
of regular expressions. Another of our goals is to
increase the size of our dataset of articles by im-
proving our web crawler, and by hand-annotating
the retrieved table vectors for further experimenta-
tion. Finally, we also aim to explore the potential of
using tabular data for NER of different entities in the
biomedical domain, such as gene mentions.
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Abstract

Text mining for biomedicine requires a sig-
nificant amount of domain knowledge. Much
of this information is contained in biomedical
ontologies. Developers of text mining appli-
cations often look for appropriate ontologies
that can be integrated into their systems, rather
than develop new ontologies from scratch.
However, there is often a lack of documen-
tation of the qualities of the ontologies. A
number of methodologies for evaluating on-
tologies have been developed, but it is diffi-
cult for users by using these methods to se-
lect an ontology. In this paper, we propose
a framework for selecting the most appropri-
ate ontology for a particular text mining appli-
cation. The framework comprises three com-
ponents, each of which considers different as-
pects of requirements of text mining applica-
tions on ontologies. We also present an ex-
periment based on the framework choosing an
ontology for a gene normalization system.

1 Introduction

With the explosive growth of the volume of pub-
lished biomedical research, it is challenging to keep
up to date with the underlying knowledge avail-
able in the form of free text. The necessity of un-
derstanding actions of individual biological compo-
nents in system context rather than in isolation, ex-
tends the coverage of literature far beyond the ca-
pabilities of individual scientists. Text mining is an
emerging field that attempts to deal with these chal-
lenges (Ananiadou and McHought, 2006; Cohen
and Hersh, 2005; Spasic et al., 2005). Text mining
requires a significant amount of domain knowledge.

A large number of biomedical ontologies already ex-
ist, and hold much of the information. Some of the
ontologies have been designed for modeling domain
knowledge, e.g. FMA (Rosse and Mejino, 2003) and
GO (Ashburner et al., 2000), others are developed
for potential applications, e.g. MeSH (Lowe and
Barnett, 1994) for indexing the medical literature.
Whatever purposes the ontologies were built for,
they are used to support text mining for tasks such as
access to text, natural language processing, and in-
formation integration. Developers of text mining ap-
plications often look for appropriate ontologies that
can be integrated into their systems, rather than de-
velop new ontologies from scratch. The choice of
ontology may, however, have a major impact on the
performance of the text mining system, including
the quality of the results.

Selecting an appropriate ontology relies on eval-
uation and comparison of the available ontologies.
Unfortunately, there is often a lack of documenta-
tion of the qualities of the ontologies. A number of
methodologies for evaluating ontologies have been
proposed, mainly for evaluating one ontology at a
time. However, it is difficult for users by using these
methods to make a decision on ontology selection.
The various evaluation methods can be classified
into three main categories: 1) Those that evaluate
ontologies against a set of criteria defined by hu-
man (e.g. (Lozano and Gómez, 2004) suggests 160
criteria). Most of the evaluation criteria are from
the point of view of ontology building. They are
not applicable for the selection of ontologies for a
particular application. 2) Those that include meth-
ods to gather statistics about the nature of ontolo-
gies (e.g. (Gangemi et al., 2006) proposes 32 mea-
sures for depth, width, fan-out, etc). The problem
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for this kind of methods is that it is not clear how to
use these statistics for ontology selection among al-
ternatives. 3) Those that are application-dependent
evaluations. For example, ontologies are evaluated
against a corpus in (Brewster et al., 2004) regarding
the domain of an IE system, and (Porzel and Malaka,
2004) evaluates the quality of an ontology regard-
ing a relation tagging task by using gold standard
data tagged by human. While evaluating ontologies
for the particular application is a relatively straight-
forward method, evaluations may be sensitive to the
test dataset, and it may also be expensive to perform
evaluations for many ontologies.

In this paper we propose a framework for select-
ing the most appropriate ontology for a particular
text mining application. The framework comprises
three components for selection, and uses and ex-
tends some of existing ontology evaluation and val-
idation methods regarding the requirements of text
mining in the area. After a brief overview of the re-
lated work, we introduce our framework in section
3. In section 4 we show how to use the framework
in the setting of selecting an ontology for the gene
normalization system described in (Tan, 2008).

2 Related Work

Not much work has been done yet for ontology se-
lection in the biomedical area. Bioportal (Biopor-
tal, 2.0) is an ontology library, currently mainly
for browsing and navigating biomedical ontologies.
The system also allows users of ontologies to submit
information about their applications and comments
on the content of ontologies, and stores mappings
between concepts of ontologies in the library. This
information may help users to select ontologies from
the repository.

Some work has been done for ontology selection
for the Semantic Web. In (Sabou et al., 2006), au-
thors indicate the challenges for ontology evalua-
tion posed by ontology selection for the Semantic
Web, such as the need for automation and good per-
formance. Two examples of ontology selection for
the Semantic Web are OntoSelect (Buitelaar et al.,
2004) and AKTiveRank (Alani and Brewster, 2005).
Both are mainly based on the second category of on-
tology evaluation methods. OntoSelect is an ontol-
ogy library that gives a functionality for selecting

ontologies for a given knowledge markup task. The
selection relies on measuring the number of con-
cepts and properties, and popularity of ontologies.
The ontology selection algorithm in AKTiveRank
combines the measures of coverage of an ontology
given search terms, and locations of the terms and
semantic similarity between the terms in the struc-
ture of the ontology.

OntoMetric is a hierarchical framework proposed
in (Lozano and Gómez, 2004) for general ontology
selection. The tool offers a default hierarchy of cri-
teria to evaluate ontologies from the point of view of
building ontologies, and also allows users to adapt it
for their needs. The selection is based on a weighted
addition of value of each criteria.

3 The Framework

In principle biomedical ontologies provide formal
representations of domain knowledge for text min-
ing in the area, but they are used for different pur-
poses such as providing a model for storing, search-
ing and querying a repository of text; providing do-
main knowledge for natural language processing;
providing a framework for information integration;
or several of the above purposes.

Based on a literature study and experience in
building systems, in this section we suggest crite-
ria for selecting an ontology for a given biomedical
text mining application. The criteria are organized
in three components of a framework.

Component 1

In the first component the criteria for ontology selec-
tion are given in two dimensions: content and sup-
porting technologies. The combined requirements
from the two dimensions lead to a list of candidate
ontologies.
ContentWhat are the requirements on the content
of ontology given an application? We propose three
characteristics to be considered,

- TypeWhat is the kind of the ontology required
in the scenario? Ontologies can be distin-
guished into three basic types (Stenzhorn et al.,
2005): top ontologies, e.g. BFO (Smith, 2004),
contain only a restricted set of highly general
classes, such asFunction andObject, which are
not tied to any particular domain of interest;
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top-domain ontologies, e.g. BioTop (Stenzhorn
et al., 2005), contain all classes that are essen-
tially needed to describe a certain domain, such
asOrganism, Cell andTissue in the case of bi-
ology; anddomain ontologies, e.g. GO (Ash-
burner et al., 2000), contain classes that com-
prehensively describe a certain domain of in-
terest. For example, for natural language pro-
cessing tasks such as entity recognition, a top-
domain ontology may be sufficient.

- ScopeWhat are the main subjects that need to
be covered in a top-domain or domain ontology
required by the application? For example, gene
and disease are the domains that concern (Hris-
tovski et al., 2005).

- RepresentationWhat kind of information needs
to be present in the ontology? From a knowl-
edge representation point of view, ontologies
can have the following components:concepts,
which represent sets or classes of entities in a
domain;relationsbetween concepts,instances,
which represent the actual entities; andaxioms,
which represent facts that are always true in
the topic area of the ontology (Lambrix et al.,
2007). Which components should be present
in the ontology, depends to some extent on the
purpose of the ontology in the application. For
example, if an ontology is used as resource for
NLP in the application, componentsconcepts
and instancesboth may be necessary, but not
relationsandaxioms.

Supporting technologiesThree questions are con-
sidered in this dimension:

1. What technologies are needed to support the
use of the ontology in the scenario? Support-
ing technologies may include ontology repre-
sentation languages, ontology browsers, tools
for ontology alignment, reasoning services, and
ontology-driven NLP tools.

2. Are tools available to provide the supporting
technologies for the ontology? For example,
ontology alignment systems, e.g. (Lambrix and
Tan, 2008) are available for biomedical ontolo-
gies in OWL and OBO format.

3. What is the cost to develop new tools to support
the use of an ontology if there is no existing
tools? Does the cost meet the expectations of
the application?

Component 2

In this level the criteria for selection focus on de-
tailed content of candidate ontologies which are con-
sidered in two aspects: verification and evaluation.
Verification Considering the maturity level of cur-
rent biomedical ontologies, verification of taxo-
nomic knowledge in candidate ontologies is valu-
able for selection. Reasoners, such as Racer, Pellet,
and FaCT++, can check consistency, incompleteness
and redundancy in ontologies.
Evaluation First, we list a set of characteristics of
ontologies that are of interest for text mining appli-
cations,

- CoverageDoes an ontology cover the concepts
or/and relations concerned in the application?
Do their definitions meet the expected scope?

- Taxonomic KnowledgeThe two relationsis-a
andpart-of have a central role in almost all on-
tologies (Smith et al., 2005). Do the locations
of essential concepts in theis-a andpart-of hi-
erarchies meet the expectation?

- InstanceThe instantiation of concepts and the
number of instances for each concept could ef-
fect greatly the performance of many text min-
ing tasks such as entity recognition. Do they
satisfy the requirements?

These characteristics may be evaluated,

- against domain experts or references if they ex-
ist. For example, if an ontology involves inte-
gration of literature with data from biological
databases, schemas of databases can be the ref-
erences.

- among candidate ontologies. There is no gold
standard in this situation and therefore the can-
didate ontologies are compared directly to each
other. For instance, aligning the ontologies can
provide information about their similarities and
differences regarding their coverage.
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Component 3

The results from component 1 and 2 may not lead to
a direct and confident decision. Also, in many cases
there exist gold standards or benchmarks which we
can use to evaluate our application. Therefore, the
purpose of component 3 is to evaluate the use of on-
tologies in a real system. This component could pro-
vide a relatively straightforward method for evaluat-
ing the quality of ontologies for use in the applica-
tion.

The field of biomedical text mining has ex-
pended considerable effort in building evaluation re-
sources. A number of challenges, such as TREC Ge-
nomics track, BioCreative, BioNLP/JNLPBA 2004
and LLL05, have been organized in the community.
They contribute to the creation of shared gold stan-
dard datasets, prepared by domain experts and also
suggest evaluation measures. Comparison of the
system individually bundled with candidate ontolo-
gies can be performed by using these gold standard
datasets and measures.

4 Experiment

In this section we present an experiment in which we
use our framework to select a biomedical ontology
for the gene normalization task.

4.1 Scenario

The purpose of gene normalization (GN) is to link
genes and proteins mentioned in the literature to
their entries in structured databases of biological
data. It has a substantial impact on tasks such as re-
trieval of relevant documents, identification of inter-
esting genes and proteins, and relationships between
them. The task is challenging even for scientists,
since there is no community wide agreement on how
a particular gene and gene product should be named.
Heavy use of short forms (acronyms or abbrevia-
tions) in biomedical literature makes the problem
worse. In (Tan, 2008) we developed an ontology-
centred system for gene normalization. It relies on
information about gene candidates, contexts of the
symbol and external knowledge sources. Informa-
tion about gene candidates is extracted from gene
databases. Ontologies are used for semantic inter-
pretation of contexts of gene symbols and identifi-
cation of their relevance to gene candidate informa-
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Figure 1: The components and data flows of the system

tion. Normalization is based on matching contexts
of the symbol to relevant information about gene
candidates.

Figure 1 illustrates the components and data flows
of the system. The system receives a raw text as the
input, and yields database entries of genes appear-
ing in the text: 1)Mapperreceives the ontology and
schemas of gene databases, and outputs a list of con-
cepts from the ontology and their mappings to cat-
egories of information stored in gene databases. 2)
Named Entity Recognizer(NER) recognizes relevant
biomedical entities in text by linking them to the
concepts of the ontology which have been mapped
to categories of gene information inmapper. 3)
Gene candidate retrievalretrieves gene candidates
for each gene symbol. The categories of information
about each gene candidate are collected. 4)Match-
ing includes various algorithms that match contexts
of a gene symbol to information about its gene can-
didates according to the mappings obtained inmap-
per, and returns similarity values between them. 5)
Normalization rankingranks gene candidates based
on results ofMatchingfor each gene symbol appear-
ing in a text.

4.2 Selecting the ontology

In this application the componentsNERand Map-
per count on the deployment of ontologies. The
ontology-drivenNERcomponent involves associat-
ing text with the correct concepts in the ontology by
means of associating mentions in the text with in-
stances in the ontology. The ontology provides the
formal representation of domain knowledge for the
NER. The componentMapperinvolves mapping the
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ontology to database schemas. The ontology pro-
vides the model to link information extracted from
literature and data in biological databases.

Component 1

Following the criteria of the component 1, we define
the requirements on the ontology.
TypeBased on studies of categories of information
stored in gene databases such as EntrezGene (Ma-
gloot et al., 2005), we decide that top-domain on-
tologies are suitable for our application.
ScopeThe ontology should represent domain knowl-
edge about genes and gene products. The ontol-
ogy must contain concepts covering the categories
of gene information, e.g. location, functions, and
biological process.
RepresentationIn order to support the task ofNER,
the ontology must at least have concepts and in-
stances.
Supporting TechnologiesIn the system the support-
ing technologies include an ontology-driven NLP
tool that support the task ofNER, and ontology
alignment algorithms, that can be used to map the
ontology to categories of information in databases.

We look for suitable ontologies by searching
OBO (OBO, 2009) and Bioportal, and reviewing lit-
erature on biomedical ontologies. There are a few
ontologies covering genes and gene products such as
GO, MeSH, the Unified Medical Language System
(UMLS) knowledge sources (Lingberg et al., 1993)
and ontologies from the GENIA project (Kim et al.,
2003). Only two of these meet all the above require-
ments, the UMLS knowledge sources and the GE-
NIA ontologies. The UMLS Semantic Network and
GENIA entity and event ontologies can be seen as
top-domain ontologies, of which the concepts are on
the level of the requirement. The UMLS Metathe-
saurus is primarily concerned with names used in
the domain. It contains a huge number of biomedical
entities and events (called concepts in the Metathe-
saurus) and their various names from more than 100
biomedical vocabularies. All of the concepts are as-
signed to at least one semantic type in the Semantic
Network. The MetaMap program (Aronson, 2001)
is available to map text to the concepts and seman-
tic type. The GENIA project collects a set of MED-
LINE articles concerning transcription factors in hu-
man blood cells. Every biomedical entity and event

appearing in the articles are identified with a con-
cept in the GENIA ontology. Several NLP tools,
e.g. LingPipe (LingPipe, 3.7.0), support statistical
name entity recognition by using the GENIA corpus
as training data.

Component 2

Verification We checked the consistency and redun-
dancy in the UMLS Semantic Network and GE-
NIA ontologies, respectively, by translating them
into OWL format and then sending to the reasoner,
Racer. Both of them are consistent and have mini-
mal representations.
Evaluation We perform two evaluations. The first
evaluation is to investigate the coverage of concepts
of the two ontologies against categories of Entrez-
Gene. The coverage determines the extent of infor-
mation that can be used for gene normalization. In
the second one we compare biomedical entities and
events belonging to concepts of the two ontologies,
since they influence the performance ofNER.
- Evaluation 1Manually, we identify a list of cate-
gories of EntrezGene that are used for gene normal-
ization. Evaluation is performed by aligning con-
cepts of the two ontologies to the categories. A first
observation is that UMLS covers more topics than
GENIA and therefore may give better results for
NER. The topics of the GENIA corpus can be repre-
sented by a query usinghuman, blood cell, transcrip-
tion factor. To be able to compare the coverage of
UMLS and GENIA on an overlapping piece of a do-
main we align the two ontologies based on the GE-
NIA topics. The evaluation is based on an instance-
based strategy proposed in (Tan et al., 2006). The al-
gorithm consists of the following steps: 1)Instance
collection: We retrieve a list of human genes from
the database usinghuman, blood cell, andtranscrip-
tion factor. All entities appearing in the categories of
information are collected as instances. 2)Classifica-
tion: For each ontology, each instance is classified
to concepts by a NLP tool. The MetaMap program
is used for the UMLS Semantic Network, and the
LingPipe entity recognition program is used for the
GENIA ontology. An instance can be classified to
more than one concept. 3)Calculation: The simi-
larity between a concept from an ontology (A) and
a category from the EntrezGene (Bj) is determined
by the extent to which the instances of the category
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EntrezGene UMLS (value) GENIA (value)
Name/Syn. Gene or Genome (0,66) proteinmolecule (0,83)
Chromosome Cell Component (1.0) proteinmolecule (1.0)
Map Location Nucleotide Sequence (1.0) DNA domainor region (0,5)

proteinmolecule (0,4)
Protein Gene or Genome (0,42) proteinmolecule (0,60)

Amino Acid, Peptide,
or Protein (0,25)

Pathway Molecular Function (0,29) other name (0,76)
Cell Function (0,24)

GOA function Molecular Function (0,75) other name (0,85)
GOA component Cell Component (0,96) cell component (0,40)

other name ( 0,15)
GOA process Cell Function (0,49) other name (0,78)

Molecular Function (0,16)

Table 1: Comparison: EntrezGene, UMLS and GENIA

support the concept. The similarity value is calcu-
lated as:sim(A, Bj) =

Pn
i=1 S(ai,Bj)

P

m
k=1

P

n
i=1 S(ai,Bk)

, whereai

are the instances belonging toA, n is the number of
instances belonging toA, m is the number of cate-
gories, andS is a function calculating the degree to
which an instance of an ontology concept supports a
category from EntrezGene.S is defined as:

S(ai, Bj) =

8

<

:

0 if ai does not associate withBj
1
p

otherwise;p is the number of categoriesBk

thatai associates with

Table 1 shows the alignment results. The left col-
umn gives the categories of gene information we use
for normalization. If the similarity value between a
category and the UMLS semantic type or GENIA
concept is higher than 0.6, they are considered as
corresponding to the category. If no similarity value
is higher than 0.6, we list the two semantic types
or concepts with the highest values. Three of eight
alignments fall into this situation for UMLS seman-
tic types, and two for GENIA concepts. We also
note that the GENIA conceptother name appears 4
times, but the meaning of this concept is not well-
defined. Most other categories are aligned topro-
tein molecule, although the categories are very dif-
ferent. In this evaluation, it is more likely that the
UMLS semantic network is more appropriate than
the GENIA ontology for our system.
- Evaluation 235,515 entities of interest in the bi-
ological domain are identified in the GENIA entity
corpus, 7,089 entities of which have been found in
the UMLS Metathesaurus. Since we could not ob-
tain all the UMLS Metathesaurus concepts for each
semantic type, we decided to compare the UMLS
semantic types and GENIA concepts that appear
in the first evaluation, based on these 7,089 shared
instances. The comparison is based on the same
instance-based alignment strategy used in the first

evaluation. Tables 2 and 3 show the alignment re-
sults. In table 2 the value illustrates the extent
to which instances of GENIA concepts support the
UMLS semantic types. We list the three concepts
with the highest values in the table, if they ex-
ist. The concepts in italics are event concepts, the
others are entities. All the UMLS semantic types
cover instances from more than one GENIA con-
cept belonging to a subtree. For example,Gene or
Genome could be aligned to the three GENIA con-
ceptsDNA family or group, DNA domain or region
andRNA molecule, which are leaves of the subtree
Nucleotide acid compound. The granularity of the
part of the GENIA ontology concerning the appli-
cation is finer than the corresponding part of the
UMLS semantic network. Table 3 shows the dis-
tribution of the instances of GENIA concepts when
they support UMLS semantic types. Instances of
DNA domain or region and cell component mainly
supportGene or Genome andCell Component, re-
spectively, which is consistent with our observation
in table 1. Another observation from this table is
thatprotein molecule covers bothGene or Genome
andAmino Acid, Peptide, or Protein. The result also
shows thatother name is not well defined. However,
this evaluation does not give a conclusive answer to
which ontology supports the task ofNERbetter.

Component 3

Since component 1 and 2 could not lead to a di-
rect and confident decision, we evaluate the use of
the two ontologies in our system We use a train-
ing dataset from the BioCreative II gene normal-
ization task (Morgan et al., 2008) in the evaluation.
The BioCreative datasets contain Medline abstracts
along with the EntrezGene identifiers corresponding
to the human genes and direct gene products ap-
pearing in the abstracts. The training dataset con-
tain 281 Medline abstracts and 640 human genes.
The MetaMap program is the NLP tool that uses the
UMLS Semantic Network, and the LingPipe entity
recognition program employs GENIA ontology.

Table 4 illustrates the quality of normalization in
the two systems. The quality is measured in terms of
precision, recall and f-measure. Recall (Re.) is de-
fined as the number of correctly disambiguated gene
symbols divided by the number of the gene sym-
bols to be disambiguated. Precision is measured in
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GENIA UMLS value
DNA family or group Gene or Genome 0.63
DNA domainor region Gene or Genome 0.54
RNA molecule Gene or Genome 0.44
DNA N/A Nucleotide Sequence 0.23
DNA substructure Nucleotide Sequence 0.23
DNA domainor region Nucleotide Sequence 0.17
cell component Cell Component 0.76
RNA N/A Cell Component 0.50
DNA molecule Cell Component 0.46
protein family or group Amino Acid, Peptide, or Protein 0.37
proteinsubunit Amino Acid, Peptide, or Protein 0.33
aminoacid monomer Amino Acid, Peptide, or Protein 0.33
proteindomainor region Amino Acid Sequence 0.42
Cellular physiologicalprocess Cell Function 0.26
Cell communication Cell Function 0.24
Cell differentiation Cell Function 0.19
Protein aminoacid deacetylation Molecular Function 1.0
Protein aminoacid dephosphorylation Molecular Function 0.80
Protein ubiquitination Molecular Function 0.50

Table 2: Comparison: UMLS and GENIA (1)

GENIA UMLS value
proteinmolecule Gene or Genome 0.30
proteinmolecule Amino Acid, Peptide, or Protein 0.29
proteinmolecule Biologically Active Substance 0.10
DNA domainor region Gene or Genome 0.54
DNA domainor region Biologically Active Substance 0.07
DNA domainor region Nucleotide Sequence 0.06
cell component Cell Component 0.76
cell component Biomedical or Dental Material 0.03
cell component Amino Acid, Peptide, or Protein 0.02
othername Disease or Syndrome 0.15
othername Cell Function 0.09
othername Neoplastic Process 0.08

Table 3: Comparison: UMLS and GENIA (2)

two ways. Pre.-1 is defined as the number of gene
symbols correctly and uniquely identified to the real
gene, divided by the total number of genes proposed
in the result regarding the whole data set. Pre.-2 is
computed as the average of the precision of disam-
biguation for each gene symbol. F-measure is the
evenly weighted harmonic mean of precision and re-
call. Pre.-1 and Pre.-2 are used in the computation
of Fm.-1 and Fm.-2, respectively. For both datasets
the quality of normalization from the system bun-
dled with the UMLS is better than the one with the
GENIA ontology.

Result

Overall, the UMLS knowledge source can be con-
sidered as the ontology that is most appropriate for
our gene normalization system. The ontology cov-
ers the subject, genes and gene products, well. The
meaning of the concepts is defined well enough for
the use in the application. The granularity of the
part of the ontology meets the need of the task. The
system bundled with the UMLS and its supporting
technologies produced better results in a gold stan-
dard dataset than the other one.

KB Dataset Pre.-1 Pre.-2 Re. Fm.-1 Fm.-2
GENIA dataset 1 0.45 0.65 0.78 0.57 0.71

dataset 2 0.50 0.63 0.72 0.59 0.67
UMLS dataset 1 0.48 0.69 0.82 0.61 0.75

dataset 2 0.52 0.67 0.78 0.62 0.72

Table 4: Quality of normalization

Although we have not run additional expirements
to confirm that the we have indeed made the right se-
lection for our gene normalization system, the tests
do corrobarate our results. The chosen ontology
leads to a better result for both datasets that we used.
Therefore, each dataset can be seen as a confirma-
tion of the framework where we only used the other
dataset.

5 Conclusions

In this paper we proposed a framework for select-
ing an appropriate ontology for a particular biomed-
ical text mining application. The framework deals
with ontology selection in three components, each
of which considers different aspects of requirements
of text mining applications on ontologies. Then we
present an experiment in which we select a biomedi-
cal ontology for a gene normalization system, using
the framework. Within the framework, evaluation
results lead us to a relatively concrete choice of an
ontology for our system.

In the future we want to evaluate our framework
with more applications and ontologies. Further, cur-
rently there is no service to support ontology selec-
tion for biomedical text mining. Therefore, an im-
portant track for future work is to build or extend an
existing portal with information about the ontologies
and their use in text mining applications that is struc-
tured according to our framework. The information
in such a portal will constitute valuable data and ex-
periences regarding ontology selection that will be
useful for future applications.
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Abstract

Dictionaries of biomedical concepts (e.g. dis-
eases, medical treatments) are critical source
of background knowledge for systems doing
biomedical information retrieval, extraction,
and automated discovery. However, the rapid
pace of biomedical research and the lack of
constraints on usage ensure that such dictio-
naries are incomplete. Focusing on medical
treatment concepts (e.g. drugs, medical pro-
cedures and medical devices), we have devel-
oped an unsupervised, iterative pattern learn-
ing approach for constructing a comprehen-
sive dictionary of medical treatment terms
from randomized clinical trial (RCT) ab-
stracts. We have investigated different meth-
ods of seeding, either with a seed pattern or
seed instances (terms), and have compared
different ranking methods for ranking ex-
tracted context patterns and instances. When
used to identify treatment concepts from 100
randomly chosen, manually annotated RCT
abstracts, our medical treatment dictionary
shows better performance (precision:0.40, re-
call: 0.92 and F-measure: 0.54) over the
most widely used manually created medical
treatment terminology (precision: 0.41, recall:
0.52 and F-measure: 0.42).

1 Introduction

Dictionary based natural language processing sys-
tems have been widely used in recognizing medical
concepts from free text. For example, the MetaMap
program is used to map medical text to concepts
from the most widely used biomedical terminol-
ogy, the Unified Medical Language System (UMLS)

Metathesaurus (Aronson, 2000). It identifies various
forms of UMLS concepts in text and returns them
as a ranked list using a five-step process: identify-
ing simple noun phrases (NP’s), generating variants
of each phrase, finding matched phrases, assign-
ing scores to matched phrases and composing map-
pings. However, its performance largely depends on
the quality of the underlying UMLS Metathesaurus
and its manually created rules and variants. One
study has shown that, of the medical concepts iden-
tified by human subjects, more than 40% were not
in UMLS (Pratt, 2003). Other examples of map-
ping text to controlled biomedical terminologies in-
clude (Cohen, 2005) and (Fang, 2006). Many other
systems make heavy use of biomedical terminolo-
gies directly such as the work of Blaschke, et al.
(Blaschke, 2002) and Friedman et al. (Friedman,
2001).

Biomedical terminology is highly dynamic, both
because biomedical research is itself highly dy-
namic, but also because there are essentially no con-
straints on the use of new terminological variants,
making the terms used in free text quite different
from the canonical forms listed in controlled ter-
minologies. To contrast UMLS with actual text
mentions, there are 150 different chemotherapy con-
cepts in UMLS. The majority of these terms de-
rive from the diseases they are used to treat. For
example cancer chemotherapy, AIDS chemother-
apy, brain disorder chemotherapy, and alcoholism
chemotherapy. On the other hand, we have identi-
fied more than 1,000 different chemotherapy types
mentioned in RCT (Randomized Clinical Trial) re-
port abstracts, with most of the names derived
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from the chemicals contained in the chemother-
apy regimen, such as platinum-based chemother-
apy or fluorouracil-based chemotherapy. There is
little overlap between the chemotherapy terms in
UMLS and the ones used in RCT abstracts. Even
for simple drug names as 5-fluorouracil and tamox-
ifen, there are many clinically distinct and important
variants of these drugs which are absent in UMLS
as distinct terms/concepts, such as intralesional 5-
fluorouracil, topical 5-fluorouracil, intrahepatic ar-
terial 5-Fluorouracil, adjuvant sequential tamox-
ifen, and neoadjuvant tamoxifen.

There has been considerable work on expand-
ing the coverage of biomedical dictionaries through
morphological variants, but these approaches re-
quire an initial term dictionary with reasonable
extensive coverage. Examples include the ap-
proaches developed by Krauthammer and Nenadic
(Krauthammer, 2004), Tsuruoka and Tsujii (Tsu-
ruoka, 2004) & (Tsuruoka, 2003), Bodenreider, et
al. (Bodenreider, 2002), and Mukherjea and col-
leagues (Mukherjea, 2004). An important short-
coming with static, human derived terminologies
that cannot easily be addressed by looking for vari-
ants of existing terms is the fact that continual devel-
opments in medical therapies constantly gives rise
to new terms. Examples include, Apomab, Bap-
ineuzumab, Bavituximab, Etaracizumab, and Figi-
tumumab. These all represent a new generation of
targeted biological agents currently in clinical trials
none of which appear in UMLS. Clearly we need to
develop techniques to deal with this dynamic termi-
nology landscape.

MEDLINE is the most extensive and authoritative
source of biomedical information. Large quantities
of biomedical text are available in MEDLINE’s col-
lection of RCT reports with over 500,000 abstracts
available. RCT reports are a critical resource for in-
formation about diseases, their treatments, and treat-
ment efficacy. These reports have the advantage of
being highly redundant (a disease or treatment name
is often reported in multiple RCT abstracts), medi-
cally related, coherent in writing style, trustworthy
and freely available.

In our recent study (Xu, 2008), we have devel-
oped and evaluated an automated, unsupervised, it-
erative pattern learning approach for constructing
a comprehensive disease dictionary from RCT ab-

stracts. When used to identify disease concepts from
100 manually annotated clinical abstracts, the dis-
ease dictionary shows significant performance im-
provement (F1 increased by 35-88%) over UMLS
and other disease terminologies. It remained to
be demonstrated that these bootstrapping techniques
are indeed rapidly retargetable and can be extended
to other situations, and so we have extended our
scope to investigate medical treatment names in ad-
dition to disease terms in this work.

Our approach is inspired by the framework
adopted in several bootstrapping systems for learn-
ing term dictionaries, including (Brin, 1998), (?),
and (Agichtein, 2000). These approaches are based
on a set of surface patterns (Hearst , 1992), which
are matched to the text collection and used to find
instance-concept relations. Similar systems include
that of Snow and colleagues (Snow, 2005), which
integrates syntactic dependency structure into pat-
tern representation and has been applied to the task
of learning instance-of relations, and the approach
developed of Caprosaso, et al. (Caprosaso, 2007)
which focussed on learning text context patterns to
identify mentions of point mutations.

All iterative learning systems suffer from the in-
evitable problem of spurious patterns and instances
introduced in the iterative process. To analyze dif-
ferent approaches to addressing this issue, we have
compared three different approaches to ranking ex-
tracted patterns and three different approaches to
ranking extracted instances. Because such systems
also depend on an initial seeding with either a seed
pattern or term instance, an important question is
whether these different starting points lead to dif-
ferent results. We investigated this issue by starting
from each point separately and compared the final
results.

2 Data and Methods

2.1 Data

509,308 RCT abstracts published in MEDLINE
from 1965 to 2008 were parsed into 8,252,797 sen-
tences. Each sentence was lexically parsed to gen-
erate a parse tree using the Stanford Parser. The
Stanford Parser (Klein, 2003) is an unlexicalized
natural language parser, trained on a non-medical
document collection (Wall Street Journal). We used
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the publicly available information retrieval library,
Lucene, to create an index on sentences and their
corresponding parse trees. For evaluation and com-
parison, 241,793 treatment terms with treatment re-
lated semantics types from UMLS were used.

2.2 Unsupervised Instance Extraction and
Pattern Discovery

Figure 1 describes the bootstrapping algorithm used
in learning instances of treatment and their associ-
ated text patterns. The algorithm can operate in two
modes, either starting with a seed pattern p0, which
represents a typical way of writing about treatments,
or a set of seed instances, (di). For example, the
seed pattern we used was “treated with NP” (NP:
noun phrase). The program loops over a procedure
consisting of two steps: instance extraction and pat-
tern discovery. In the instance extraction step, pat-
terns are used as search queries to the local search
engine. The parse trees with given patterns are re-
trieved and noun phrases (instances of treatments)
following the pattern are matched from the parse
trees. In the pattern discovery step, instances ex-
tracted from the previous iteration are used as search
queries to the local search engine. Corresponding
sentences containing instance mentions are retrieved
and the bigrams (two words) in front of instances are
extracted as patterns. When seeding with an initial
pattern, only two iterations are typically needed, as
experience shows that most of reliable patterns and
instances have been discovered at this stage. The al-
gorithm stops after a single iteration when seeding
with a list of instances.

2.3 Selecting Seed Instances

Of the 241,793 treatment related terms in the
UMLS, only about 22,000 (9%) of these have ap-
peared in MEDLINE RCT reports. We randomly
selected 500 drug terms and 500 medical procedure
terms from the 22,000 terms as seed instances and
used them in the pattern discovery system described
above.

2.4 Pattern Ranking

A newly discovered pattern is scored on how simi-
lar its output (instances associated with the pattern)
is to the output of the initial seed pattern. Intu-
itively, a reliable pattern is one that is both highly

Instance
Extraction

Pattern 
Discovery

Instance 
& pattern 
ranking

Seed pattern

RCT

DB

Seed Instance

Figure 1: General scheme of the iterative method.

precise (high precision) and general (high recall).
Using the output instances from the seed pattern p0

as a comparison, we developed Precision Based, Re-
call Based, and F1 Based algorithms to rank pat-
terns. We define instances(p) to be the set of
instances matched by pattern p, and the intersec-
tion instances(p)

⋂
instances(p0) as the set of in-

stances matched by both pattern p and p0.

1. Precision Based rank:

score1(p) =
instances(p)

⋂
instances(p0)

instances(p)
(1)

The precision based ranking method favors
specific patterns.

2. Recall Based rank:

score2(p) =
instances(p)

⋂
instances(p0)

instances(p0)
(2)

The recall based ranking method favors gen-
eral patterns.

3. F1 based rank:

score3(p) =
2× score1(p)× score2(p)

score1(p) + score2(p)
(3)

A combination of the Precision Based and the
Recall Based evaluation methods is the F1
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Based ranking method, which takes into ac-
count both pattern specificity and pattern gener-
ality. This method favors general patterns while
penalizing overly specific patterns.

2.5 Instance Ranking
A reliable instance is one that is associated with a
reliable pattern many times. We experimented with
three ranking algorithms:

1. Abundance Based rank: A treatment
instance(d) that is obtained multiple times
is more likely to be a real treatment concept
when compared with one that has only a
single mention in the whole corpus. We define
scoreA(d) as the number of times where d
appears in the corpus.

2. Pattern Based rank: A treatment instance ob-
tained from multiple patterns is more likely
to be a real treatment concept when compared
with the one that was obtained by a single pat-
tern (p). Pattern Based rank takes into account
the number of patterns that generated the in-
stance, score of those patterns, and the num-
ber of times that the instance is associated with
each pattern (count(p, d)).

scoreB(d) =
n∑

i=0

log score3(pi)×count(pi, d)

(4)

3. Best Pattern Based rank: A treatment instance
obtained from a highly ranked pattern is more
likely to be a real treatment concept when com-
pared with the one that was obtained from a
poorly ranked pattern. First the instances are
ranked by the best pattern (pb) that generated
the instances and then further ties are broken
by the number of times the instance is associ-
ated with that pattern (count(p, d)) to provide
scoreC(d).

2.6 Comparison of Patterns Derived from
Different Seed Types

The patterns extracted when starting with either seed
instances or a seed pattern are ranked by the recall
based method and F1-based method, then the over-
laps at different cutoffs are measured to assess the

similarity of the patterns discovered by starting with
the different starting seed types.

2.7 Evaluation of Stanford Parser in
Identifying Treatment Noun Phrase

An important question is how accurate the Stan-
ford Parser is at identifying the relevant term bound-
aries. We used manually curated treatment names
from UMLS to measure the accuracy of the Stan-
ford Parser in identifying treatment noun phrases.
With NPcount(treatment) defined as number of
times that the Stanford Parser identifies a treatment
as noun phrase or part of a noun phrase in the data
and count(treatment) as number of times the treat-
ment appears in the data.

accuracy =
1
n

n∑

i=0

(
NPcount(di)

count(di)

)
(5)

2.8 Evaluation of the extracted treatment
lexicon

We assessed the quality (precision and recall) of our
lexicon by using it to identify treatment concepts in
100 randomly selected RCT abstracts where treat-
ment names were manually identified. In addition,
we also compared the performance of our lexicon
with that of UMLS.

3 Results

3.1 Evaluation of Stanford Parser in
Identifying Treatment Noun Phrases

Even though the Stanford Parser is trained on non-
medical data, it is highly accurate in identifying
treatments as noun phrases or parts of a noun phrase
with accuracy of 0.95. The reason may be that medi-
cal treatments are indeed often noun phrases or parts
of a noun phrase in RCT reports, and there are strong
syntactical signals for their phrasal roles in the sen-
tences. For example, treatments are often either the
object of a preposition (e.g. efficacy of fluorouracil
and treated with fluorouracil) or the subject of a sen-
tence (e.g. fluorouracil is effective in treating colon
cancer).

3.2 Comparison between Seed Types
There is considerable overlap in discovered patterns
between starting with a single seed pattern and start-
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ing with the 1,000 seed instances and little differ-
ence in overall performance. 12,241 patterns are
found to be associated with the 1,000 seed treatment
instances. However, only the most highly ranked
patterns are relevant (see Evaluation of The Ex-
tracted Treatment Lexicon, below). Table 1 shows
the intersection of the top ranked patterns between
both seeding methods at different rank cut-offs. We
find a very high level of intersection between the top
ranked patterns from both initial seed types, for ex-
ample eighteen of the top twenty patterns are iden-
tical. These results indicate that starting from either
seed type leads to very similar results.

Rank Recall Based F1 Based
10 0.90 0.80
20 0.90 0.90
30 0.87 0.80
40 0.83 0.85
50 0.84 0.82
60 0.82 0.85
70 0.82 0.79
80 0.83 0.84
90 0.84 0.83
100 0.82 0.83

Table 1: : The ratio of overlap in the top ranking patterns
discovered by different seed types

3.3 Pattern Ranking

Similar to the results observed in our previous study
(Xu, 2008), the Precision Based metric assigns high
scores to very specific but not generalizable patterns
such as “lornoxicam versus” (Table 2), which ap-
pears only once in the data collection, while the
top 10 patterns based on the Recall Based and F1
Based rankings are typical treatment related pat-
terns. When a different seed pattern “efficacy of ”
was used, the top 10 patterns were the same with a
different rank ordering.

3.4 Instance ranking

Table 3 shows the top 10 suggested treatment names
when using “treated with” as the initial seed pattern.
The rank of a proposed treatment instance is deter-
mined by the different ranking methods: Abundance
Based, Pattern Based, or Best Pattern Based ranking

# Precision based Recall based F1 based
1 beta-blockers nor treated with treated with
2 lornoxicam versus treatment

with
treatment with

3 piroxantrone and effects of efficacy of
4 heparin called efficacy of effects of
5 anesthetics con-

taining
dose of dose of

6 antioestrogens and doses of doses of
7 markedly adsorb suggest that suggest that
8 recover following study of safety of
9 Phisoderm and response to response to
10 MitoExtra and effect of effect of

Table 2: Top 10 patterns with “treated with” as seed pat-
tern

algorithms. None of the top 10 extracted phrases on
the basis of Abundance Based or Pattern Based are
actual treatment names. These two ranking methods
assign high ranks to common, non-specific phrases.
The Best Pattern Based ranking method correctly
identifies specific treatment mentions, mainly be-
cause it reduces the likelihood of selecting irrelevant
patterns.

# Abundance Pattern Best pattern
based based based

1 patients patients placebo
2 treatments the treatment chemotherapy
3 the treatments treatments radiotherapy
4 children the use tamoxifen
5 the effect children antibiotics
6 no significant

differences
surgery insulin

7 placebo the patients interferon
8 surgery changes surgery
9 the effects women corticosteroids
10 the study use cisplatin

Table 3: Top 10 treatments when using “treated with” as
the seed pattern

3.5 Evaluation of the Extracted Treatment
Lexicon

Our dictionary derived from using “treated with”
as the seed pattern with two bootstrapping itera-
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Count Cutoff Precision Recall F1
17,683 1.0% 0.404 0.921 0.540
88,415 5% 0.127 1.0 0.22
132,623 7.5% 0.105 1.0 0.187
176,832 10% 0.088 1.0 0.160

Table 4: Precision, recall and F1 at 4 cutoff values

tions consists of 1,768,320 candidate instances and
78,037 patterns, each with an accompanying confi-
dence score. The top 20 patterns are associated with
more than 90% of the instances. We evaluated the
quality of the dictionary by using it to identify treat-
ment concepts in 100 randomly selected abstracts
where treatment names were manually annotated.
There were an average of three treatment names per
test abstract. Table 4 shows the precision, recall and
F1 values when instances are ranked by the best pat-
tern based ranking method (ScoreC). The precision,
recall and F1 values at each cut-off (percentage of all
instances) were averaged across the 100 abstracts.

The precision, recall and F1 of the UMLS
Metathesaurus in identifying treatment names from
the test dataset are 0.41, 0.52 and 0.42 respectively.
The performance using UMLS on this task is con-
sistent with a previous study (Pratt, 2003). The low
precision may due to the fact that UMLS often tags
irrelevant names as treatment related names. For ex-
ample, common, non-specific terms such as drug,
agent, treatment and procedure appear in the dictio-
nary derived from UMLS. However, we chose not to
edit the lexicon derived from UMLS as it is unclear
how to do so in a systematic matter without essen-
tially creating a new version of UMLS, and we are
interested in studying methods that do not rely on
any human involvement (our Discussion describes
the possible inclusion of human judgments). Also,
the low recall of UMLS is not surprising given the
fact that the names specified in UMLS are often not
the terms authors use in writing. The performance
of our dictionary (precision: 0.40, recall: 0.92, F1:
0.54) is a dramatic improvement over using UMLS.
Our recall is high since all the terms are learned from
the literature directly and exemplify the manner in
which authors write RCT reports. However, the pre-
cision of our dictionary is still low (see Discussion).

4 Discussion

We have demonstrated an automated, unsupervised,
iterative pattern learning approach for bootstrapping
construction of a comprehensive treatment lexicon.
We also compared different pattern and instance
ranking methods and different initial seed types (in-
stances or patterns). On the task of term identifica-
tion, use of our boostrapped lexicon increased per-
formance over using the most widely used manually
curated terminology (UMLS). We have extended our
previous work to the identification of new termi-
nology types, demonstrating the versatility of this
approach. Our approach may also be used with
other data sources such as general health related web
pages. However, there is still significant space in
which to seek improvement in increasing the cover-
age of our lexicon and the quality of our patterns.

Although useful in demonstrating the proof of
concept and allowing us to examine different rank-
ing methods, focusing on bigrams that precede
noun-phrases limited the space of patterns that we
could potentially examine. More complex patterns
might be involved. For example, in the sentence
“Pravastatin is an effective and safe drug” (PMID
08339527), there is a distinctive treatment related
pattern “NP is an effective and safe drug” that our
technique does not capture. However, most key
terms are mentioned in multiple contexts. For ex-
ample, Pravastatin appears with the seed pattern
treatment with more than 200 times. As our corpus
of literature increases, redundancy will increase the
likelihood of a treatment term being matched by the
type of patterns we recognize. The rapid growth of
biomedical knowledge and literature, which makes
our automatically generated medical treatment vo-
cabulary necessary, can also act to increase its cov-
erage over time.

In order to keep our algorithm simple, we did not
perform deep grammatical analysis. For example, in
the sentence “Treatment of the subjects with atorvas-
tatin decreased the abundance of IL-12p35 mRNA in
mononuclear cells” (PMID 12492458), atorvastatin
is associated with treatment of, not subjects with.
Since our algorithms simply extracts the two words
in front of treatment names, subjects with will be ex-
tracted as treatment related pattern. In fact, subjects
with is a disease related pattern in RCT reports, for
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example “34 subjects with asthma”. But our pattern
ranking algorithm will assign a low score to subjects
with since the terms associated with this pattern are
more disease related and have little overlap with the
output of the seed pattern treatment with.

Our instance ranking assigns high confidence
scores to common and non specific terms like this
drug, the treatment or this procedure since they are
often associated with highly ranked patterns many
times. These anaphoric terms often refer to treat-
ment names previously specified. There are at least
two ways to address this problem. The first is to as-
sign low scores to terms starting with a determiner
such as the or this. Another way to improve the in-
stance ranking algorithm is to take into account of
the overall context of the term. For example, these
anaphora often appear in specific sections of RCT
reports such as the result section, and refer to terms
from previous sections. Specific examples include
“Treatment with this drug should be attempted in
intractable cases” (PMID 09038009) and “The effi-
cacy of the treatment was 88 and 95% in group 1 and
2, respectively” (PMID 14520944). The terms from
title, background or conclusion sections could be as-
signed higher scores than the ones from result sec-
tion. Beyond these simple heuristics, more sophisti-
cated approaches might take advantage of the work
in anaphora resolution, such as (Baldwin, 2001).

The lexicon consists of terms with mixed hi-
erarchies, including general terms as chemother-
apy, surgery, corticosteroids, antibiotics, and spe-
cific terms as fluorouracil, oral or intravenous 5-
Fluorouracil, cisplatin, nephrectomy. In order to
make this dictionary more useful, additional work
is needed to organize the terms and build ontologies
based on the lexicon.

Previous work has shown that learning multiple
semantic types simultaneously can improve preci-
sion (Thelen, 2002) & (Curran, 2007), and it re-
mains to be seen if that approach can be combined
with the prioritization of pattern and extracted in-
stance rankings here to give better overall perfor-
mance. Other possible extensions and improve-
ments include various approaches to slow the learn-
ing process and discover new patterns and instances
more conservatively, at the expense of more itera-
tions. Further improvements can be expected from
integrating active learning approaches to include

the involvement of a human judge in the process,
analogous to the tag-a-little, learn-a-little method
proposed as part of the Alembic Workbench (Day,
1997). Because our approach ranks both extracted
patterns and instances, it is amenable to such tech-
niques. Indeed, active learning has been found
to provide considerable gains in corpus annotation
(Tomanek, 2007) & (Buyko, 2007), and can be a
model for semi-automated terminology compilation.

All the data and code are available on request
from the author.
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Abstract

Abbreviations are common in biomedical doc-
uments and many are ambiguous in the sense
that they have several potential expansions.
Identifying the correct expansion is necessary
for language understanding and important for
applications such as document retrieval. Iden-
tifying the correct expansion can be viewed as
a Word Sense Disambiguation (WSD) prob-
lem. A WSD system that uses a variety of
knowledge sources, including two types of in-
formation specific to the biomedical domain,
is also described. This system was tested on a
corpus of ambiguous abbreviations, created by
automatically identifying the correct expan-
sion in Medline abstracts, and found to iden-
tify the correct expansion with up to 99% ac-
curacy.

1 Introduction

Many abbreviations are ambiguous in the sense that
they have more than one possible expansion. For
example, expansions for “NLP” include “Neuro-
linguistic Programming” as well as “Natural Lan-
guage Processing”. Ambiguous abbreviations form
a challenge to language understanding since iden-
tification of the correct expansion is often impor-
tant. The query “NLP”, for example, returns pages
which refer to “Neuro-linguistic programming” for
most web search engines, pages which are of lim-
ited value to those interested in Natural Language
Processing. In some cases this problem could be
obviated by altering the query terms, for example
including “Natural”, “Language” and “Processing”.

However, this will not help when the abbreviation’s
expansion does not occur within the document. Fred
and Cheng (1999) point out that this is often the case
in biomedical documents, in this domain ubiquitous
abbreviations (such as DNA and mRNA) often ap-
pear without an expansion.

It has been reported that misinterpretation of ab-
breviations in biomedical documents has lead to
medical practitioners making fatal errors (Fred and
Cheng, 1999). However, identifying the correct ex-
pansion is not a straightforward task since an ab-
breviation may have several possible expansions.
Chang et al. (2002) reported that abbreviations in
biomedical journal articles consisting of six charac-
ters or less have an average of 4.61 possible mean-
ings and Pustejovsky et al. (2002) mention that the
simple abbreviation “AC” is associated with at least
10 strings in different biomedical documents includ-
ing “atrioventricular connection”, “anterior colpor-
rhaphy procedure”, “auditory cortex” and “atypical
carcinoid”.

The problem of identifying the correct expansion
of an ambiguous abbreviation can be viewed as a
Word Sense Disambiguation (WSD) task where the
various expansions are the “senses” of the abbrevia-
tion. In this paper we approach the problem in this
way by applying a WSD system which has previ-
ously been applied to biomedical text (Stevenson et
al., 2008). The WSD system uses a variety of infor-
mation sources, including those traditionally applied
to the WSD problem in addition to two knowledge
sources that are specific to the biomedical domain.

Evaluation of systems for disambiguating am-
biguous abbreviations has been hindered by the fact
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that there is no freely available benchmark corpus
against which approaches can be compared. We de-
scribe a process whereby such a corpus can be cre-
ated by automatically mining abstracts from Med-
line. This corpus is being made publicly available
to encourage comparative research in this area. Our
abbreviation disambiguation system was evaluated
against this corpus and found to identify the correct
abbreviation with up to 99% accuracy.

The remainder of this paper is organised as fol-
lows. The next section describes relevant previous
work on disambiguation of abbreviations. Section
3 describes a supervised learning WSD system tai-
lored specifically to the biomedical domain. Section
4 describes the automatic creation of a corpus of am-
biguous abbreviations designed specifically for the
training and evaluation of abbreviation disambigua-
tion systems. Section 5 describes the evaluation of
our system on this corpus. Our conclusions are pre-
sented in Section 6.

2 Previous Work

Gaudan et al. (2005) distinguish two types of abbre-
viations: global and local. Global abbreviations are
those found in documents without the expansion ex-
plicitly stated, while local abbreviations are defined
in the same document in which the abbreviation oc-
curs. Our work is concerned with the problem of
disambiguating global abbreviations. Gaudan et al.
(2005) point out that global abbreviations are often
ambiguous.

Various researchers have explored the problem
of disambiguating global abbreviations in biomed-
ical documents. Liu et al. (2001)(2002) used sev-
eral domain-specific knowledge sources to identify
terms which are semantically related to each possi-
ble expansion but which have only one sense them-
selves. Instances of these terms were identified in
a corpus of biomedical journal abstracts and used
as training data. Their learning algorithm uses a
variety of features including all words in the ab-
stract and collocations of the ambiguous abbrevia-
tion. They report an accuracy of 97% on a small set
of abbreviations. Liu et al. (2004) present a fully
supervised approach. They compared a variety of
supervised machine learning algorithms and found
that the best performance over a set of 15 ambigu-

ous abbreviations, 98.6%, was obtained using Naive
Bayes. Gaudan et al. (2005) use a Support Vector
Machine trained on a bag-of-words model and re-
port an accuracy of 98.5%. Yu et al. (2006) exper-
imented with two supervised learning algorithms:
Naive Bayes and Support Vector Machines. They
extracted a corpus containing examples of 60 ab-
breviations from a set of biomedical journal articles
which was split so that abstracts in which the abbre-
viations were defined were used as training data and
those in which no definition is found as test data.
Abbreviations in the test portion were manually dis-
ambiguated. They report 79% coverage and 80%
precision using a Naive Bayes classifier. Pakho-
mov (2002) applied a maximum entropy model to
identify the meanings of ambiguous abbreviations in
10,000 rheumatology notes with around 89% accu-
racy. Joshi et al. (2006) disambiguated abbreviations
in clinical notes using three supervised learning al-
gorithms (Naive Bayes, decision trees and Support
Vector Machines). They used a range of features and
found that the best performance was obtained when
these were combined. Unfortunately direct compari-
son of these methods is made difficult by the fact that
various researchers have evaluated their approaches
on different data sets.

A variety of approaches have also been proposed
for the problem of disambiguating local abbrevia-
tions in biomedical documents. This task is equiv-
alent to identifying the abbreviation’s expansion in
the document. The problem is relatively straight-
forward for abbreviations which are created by se-
lecting the first character from each word in the ex-
pansion, such as “angiotensin converting enzyme
(ACE)”, but is more difficult when this convention
is not followed, for example “acetylchlinesterase
(ACE)”, “antisocial personality (ASP)” and “cata-
lase (CAT)”. Okazaki et al. (2008) recently pro-
posed an approach to this problem based on dis-
criminative alignment that has been shown to per-
form well. However, the most common solutions
are based on heuristic approaches, for example
Adar (2004) and Zhou et al. (2006). Pustejovsky
et al. (2002) used hand-built regular expressions.
Schwartz and Hearst (2003) describe an approach
which starts by identifying the set of candidate ex-
pansions in the same sentence as an abbreviation.
The most likely one is identified by searching for the
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shortest candidate which contains all the characters
in the abbreviation in the correct order.

3 Abbreviation Disambiguation System

Our abbreviation disambiguation system is based on
a state-of-the-art WSD system that has been adapted
to the biomedical domain by augmenting it with ad-
ditional knowledge sources. The system on which
our approach is based (Agirre and Martı́nez, 2004)
participated in the Senseval-3 challenge (Mihalcea
et al., 2004) with a performance close to the best
system for the lexical sample tasks in two languages
while the version adapted to the biomedical domain
has achieved the best recorded results (Stevenson et
al., 2008) on a standard test set consisting of am-
biguous terms (Weeber et al., 2001).

This system is based on a supervised learning ap-
proach with features derived from text around the
ambiguous word that are domain independent. We
refer to these as general features. This feature set
has been adapted for the disambiguation of biomed-
ical text by adding further linguistic features and two
different types of domain-specific features: CUIs (as
used by McInnes et al. (2007)) and Medical Sub-
ject Heading (MeSH) terms. This set of features is
more diverse than have been explored by previous
approaches to abbreviation disambiguation.

3.1 Features
Our feature set contains a number of parameters
(e.g. thresholds for unigram and CUI frequencies).
These parameters were set to the same values that
were used when the system was applied to gen-
eral biomedical terms (Stevenson et al., 2008) since
these were found to perform well. We also use the
entire abstract as the context of the ambiguous term
for relevant features rather than just the sentence
containing the term. Effects of altering these vari-
ables are consistent with previous results (Liu et al.,
2004; Joshi et al., 2005; McInnes et al., 2007) and
are not reported here.

General features: The system uses a wide range
of domain-independent features that are commonly
employed for WSD.

• Local collocations: A total of 41 features which
extensively describe the context of the am-
biguous word and fall into two main types:

(1) bigrams and trigrams containing the am-
biguous word constructed from lemmas, word
forms or PoS tags and (2) preceding/following
lemma/word-form of the content words (adjec-
tive, adverb, noun and verb) in the same sen-
tence as the ambiguous abbreviation. For ex-
ample, consider the sentence below with the
target abreviation BSA.

“Lean BSA was obtained from height
and lean body weight ...”

The features would include the following:
left-content-word-lemma “lean BSA”, right-
function-word-lemma “BSA be”, left-POS “JJ
NNP”, right-POS “NNP VBD”, left-content-
word-form “Lean BSA”, right-function-word-
form “BSA was”, etc.

• Salient bigrams: Salient bigrams within the ab-
stract with high log-likelihood scores, as de-
scribed by Pedersen (2001).

• Unigrams: Lemmas of all content words in the
abstract and words within a ±4-word window
around the target word, excluding those in a list
of stopwords. In addition, the lemmas of any
unigrams appearing at least twice in the entire
corpus and which are found in the abstract are
also included as features.

Concept Unique Identifiers (CUIs): We follow
the approach presented by McInnes et al. (2007) to
generate features based on UMLS Concept Unique
Identifiers (CUIs). The MetaMap program (Aron-
son, 2001) identifies all words and terms in a
text which could be mapped onto a UMLS CUI.
MetaMap does not disambiguate the senses of the
concepts, instead it enumerates likely candidate con-
cepts. For example, MetaMap will segment the
phrase “Lean BSA was obtained from height and
lean body weight ...” into four chunks: “Lean
BSA”, “obtained”, “from height” and “lean body
weight”. The first chunk will be mapped onto
three CUIs: “C1261466: BSA (Body surface area)”,
“C1511233: BSA (NCI Board of Scientific Ad-
visors)” and “C0036774: BSA (Serum Albumin,
Bovine)”. The chunk “lean body weight” is mapped
onto two concepts: “C0005910: Body Weight”
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and “C1305866: Body Weight (Weighing patient)”1.
CUIs occurring more than twice in an abstract are in-
cluded as features. CUIs have been used for various
disambiguation tasks in the biomedical domain, in-
cluding disambiguation of ambiguous general terms
(McInnes et al., 2007) and gene symbol disambigua-
tion (Xu et al., 2007), but not, to our knowledge, for
abbreviation disambiguation.

Medical Subject Headings (MeSH): The fi-
nal feature is also specific to the biomedical do-
main. Medical Subject Headings (MeSH) (Nelson
et al., 2002) is a controlled vocabulary for index-
ing biomedical and health-related information and
documents. MeSH terms are manually assigned to
abstracts by human indexers. The latest version of
MeSH (2009) contains over 25,000 terms organised
into an 11 level hierarchy.

The MeSH terms assigned to the abstract in which
each ambiguous word occurs are used as features.
For example, the abstract containing our example
phrase has been assigned 16 terms including “Body
Surface Area”, “Body Weight”, “Humans” and “Or-
gan Size” . MeSH terms have previously been used
for abbreviation disambiguation by Yu et al. (2006).

3.2 Learning Algorithms

We compared three machine leaning algorithms
which have previously been shown to be effective
for WSD tasks.

The Vector Space Model (VSM) is a memory-
based learning algorithm which was used by Agirre
and Martı́nez (2004). Each occurrence of an
ambiguous word is represented as a binary vec-
tor in which each position indicates the occur-
rence/absence of a feature. A single centroid vector
is generated for each sense during training. These
centroids are compared with the vectors that repre-
sent new examples using the cosine metric to com-
pute similarity. The sense assigned to a new example
is that of the closest centroid.

The Naive Bayes (NB) classifier is based on a
probabilistic model which assumes conditional in-
dependence of features given the target classifica-
tion. It calculates the posterior probability that an

1The first of these, C0005910, refers to the weight of
a patient as a property of that individual while the second,
C1305866, refers to the process of weighing a patient as part
of a diagnostic procedure.

instance belongs to a particular class given the prior
probabilities of the class and the conditional proba-
bility of each feature given the target class.

Support Vector Machines (SVM) have been
widely used in classification tasks. SVMs map
feature vectors onto a high dimensional space and
construct a classifier by searching for the hyper-
plane that gives the greatest separation between the
classes.

We used our own implementation of the Vector
Space Model and Weka implementations (Witten
and Frank, 2005) of the other two algorithms.

4 Evaluation Corpus

The most common method for generating corpora
to train and test WSD systems is to manually an-
notate instances of ambiguous terms found in text
with the appropriate meaning. However, this process
is both time-consuming and difficult (Artstein and
Poesio, 2008). An alternative to manual tagging is
to find a way of automatically creating sense tagged
corpora. For the translation of ambiguous English
words Ng et al. (2003) made use of the fact that the
various senses are often translated differently. For
example when “bank” is used in the ‘financial insti-
tution’ sense it is translated to French as “banque”
and “bord” when it is used to mean ‘edge of river’.
However, a disadvantage of this approach is that it
relies on the existence of parallel text which may
not be available. In the biomedical domain Liu et al.
(2001)(2002) created a corpus using unambiguous
related terms (see Section 2) although they found
that it was not always possible to identify suitable
related terms.

4.1 Corpus Creation

Liu et al. (2001) also made use of the fact that
when abbreviations are introduced they are often ac-
companied by their expansion, for example “BSA
(bovine serum albumin)”. This phenomenon was
exploited to automatically generate a corpus of ab-
breviations and associated definitions by replacing
the abbreviation and expansion with the abbrevia-
tion alone. For example, the sentence “The adsorp-
tion behavior of bovine serum albumin (BSA) on
a Sepharose based hydrophobic interaction support
has been studied.” becomes “The adsorption behav-
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“BSA” AND “body surface area” NOT “bovine serum albumin”
“BSA” AND “bovine serum albumin” NOT “body surface area”

Figure 1: Example queries for abbreviation “BSA”

ior of BSA on a Sepharose based hydrophobic inter-
action support has been studied.”

We used this approach to create a corpus of sense
tagged abbreviations in biomedical documents using
a set of 21 three letter abbreviations used in previ-
ous research on abbreviation disambiguation (Liu et
al., 2001; Liu et al., 2002; Liu et al., 2004). Pos-
sible expansions for the majority of these abbrevi-
ations were listed in these papers. For the few re-
maining ones possible expansions were taken from
the Medstract database (Pustejovsky et al., 2002).
We searched for instances of these abbreviations in
Medline, a database containing more than 18 mil-
lion abstracts from publications in biomedicine and
the life sciences. For each abbreviation we queried
Medline, using the Entrez interface, to identify doc-
uments containing one of its meanings. For exam-
ple the abbreviation “BSA” has two possible expan-
sions: “body surface area” and “bovine serum alu-
min”. Medline is searched to identify documents
that contain each possible expansion of the abbre-
viation using the queries shown in Figure 1. Each
query matches documents containing the abbrevia-
tion and relevant expansion and no mentions of the
other possible expansion(s).

The retrieved documents are then processed to
remove the expansions of each abbreviation. The
Schwartz and Hearst (2003) algorithm for identi-
fying abbreviations and the relevant expansion (see
Section 2) is then run over each of the retrieved ab-
stracts to identify the correct expansion. The expan-
sion is removed from the document and stored sep-
arately, effectively creating a sense tagged corpus.
For convenience the abstracts are converted into a
format similar to the one used for the NLM-WSD
corpus (Weeber et al., 2001).

The resulting corpus consists of 55,655 docu-
ments. For each abbreviation Table 1 shows the
number of abstracts retrieved from Medline (in the
column labeled “Abstracts”) and the number of ex-
pansions (“Count” column). The column labelled
“Rare” lists the number of expansions that account

for fewer than 1% of the occurrences of an abbre-
viation and “Frequent” lists the percentage of occu-
rances represented by the most frequent expansion.
It can be seen that there is a wide variation between
the number of abstracts retrieved for each abbrevi-
ation. CSF occurs in 14,871 abstracts and ASP in
just 71. There is also a wide variation between the
frequency of the most common expansion with over
99% of the occurrences of “CSF” representing one
expansion (“cerebrospinal fluid”) while for “ASP”
two of the five possible expansions (“antisocial per-
sonality” and “aspartate”) each account for almost
34% of the documents. In addition, several abbrevi-
ations have expansions which occur only rarely. For
example, two of the expansions of “APC” (“atrial
pressure complexes” and “aphidicholin”) each have
only a single document and account for just 0.03%
of the instances of that abbreviation.

4.2 Corpus Reduction

Given the diversity of the abbreviations which were
downloaded from Medline, both in terms of num-
ber of documents and distribution of senses, sub-
sets of this corpus that are more suitable for WSD
experiments were created. Corpora containing 100,
200 and 300 randomly selected examples of each ab-
breviation were generated and these are referred to
as Corpus.100, Corpus.200 and Corpus.300 respec-
tively.

Some of the 21 abbreviations were not suitable
for inclusion in these corpora. Abbreviations were
not included in the relevant corpus if an insufficient
number of examples were retrieved from Medline.
For example, only 71 abstracts containing “ASP”
were retrieved and it is is not included in any of the
three corpora. Similarly, “ANA” and “FDP” are not
included in Corpus.200 or Corpus.300 and “DIP”
not included in Corpus.300. In addition, rare senses,
those which represent fewer than 1% of the occur-
rences of an abbreviation in all retrieved abstracts,
were discarded. Finally, two abbreviations (“ACE”
and “CSF”) have only one sense that is not “Rare”
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Expansions
Abstracts Count Rare Frequent

ACE 3105 3 2 98.7
ANA 100 3 0 58.0
APC 3146 5 2 39.4
ASP 71 5 0 33.8
BPD 1841 3 0 46.7
BSA 5373 2 0 86.4
CAT 4636 3 1 55.2
CML 2234 4 2 91.7
CMV 7665 2 0 96.7
CSF 14871 3 2 99.1
DIP 209 2 0 75.1

EMG 2052 2 0 88.4
FDP 130 4 0 78.5
LAM 325 4 1 48.3
MAC 955 5 1 64.3
MCP 815 5 1 50.2
PCA 2442 5 1 68.9
PCP 1642 2 0 57.8
PEG 607 2 0 94.1
PVC 234 2 2 78.2
RSV 3202 2 0 76.7

Average 2650 3.2 0.6 70.8

Table 1: Properties of abbreviations corpus retrieved
from Medline

(see Table 1) and these were also excluded from the
reduced corpora.

Consequently, Corpus.100 contains 18 abbrevia-
tions (“ACE”, “ASP” and “CSF” are excluded), Cor-
pus.200 contains 16 (“ANA” and “FDP” are also
excluded) and Corpus.300 contains 14 (“DIP” and
“PVC” also excluded). Where an abbreviation is in-
cluded in more than one corpus, all the examples in
the smaller corpus are included in the larger one(s).
For example, the 100 examples of “APC” in Cor-
pus.100 are also included in Corpus.200 and Cor-
pus.300.

5 Experiments

Various combinations of learning algorithms and
features were applied to the three reduced corpora
described in Section 4.2. Performance of the WSD
system is measured in terms of the proportion of ab-
breviation instances for which the correct expansion

is identified. 10-fold cross validation was used for
all experiments and all quoted results refer to the av-
erage performance across the 10 folds. Results are
shown in Table 2. The baseline figures, based on
selecting the most frequent expansion for each ab-
breviation, are shown for each corpus. Note that
these figures vary slightly across the three corpora
because of the different abbreviations each contains
(see Section 4.2).

A first observation is that performance of the
WSD system is consistently better than the base-
line for the relevant corpus and, with a few excep-
tions, above 90%. As might be expected, perfor-
mance improves as additional training examples are
added. However, even when the number of exam-
ples is relatively low, just 100, performance of the
best configuration (VSM learning algorithm with all
three types of feature) is 97.4%.

The best result, 99% (300 training examples,
VSM learning algorithm with all feature types), ex-
ceeds reported performance of previous abbreviation
disambiguation systems (see Section 2). Although
these results are not directly comparable, since these
studies used different evaluation corpora, the set
of ambiguous abbreviations used in this study and
methodology for corpus creation are similar to those
used by Liu et al. (2001)(2002)(2004).

The best performance for each learning algorithm
is obtained when all three types of features are com-
bined. The difference between performance ob-
tained using all three feature types and using only
the MeSH or CUI features is statistically significant
(Wilcoxon Signed Ranks test, p < 0.01) although
the difference between this and performance using
just the linguistic features is not.

The VSM learning algorithm generally performs
better than either the SVM or Naive Bayes learning
algorithms. The difference between performance of
VSM and the other algorithms is statistically signif-
icant for Corpus.100 but not for the other two, sug-
gesting that this learning algorithm is better able to
cope with small number of training examples than
Naive Bayes and Support Vector Machines. Strong
performance of the VSM algorithm is consistent
with previous work which has shown that this algo-
rithm performs well on the disambiguation of am-
biguous terms in both biomedical and general text
(Agirre and Martı́nez, 2004; Stevenson et al., 2008).
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Features
Algorithm Linguistic Linguistic CUI+ Linguistic+Linguistic CUI MeSH

+CUI +MeSH MeSH MeSH+CUI
Corpus.100 (Baseline = 69.0%)

SVM 0.934 0.900 0.949 0.947 0.946 0.938 0.954
NB 0.940 0.917 0.949 0.951 0.947 0.944 0.958

VSM 0.968 0.937 0.888 0.970 0.971 0.939 0.974
Corpus.200 (Baseline = 69.1%)

SVM 0.957 0.911 0.964 0.964 0.964 0.947 0.965
NB 0.966 0.926 0.962 0.969 0.971 0.955 0.972

VSM 0.979 0.930 0.894 0.982 0.981 0.947 0.984
Corpus.300 (Baseline = 68.7%)

SVM 0.966 0.914 0.970 0.968 0.974 0.954 0.975
NB 0.971 0.933 0.960 0.971 0.976 0.960 0.978

VSM 0.981 0.938 0.894 0.987 0.985 0.957 0.990

Table 2: Performance of WSD system using various combinations of learning algorithms and features.

Performance of our system on this task is higher
than would be expected for most WSD tasks sug-
gesting that the problem of abbreviation disam-
biguation is simpler than the disambiguation of gen-
eral terms. The most probable reason for this is that
the various expansions of abbreviations in our cor-
pus are more distinct and better defined than senses
for general terms. For example, the three possi-
ble expansions for “ANA” in our corpus are a pro-
fessional body (“American Nurses Association”), a
type of medical test (“antinuclear”) and a neuro-
transmitter (“Anandamide”). It is likely that these
diverse meanings will tend to occur in very differ-
ent contexts and in documents with different topics.
On the other hand it is widely accepted that distinc-
tions between possible meanings of words in natu-
ral language are often vague (Kilgarriff, 1993). It
is likely that clearer distinctions between possible
expansions of abbreviations make the task of iden-
tifying the correct one more straightforward than
identifying meanings of ambiguous words. In ad-
dition, the creation of annotated data for WSD is of-
ten hampered by the difficulty in obtaining sufficient
agreement between annotators (Artstein and Poesio,
2008; Weeber et al., 2001) and this problem does not
apply to our automatically-generated corpus.

Results in Table 2 indicate that CUIs are use-
ful features in the disambiguation of abbreviations.
This is in contrast with previous experiments on am-

biguous terms in biomedical documents (Stevenson
et al., 2008) in which it was found that the best
performance as obtained using only linguistic and
MeSH features. It is likely that the clear distinction
between expansions of abbreviations is the reason
behind this difference. CUIs are assigned automat-
ically by the MetaMap program (Aronson, 2001).
However, this assignment is very noisy. It is likely
that the various expansions of abbreviations are dis-
tinct enough for this noise to be tolerated by the
learning algorithms while it causes problems when
the meanings are closer together, such as in the case
of ambiguous terms.

5.1 Performance of Individual Abbreviations

Table 3 shows the performance of the best WSD sys-
tem (VSM learning algorithm with all features) for
each abbreviation in the three subsets of our corpus.
Our system performs well for all abbreviations. Ac-
curacy is no lower than 92% for any abbreviation
using Corpus.100 and no lower than 97% for Cor-
pus.300, demonstrating that the approach is robust.
In fact, the approach still performs well for abbre-
viations with low baseline scores, such as “APC”,
“BPD” and “LAM”.

It is interesting to note that the abbreviations with
the lowest performance tend to have expansions that
are closely related. For example, the two expansions
of “EMG” are ‘electromyography’ and ‘electromyo-
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Corpus
100 200 300

ANA 0.980 - -
APC 0.980 1.000 1.000
BPD 1.000 1.000 1.000
BSA 0.970 0.970 0.982
CAT 0.990 0.990 1.000

CML 0.960 0.963 0.978
CMV 0.970 0.970 0.970

DIP 1.000 1.000 -
EMG 0.920 0.960 0.980
FDP 0.970 - -

LAM 0.960 0.980 0.980
MAC 0.970 0.990 0.989
MCP 0.980 0.978 1.000
PCA 0.960 0.987 0.992
PCP 0.990 1.000 1.000
PEG 0.980 0.982 1.000
PVC 0.990 1.000 -
RSV 0.960 0.972 0.978

Overall 0.974 0.984 0.990

Table 3: Performance of WSD system over individual ab-
breviations in three reduced corpora

gram’ while for “LAM” one expansion (‘Lymphan-
gioleiomyomatosis’) is a rare lung disease and the
other (‘Lipoarabinomannan’) a molecule associated
with another lung disease (tuberculosis). On the
other hand, abbreviations that are more accurately
disambiguated tend to have expansions with more
distinct meanings. For example, “BPD” can be an
acronym for ‘borderline personality disorder’ (a psy-
chiatric diagnosis), ‘bronchopulmonary dysplasia’
(a lung disease) or ‘biparietal diameter’ (diameter of
a foetus’ head in an ultrasound) and the expansions
of “DIP” are ‘desquamative interstitial pneumonia’
(a lung disease) and ‘distal interphalangeal joints’
(types of joints in the human hand and foot).

6 Conclusions

This paper has presented an approach to the disam-
biguation of ambiguous abbreviations in biomedi-
cal documents. We treat this problem as a form
of WSD and apply a system that combines a wider
range of features than have been previously applied,
including those which are commonly used within

WSD systems in addition to information from two
domain-specific knowledge sources. The approach
is evaluated using a corpus of abbreviations auto-
matically mined from Medline and found to iden-
tify the correct expansion with accuracy of up to
99%. This figure is higher than previously reported
results for abbreviation disambiguation systems, al-
though direct comparison is difficult due to the use
of different data sets. It was also found that best per-
formance could be obtained using a simple machine
learning algorithm and a diverse range of knowledge
sources. Performance of our system is higher than is
normally achieved by WSD systems when applied
to general terms and we suggest that the reason for
this is that the various expansions of abbreviations
are better defined and more distinct than the senses
of ambiguous words.

This study has been limited to the disambiguation
of abbreviations consisting of exactly three letters.
Possibilities for future work include experimenting
with abbreviations of various lengths.

Data

The corpus described in Section 4 has been
made freely available for research and may
be obtained from http://nlp.shef.ac.uk/
BioWSD/downloads/abbreviationdata/.
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Abstract

In biomedical information extraction (IE), a
central problem is the disambiguation of am-
biguous names for domain specific entities,
such as proteins, genes, etc. One important
dimension of ambiguity is the organism to
which the entities belong: in order to disam-
biguate an ambiguous entity name (e.g. a pro-
tein), it is often necessary to identify the spe-
cific organism to which it refers.

In this paper we present an approach to the
detection and disambiguation of the focus or-
ganism(s), i.e. the organism(s) which are the
subject of the research described in scientific
papers, which can then be used for the disam-
biguation of other entities.

The results are evaluated against a gold stan-
dard derived from IntAct annotations. The
evaluation suggests that the results may al-
ready be useful within a curation environment
and are certainly a baseline for more complex
approaches.

1 Introduction

The task of identifying the organisms which are in-
volved in research described in biomedical articles
is extremely important for the field of biomedical in-
formation extraction (IE), both in itself and in con-
nection with other tasks. In itself, because the con-
cept of biological taxonomy is basic for every re-
searcher: organisms and their taxonomic classifica-
tion can be used very effectively in various contexts,
for example to restrict searches, a classical infor-
mation retrieval (IR) task. At the same time, any
biomedical text mining system would be incomplete
without the possibility to use organisms as concepts,
e.g. in finding (statistical) associations, which can

∗Corresponding author

then be used to form hypotheses about causal rela-
tions.

The necessity of identifying organisms is even
more evident as part of other important entity recog-
nition tasks in biomedical information extraction
(IE), e.g. identification and disambiguation of pro-
teins mentioned in the literature. For example,
within the PPI task (identification of protein-protein
interactions) of Biocreative II (Krallinger et al.,
2008), the identification of the focus organism was
seen by many participants as an essential subtask in
order to properly disambiguate protein names. Pro-
tein interactions are fundamental for most biological
processes, therefore they are at the focus of a huge
and fast growing number of biomedical papers. As
these cannot all be read or even inspected by the re-
searchers, databases such as IntAct (Kerrien et al.,
2006) or MINT (Zanzoni et al., 2002) try to create a
reliable catalogue of experimentally detected inter-
actions by extracting them “manually” from the lit-
erature through the usage of human experts. This is
known as “curation”, a costly and time-consuming
process, which could be speeded up much by effi-
cient, robust and precise extraction tools.

One of the most important obstacles for efficient
automatic identification of proteins is the extreme
ambiguity of the commonly used protein names in
the literature. The fragmentation of the biomedical
scientific community into lots of extremely special-
ized sub-communities seems to be the main reason
for this ambiguity. In most cases, the ambiguity is
between homologous proteins of different species.
Any human reader belonging to the sub-community
concerned can, in general, disambiguate an ambigu-
ous protein name like “goat” (which can refer to
proteins found in four different organisms: human,
rat, mouse and zebrafish), as the species is obvious
to them from the context. However, this ambiguity
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remains problematic for IE systems (and even for
curators in some cases) and needs to be solved be-
fore more complex tasks, such as protein interaction
detection, can be effectively tackled (Rinaldi et al.,
2008).

Our goal is to be able to identify automatically
the focus organisms, i.e. the organisms that are
mentioned in the paper as the hosts of the exper-
iments described, or as the sources of the entities
involved. This information can then be used for tag-
ging papers for more efficient organism-based infor-
mation retrieval, or, more commonly, for the dis-
ambiguation of other entities mentioned in the same
paper. Since organism recognition is normally per-
formed with reference to a taxonomical organization
(of Linnean origin) of all known organisms (in our
case, the NCBI taxonomy) this task is often referred
to as “TX task”.

In the rest of this paper we describe in section 2
the resources used and the approach followed in or-
der to extract and rank candidate organisms. In sec-
tion 3 we present our results and propose a more fine
grained interpretation of the task, which we again
evaluate. Finally in section 4 we compare our ap-
proach to previous work and discuss its limitations.

2 Methods

Our approach can be described briefly as (1) find all
explicit mentions of organisms either by their scien-
tific or “common” names; (2) count these mentions
and combine the resulting numbers with a simple
use of statistics to arrive at a ranked list or a sim-
ple set of organisms which can be used, among other
things, to disambiguate ambiguous protein names in
the article under investigation.

2.1 Resources Used
The first step for this approach was to choose a
widely accepted taxonomy which not just includes
unambiguous identifiers for all known organisms,
but also provides a sufficiently large list of names
for them. The taxonomy selected for this was the
NCBI Taxonomy1.

1Available as archive taxdmp.zip from
ftp://ftp.ncbi.nih.gov/pub/taxonomy/. We worked with a
version downloaded on July 10th 2008. The file nodes.dmp
contains the taxonomy as a set of 443,299 nodes for the taxa
and immediate-dominance-relations between them. The file

As most of these organism are unlikely to ever oc-
cur in biomedical literature, we decided to restrict
our interest to the organisms for which a UniProt
organism mnemonic identifier exists. UniProt
(UniProt Consortium, 2007) is a database containing
detailed information about known proteins, obtained
by a process of curation of the biomedical literature.
For every protein, a “mnemonic” identifier is de-
fined (e.g. HBA HUMAN for “Human Hemoglobin
A”) which is composed by a shorthand for the pro-
tein name and a simple unique identifier for the or-
ganism. Within the UniProt entry for the protein,
the organism is also referred to by its NCBI iden-
tifier, allowing the construction of a mapping from
the mnemonic identifiers for the organisms used by
UniProt to their equivalent NCBI identifiers.

The set of organism that have a UniProt
mnemonic identifier (11,444 organisms) probably
covers the near totality of organisms that have been
subject to research in molecular biology. In the
NCBI taxonomy 31,733 names are defined for that
subset of organisms. Although several classes of
names are defined by NCBI, for the purpose of
this work we distinguish only between “scientific
names” and the other classes (pooled together as
“common names”).2

As an additional source of information, we used
the IntAct database of protein interactions3 for two
different purposes:

• to derive statistical measures used later by the
program, most importantly the frequency of
each focus organism in papers curated by Int-
Act (using the IntAct annotations as the sources
of the ’focus’).

• to derive a gold standard against which our pro-
grams could be tested

IntAct provides an annotated set of protein in-
teractions. Each interaction is enriched with de-
tailed information about the two proteins involved
names.dmp connects one or several names (619,325) of differ-
ent nameclasses (such as “scientific” or “common”) to each
node. The nodes (taxa) are referred to by numeric identifiers.

2While there are no ambiguous “scientific names” in this
taxonomy, there are several ambiguous “common names”, but
only very few of these occurred in our sample, e.g. “mink”,
“barley”, “green monkey”, and they are very rare.

3Version of May 2008, downloaded from
http://www.ebi.ac.uk/intact/site/contents/downloads.jsf
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(from which the reference organisms can be recov-
ered), and with the identifier of the paper from which
the interaction was originally derived in the curation
process. This allows to build a gold standard by as-
sociating each paper to its focus organisms.

The sample used in our experiments is a set of 621
PubMed-indexed full text articles, dating from 1995
to 2007, for which IntAct annotations are available.4

2.2 First Experiments and Normalization

As an initial experiment, we performed a simple
lexical lookup of the names of the 11,444 organ-
isms under consideration. In previous applications
of IE techniques for biomedical literature (Kappeler
et al., 2008; Rinaldi et al., 2008) we found that
simple techniques for the generation of variants of
the known names significantly benefited the recall
of the application. For example, multiword protein
names can be subject to a number of minor variants,
such as the introduction of hyphens or the separation
of compound words, which make automatic recog-
nition more challenging. In the case of organism
names, although our initial expectations were sim-
ilar, we found the benefit (in terms of additional re-
call) of such variants to be extremely limited, possi-
bly because names of species are used more consis-
tently than the names of proteins or genes.

Therefore it was possible to implement a simpler
approach to recognition of organism names, based
on lexical lookup against a database containing all
names of interest, coupled with a simple normaliza-
tion step which removes trivial orthographic differ-
ences (such as hyphens) between the key word in
the database and the lookup word from the docu-
ment (for details see (Kaljurand et al., 2009)). The
inclusion of other biomedical NE’s (such as pro-
tein names, method names, cell line names) in the
database together with a strict implementation of
the “longest match” principle leads to better preci-
sion by eliminating false positives caused by match-
ing organism names with a fragment of a multiword
term for another entity (such as the method “yeast
two-hybrid”).

As mentioned, the names provided by the NCBI
4The reason of this particular choice is that the same subset

was used for experiments related to the automatic detection of
experimental methods, also using IntAct annotations as a gold
standard, described in (Kappeler et al., 2008).

taxonomy have been classified into “scientific
names” or “common names”. Using only “scientific
names” appeared as an effective way to obtain better
precision, but we soon discovered that precision of
the common names suffered most by a few very bad
names, such as “Li”, which is a “common name” for
LIV (Louping ill virus) in the taxonomy, but appears
only (and very frequently) as Chinese surname in the
texts. By eliminating about 25 of similar misleading
“common names” the results of this class rose to the
same level as the “scientific names”, so there was
no reason to exclude the whole class (as that would
have harmed recall).

Since the bibliography might contain spurious
mentions of other organisms, we automatically re-
moved it from the main text. However, contrary to
expectations, this did not lead to better results for
this task (at least after the elimination of the mislead-
ing “common names” mentioned above), but was
not reversed because of its effects on other tasks. An
intuition from other tasks was to use the abstracts
instead of the full text of the articles, because that
would tend to exclude accidental mentions of organ-
isms leading to false positives. But a main problem
of this approach is that many abstracts do not yield
any organism mentions. Whenever they do though,
their precision is high. So there is a strong case for
giving the mentions there a higher weight, but obvi-
ously the rest of the article plays an important role
as well. We experimentally found that counting an
“abstract mention” as equivalent to 25 “fulltext men-
tions” worked best.

2.3 Measures Improving Recall

An experiment using all names provided by NCBI
and considering all mentions of those names in the
fulltext version of each article led to a recall of 83%,
leading us to conclude that either the taxonomy does
not contain all names used, or some organisms are
suggested to the human reader by the context and/or
his anticipations. The first of these problems was
adressed by adding some generated names to the
termbase, the second by the use of a default.

Several possible ways of generating new names
automatically from the names in the database were
considered, but only two were applied successfully,
as described below. One of them was the automatic
generation of additional names from the nameclass
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“scientific name” (for organisms of species or sub-
species level) by the process of replacing the first
word (which would be the genus name in the classi-
cal Linnean binomial nomenclature) by its first letter
and a dot. The resulting names, such as “E. coli”, are
widely used, but not included in the taxonomy. A
seemingly large disadvantage of this approach is its
potential for ambiguity: 338 of the resulting names
refer to more than one organism. But the test on
our sample showed that of these only 4 occurred at
all, only 1 more than once: “C. elegans” (potentially
referring to the organisms identified in UniProt as
CAEEL, CENEL, CESEL and CUNEL) which al-
ways stood for CAEEL, i.e. “Caenorhabditis ele-
gans”. So excluding the other options for “C. ele-
gans” eliminated the ambiguity (at least in our sam-
ple). We observed that this type of name is in fre-
quent use only for few species and in this case the
unabbreviated name is often used first, so the addi-
tion of this generated nameclass added little to re-
call.

The other type of name missing from the taxon-
omy is the use of the (Linnean) genus name for a
very frequent species, e.g. “Arabidopsis” used for
“Arabidopsis thaliana”. Experiments showed that
this type could not be reliably generated automat-
ically from the “scientific names”, as this name-
class includes many names which do not follow
the rules of Linnean binomial nomenclature, mostly
virus names such as “Human papillomavirus type
me180” where the first word is generally not a
genus name, but a host name. So the problem of
(potentially huge) ambiguity in this type of names
was not even researched, instead the names of this
type for the most frequent organisms were gener-
ated manually and those which improved the results
were included into the termbase (Saccharomyces,
Arabidopsis, Drosophila, Escherichia, Xenopus and
Synechocystis). The addition of this generated
nameclass did not add much to recall for the same
reason as for the first group: in most cases the un-
abbreviated name appears in the paper as well. To-
gether both groups improved recall by about 3.4%.

As HUMAN is the most frequent organism in
this context, it was obvious that a default HUMAN
would take care of many cases where human readers
disambiguate ambiguous protein names even with-
out any explicit mentions of this species. As there

Table 1: Most frequent organisms in IntAct (derived from
interactor proteins and host organisms)

ORG freq
HUMAN 0.281
YEAST 0.272
MOUSE 0.091
ARATH 0.056
CERAE 0.037
RAT 0.033
DROME 0.028
SCHPO 0.023
ECOLX 0.020
ECOLI 0.013

are no cases (with the current termbase and sample)
of articles with no organism mentions in the full text,
we chose to have a default triggered by no findings
in the abstract. Experiments showed that — contrary
to intuition — a weight of the default proportional to
the total number of mentions (just adding a percent-
age to HUMAN) would lead to worse results than an
absolute value for the default.5

2.4 Measures Improving Precision

The simple approach of considering every mention
of each organism (after excluding the misleading
common names, as described above), leads to a pre-
cision of only 27.6%, therefore the list of organism
identifiers obtained in this way has to be considered
as a “candidates list” from which a selection has to
be made.

Candidates can be of course ranked according to
number of mentions in each article. A ranking based
on the mention counts, taking into account the cor-
rection factor of 25 for mentions in the abstract (as
described in section 2.2), was still far from opti-
mal, so we multiplied the mentions with the relative
frequencies of the organisms in a micro-averaged
frequency table (table 1) computed over all of Int-
Act (not just our sample, to avoid overfitting) and
smoothed roughly by attributing 1% of the probabil-
ity mass to all unseen organisms (over 11,000). This
ranking did far better than expected and after nor-

5 A tentative explanation: In a small paper, the effect of ac-
cidental mentions of “wrong” organisms is much larger than in
big papers (where the important organisms are mentioned again
and again). This detrimental effect may be counterbalanced by
a relatively stronger default.
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malizing the whole list to 1, a minimal threshold for
the score could be set up to maximize the f-score by
improving precision at the cost of recall. The actual
value of the threshold (currently 0.04) is of course
arbitrary, depending on what measure one wants to
maximize.

Another problem to be tackled is that different pa-
pers will have different numbers of focus organisms,
ranging from one (in about 70% of the cases), to sev-
eral hundreds (in a few very infrequent cases). It
could be assumed that being able to correctly guess
the number of focus organisms would lead to im-
provement in the TX task, as we could pick only as
many candidate organisms (in their ranking order)
as the expected number for the paper. However, an
experiment using the gold standard as an oracle to
predict the number of organisms to be returned as
a result, instead of using a threshold in the ranking,
did not perform much better (recall was about 1.7%
higher), so we decided not to spend any energy on
exploring ways to predict the number of organisms
as the effect would be minimal, even with perfect
prediction.

Further experiments, such as giving different
weights to mentions of names of different name-
classes, did not lead to better results. Including in-
formation about the precision or recall of the names
encountered in our test set (or the organisms pre-
dicted by them) in the formula for the weights6 did
not lead to better results either.

3 Evaluation and analysis of results

So finally the program in its current form considers
all organism mentions, as delivered by the termbase
search, eliminates the problematic common names,
counts the mentions for each organism in fulltext
and abstracts, multiplies the latter by 25 and adds
them to the fulltext mentions. In case of no abstract
mentions, a default of 28 fulltext mentions is added
to HUMAN (equivalent to about one abstract men-
tion).

The result for each organism is multiplied by the
relative frequency of the organism in IntAct and di-
vided by the sum of the results over all organisms to

6An idea suggested by its successful use in the detection of
experimental methods in (Kappeler et al., 2008) and (Rinaldi et
al., 2008).

Table 2: Most frequent false positives for the best results
with our sample

ORG freq
HUMAN 121
YEAST 104
MOUSE 68
ECOLX 18
DROME 13
ARATH 11
RAT 9

Table 3: Most frequent false negatives for the best results
with our sample

ORG freq
CERAE 73
MOUSE 59
RAT 40
YEAST 21
BOVIN 14
ECOLI 13
ECOLX 13

normalize the sum of the values to 1 (100%). All or-
ganisms under the threshold of 0.04 (or 4%) are then
eliminated from the list.

Our best results (max. f-score) for the task of find-
ing all organisms in the gold standard combining or-
ganisms of interacting proteins and host organisms
are: precision: 0.742; recall: 0.738; f-score: 0.740.

An analysis of the most frequent false positives
is reported in table 2. The ranking is more or less
identical with the frequency table (table 1), which is
what we would expect. Manual inspection of some
of the papers causing these false positives gave the
following results:

• Some names of experimental methods contain-
ing organism names (which could avoid false
positives if recognized as methods) were not
yet included in the termbase.

• Some organisms (or their proteins respectively)
are discussed in the paper, but not as results of
the authors own experiments, so they do not ap-
pear in the gold standard. Obviously the cura-
tors consider only the novel findings reported
in the paper, and all background information is
ignored.
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Table 4: Most frequent organisms in IntAct (derived from
interactor proteins only)

ORG freq
HUMAN 0.380
MOUSE 0.123
YEAST 0.108
ARATH 0.080
RAT 0.047
DROME 0.040
SCHPO 0.032
ECOLI 0.019
BOVIN 0.016
CAEEL 0.014

• While in some cases the annotators seem to de-
cide that an organism is just used as part of
the method and does not merit an inclusion, in
other cases the annotators do not seem to treat
the problem the same way.

An analysis of the most frequent false negatives
is reported in table 3. The ranking is certainly not
identical with the frequency table (table 1), which
was unexpected. Manual inspection of some of the
papers causing these false negatives gave the follow-
ing results:

• Some common names such as “mice”, and ad-
jectives such as “murine”, were absent from the
taxonomy (while “transgenic mice” e.g. was
present).

• There are probably more hints to recognize
ECOLI (Escherichia coli K12) than just the
presence of the string “K12” (or “K-12”). Our
program tends to attribute all mentions of “Es-
cherichia coli” without this string to ECOLX,
generating false negatives for ECOLI and false
positives for ECOLX.

• The extremely high false negative rate for
CERAE (Chlorocebus aethiops, also known as
Cercopithecus aethiops) is a consequence of its
very different frequencies as source of interac-
tor proteins and as a host organism.

The problem with CERAE suggests that it might
be necessary to consider separately organisms in
their roles as sources of the interactor proteins and as
hosts for the experiments. CERAE is only frequent

as a host organism, but in this role it does not appear
in the papers by any of the organism names given
by the taxonomy (such as “Chlorocebus aethiops”,
“Cercopithecus aethiops”, “African green monkey”,
“grivet”, “savanah monkey” or “vervet monkey”).
The reason is that often only the names of cell lines
(e.g. “Vero”) derived from the organism appear in
the paper.7 To a lesser degree, this is true as well for
papers where YEAST appears in this role.

A first step to deal with this problem consisted
in creating different frequency tables for organisms
as source of interactor proteins and as hosts of the
experiment (tables 4 and 5). As these frequency ta-
bles are very different from each other and from the
combined one (table 1) and as the combined task
of identifying “protein organisms” and “host organ-
isms” seems to be artificial in any case, we decided
to split the problem accordingly: (a) identify organ-
isms from which interacting proteins are derived; (b)
identify host organisms. The results for each of these
new tasks are not yet as good as the result for the
combined task we described above, but as the infor-
mation we are looking for now is more specific, this
was to be expected.

3.1 Identification of “Interactor Organisms”
In order to obtain a solution for this more specific
task, we just kept the formula as for the original task,
but replaced the frequency table for “interactor and
host organisms” (table 1) by a new one for “interac-
tors only” (table 4). At the same time we raised the
threshold to 18%: as the new freqency tables tended
to nearly eliminate several typical host organisms,
the remaining candidates for “interactor organisms”
profited by this, so the threshold had to be raised
to maximize f-score. The rest of the parameters re-
mained identical.

Obviously, a new gold standard for “interactors
only” had to be derived from IntAct. Our best results
for this new task are: precision: 0.697; recall: 0.693;
f-score: 0.695.

3.2 Identification of “Host Organisms”
For this alternative task we also had to improve the
input, not just the formula, as we noticed that of-

7 The Vero lineage is a very popular cell line isolated from
kidney epithelial cells extracted from an African green monkey
(“Cercopithecus aethiops”).
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Table 5: Most frequent organisms in IntAct (host organ-
isms only), freq* is computed excluding “in vitro”

ORG freq freq*
“in vitro” 0.363 -
YEAST 0.262 0.412
HUMAN 0.167 0.264
CERAE 0.036 0.057
MOUSE 0.035 0.055
ARATH 0.021 0.034
DROME 0.021 0.034
SCHPO 0.020 0.031
ECOLX 0.017 0.027
RAT 0.010 0.015

ten species which were given as hosts by IntAct
were not mentioned by any of their names (most
importantly CERAE). So we decided to include an-
other category of biological named entities in our
termbase, namely cell line names. These were de-
rived from one of the largest collections of cell
lines information: the Cell Lines Knowledge Base
(CLKB, (Sarntivijai et al., 2008)). However, a few
cell line names which are type-ambiguous with other
types of NE’s in our termbase (normally proteins)
had to be ignored to avoid conflicts. Another new
input to the formula was the mention of “in vitro”,
contained in our termbase as a method, but used by
the IntAct annotators as annotation for the “host or-
ganism”.

The following adaptations to the ranking formula
were necessary. The frequency table for “interactor
and host organisms” (table 1) was replaced by a new
one for “hosts only”, including “in vitro” (table 5).
At the same time the default had to be changed to
“in vitro” and was given a nearly identical weight
of 30 fulltext mentions (instead of 28), the thresh-
old remained at 4% and the abstract mentions were
given a weight of 35 fulltext mentions. The new cell
line mentions were given a weight of 3 fulltext men-
tions for their respective organisms. Of course, a
new gold standard for “interactors only” was derived
from IntAct also in this case. Our best results yet for
this new task are: precision: 0.689; recall: 0.737;
f-score: 0.712.

4 Related Work and Discussion

The task of organism recognition is only recently
starting to emerge as an independent subtask in
biomedical IE. For example, the latest BioCreative
competitive evaluation of text mining system for bi-
ology8 included a task of protein-protein interaction
detection (Krallinger et al., 2008). Although organ-
ism recognition was not officially evaluated, many
participants found that it was an indispensable step
in order to perform accurate protein recognition and
disambiguation. As a consequence, the BioCreative
meta-server (Leitner et al., 2008), offers organism
recognition as one of its services (called “TX task”).

(Wang and Matthews, 2008) is perhaps the most
comprehensive study to date dealing with species
disambiguation for term disambiguation. They com-
bine a rule-based species disambiguation approach
with a maximum entropy classifier based on con-
textual features of the term to be disambiguated.
They evaluate in detail the contribution of both ap-
proaches over two separate corpora. While previous
work has shown the benefits of using species infor-
mation for term disambiguation (Alex et al., 2008;
Rinaldi et al., 2008), this is perhaps the first study
which also provides a separate evaluation of species
disambiguation in itself. Since their purpose is to
use the organism mentions to disambiguate entities,
they evaluate how far their system can identify the
organisms associated with each entity mention in
the document. They report a level of accuracy that
reaches 74.24% on one of their test corpora.

Since our results are for whole articles, not single
entity mentions, they are not directly comparable.
The advantage of our approach resides in its simplic-
ity, since it does not require a specifically designed
training set, being based only on publicly available
standard databases. This reduces not only the cost
compared to building own resources, but also en-
sures that their quality is monitored.

In this paper we have not discussed how our re-
sults can be used in the disambiguation of entities.
As long as only one organism is selected as the fo-
cus of a given research publication, this is a rather
trivial task. However, as mentioned already in sec-
tion 2.4, it is often the case that multiple organisms
are considered within the same publication. In that

8http://www.biocreative.org/
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case, organism mentions would need to be ‘local-
ized’ within the article in order to serve for disam-
biguation purposes, as done in (Wang and Matthews,
2008). Our own approach to this problem is pre-
sented and discussed in (Kaljurand et al., 2009).

One important limitation of our approach is its
reliance on explicit mentions of organisms by their
names as stored in the termbase (or minor variants
thereof). Using all the names available to us (in-
cluding cell lines) and their variants we could so far
achieve only a maximal value of 88% recall, which
means that 12% of the organisms are not referred to
by any name in our resources. This may be due to
either missing names in the termbase (the organisms
are mentioned, but by different names) or because
they are identified by human readers through other
contextual hints which may consist of any sort of in-
formation,9 and may presuppose massive amounts
of background knowledge. The first problem might
be adressed by adding other sources of names to our
termbase. The second problem might be adressed
by using a machine learning approach, which how-
ever brings with it a whole set of new problems, such
as selection and representation of the features rele-
vant for training, as well as the fact that a sufficiently
large training corpus needs to be available.

Another limitation of our approach is the fact that
its development and testing rests on its application
to the identification of either organisms of protein
interactors or host organisms. The original formu-
lation of the goal that motivated this work was “to
identify automatically the organisms forming part of
the subject matter of scientific papers”. This leaves
open the question of the application of the results,
and is deliberately vague in the wording “part of the
subject matter”, which includes but is not confined
to the cases mentioned above. This formulation was
motivated by a desire to keep the task as generic as
possible, so that the resulting application could not
only be used as a module for the protein disambigua-
tion task, but also for other tasks of NE disambigua-
tion with respect to organisms, as well as for organ-
ism identification as an independent task. Addition-
ally, the ranked list of candidate organisms delivered
by our program could also be presented to human

9A trivial example would be a publication in a journal which
specializes in research on a single organism.

users, who might want to use them in novel ways,
for example in an assisted curation environment.

However, the gold standard by which we test our
results is tailored to its application as a protein dis-
ambiguation module, just as the frequency tables we
use. Even apart from this, the appropriateness of the
gold standard is partly questionable, as it does not
only prefer organisms involved in protein interac-
tions to those that are not, but also “new” knowledge
to “old” knowledge, etc. Our approach, based on
“correcting” simple counts of organism mentions us-
ing frequency tables, can only be successful as long
as there is a gold standard for the specific applica-
tion that is being pursued. We can derive from Int-
Act useful gold standards for organisms from which
protein interactors are derived or host organisms, but
we have no gold standard for “organism identifica-
tion” as an independent task.

5 Conclusion

In this paper we discussed an approach to the prob-
lem of “organism identification” as an independent
task, based only on standard resources. While
the initial results were interesting, the experimental
setup led us to identify more specific aspects of the
problem, and in particular to distinguish organisms
mentioned in their roles as sources of the interact-
ing proteins and as hosts of the experiments. We
have shown that a clear identification of the different
functional roles played by organism mentions can
lead to more accurate results.

Although a fully automated disambiguation pro-
cess based on organism mentions is not within im-
mediate reach, the results described in this paper
appear already potentially useful for protein name
disambiguation in a curation environment. An-
other possible application would be in biomedi-
cal curation-based databases, for the semi-automatic
tagging of publications with their focus organisms.
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Université Paris 13 – CNRS
99 av. J-B Clément

F-93430 Villetaneuse, France
thierry.hamon@lipn.univ-paris13.fr

Natalia Grabar
Centre de Recherche des Cordeliers
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Abstract

Computing the semantic similarity between
terms relies on existence and usage of seman-
tic resources. However, these resources, often
composed of equivalent units, or synonyms,
must be first analyzed and weighted in or-
der to define within them the reliability zones
where the semantic cohesiveness is stronger.
We propose an original method for acquisition
of elementary synonyms based on exploitation
of structured terminologies, analysis of syn-
tactic structure of complex (multi-unit) terms
and their compositionality. The acquired syn-
onyms are then profiled thanks to endogenous
lexical and linguistic indicators (other types
of relations, lexical inclusions, productivity),
which are automatically inferred within the
same terminologies. Additionally, synonymy
relations are observed within graph, and its
structure is analyzed. Particularly, we ex-
plore the usefulness of the graph theory no-
tions such as connected component, clique,
density, bridge, articulation vertex, and cen-
trality of vertices.

1 Introduction

In various tasks and applications of natural language
processing and of biomedical informatics (i.e., query
expansions, information retrieval, text mining, infor-
mation extraction or terminology matching), it is im-
portant to be able to decide whether two terms (i.e.,
acetone anabolism and acetone biosynthesis, repli-
cation of mitochondrial DNA and mtDNA replica-
tion) convey the same or different meaning. This is
particularly important for deciphering and comput-
ing semantic similarity between words and terms.

Lexicon of specific resources (synonym, morpho-
logical or orthographic variants) can be used for de-
tection of semantic similarity. However, depend-
ing on languages and domains, such resources are
not equally well described. Morphological descrip-
tion is the most complete for both general (Bur-
nage, 1990; Hathout et al., 2001) and biomedical
(NLM, 2007; Schulz et al., 1999; Zweigenbaum
et al., 2003) languages. But the situation is not as
successful at the semantic level: little synonym re-
sources can be found. If WordNet (Fellbaum, 1998)
proposes general language synonym relations for
English, the corresponding resources for other lan-
guages are not freely available. Moreover, the ini-
tiative for fitting WordNet to the biomedical area
(Smith and Fellbaum, 2004) seems to have been
abandoned, although there is a huge need for this
kind of resources.

In our previous work, we proposed to use the ex-
isting biomedical terminologies (i.e., Gene Ontology
(Gene Ontology Consortium, 2001), Snomed (Côté
et al., 1997), UMLS (NLM, 2007)), wich provide
complex terms, and to acquire from them lexical re-
sources of synonyms. Indeed, the use of complex
biomedical terms seems to be less suitable and gen-
eralizable as compared to lexical resources (Poprat
et al., 2008). Within the biological area, we pro-
posed to exploit the Gene Ontology (GO), and more
specifically to exploit compositional structure of its
terms (Hamon and Grabar, 2008). However, with
the acquisition of synonymy we faced two prob-
lems: (1) contextual character of these relations
(Cruse, 1986), i.e., two terms or words are con-
sidered as synonyms if they can occur within the
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same context, which makes this relation more or
less broad depending on the usage; (2) ability of
automatic tools to detect and characterize these re-
lations, i.e., two terms or words taken out of their
context can convey different relations than the one
expected. Because we aim at acquiring synonymy
resources which could be used by various applica-
tions and on various corpora, we need to profile them
and possibly to detect the reliability zones. We pro-
posed to do this profiling through lexical and lin-
guistic indicators generated within the same termi-
nology (Grabar et al., 2008), such as productivity,
cooccurence with other types of relations (is-a,
part-of) and with lexical inclusion. These indi-
cators on reliability zones will be used for defining
the synonymity degree of terms and for preparing
the validation of the acquired synonym resources. In
the current work, we continue profiling the acquired
synonyms, but rely on the form of the graph built
from pairs of synonyms. We exploit for this some
notions of the graph theory (Diestel, 2005). In the
following of this paper, we first present our mate-
rial (sec. 2) and methods (sec. 3), we then present
and discuss results (sec. 4) and conclude with some
perspectives (sec. 5).

2 Material

We use the Gene Ontology (GO) as the original re-
source from which synonym lexicon (or elementary
synonym relations) are induced. The goal of the GO
is to produce a structured, common, controlled vo-
cabulary for describing the roles of genes and their
products in any organism. GO terms convey three
types of biological meanings: biological processes,
molecular functions and cellular components. Terms
are structured through four types of relationships:
subsumption is-a, meronymy part-of, syn-
onymy and regulates. The version, we used
in the current work, was downloaded in February
20081. It provides 26,057 concepts and their 79,994
terms. When we create pairs of terms, which we ex-
ploit with our methods, we obtain 260,399 is-a,
29,573 part-of and 459,834 synonymy relations.
There are very few regulates relations, therefore
we don’t exploit them in our work.

1Our previous work has been performed with an anterior
version of the GO.

3 Methods

GO terms present compositional structure, like
within the concept GO:0009073, where composi-
tionality can be observed through the substitution of
one of the components (underlined):

aromatic amino acid family biosynthesis
aromatic amino acid family anabolism
aromatic amino acid family formation
aromatic amino acid family synthesis

Compositionality of the GO terms has been ex-
ploited previously, for instance (Verspoor et al.,
2003) propose to derive simple graphs from relations
between complex GO terms, (Mungall, 2004) ex-
ploits the compositionality as a mean for consistency
checking of the GO, (Ogren et al., 2005) use it for
enriching the GO with missing synonym terms. We
propose to exploit the compositionality for induction
of synonym lexical resources (i.e., biosynthesis, an-
abolism, formation, synthesis in the given example).
While the cited works are based on the string match-
ing within GO terms, our approach aims at exploit-
ing the syntactic analysis of terms, which makes it
independent from the graphical form of the analyzed
terms (like examples on fig. 1). Our method has sev-
eral steps: linguistic preprocessing of the GO terms
(sec. 3.1), induction of elementary semantic lexi-
con (sec. 3.2), and then the profiling the synonymy
lexicon through the lexical and linguistic indicators
(sec. 3.3), and through the analysis of connected
components built from the induced synonym pairs
(sec. 3.4). Steps 3.1 to 3.3 have been already de-
scribed in our previous work: we mention here the
main notions for the sake of clarity.

3.1 Preprocessing the GO terms: Ogmios NLP
platform

The aim of terminology preprocessing step is to
provide syntactic analysis of terms for computing
their syntactic dependency relations. We use the
Ogmios platform2 and perform: segmentation into
words and sentences; POS-tagging and lemmatiza-
tion (Schmid, 1994); and syntactic analysis3. Syn-
tactic dependencies between term components are

2http://search.cpan.org/∼thhamon/Alvis-NLPPlatform/
3http://search.cpan.org/∼thhamon/Lingua-YaTeA/
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component
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expansionhead
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mitochondrial DNAreplication (of)

Figure 1: Parsing tree of the terms replication of mitochondrial DNA and mtDNA replication.

computed according to assigned POS tags and shal-
low parsing rules. Each term is considered as a syn-
tactic binary tree composed of two elements: head
component and expansion component. For instance,
replication is the head component of the two terms
analyzed on figure 1.

3.2 Acquiring the elementary semantic
relations

The notion of compositionality assumes that the
meaning of a complex expression is fully deter-
mined by its syntactic structure, the meaning of its
parts and the composition function (Partee, 1984).
On the basis of syntactically analysed terms, we ap-
ply a set of compositional rules: if the meaningM
of two complex terms A rel B and A′ rel B, where
A is its head and B its expansion components, is
given as following:

M(A rel B) = f(M(A),M(B),M(rel))

M(A′ rel B) = f(M(A′),M(B),M(rel))

for a given composition function f , if A rel B and
A′ rel B are complex synonym terms and if B com-
ponents are identical (such as acetone within ace-
tone catabolism and acetone breakdown), then the
synonymy relation between components A and A′

{catabolism, breakdown} can be induced. The mod-
ification is also accepted on expansion component
B: from terms replication of mitochondrial DNA
and mtDNA replication (fig. 1), we can induce syn-
onymy between mitochondrial DNA and mtDNA.
Finally, the modification is also accepted for both
components A rel B and A′ rel B′, such as in
nicotinamide adenine dinucleotide catabolism and
NAD breakdown, where one pair, i.e. {catabolism,
breakdown}, can be known from previously pro-
cessed synonyms and allow to induce the new pair
{nicotinamide adenine dinucleotide, NAD}. The
method is recursive and each induced elementary

synonym relation can then be propagated in order
to induce new elementary relations, which allows to
generate a more exhaustive lexicon of synonyms.

This method is not specific to the synonymy. As
it works at the syntactic level of terms, it there-
fore can be applied to other relationships: relation-
ship between elementary terms is inherited from
the relationship between complex terms. If we ex-
ploit complex terms related with part-of rela-
tions and if the compositionality rules can be ap-
plied, then we can induce elementary part-of re-
lations. For instance, complex terms cerebral cor-
tex development GO:0021987 and cerebral cortex
regionalization GO:0021796 have a part-of re-
lation between them, and we can induce the elemen-
tary part-of relation between their components
development and regionalization. Similarly, on the
basis of two GO terms that have is-a relation be-
tween them, cell activation GO:0001775 and astro-
cyte activation GO:0048143, we can induce the ele-
mentary is-a relation between cell and astrocyte.

3.3 Exploiting lexical and linguistic indicators

Several endogenously generated indicators are used
for profiling the induced lexicon of synonyms:

• Elementary is-a relations;

• Elementary part-of relations;

• Lexical inclusion: terms within each induced
synonymy pair are controlled for the lexical in-
clusion. If the test is positive, like in {DNA
binding, binding}, this would suggest that the
analyzed terms may convey a hierarchical rela-
tion: indeed, lexical subsumption marks often a
hierarchical subsumption (Kleiber and Tamba,
1990), which can be either is-a or part-of
relations;

• Productivity: number of original GO pairs from
which this elementary relation is inferred. For
instance, synonymy relations {binding, DNA
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(a) Connected component of synonyms (b) Clique of synonyms

Figure 2: Connected components formed with pairs of elementary synonym relations.

binding} and {cell, lymphocyte} are inferred
from only one original pair of GO synonyms,
while the pair {T-cell, T-lymphocyte} is sup-
ported by eight original GO synonym pairs.

Factors that would weaken synonymy relations and
make them less reliable are their co-occurrence with
lexical inclusions, is-a or part-of relations, and
their low productivity.

3.4 Exploiting the graph theory notions

Pairs of induced synonyms are observed through the
connected components they form: lexical entries are
nodes or vertices and relations between them are
edges or paths. For instance, connected component
2(a) contains four pairs of synonyms: {membrane
lumen, envelope lumen}, {membrane lumen, in-
termembrane space}, {envelope lumen, intermem-
brane space} and {intermembrane space, IMS}. On
each edge, we projected information associated with
the relation corresponding to this edge. For instance,
{membrane lumen, intermembrane space} relation
is labelled as synonymy SY N and shows 2 as pro-
ductivity value (it has been acquired from two origi-
nal pairs of synonyms within GO). If other relation-
ships (INCL, PAR, HIER) are associated to a
given synonymy relation, they are also indicated to-
gether with their productivity.

As a matter of fact, figure 2 presents two typical
examples of connected components we can obtain
(in these examples, both of them have four nodes):

• Connected component (fig. 2(a)) is a graph in
which any two vertices are connected to each
other by edges. Connected components have
not orphan vertices, which would remain not
connected to any other vertex.

• Clique, also called block (fig. 2(b)) is a par-
ticular case of connected components: clique
is a maximally connected component. In such
graphs, all the vertices are interconnected be-
tween them.

We propose to exploit four more notions of the graph
theory, which we assume can be useful for further
profiling of the acquired synonymy relations:

• Density of a connected component is the ra-
tio between the number of its edges and the
number of edges of the corresponding clique.
For instance, the connected component on fig-
ure 2(a) has 4 edges while the corresponding
clique would have 6 edges. In that respect,
this connected component has the dentisty of
0.67. Besides, the clique on figure 2(b) shows
the maximum density (i.e., 1). (For all the fig-
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ures, we indicate their density, together with the
number of vertices and edges).

• Bridge is defined as an edge which re-
moval would increase the number of con-
nected components. For instance, within con-
nected component 2(a), removing the edge
{intermembrane space, IMS} would lead to the
creation of two new connected components:
(1) single-vertex component IMS, and (2) con-
nected component with three vertices inter-
membrane space, membrane lumen and enve-
lope lumen. Consequently articulation vertices
are defined as vertices which removal would in-
crease the number of connected components.
At figure 2(a), the articulation vertex is inter-
membrane space.

• The centrality of a vertex is defined as the num-
ber of shortest paths passing through it. For in-
stance, on figure 2(a), intermembrane space’s
centrality is 4, while the centrality of other ver-
tices is null.

4 Results and Discussion

4.1 Acquiring the elementary synonymy
relations and their lexical and linguistic
profiling

79 994 GO terms have been fully analyzed through
the Ogmios platform. Compositional rules (sec. 3.2)
have been applied and allowed to induce 9,085 se-
mantic relations among which: 3,019 synonyms,
3,243 is-a and 1,205 part-of. 876 lexical in-
clusions have discovered within all these elementary
pairs. 2,533 synonymy pairs are free of the lexical
profiling indicators. However, 486 synonymy rela-
tions (16%) cooccur with other relations, and the de-
tails of this cooccurrence is showed in table 1. We
can observe for instance that 142 synonym pairs are
also labelled as is-a relations, and 34 as part-of
relations. Productivity of the induced synonyms is
between 1 and 422 original complex GO terms.

Connected component on figure 3 illustrates
coocurrence of synonymy relations with other types
of relations: the pair {import, ion import} shows
synonym and inclusion relations; the pair {import,
uptake} shows synonym and hierarchical relations,
both acquired on seven original pairs of GO terms.

Figure 3: Connected component where synonymy rela-
tions cooccur with other relations.

Synonymy and other relations Number
syno ∩ is-a 142
syno ∩ par 34
syno ∩ incl 309
syno ∩ par ∩ is-a 14
syno ∩ incl ∩ is-a \ par 40
syno ∩ incl ∩ par \ is-a 2
syno ∩ incl ∩ is-a ∩ par 1

Table 1: Number of synonymy relations which cooccur
with other relations (is-a, part-of and lexical inclu-
sions incl).

4.2 Analysing the induced synonym pairs
through the graph theory

3,019 induced synonym pairs have been grouped
into 1,018 connected components. These compo-
nents contain 2 to 69 nodes, related among them
by 1 to 132 edges. Analyses of the connected
components have been performed with Perl pack-
age Graph and additionnal Perl scripts. Among
the studied connected components, we have 914
cliques composed of 2 (n=708), 3 (n=66), 4 (n=88),
5 (n=44) or 6 (n=8) nodes. The remaining 104
connected components are less dense with edges.
The density of the connected components is between
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Figure 4: Connected component with three bridges: {ion homeostasis, homeostasis}, {homeostasis, regulation} and
{cell cycle control, regulation}.

0.0467 and 1 (in case of cliques). Among the 104
connected components, which are not cliques, we
detected 249 bridges: 0 to 35 depending on con-
nected components. In order to propose a general
approach exploiting graph theory notions for syn-
onym profiling we analyse the structure of three rep-
resentative connected components.

Density of the connected component 2(a) is 0.67.
It contains one bridge: {intermembrane space,
IMS}. This edge corresponds to the acronym and its
expanded form, which can cause its contextual char-
acter. Moreover, intermembrane space is the central
node of this connected component.

Connected component 3 (density=0.38) contains
two bridges {uptake, recycling} and {salvage, cy-
cling}, and three articulation vertices uptake, re-
cicling and salvage with the measures of central-
ity 16, 18 and 10 respectively. Indeed, the major-

ity of shortest paths pass by uptake and recicling
nodes. Otherwise, edges around the salvage ver-
tex are weakened because of the cooccurrence of
synonymy and hierarchical relations. As we have
already noticed, the edge {import, uptake} shows
the cooccurrence of synonymy and hierarchical re-
lations, but its productivity is rather high (seven for
each relation), which stregthens this edge.

Finally, connected component 4 (density=0.33)
contains three bridges {ion homeostasis, homeosta-
sis}, {homeostasis, regulation} and {cell cycle con-
trol, regulation} and three articulation vertices: reg-
ulation, cell cycle control and homeostasis with the
measures of centrality 52, 37 and 16 respectively.
The bridge {ion homeostasis, homeostasis} is weak-
ened by the cooccurrence of synonymy, hierarchi-
cal and lexical inclusion relations. Otherwise, other
edges seem to convey non ambiguous synonymy.
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From the analyzed examples, we can see that the
graph theory may have several implications on pro-
filing of synonyms. However, these implications
must still be formalized and, possibly, expressed as
a single reliability indicator, alone or combined with
the lexical and linguistic clues.

First, within a connected component, with a given
number of nodes, higher the number of edges, higher
will be its density and closer it will be to a clique
(fig. 2(b)). Consequently, within a clique, the se-
mantic cohesion is more strong. Indeed, in these
cases, terms are far more strongly related between
them. But when the density value decreases the se-
mantic cohesiveness of connected components de-
creases as well. In other words, density is an indi-
cation on the semantic cohesiveness between terms
within connected components. As for bridges, we
assume that they indicate breaking points within
connected components, such as {cell cycle control,
regulation} within figure 4. The weak character
of these points can increased when the synonymy
relation co-occurs with other relationships (is-a,
part-of, lexical inclusion). Consequently, re-
moval of bridges can create connected components
with higher density and therefore with stronger syn-
onymy relations. Finally, the centrality of vertices
measure may be useful for identification of poly-
semic words or terms.

The connected components analysis can also in-
dicate the missing relations. For instance, if a con-
nected component, which is not a clique, has no
bridges but its density is not maximal, this would
indicate that it misses some correct synonymy rela-
tions which can be easily induced.

5 Conclusion and Perspectives

In this paper, we propose an original method for
inducing synonym lexicon from structured termi-
nologies. This method exploits the compositional-
ity principle and three rules based on syntactic de-
pendency analysis of terms. More specifically, we
explore various indicators for profiling the acquired
synonym relations, which is motivated by the fact
that synonymy is a contextual relation and its va-
lidity and universality is not guaranteed. We as-
sume the semantic cohesiveness of synonymy rela-
tions should be qualified and quantified. Thus, we

propose several indicators for profiling the inferred
synonymy relations and for detecting possible weak
and strong points. First, lexical and linguistic clues
are generated endogenously within the same termi-
nology: other types of elementary semantic relations
(is-a and part-of), lexical inclusions and pro-
ductivity of the acquired semantic relations. Then,
more specifically, this work is dedicated to explor-
ing of the usefulness of notions of the graph the-
ory. We propose to study the form and specificities
of connected components formed by synonymy re-
lations. We exploited the following notions from the
graph theory: distinction between connected com-
ponents and cliques, their density, bridges and artic-
ulation vertices within connected components, and
the centrality of their vertices. We observed that the
lexical indicators as well as connected components
characteristics are helpful for profiling the acquired
synonymy relations. These clues are intended to be
used for preparing the validation of this lexicon by
experts and also for its weighting in order to con-
trol and guarantee the specificity of lexicon during
its use by automatic tools.

Currently, we study separately the endogeneous
lexical indicators, and the characteristics of the con-
nected components. However, in the future, these
two types of clues should be combined. For this,
these indicators should be modelized in order to pro-
vide a weight of each edge. This weight can be
used for profiling of connected component through
the detection of strong and weak points. Notice
that the current version of the Graph package can-
not take into account this additional information on
edges and should be modified. Another perspective
is the better exploitation of the Gene Ontology and
taking into account the nature of synonymy relations
as they are labelled by thier creators: exact, broad,
narrow or related. Additionnally, for a more precise
profiling, the four relationships of GO (synonymy,
is-a, part-of and regulates) can be cross-
validated, while currently, we perform the validation
of synonymy relations through is-a and part-of
(and other indicators). We plan also to use the in-
duced relations and propagate them through corpora
and discover some of the missing synonyms (Hole
and Srinivasan, 2000). In this way, applying the
same compositionality principle, we can enrich and
extend the Gene Ontology: new synonyms of GO
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terms and even other relations between GO terms
and terms from corpora can be detected. As noticed,
this method can be applied to other terminologies
and languages as far as structured terminological re-
sources and NLP tools exist. For instance, within
the context of search of clinical documents, we suc-
cessfully tested this method on the French part of the
UMLS (Grabar et al., 2009). From a more ontolog-
ical perspective, our method can be used for consis-
tency checking of a terminologies, like in (Mungall,
2004). Moreover, as this method performs syntactic
analysis of terms and their decomposition into se-
mantically independent components, it can be used
for the transformation of a pre-coordinated terminol-
ogy into a post-coordinated one.
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Abstract 

In this paper we present an extractive system that au-
tomatically generates gene summaries from the biomed-
ical literature. The proposed text summarization system 
selects and ranks sentences from multiple MEDLINE 
abstracts by exploiting gene-specific information and 
similarity relationships between sentences. We evaluate 
our system on a large dataset of 7,294 human genes and 
187,628 MEDLINE abstracts using Recall-Oriented 
Understudy for Gisting Evaluation (ROUGE), a widely 
used automatic evaluation metric in the text summariza-
tion community. Two baseline methods are used for 
comparison. Experimental results show that our system 
significantly outperforms the other two methods with 
regard to all ROUGE metrics. A demo website of our 
system is freely accessible at 
http://60.195.250.72/onbires/summary.jsp.  

1 Introduction 

Entrez Gene is a database for gene-centric infor-
mation maintained at the National Center for Bio-
technology Information (NCBI). It includes genes 
from completely sequenced genomes (e.g. Homo 
sapiens). An important part of a gene record is the 
summary field (shown in Table 1), which is a small 

piece of text that provides a quick synopsis of what 
is known about the gene, the function of its en-
coded protein or RNA products, disease associa-
tions, genetic interactions, etc. The summary field, 
when available, can help biologists to understand 
the target gene quickly by compressing a huge 
amount of knowledge from many papers to a small 
piece of text. At present, gene summaries are gen-
erated manually by the National Library of Medi-
cine (NLM) curators, a time- and labor-intensive 
process. A previous study has concluded that ma-
nual curation is not sufficient for annotation of ge-
nomic databases (Baumgartner et al., 2007). 
Indeed, of the 5 million genes currently in Entrez 
Gene, only about 20,000 genes have a correspond-
ing summary. Even in humans, arguably the most 
important species, the coverage is modest: only 26% 
of human genes are curated in this regard. The goal 
of this work is to develop and evaluate computa-
tional techniques towards automatic generation of 
gene summaries. 

To this end, we developed a text summarization 
system that takes as input MEDLINE documents 
related to a given target gene and outputs a small 
set of genic information rich sentences. Specifical-
ly, it first preprocesses and filters sentences that do 
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Gene Number  of 
Abstracts 

GO terms Human-writtenSummary 

EFEMP1 26 calcium ion binding 
protein binding 
extracellular region 
proteinaceous extracellu-
lar matrix 

This gene spans approximately 18 kb of genomic DNA and consists of 12 ex-
ons. Alternative splice patterns in the 5\' UTR result in three transcript variants 
encoding the same extracellular matrix protein. Mutations in this gene are asso-
ciated with Doyne honeycomb retinal dystrophy. 

IL20RA 15 blood coagulation 
receptor activity 
integral to membrane 
membrane 

The protein encoded by this gene is a receptor for interleukin 20 (IL20), a cyto-
kine that may be involved in epidermal function. The receptor of IL20 is a hete-
rodimeric receptor complex consisting of this protein and interleukin 20 
receptor beta (IL20B). This gene and IL20B are highly expressed in skin. The 
expression of both genes is found to be upregulated in Psoriasis. 

Table1. Two examples of human-written gene summaries 

not include enough informative words for gene 
summaries. Next, the remaining sentences are 
ranked by the sum of two individual scores: a) an 
authority score from a lexical PageRank algorithm 
(Erkan and Radev, 2004) and b) a similarity score 
between the sentence and the Gene Ontology (GO) 
terms with which the gene is annotated (To date, 
over 190,000 genes have two or more associated 
GO terms). Finally, redundant sentences are re-
moved and top ranked sentences are nominated for 
the target gene.  

In order to evaluate our system, we assembled a 
gold standard dataset consisting of handwritten 
summaries for 7,294 human genes and conducted 
an intrinsic evaluation by measuring the amount of 
overlap between the machine-selected sentences 
and human-written summaries. Our metric for the 
evaluation was ROUGE1, a widely used intrinsic 
summarization evaluation metric. 

2 Related Work 

Summarization systems aim to extract salient text 
fragments, especially sentences, from the original 
documents to form a summary. A number of me-
thods for sentence scoring and ranking have been 
developed. Approaches based on sentence position 
(Edmundson, 1969), cue phrase (McKeown and 
Radev, 1995), word frequency (Teufel and Moens, 
1997), and discourse segmentation (Boguraev and 
Kennedy, 1997) have been reported. Radev et al. 
(Radev et al., 2004) developed an extractive multi-
document summarizer, MEAD, which extracts a 
summary from multiple documents based on the 
document cluster centroid, position and first-
sentence overlap. Recently, graph-based ranking 
methods, such as LexPageRank (Erkan and Radev, 
2004) and TextRank (Mihalcea and Tarau, 2004), 
                                                           
1 http://haydn.isi.edu/ROUGE/ 

have been proposed for multi-document summari-
zation. Similar to the original PageRank algorithm, 
these methods make use of similarity relationships 
between sentences and then rank sentences accord-
ing to the “votes” or “recommendations” from 
their neighboring sentences. 

Lin and Hovy (2000) first introduced topic sig-
natures which are topic relevant terms for summa-
rization. Afterwards, this technique was 
successfully used in a number of summarization 
systems (Hickl et al., 2007, Gupta and Nenkova et 
al., 2007). In order to improve sentence selection, 
we adopted the idea in a similar way to identify 
terms that tend to appear frequently in gene sum-
maries and subsequently filter sentences that in-
clude none or few such terms. 

Compared with newswire document summariza-
tion, much less attention has been paid to summa-
rizing MEDLINE documents for genic information. 
Ling et al. (Ling et al., 2006 and 2007) presented 
an automatic gene summary generation system that 
constructs a summary based on six aspects of a 
gene, such as gene products, mutant phenotype, etc. 
In their system, sentences were ranked according 
to a) the relevance to each category (namely the 
aspect), b) the relevance to the document where 
they are from; and c) the position where sentences 
are located. Although the system performed well 
on a small group of genes (10~20 genes) from Fly-
base, their method relied heavily on high-quality 
training data that is often hard to obtain in practice.  

Yang et al. reported a system (Yang et al., 2007 
and 2009) that produces gene summaries by focus-
ing on gene sets from microarray experiments. 
Their system first clustered gene set into functional 
related groups based on free text, Medical Subject 
Headings (MeSH®) and Gene Ontology (GO) fea-
tures. Then, an extractive summary was generated 
for each gene following the Edmundson paradigm 
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(Edmundson, 1969). Yang et al. also presented 
evaluation results based on human ratings of eight 
gene summaries.  

Another related work is the second task of Text 
REtrieval Conference 2  (TREC) 2003 Genomics 
Track. Participants in the track were required to 
extract GeneRIFs from MEDLINE abstracts 
(Hersh and Bhupatiraju, 2003). Many teams ap-
proached the task as a sentence classification prob-
lem using GeneRIFs in the Entrez database as 
training data (Bhalotia et al., 2003; Jelier et al., 
2003). This task has also been approached as a sin-
gle document summarization problem (Lu et al., 
2006).  

The gene summarization work presented here 
differs from the TREC task in that it deals with 
multiple documents. In contrast to the previously 
described systems for gene summarization, our 
approach has three novel features. First, we are 
able to summarize all aspects of gene-specific in-
formation as opposed to a limited number of prede-
termined aspects. Second, we exploit a lexical 
PageRank algorithm to establish similarity rela-
tionships between sentences. The importance of a 
sentence is based not only on the sentence itself, 
but also on its neighbors in a graph representation. 
Finally, we conducted an intrinsic evaluation on a 
large publicly available dataset. The gold standard 
assembled in this work makes it possible for com-
parisons between different gene summarization 
systems without human judgments.  

3 Method 

To determine if a sentence is extract worthy, we 
consider three different aspects: (1) the number of 
salient or informative words that are frequently 
used by human curators for writing gene summa-
ries; (2) the relative importance of a sentence to be 
included in a gene summary; (3) the gene-specific 
information that is unique between different genes.  

Specifically, we look for signature terms in 
handwritten summaries for the first aspect. Ideally, 
computer generated summaries should resemble 
handwritten summaries. Thus the terms used by 
human curators should also occur frequently in 
automatically generated summaries. In this regard, 
we use a method similar to Lin and Hovy (2000) to 
identify signature terms and subsequently use them 

                                                           
2 http://ir.ohsu.edu/genomics/ 

to discard sentences that contain none or few such 
terms. For the second aspect, we adopt a lexical 
PageRank method to compute the sentence impor-
tance with a graph representation. For the last as-
pect, we treat each gene as having its own 
properties that distinguish it from others. To reflect 
such individual differences in the machine-
generated summaries, we exploit a gene’s GO an-
notations as a surrogate for its unique properties 
and look for their occurrence in abstract sentences.  

Our gene summarization system consists of 
three components: a preprocessing module, a sen-
tence ranking module, and a redundancy removal 
and summary generation module. Given a target 
gene, the preprocessing module retrieves corres-
ponding MEDLINE abstracts and GO terms ac-
cording to the gene2pubmed and gene2go data 
provided by Entrez Gene. Then the abstracts are 
split into sentences by the MEDLINE sentence 
splitter in the LingPipe3 toolkit. The sentence rank-
ing module takes these as input and first filters out 
some non-informative sentences. The remaining 
sentences are then scored according to a linear 
combination of the PageRank score and GO relev-
ance score.  Finally, a gene summary is generated 
after redundant sentences are removed. The system 
is illustrated in Figure 1 and is described in more 
detail in the following sections.  
 

 
Figure 1. System overview  

3.1 Signature Terms Extraction 

There are signature terms for different topic texts 
(Lin and Hovy, 2000). For example, terms such as 
eat, menu and fork that occur frequently in a cor-
pus may signify that the corpus is likely to be 
                                                           
3 http://alias-i.com/lingpipe/ 
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about cooking or restaurants. Similarly, there are 
signature terms for gene summaries. 

We use the Pearson’s chi-square test (Manning 
and Schütze, 1999) to extract topic signature terms 
from a set of handwritten summaries by comparing 
the occurrence of terms in the handwritten summa-
ries with that of randomly selected MEDLINE ab-
stracts. Let R denote the set of handwritten 
summaries and R denote the set of randomly se-
lected abstracts from MEDLINE. The null hypo-
thesis and alternative hypothesis are as follows:  

0H : ( | ) ( | )i iP t R p P t R= =  
1 1 2H : ( | ) ( | )i iP t R p p P t R= ≠ =  

The null hypothesis says that the term it appears 

in R and in R with an equal probability and it is 
independent from R . In contrast, the alternative 
hypothesis says that the term it is correlated with
R . We construct the following 2-by-2 contingency 
table:  
 

 R  R  

it  11O  12O  

it  21O  22O  

Table 2. Contingency table for the chi-square test. 
 
where 

11O : the frequency of term it occurring in R ; 

12O : the frequency of it occurring in R ; 

21O  : the frequency of term i it t≠ occurring in R ; 

22O :  the frequency of it in R .  
Then the Pearson’s chi-square statistic is computed 
by  

22
2

, 1

( )ij ij

i j ij

O E
X

E=

−
= ∑  

where ijO is the observed frequency and ijE is the 
expected frequency.  

In our experiments, the significance level is set 
to 0.001, thus the corresponding chi-square value 
is 10.83. Terms with 2X value above 10.83 would 
be selected as signature terms. In total, we obtained 
1,169 unigram terms. The top ranked (by 2X value) 

signature terms are listed in Table 3. Given the set 
of signature terms, sentences containing less than 3 
signature terms are discarded. This parameter was 
determined empirically during the system devel-
opment.  
 

protein 
gene 
encode 
family 
transcription 

member 
variant 
domain 
splice 
subunit 

receptor 
isoform 
alternative 
bind 
involve 

Table 3. A sample of unigram topic signature terms. 

3.2 Lexical PageRank Scoring 

The lexical PageRank algorithm makes use of the 
similarity between sentences and ranks them by 
how similar a sentence is to all other sentences. It 
originates from the original PageRank algorithm 
(Page et al., 1998) that is based on the following 
two hypotheses:  
(1) A web page is important if it is linked by many 

other pages.  
(2) A web page is important if it is linked by im-

portant pages.  
The algorithm views the entire internet as a large 
graph in which a web page is a vertex and a di-
rected edge is connected according to the linkage. 
The salience of a vertex can be computed by a ran-
dom walk on the graph. Such graph-based methods 
have been widely adapted to such Natural Lan-
guage Processing (NLP) problems as text summa-
rization and word sense disambiguation. The 
advantage of such graph-based methods is obvious: 
the importance of a vertex is not only decided by 
itself, but also by its neighbors in a graph represen-
tation.  The random walk on a graph can imply 
more global dependence than other methods. Our 
PageRank scoring method consists of two steps: 
constructing the sentence graph and computing the 
salience score for each vertex of the graph.  

Let { |1 }iS s i N= ≤ ≤ be the sentence collec-
tion containing all the sentences to be summarized. 
According to the vector space model (Salton et al., 
1975), each sentence is  can be represented by a 
vector is with each component being the weight of 
a term in is . The weight associated with a term w  
is calculated by ( )* ( )tf w isf w , where ( )tf w is the 
frequency of the term w in sentence is and ( )isf w
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is the inverse sentence frequency 4  of term w :
( ) 1 log( / )wisf w N n= + , where N is the total 

number of sentences in S  and wn is the number of 
sentences containing w .The similarity score be-
tween two sentences is computed using the inner 
product of the corresponding sentence vectors, as 
follows:  

( , )
|| || || ||

i j
i j

i j

s s
sim s s

s s
⋅

=
⋅

 

Taking each sentence as a vertex, and the simi-
larity score as the weight of the edge between two 
sentences, a sentence graph is constructed. The 
graph is fully connected and undirected because 
the similarity score is symmetric.  

The sentence graph can be modeled by an adja-
cency matrix M , in which each element corres-
ponds to the weight of an edge in the graph. Thus

[ ]ij N NM ×=M is defined as:  

,
|| || || ||

0,

i j

i jij

s s
if i j

s sM
otherwise

⋅⎧
≠⎪ ⋅= ⎨

⎪
⎩

 

We normalize the row sum of matrix M  in or-
der to assure it is a stochastic matrix such that the 
PageRank iteration algorithm is applicable. The 
normalized matrix is: 

1 1

, 0

0,

N N

ij ij ij
j jij

M M if M
M

otherwise
= =

⎧ ≠⎪= ⎨
⎪
⎩

∑ ∑
. 

Using the normalized adjacency matrix, the sa-
lience score of a sentence is is computed in an 
iterative manner:  

1

(1 )( ) ( )
N

i j ji
j

dscore s d score s M
N=

−= ⋅ ⋅ +∑  

where d is a damping factor that is typically be-
tween 0.8 and 0.9 (Page et al., 1998).  

If we use a column vector p to denote the sa-
lience scores of all the sentences in S , the above 
equation can be written in a matrix form as follows:  

[ (1 ) ]Tp d d p= ⋅ + − ⋅ ⋅M U  

                                                           
4 Isf is equivalent to idf if we view each sentence as a docu-
ment. 

where U is a square matrix with all elements being 
equal to 1/ N . The component (1 )d− ⋅U can be 
considered as a smoothing term which adds a small 
probability for a random walker to jump from the 
current vertex to any vertex in the graph. This 
guarantees that the stochastic transition matrix for 
iteration is irreducible and aperiodic. Therefore the 
iteration can converge to a stable state.  

In our implementation, the damping factor d is 
set to 0.85 as in the PageRank algorithm (Page et 
al., 1998). The column vector p is initialized with 
random values between 0 and 1. After the algo-
rithm converges, each component in the column 
vector p corresponds to the salience score of the 
corresponding sentence. This score is combined 
with the GO relevance score to rank sentences. 

3.3 GO Relevance Scoring 

Up to this point, our system considers only gene-
independent features, in both sentence filtering and 
PageRank-based sentence scoring. These features 
are universal across different genes. However, each 
gene is unique because of its own functional and 
structural properties. Thus we seek to include 
gene-specific features in this next step.  

The GO annotations provide one kind of gene-
specific information and have been shown to be 
useful for selecting GeneRIF candidates (Lu et al., 
2006). A gene’s GO annotations include descrip-
tions in three aspects: molecular function; biologi-
cal process; and cellular component. For example, 
the human gene AANAT (gene ID 15 in Entrez 
Gene) is annotated with the GO terms in Table 4. 
 

GO ID GO term 
GO:0004059 aralkylamine N-acetyltransferase activi-

ty 
GO:0007623 circadian rhythm 
GO:0008152 metabolic process 
GO:0008415 acyltransferase activity 
GO:0016740 transferase activity 

Table 4. GO terms for gene AANAT 
 
The GO relevance score is computed as follows: 

first, the GO terms and the sentences are both 
stemmed and stopwords are removed. For example, 
the GO terms in Table 4 are processed into a set of 
stemmed words: aralkylamin, N, acetyltransferas, 
activ, circadian, rhythm, metabol, process, acyl-
transferas and transferas.  
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Second, the total number of occurrence of the 
GO terms appearing in a sentence is counted. Fi-
nally, the GO relevance score is computed as the 
ratio of the total occurrence to the sentence length. 
The entire process can be illustrated by the follow-
ing pseudo codes: 
 

1 tokenize and stem the GO terms; 
2 tokenize and stem all the sentences, remove stop 

words; 
3 for each sentence is , 1,...,i N=  

( ) 0iGOScore s =  

for each word w  in is  
if w in the GO term set 

( )iGOScore s ++ 
end if 
end for 

( ) ( ) / ( )i i iGOScore s GOScore s length s=  
end for  

 
where ( )ilength s is the number of distinct non-stop 
words in is . For each sentence is , the GO relev-
ance score is combined with the PageRank score to 
get the overall score (α is a weight parameter be-
tween 0 and 1; see Section 4.2 for discussion): 

( ) ( ) (1 ) ( )i i iscore s PRScore s GOScore sα α= ⋅ + − ⋅ . 

3.4 Redundancy Removal  

A good summary contains as much diverse infor-
mation as possible for a gene, while with as little 
redundancy as possible. For many well-studied 
genes, there are thousands of relevant papers and 
much information is redundant. Hence it is neces-
sary to remove redundant sentences before produc-
ing a final summary.  

We adopt the diversity penalty method (Zhang 
et al., 2005; Wan and Xiao, 2007) for redundancy 
removal. The idea is to penalize the candidate sen-
tences according to their similarity to the ones al-
ready selected. The process is as follows:  
(1) Initialize two sets, A φ= ,

{ | 1, 2,..., }iB s i K= =  containing all the extracted 
sentences;  
(2)  Sort the sentences in B by their scores in des-
cending order;  

(3) Suppose is is the top ranked sentence in B , 
move it from B to A . Then we penalize the re-
maining sentences in B as follows: 

For each sentence js  in B , j i≠  

( ) ( ) ( , ) ( )j j j i iScore s Score s sim s s Score sω= − ⋅ ⋅  
where 0ω > is the penalty degree factor, 

( , )j isim s s  is the similarity between is and js .  
(4) Repeat steps 2 and 3 until enough sentences 
have been selected. 

4 Results and Discussion 

4.1 Evaluation Metrics 

Unlike the newswire summarization, there are no 
gold-standard test collections available for evaluat-
ing gene summarization systems. The two previous 
studies mentioned in Section 2 both conducted ex-
trinsic evaluations by asking human experts to rate 
system outputs. Although it is important to collect 
direct feedback from the users, involving human 
experts makes it difficult to compare different 
summarization systems and to conduct large-scale 
evaluations (both studies evaluated nothing but a 
small number of genes). In contrast, we evaluated 
our system intrinsically on a much larger dataset 
consisting of 7,294 human genes, each with a pre-
existing handwritten summary downloaded from 
the NCBI’s FTP site5.  

The handwritten summaries were used as refer-
ence summaries (i.e. a gold standard) to compare 
with the automatically generated summaries. Al-
though the length of reference summaries varies, 
the majority of these summaries contain 80 to 120 
words. To produce a summary of similar length, 
we decided to select five sentences consisting of 
about 100 words. 

For the intrinsic evaluation of a large number of 
summaries, we made use of the ROUGE metrics 
that has been widely used in automatic evaluation 
of summarization systems (Lin and Hovy, 2003; 
Hickl et al., 2007). It provides a set of evaluation 
metrics to measure the quality of a summary by 
counting overlapping units such as n-grams or 
word sequences between the generated summary 
and its reference summary.  

                                                           
5 ftp://ftp.ncbi.nih.gov/gene/DATA/ASN_BINARY/ 
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We computed three ROUGE measures for each 
summary, namely ROUGE-1 (unigram based), 
ROUGE-2 (bigram based) and ROUGE-SU4 
(skip-bigram and unigram) (Lin and Hovy, 2003). 
Among them, ROUGE-1 has been shown to agree 
most with human judgments (Lin and Hovy, 2003). 
However, as biomedical concepts usually contain 
more than one word (e.g. transcription factor), 
ROUGE-2 and ROUGE-SU4 scores are also im-
portant for assessing gene summaries.  

4.2 Determining parameters for best perfor-
mance 

The two important parameters in our system – the 
linear coefficient α for the combination of Page-
Rank and GO scores and the diversity penalty de-
gree factor ω in redundancy removal – are 
investigated in detail on a collection of 100 ran-
domly selected genes. First, by setting α to values 
from 0 to 1 with an increment of 0.1 while holding 
ω  steady at 0.7, we observed the highest ROUGE-
1score when α was 0.8 (Figure 2). This suggests 
that the two scores (i.e. PageRank and GO score) 
complement to each other and that the PageRank 
score plays a more dominating role in the summed 
score. Next, we variedω gradually from 0 to 5 with 
an increment of 0.25 while holding α steady at 
0.75.The highest ROUGE-1 score was achieved 
whenω was 1.3 (Figure 3). For ROURE-2, the best 
performance was obtained when α was 0.7 and ω
was 0.5. In order to balance ROUGE-1 and 
ROUGE-2 scores, we set α to 0.75 and ω to 0.7 
for the remaining experiments.  

 
Figure 2. The blue line represents the changes in 
ROUGE-1 scores with different values of α while ω is 
held at 0.7. 

 
Figure 3. The blue line represents the changes in 
ROUGE-1 scores with different values of ω while α is 
held at 0.75. 

4.3 Comparison with other methods 

Because there are no publicly available gene sum-
marization systems, we compared our system with 
two baseline methods. The first is a well known 
publicly available summarizer - MEAD (Radev et 
al., 2004). We adopted the latest version of MEAD 
3.11 and used the default setting in MEAD that 
extracts sentences according to three features: cen-
troid, position and length. The second baseline ex-
tracts different sentences randomly from abstracts. 
Comparison results are shown in the following ta-
ble:  
 

System ROUGE-1 ROUGE-2 ROUGE-SU4
Our System 0.4725 0.1247 0.1828 

MEAD 0.3890 0.0961 0.1449 
Random 0.3434 0.0577 0.1091 

Table 5. Systems comparison on 7,294 genes. 
 
As shown in Table 5, our system significantly 

outperformed the two baseline systems in all three 
ROUGE measures. Furthermore, larger perfor-
mance gains are observed in ROUGE-2 and 
ROUGE-SU4 than in ROUGE-1. This is because 
many background words (e.g. gene, protein and 
enzyme) also appeared frequently as unigrams in 
randomly selected summaries. 
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Figure 4. ROUGE-1 score distribution 

 
In Figure 4, we show that the majority of the 

summaries have a ROUGE-1 score greater than 0.4. 
Our further analysis revealed that almost half 
summaries with a low score (smaller than 0.3) ei-
ther lacked sufficient relevant abstracts, or the ref-
erence summary was too short or too long. In 
either case, only few overlapping words can be 
found when comparing the generated gene sum-
mary with the reference. The statistics for low 
ROUGE-1 score are listed in Table 6. We also note 
that almost half of the summaries that have low 
ROUGE-1 scores were due to other causes: mostly, 
machine generated summaries differ from human 
summaries in that they describe different function-
al aspects of the same gene product. Take the gene 
TOP2A (ID: 7153) for example. While both sum-
maries (handwritten and machine generated) focus 
on its encoded protein DNA topoisomerase, the 
handwritten summary describes the chromosome 
location of the gene whereas our algorithm selects 
statements about its gene expression when treated 
with a chemotherapy agent. We plan to investigate 
such differences further in our future work. 
 

Causes for Low Score Number of 
genes 

Few (≤10) related abstracts 106 
Short reference summary (< 40 words) 27 
Long reference summary (> 150 words) 76 

Other 198 
Total 407 

Table 6. Statistics for low ROUGE-1 scores (<0.3) 

4.4 Results on various summary length 

Figure 5 shows the variations of ROUGE scores as 
the summary length increases. At all lengths and 
for both ROUGE-1 and ROUGE-2 measures, our 
proposed method performed better than the two 

baseline methods. By investigating the scores of 
different summary lengths, it can be seen that the 
advantage of our method is greater when the sum-
mary is short. This is of great importance for a 
summarization system as ordinary users typically 
prefer short content for summaries.  
 

 
Figure 5. Score variation for different summary length 

 

5 Conclusions and Future Work 

In this paper we have presented a system for gene-
rating gene summaries by automatically finding 
extract-worthy sentences from the biomedical lite-
rature. By using the state-of-the-art summarization 
techniques and incorporating gene specific annota-
tions, our system is able to generate gene summa-
ries more accurately than the baseline methods. 
Note that we only evaluated our system for human 
genes in this work. More summaries are available 
for human genes than other organisms, but our me-
thod is organism-independent and can be applied 
to any other species. 

This research has implications for real-world 
applications such as assisting manual database cu-
ration or updating existing gene records. The 
ROUGE scores in our evaluation show comparable 
performance to those in the newswire summariza-
tion (Hickl et al., 2007). Nonetheless, there are 
further steps necessary before making our system 
output readily usable by human curators. For in-
stance, human curators are generally in favor of 
sentences presented in a coherent order. Thus, in-
formation-ordering algorithms in multi-document 
summarization need to be investigated. We also 
plan to study the guidelines and scope of the cura-
tion process, which may provide additional impor-
tant heuristics to further refine our system output.  
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1 Introduction

Proteins and genes are the most important entities in
molecular biology, and their automated recognition
in text is the most widely studied task in biomed-
ical information extraction (IE). Several corpora
containing annotation for these entities have been
introduced, GENIA (Kim et al., 2003; Kim et al.,
2008) and GENETAG (Tanabe et al., 2005) being
the most prominent and widely applied. While both
aim to address protein/gene annotation, their an-
notation principles differ notably. One key differ-
ence is that GENETAG annotates the conceptual en-
tity, gene, which is often associated with a function,
while GENIA concentrates on the physical forms of
gene, i.e. protein, DNA and RNA. The difference
has caused serious problems relating to the compat-
ibility and comparability of the annotations. In this
work, we present an extension of GENIA annotation
which integrates GENETAG-style gene annotation.
The new version of the GENIA corpus is the first to
bring together these two types of entity annotation.

2 GGP Annotation

Geneis the basic unit of heredity, which is encoded
in the coding region ofDNA. Its physical manifes-
tations asRNAand Protein are often called its prod-
ucts. In our view of these four entity types, gene is
taken as an abstract entity whereas protein, DNA and
RNA are physical entities. While the three physical
entity types are disjoint, the abstract concept, gene,
is defined from a different perspective and is realized
in, not disjoint from, the physical entity types.

The latest public version of GENIA corpus (here-
after “old corpus”) contains annotations for gene-

Protein DNA RNA GGP
Old Annotation 21,489 8,653 876 N/A

New Annotation 15,452 7,872 863 12,272

Table 1: Statistics on annotation for gene-related entities

related entities, but they are classified into only
physical entity types: Protein, DNA and RNA. The
corpus revisions described in this work are two-fold.
First, annotation for the abstract entity, gene, were
added (Table 1, GGP). To emphasize the character-
istics of the new entity type, which does not dis-
tinguish a gene and its products, we call it GGP
(gene or gene product). Second, the addition of GGP
annotation triggered large-scale removal of Protein,
DNA and RNA annotation instances for cases where
the physical form of the gene was not referred to
(Due to space limitations, we omit RNA from now
on). The time cost involved with this revision was
approximately 500 person-hours.

3 Quality Assessment

To measure the effect of revision, we performed
NER experiments with old and new annotation (Ta-
bles 2 and 3). We split the corpus into disjoint 90%
and 10% parts for use in training and test, respec-
tively. We used the BANNER (Leaman and Gonza-
lez, 2008) NE tagger and created a separate single-
class NER problem for each entity type.

In the old annotation, consistency is moderate
for protein (77.70%), while DNA is problematic
(58.03%). The new GGP annotation has been
achieved in a fairly consistent way (81.44%). How-
ever, the removal of annotation for entities previ-
ously marked as protein or DNA had opposite effects
on the two: better performance for DNA (64.06%),
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Precision Recall F-score
Protein 80.78 74.84 77.70
DNA 64.90 52.48 58.03

Table 2: NER performance before GGP annotation

Precision Recall F-score
Protein 71.20 56.61 63.08
DNA 69.59 59.35 64.06
GGP 86.86 76.65 81.44
Protein+ 83.22 78.20 80.63

Table 3: NER performance after GGP annotation

Phosphorylation Geneexpression
GGP in protein 70% GGPabstract 34%
Protein 25% Protein 24%
GGPabstract 3% GGPin Protein 17%
Peptide 1% GGPin DNA 9%

Table 4: Distribution of theme entity types in GENIA

implying annotation consistency improved with the
removals, but worse for Protein (63.08%).

We find the primary explanation for this effect in
the statistics in Table 1: in the revision, a large num-
ber of protein annotations (6,037) but only a small
number of DNA annotations (780) were replaced
with GGP. To distinguish such GGPs from those em-
bedded in Protein or DNA annotations, we call them
“abstract” GGPs, as they appear in text without in-
formation on their physical form. Nevertheless, in
the old annotation, they had to be annotated as either
protein or DNA, which might have caused inconsis-
tent annotation. However, the statistics show a clear
preference for choosing Protein over DNA. The rad-
ical drop of performance in protein recognition can
then be explained in part as a result of removing this
systematic preference.

Aside from the discussion on whether the pref-
erence is general or specific, we interpret the pref-
erence as a need for “potential” proteins to be re-
trieved together with “real” proteins, which was an-
swered by the old protein annotation. To reproduce
this class in the new annotation, we added abstract
GGPs to the Protein annotation and performed an
NER experiment. The result (Table 3, Protein+)
shows a clear improvement over the comparable re-
sult for the old protein annotation.

In conclusion, we argue, the revision of the GE-
NIA annotation, in addition to introducing a new en-

tity class, has led to a significant improvement of
overall consistency.

4 Discussion

Although there are already corpora such as GENE-
TAG with annotation similar to GGPs, we expect
this newly introduced class of annotation to support
existing annotations of GENIA, such as event and
co-reference annotation, opening up new possibili-
ties for application. The quality of entity annota-
tion should be closely related to that of other seman-
tic annotation, e.g. events. For example, the event
type Phosphorylation is about a change on physi-
cal entities, e.g. proteins and peptides, and as such,
it is expected that themes of these events would be
physical entities. On the other hand, the event type
Geneexpression is about the manifestation of an ab-
stract entity (gene) as a physical entity (protein) and
would thus be expected to involve both abstract and
physical entities. Statistics from GENIA (Table 4)
show that the theme selection made in event anno-
tation well reflects these characteristics of the two
event types. The observation suggests that there is a
good likelihood that improvement of the entity an-
notation can be further transferred to other semantic
annotation, which is open for future work.
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Abstract

One of the most neglected areas of biomed-
ical Text Mining (TM) is the development
of systems based on carefully assessed user
needs. We investigate the needs of an im-
portant task yet to be tackled by TM — Can-
cer Risk Assessment (CRA) — and take the
first step towards the development of TM for
the task: identifying and organizing the sci-
entific evidence required for CRA in a taxon-
omy. The taxonomy is based on expert annota-
tion of 1297 MEDLINE abstracts. We report
promising results with inter-annotator agree-
ment tests and automatic classification experi-
ments, and a user test which demonstrates that
the resources we have built are well-defined,
accurate, and applicable to a real-world CRA
scenario. We discuss extending and refining
the taxonomy further via manual and machine
learning approaches, and the subsequent steps
required to develop TM for the needs of CRA.

1 Introduction

Biomedical Text Mining (TM) has become increas-
ingly popular due to the pressing need to provide
access to the tremendous body of texts available
in biomedical sciences. Considerable progress has
been made in the development of basic resources
(e.g. ontologies, annotated corpora) and techniques
(e.g. Information Retrieval (IR), Information Ex-
traction (IE)) in this area, and research has began
to focus on increasingly challenging tasks, e.g. sum-
marization and the discovery of novel information in
biomedical literature (Hunter and Cohen 2006, Ana-
niadou et al. 2006, Zweigenbaum et al. 2007).

In recent past, there has been an increasing de-
mand for research which is driven by actual user

needs rather than technical developments (Zweigen-
baum et al. 2007). Shared tasks (e.g. BioCreative
and the TREC Genomics track) targeting the work-
flow of biomedical researchers have appeared along
with studies exploring the TM needs of specific tasks
(Karamanis et al. 2008, Demaine et al. 2006). How-
ever, the understanding of user needs is still one of
the neglected areas of BIO-TM, and further user-
centered evaluations and systems grounded in real-
life tasks are required to determine which tools and
services are useful (Cohen et al. 2008).

We investigate the user needs of a challenging
task yet to be tackled by TM but identified as an
important potential application for it (Lewin et al.
2008): Cancer Risk Assessment (CRA). Over the
past years, CRA has become increasingly important
as the link between environmental chemicals and
cancer has become evident. It involves examining
published evidence to determine the relationship be-
tween exposure to a chemical and the likelihood of
developing cancer from that exposure (EPA, 2005).
Performed manually by experts in health related in-
stitutions worldwide, CRA requires searching, lo-
cating and interpreting information in biomedical
journal articles. It can be extremely time-consuming
because the data for a single carcinogen may be scat-
tered across thousands of articles.

Given the exponentially growing volume of
biomedical literature and the rapid development of
molecular biology techniques, the task is now get-
ting too challenging to manage via manual means.
From the perspective of BIO-TM, CRA is an excel-
lent example of real-world task which could greatly
benefit from a dedicated TM tool. However, the de-
velopment of a truly useful tool requires careful in-
vestigation of risk assessors needs.
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This paper reports our investigation of the user
needs of CRA and the creation of basic TM re-
sources for the task. Expanding on our preliminary
experiments (Lewin et al. 2008), we present a taxon-
omy which specifies the scientific evidence needed
for CRA at the level of detail required for TM. The
taxonomy is based on expert annotation of a corpus
of 1297 MEDLINE abstracts. We report promis-
ing results with inter-annotator agreement tests, au-
tomatic classification of corpus data into taxonomy
classes, and a user test in a near real-world CRA
scenario which shows that the taxonomy is highly
accurate and useful for practical CRA. We discuss
refining and extending it further via manual and ma-
chine learning approaches, and the subsequent steps
required to develop TM for the needs of CRA.

2 User Needs of Cancer Risk Assessment

We interviewed 14 experienced risk assessors work-
ing for a number of authorities in Sweden1 asking
a range of questions related to different aspects of
their work. The risk assessors described the follow-
ing steps of CRA: (1) identifying the journal articles
relevant for CRA of the chemical in question, (2)
identifying the scientific evidence in these articles
which help to determine whether/how the chemical
causes cancer, (3) classifying and analysing the re-
sulting (partly conflicting) evidence to build the tox-
icological profile for the chemical, and (4) prepar-
ing the risk assessment report. These steps are con-
ducted manually, relying only on standard literature
search engines (e.g. PubMed) and word processors.

The average time required for CRA of a single
chemical was reported to be two years when done
(as usual) on a part time basis. Risk assessors were
unanimous about the need to increase productivity
to meet the current CRA demand. They reported
that locating and classifying the scientific evidence
in literature is the most time consuming part of their
work and that a tool capable of assisting it and ensur-
ing that all the potentially relevant evidence is found
would be particularly helpful.

It became clear that a prerequisite for the devel-
opment of such a tool would be an extensive spec-
ification of the scientific evidence used for CRA.

1Institute of Environmental Medicine at Karolinska Insti-
tutet, Swedish Chemical Inspectorate, Scientific Committee on
Occupational Exposure Limits (EU), Swedish Criteria Group.

This evidence — which forms the basis of all the
subsequent steps of CRA — is described in the
guideline documents of major international CRA
agencies, e.g. European Chemicals Agency (ECHA,
2008) and the United States Environmental Protec-
tion Agency (EPA, 2005). However, although these
documents constitute the main reference material in
CRA, they cover the main types of evidence only,
do not specify the evidence at the level of detail
required for comprehensive data gathering, and are
not updated regularly (i.e. do not incorporate the lat-
est developments in biomedical sciences). The risk
assessors admitted that rather than relying on these
documents, they rely on their experience and expert
knowledge when looking for the evidence. We de-
cided that our starting point should be to compose
a more adequate specification of the scientific evi-
dence needed for CRA.

3 Cancer Risk Assessment Taxonomy

We recruited three experienced risk assessors to help
construct the resources described in sections below:
(i) a representative corpus of CRA literature for
parts of hazard identification (i.e. the assessment of
whether a chemical is capable of causing cancer),
(ii) a tool for expert annotation of the corpus, (iii) an
annotated corpus, and (iv) a taxonomy which classi-
fies and organizes the scientific evidence discovered
in the corpus.

3.1 CRA corpus

Various human, animal (in vivo), cellular (in vitro)
and other mechanistic data provide evidence for haz-
ard identification and the assessment of the Mode of
Action (MOA) (i.e. the sequence of key events that
result in cancer formation, e.g. mutagenesis and in-
creased cell proliferation) in CRA. The experts se-
lected eight chemicals which are (i) well-researched
using a range of scientific tests and (ii) represent the
two most frequently used MOAs –genotoxicand
non-genotoxic2. 15 journals were identified which
are used frequently for CRA and jointly provide a
good coverage of relevant scientific evidence (e.g.
Cancer Research, Chemico-biological Interaction,
Mutagenesis, Toxicological Sciences). From these

2Chemicals acting by a genotoxic MOA interact with DNA,
while chemicals acting by a nongenotoxic MOA induce cancer
without interfering directly with DNA.
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Figure 1: Screenshot of the annotation tool

journals, all the PubMed abstracts from 1998-2008
which include one of the 8 chemicals were down-
loaded. The resulting corpus of 1297 abstracts is
distributed per chemical as shown in Table 1.

3.2 Annotation tool

Risk assessors typically (i) read each abstract re-
trieved by PubMed to determine its relevance for
CRA, and (ii) classify each relevant abstract based
on the type of evidence it provides for CRA. We ex-
tended the tool designed for expert annotation of ab-
stracts in our earlier work (Lewin et al. 2008) so that
imitates this process as closely as possible.

The tool provides two types of functionality. The
first enables the experts to classify abstracts as rele-
vant, irrelevant or unsure. The second enables them
to annotate such keywords (words or phrases) in ab-
stracts and their titles which indicate the scientific
evidence relevant for the task. Keyword annotation
was chosen because the experts found it intuitive, it
did not require linguistic training, and it specifies the
scientific evidence more precisely than larger spans
of text.

Initially a very shallow taxonomy (including only
human, animal, and cellular data) and the two types
of MOA was integrated inside the tool. This was
gradually extended as the annotation progressed.
The tool permits annotating any number of relevant
keywords in the abstracts, attaching them to any
class in the taxonomy, and classifying the same text
in more than one way. It was implemented inside the
familiar Mozilla Firefox browser using its extension
facility. A screenshot illustrating the tool is provided
in Figure 1.

3.3 Annotation

Given a set of initial guidelines agreed by the ex-
perts, one of the experts annotated a subset of the
corpus, the other two evaluated the result, disagree-
ments were then discussed, and the guidelines were
improved where needed. This process (crucial for
maintaining quality) was repeated several times.
The guidelines described below are the final result
of this work.

3.3.1 Relevance annotation

An abstract is classified as (i) relevant when it (or
its title) contains evidence relevant for CRA and (ii)
irrelevant when it (or its title) contains no evidence
or contains ”negative” evidence (e.g. diseases or
endpoints unrelated to cancer). Abstracts containing
vague, conflicting or complex evidence (e.g. stud-
ies on chemicals in complex mixtures) or evidence
whose association with cancer is currently unclear
were dealt on case by case basis. All the potentially
relevant abstracts were included for further assess-
ment as not to lose data valuable for CRA.

The experts annotated the 1297 abstracts in the
corpus. 89.4% were classified as relevant, 10.1% as
irrelevant, and 0.5% as unsure. We used the Kappa
statistics (Cohen 1960) to measure inter-annotator
agreement on unseen data which two experts an-
notated independently. 208 abstracts were selected
randomly from the 15 journals and from 16 jour-
nals likely to be irrelevant for CRA. The latter were
included to make the task harder as the proportion
of relevant abstracts was high in our corpus. Our
Kappa result is 0.68 — a figure which indicates sub-
stantial agreement (Landis and G.Koch 1977).

The experts disagreed on 24 (11.5% of the) ab-
stracts. Half of the disagreements are due to one
of the annotators failing to notice relevant evidence.
Such cases are likely to decrease when annotators
gain more experience. The other half are caused by
vague or conflicting evidence. Many of these could
be addressed by further development of guidelines.

3.3.2 Keyword annotation

Keyword annotation focussed on the types of sci-
entific evidence experts typically look for in CRA:
carcinogenic activity (human, animal, cellular, and
other mechanistic data),Mode of Action (MOA)
(data for a specific MOA type — genotoxic or non-
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Chemical Retrieved Relevant
1,3-butadiene 195 187
phenobarbital 270 240
diethylnitrosamine 221 214
diethylstilbestrol 145 110
benzoapyrene 201 192
fumonisin 80 70
chloroform 96 84
styrene 162 132
Total 1297 1164

Table 1: Total of abstracts per chemical

genotoxic), and relevant parts oftoxicokinetics (e.g.
metabolic activation). The experts annotated the
keywords which they considered as the most impor-
tant and which jointly identify the types of scientific
data offered by the abstract. They focussed on new
(rather than previously published) data on the chem-
ical in question.

All the 1164 abstracts deemed relevant were an-
notated. A total of 1742 unique keywords were
identified, both simple nouns and complex nomi-
nals / phrases. Figure 1 shows an example of an
annotated abstract where the keywordchromoso-
mal aberrationsis identified as evidence for geno-
toxic MOA. Since the experts were not required to
annotate every relevant keyword, calculating inter-
annotator agreement was not meaningful. However,
the keyword annotation was evaluated jointly with
taxonomy classification (the following section).

3.4 The taxonomy and the resulting corpus

During keyword annotation, the initial taxonomy
was extended and refined with new classes and class
members. The resulting taxonomy relies solely on
expert knowledge. Experts were merely advised
on the main principles of taxonomy creation: the
classes should be conceptually coherent and their hi-
erarchical organization should be in terms of coher-
ent sub- and superordinate relations.

The taxonomy contains three top level classes:
1) Carcinogenic activity (CA), 2) Mode of Action
(MOA) and 3) Toxicokinetics (TOX). 1) and 2) are
organized by TYPE-OF relations (leukemiais a type
of carcinogenic evidence) and 3) by PART-OF rela-
tions (biodegradationis a part of Metabolism). Each
top level class divides into sub-classes. Figure 2
showsCA taxonomy with three keyword examples
per class. The taxonomy has 48 classes in total; half

of them underCA. Table 6 shows the total number
of abstracts and keywords per class: 82.4% of the
abstracts include keywords forCA, and 50.3% and
28.1% forMOAandTOX, respectively.

We calculated inter-annotator agreement for as-
signing abstracts to taxonomy classes. For each of
the 8 chemicals, 10 abstracts were randomly cho-
sen from the 15 journals. The average agreement
between two annotators is the highest withCA and
MOA (78%) and the lowest withTOX (62%). The
overall agreement is 76%. This result is good, par-
ticularly considering the high number of classes and
the chance agreement of 1.5%. The disagreements
are mostly due to one of the experts annotating as
many keywords as possible, and the other one an-
notating only the ones that classify each abstract as
precisely as possible. This was not a serious prob-
lem for us, but it demonstrates the importance of de-
tailed guidelines. Also, some of the classes were too
imprecise to yield unique distinctions. Future work
should focus on refining them further.

4 Automatic classification

To examine whether the classification created by ex-
perts provides a good representation of the corpus
data and is machine learnable, we conducted a se-
ries of abstract classification experiments.

4.1 Methods

4.1.1 Feature extraction

The first step of text categorization (TC) is to
transform documents into a feature vector represen-
tation. We experimented with two document rep-
resentation techniques. The first one is the sim-
ple ’bag of words’ approach (BOW) which consid-
ers each word in the document as a separate feature.
BOWwas evaluated using three methods which have
proved useful in previous TC work: (i) stemming
(using the Porter (1980) stemmer) which removes
affixes from words, (ii) the TFIDF weighting (Kib-
riya et al. 2004), and (iii) stop word removal.

The second technique is the recent ’bag of sub-
strings’ (BOS) method by (Wang et al. 2008) which
considers the whole abstract as a string and extracts
from it all the lengthp substrings without affix re-
moval. BOS has proved promising in biomedical
TC (Han et al. 2006, Wang et al. 2008) and un-
like a traditional grammatical stemmer, does not re-
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Figure 2: Taxonomy of Carcinogenic Activity

quire domain tuning for optimal performance. Be-
causeBOSgenerates substrings with fixed lengthp,
a word shorter thanp−2 can get obscured by its con-
text3. For example, ‘mice‘ would be transformed to
’ mice a’, ’ mice b’, . . . , which is less informative
than the original word form. Therefore, we enriched
BOSfeatures with word forms shorter thanp− 2.

4.1.2 Feature selection

We employed two feature selection methods for
dimensionality reduction. The first is Information
Gain (IG) which has proved useful in TC (Yang
and Pedersen 1997). Given a feature’s distribu-
tion X and class label distributionY , IG(X) =
H(Y ) − H(Y |X), H(X) is the entropy ofX. The
second methodfscore optimises the number of fea-
tures (N ). Features are first ranked using the simple
fscore criterion (Chen and Lin 2006), andN is se-
lected based on the performance of the SVM classi-
fier using theN features.

4.1.3 Classification

Three classifiers were used: Naive Multino-
mial Bayesian (NMB), Complement Naive Bayesian
(CNB) (Rennie and Karger 2003) and Linear Sup-
port Vector Machines (L-SVM) (Vapnik 1995).

NMB is a widely used classifier in TC (Kib-
riya et al. 2004). It selects the classC with
the maximum probability given the documentd:
argmaxc Pr(C)

∏
w∈d Pr(X = w|C). Pr(C) can

3Minus 2 because of space characters.

be estimated from the frequency of documents inC.
Pr(X = w|C) is estimated as the fraction of tokens
in documents of classC that containw.

CNB extendsNMB by addressing the problems
it has e.g. with imbalanced data and weight
magnitude error. The classc of a document
is: argmaxc[logp(θc)−

∑
i filog

Nc̃i+αi

Nc̃+α ]. Nc̃i is the
number of times termi occurs in classes other than
c. α andαi are the smoothing parameters.p(θc) is
the prior distribution of classc.

L-SVM is the basic type of SVM which pro-
duces a hyperplane that separates two-class samples
with a maximum margin. It handles high dimen-
sional data efficiently, and has shown to perform
well in TC (Yang and Liu 1999). Given the data
set X = (x1, y1), . . . , (xn, yn) yi ∈ {−1,+1},
L-SVM requires a solutionw to the following un-
constrained optimisation problem:min(1

2w
T w +

C
∑n

i=1 max(1 − yiwTxi, 0)2. Cost parameterC
was estimated within range22,. . . , 25 on training
data using cross validation. TheC of the posi-
tive class was weighted by class population ratio

r = negative population
positive population.

4.1.4 Evaluation

We used the standard measures of recall (R), pre-
cision (P) and F measure (F) for evaluation. These
are defined as follows:

R = TP
TP+FN P = TP

TP+FP F = 2×R×P
R+P

Our random baseline isP+
N+P+

.
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P+/N : positive/negative population TP: truth positive; FN: false negative, FP: false positive

4.2 Experimental evaluation

4.2.1 Data

Our data was the expert annotated CRA corpus.

4.2.2 Document preprocessing

We first evaluated theBOW preprocessing tech-
nique with and without the use of (i) the Porter
(1980) stemmer, (ii) TFIDF, (iii) stop word removal,
and (iv) their combinations. The evaluation was
done in the context of the binary relevance classifica-
tion of abstracts (not in the context of the main tax-
onomic classification task to avoid overfitting pre-
processing techniques to the taxonomy). Only (iii)
improved all the classifiers and was thus adopted
for the main experiments. The poor performance
of (i) demonstrates that a standard stemmer is not
optimal for our data. As highlighted by (Han et al.
2006, Wang et al. 2008), semantically related bio-
logical terms sharing the same stem are not always
reducible to the stem form.

4.2.3 Feature selection

We evaluated the feature selection methods on
two taxonomy classes: the most balanced class ‘An-
imal study‘ (positive/negative 1:1.4) and an imbal-
anced class ‘Adducts‘ (positive/negative 1:6.5).IG
was used for the fixedN setting andfscorefor the
dynamic Nsetting. Each combination of classifiers
(NMB/CNB/SVM), document representations (BOW,
BOS) and settings forN (dynamic, . . . , 83098) was
evaluated. The results show that thedynamicsetting
yields consistent improvement on all the setups (al-
though the impact onSVM’s is not big). Also the
optimalN varies by the data and the classifier. Thus,
we used thedynamicfeature selection in the taxo-
nomic classification.

4.2.4 Taxonomic classification

Experimental setup We ran two sets of experi-
ments on the corpus, using 1)BOWand 2)BOSfor
feature extraction. Without feature selection,BOW
had c. 9000 features andBOSc. 83000. Features
were selected usingfscore. For each class with
more than 20 abstracts (37 in total)4, three ”one

4The classes with less than 20 abstracts may have less than
2 positive abstracts in each fold of 10 fold CV, which is not

Method Feature Set P R F
NMB BOW 0.59 0.75 0.66
NMB BOS 0.62 0.82 0.70
CNB BOW 0.52 0.74 0.60
CNB BOS 0.57 0.76 0.64
SVM BOW 0.68 0.76 0.71
SVM BOS 0.71 0.77 0.74

Table 2: Performance of classifiers withBOS/BOW

Class Method P R F
CA NMB 0.94 0.89 0.91
CA CNB 0.92 0.94 0.93
CA SVM 0.93 0.93 0.93
MOA NMB 0.88 0.81 0.84
MOA CNB 0.84 0.82 0.83
MOA SVM 0.92 0.80 0.86
TOX NMB 0.66 0.83 0.74
TOX CNB 0.70 0.80 0.75
TOX SVM 0.76 0.79 0.78

Table 3: Result for the top level classes

against other” classifiers (NMB, CNB and L-SVM)
were trained and tested using 10-fold cross valida-
tion.

Results Table 2 shows the average performance
for the whole taxonomy. The performance ofBOS
is better than that ofBOWaccording to all the three
measures. On average,BOSoutperformsBOWby
4% in P and F, and 3% in R.SVM yields the best
overall P and F (0.71and0.74) with BOS. Surpris-
ingly, NMB outperformsCNB with all the settings.
NMB yields the best overall R withBOS(0.82) but
its P is notably lower than that ofSVM.

Table 3 shows the average P, R and F for the top
level classes using the best performing feature set
BOSwith the three classifiers.CA has the best F
(0.93). Its positive population is the highest (posi-
tive/negative: 5:1).TOXwith a lower positive pop-
ulation (1:2.6) has still good F (0.78). R and P are
balanced with an average difference of 0.06.

Table 4 shows the distribution of F across the
taxonomy. There is a clear correlation between

representative for the class population.

No. of abstracts(f) Classes F Random
f > 300 9 0.80 0.38
100 < f ≤ 300 12 0.73 0.13
20 < f ≤ 100 16 0.68 0.04

Table 4: Mean F and random baseline for taxonomic
classes in three frequency ranges.
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frequency and performance: the average F de-
creases with descending frequency range, revealing
increased classification difficulty. Classes with more
than 300 abstracts have the highest average F (0.80
with standard deviation (SD) 0.08). Classes with
20-100 abstracts have the average F 0.68 (SD0.11),
which is lower but still fairly good. No class has F
lower than 0.46, which is much higher than the av-
erage random baseline of 0.11.

5 User Test

A user test was carried out to examine the practical
usefulness of the automatic classification in a near
real-world scenario. TheL-SVM+BOSclassifier was
applied to the PubMed abstract data (from 1998-
2008) of five unseen chemicals representing geno-
toxic (geno) and non-genotoxic (non) MOAs (see
table 5). The results were displayed to two experts
in a friendly web interface. The experts were in-
vited to imagine that they have submitted a query to
a system, the system has returned the classification
of relevant abstracts for each chemical, and the task
is to judge whether it is correct. The top 500BOS
features per class were shown to aid the judgement.

Results were evaluated using precision (P) (re-
call could not be calculated as not all of the positive
polulation was known). Table 5 shows the average
P for chemicals and top level classes. The results
are impressive: the only chemical with P lower than
0.90 is polychlorinated biphenyls (PCB). As PCB
has a well-known neuro-behavioural effect, the data
includes many abstracts irrelevant for CRA. Most
other errors are due to the lack of training data for
low frequency classes. For example, the CRA cor-
pus had only 27 abstracts in ”DNA repair (damage)”
class, while the new corpus has many abstracts on
DNA damage some of which are irrelevant for CRA.

The experts found the tool easy to use and felt
that if such a tool was available to support real-world
CRA, it could significantly increase their productiv-
ity and also lead to more consistent and thorough
CRA. Such a wide range of scientific evidence is dif-
ficult to gather via manual means, and chemical car-
cinogenesis is such a complex process that even the
most experienced risk assessor is incapable of mem-
orizing the full range of relevant evidence without
the support of a thorough specification / taxonomy.

Name MOA Σ P
Aflatoxin B1 geno 189 0.95
Benzene geno 461 0.99
PCB non 761 0.89
Tamoxifen non 382 0.96
TCDD non 641 0.96

Class P
CA 0.94
MOA 0.95
TOX 0.99

Table 5: Chemicals and the results of the user test

6 Conclusion and Future Work

The results of our inter-annotator agreement tests,
automatic classification experiments and the user
test demonstrate that the taxonomy created by risk
assessors is accurate, well-defined, and can be use-
ful in a real-world CRA scenario. This is particu-
larly encouraging considering that the taxonomy is
based on biomedical annotation. As highlighted by
(Kim et al. 2008), expert annotation is more chal-
lenging and prone to inter-annotator disagreement
than better-constrained linguistic annotation. We
believe that we obtained promising results because
we worked in collaboration with risk assessors and
developed technology which imitates their current
practices as closely as possible.

Most related work focuses on binary classifica-
tion, e.g. BioCreative II had a subtask (Krallinger
et al. 2008) on the relevance classification of ab-
stracts for protein interactions. The few works
that have attempted multi-classification include e.g.
that of Aphinyanaphongs et al. (2005) who applied
NMB, SVM and AdaBoost to classify abstracts of
internal medicine into four categories, and that of
Han et al. (2006) who usedBOSandNMB/L-SVMto
classify abstracts in five categories of protein post-
translational modifications.

In the future, we plan to refine the taxonomy fur-
ther by careful analysis of keyword types found in
the data and the taxonomic relationships defined by
experts. This will help to transform the taxonomy
into a better-developed knowledge resource. We
also need to extend the taxonomy. Although our
results show that the current taxonomy provides a
good basis for the classification of CRA literature,
it is not comprehensive: more data is required espe-
cially for low frequency classes, and the taxonomy
needs to be extended to cover more specific MOA
types (e.g. further subtypes of non-genotoxic chem-
icals).

The taxonomy can be extended by manual annota-
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Change in F Σ Classes
Abstracts of class

20-100 100 - 200 200 - 1100

∆F > 1% 16 (43%) 75% 33% 8%
|∆F | ≤ 1% 15 (41%) 6% 44% 75%
∆F < −1% 6 (16%) 19% 33% 17%

Table 6: F gain(∆F ) of MeSHcompared toBOS

Class Σ F
Carcinogenic activity 1068 92.8

Human study/epidemiology 190 77.7
Animal study 629 80.2
Cell experiments 319 78.5
Study on microorganisms 44 85.2

Mode of Action 653 85.5
Genotoxic 421 89.1
Nongenotoxic 324 76.3

Toxicokinetics 356 77.7
Absorption, . . . ,excretion 113 69.8
Metabolism 268 76.4
Toxicokinetic modeling 31 84.6

Table 7:Σ abstracts and F of level 1,2 classes.

tion, supplementing it with additional information in
knowledge resources and/or by automatic methods.
One knowledge resource potentially useful is the
Medical Subject Headings (MeSH) taxonomy (Nel-
son et al. 2002) which classifies PubMed abstracts
according to manually defined terms. We performed
a small experiment to investigate the usefulness of
MeSH for supplementing our current classification.
MeSH terms were first retrieved for each abstract us-
ing EFetch (NCBI 2005) and then appended to the
BOSfeature vector. Best features were then selected
using fscore and classified usingL-SVM. The fig-
ures in table 6 show that the results improved sig-
nificantly for 43% of the low frequency classes. Al-
though this demonstrates the potential usefulness of
additional resources, given the rapidly evolving na-
ture of CRA data, the best approach long term is
to develop technology for automatic updating of the
taxonomy from literature. Given the basic resources
we have constructed, the development of such tech-
nology is now realistic and can be done using unsu-
pervised or semi-supervised machine learning tech-
niques, e.g. (Cohen and Hersh 2005, Blaschko and
Gretton 2009).

The automatic classification could be improved
by the use of more sophisticated features extracted
using NLP tools that have been tuned for biomedi-
cal texts, such as parsers, e.g. (Tsuruoka et al. 2005),

and named entity recognizers, e.g. (Corbett et al.
2007), and exploiting resources such as the BioLex-
ion (Sasaki et al. 2008).

Our long term goal is to develop a TM tool
specifically designed for CRA. Some tools have re-
cently been built to assist other critical activities of
biomedicine (e.g. literature curation for genetics).
A few of them have been evaluated for their practi-
cal usefulness in a real-world scenario (Karamanis
et al. 2008, Demaine et al. 2006). Such tools and
evaluations act as an important proof of concept for
biomedical TM and help to develop technology for
the needs of practical applications.

According to the interviews we conducted (Sec-
tion 2), a tool capable of identifying, ranking and
classifying articles based on the evidence they con-
tain, displaying the results to experts, and assisting
also in subsequent steps of CRA would be particu-
larly welcome. Such a tool, if developed in close
collaboration with users, could significantly increase
the productivity of CRA and enable risk assessors
to concentrate on what they are best at: the expert
judgement.
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Abstract

We introduce a controlled natural language for
biomedical queries, called BIOQUERYCNL,
and present an algorithm to convert a biomed-
ical query in this language into a program
in answer set programming (ASP)—a for-
mal framework to automate reasoning about
knowledge. BIOQUERYCNL allows users to
express complex queries (possibly containing
nested relative clauses and cardinality con-
straints) over biomedical ontologies; and such
a transformation of BIOQUERYCNL queries
into ASP programs is useful for automat-
ing reasoning about biomedical ontologies by
means of ASP solvers. We precisely describe
the grammar of BIOQUERYCNL, implement
our transformation algorithm, and illustrate its
applicability to biomedical queries by some
examples.

1 Introduction

The rapid increase in the popularity and usage of
Web leads researchers to store data and make it pub-
licly available in many ways. In particular, to facili-
tate access to its desired parts, it is stored in a struc-
tured form, like ontologies. These ontologies can
be queried with an SQL-like formal query language.
However, since these ontologies have been devel-
oped for and widely used by people that lacks the
necessary knowledge in a formal query language,
a simpler and more commonly known language is
needed to represent queries. A natural language is
the perfect answer, but ambiguities in its grammar
and vocabulary make it difficult to automate reason-
ing about queries in natural language. Therefore, to

represent queries, we consider a middle ground be-
tween these two options: a Controlled Natural Lan-
guage (CNL).

A CNL is a subset of a natural language, with a re-
stricted grammar and vocabulary, that overcomes the
ambiguity of natural languages. Since we consider
queries in a specific domain, namely biomedicine,
and over specific sources of information, namely
biomedical ontologies, a CNL designed and devel-
oped for reasoning about biomedical ontologies is
sufficient to represent biomedical queries. Essen-
tially, a CNL is a formal language but with a look
of a natural language. Therefore, compared to a
natural language, a CNL can be easily converted to
some other formalisms. This allows us to use au-
tomated reasoners, specifically developed for such
formalisms, to find answers to queries expressed in
a CNL.

One such formalism is Answer Set Programming
(ASP) (Baral, 2003). ASP is a new knowledge rep-
resentation and reasoning paradigm which supports
representation of defaults, constraints, preferences,
aggregates, etc., and provides technologies that al-
low us to automate reasoning with incomplete in-
formation, and to integrate other technologies, like
description logics reasoners and Semantic Web tech-
nologies. For instance, in (Bodenreider et al., 2008),
the authors illustrate the applicability and effective-
ness of using ASP to represent a rule layer that inte-
grates relevant parts of some biomedical ontologies
in RDF(S)/OWL, and to compute answers to some
complex biomedical queries over these ontologies.

Although CNLs are appropriate for expressing
biomedical queries, and methods and technologies
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Figure 1: Architecture of the Overall System

of ASP are appropriate for automated reasoning
about biomedical ontologies, there is no algorithm
to convert a CNL biomedical query into a program.
In (Bodenreider et al., 2008), biomedical queries are
represented as programs in ASP; however, these pro-
grams are constructed manually. However, manually
constructing ASP programs to represent biomedi-
cal queries is not only time consuming but also
requires expertise in ASP. This prevents automat-
ing the whole process of computing an answer to a
query, once it is given in a CNL.

In this paper, we design and develop a CNL
(called BIOQUERYCNL) for expressing biomedical
queries over some ontologies, and introduce an al-
gorithm to convert a biomedical query expressed in
this CNL into a program in ASP. The idea is to au-
tomatically compute an answer to the query using
methods of (Bodenreider et al., 2008), once the user
types the query. This idea is illustrated in Figure 1.

Similar approaches of using a CNL for querying
ontologies have been investigated in various stud-
ies. For instance, (Bernstein et al., 2005) consid-
ers queries in the controlled natural language, At-
tempto Controlled English (ACE) (Attempto, 2008),
and transforms them into queries in PQL (Klein and
Bernstein, 2004) to be evaluated by a query engine.
(Bernstein et al., 2006) presents a system that guides
the user to write a query in ACE, and translates the
query into SPARQL to be evaluated by the reasoner
of JENA (Jena, 2008). On the other hand, (Kauf-
mann et al., 2006) transforms a given natural lan-
guage query to a SPARQL query (using the Stan-

ford Parser and WORDNET) to be evaluated by a
reasoner like that of JENA. Our work is different
from these studies in two ways: we consider queries
over biomedical ontologies (thus different forms of
queries, and vocabulary), and we transform a query
into an ASP program to automate reasoning over a
rule layer presented in ASP.

Transformations of natural language sentences
into ASP has been studied in (Baral et al., 2008) and
(Baral et al., 2007). In (Baral et al., 2008), the au-
thors introduce methods to transform some simple
forms of sentences into ASP using Lambda Calcu-
lus. In (Baral et al., 2007), the authors use C&C
tools (CC, 2009) to parse the some forms of natu-
ral language input, and perform a semantic analysis
over the parser output using BOXER (Boxer, 2009),
to do reasoning in ASP. Our work is different in that
we consider a CNL to express queries, and intro-
duce a different method for converting CNL to a pro-
gram in ASP, via Discourse Representation Struc-
tures (DRS) (Kamp, 1981).

In the rest of the paper, first we briefly discuss
ASP with some examples (Section 2). Then we de-
fine the grammatical structure of BIOQUERYCNL
and give some examples (Section 3). Next, we
introduce our algorithm for transforming a BIO-
QUERYCNL query into an ASP program and ex-
plain it by an example (Section 4). We conclude
with a discussion of challenges related to the im-
plementation of our algorithm (Section 5) and other
related problems that we are working on (Section 6).

2 Answer Set Programming

Answer Set Programming (ASP) (Lifschitz, 1999;
Marek and Truszczyński, 1999; Niemelä, 1999;
Baral, 2003) is a new knowledge representation
and reasoning paradigm which supports representa-
tion of defaults, constraints, preferences, aggregates,
etc., and provides technologies that allow us to auto-
mate reasoning with incomplete information, and to
integrate other technologies, like description logics
reasoners and Semantic Web technologies.

In ASP, knowledge is represented as a “program”
(a finite set of “rules”) whose meaning is captured
by its models (called “answer sets” (Gelfond and
Lifschitz, 1988)). Answer sets for a program can
be computed by “answer set solvers” such as DLV
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(DLV, 2009). Consider for instance the program:
gene_gene(‘‘ADRB1’’,‘‘CHRM5’’).
gene_gene(‘‘CHRM1’’,‘‘CHRM5’’).

chain(X,Y) :- gene_gene(X,Y).
chain(X,Y) :- gene_gene(Y,X).
chain(X,Y) :- gene_gene(X,Z), chain(Z,Y).

The first rule expresses that the gene ADRB1 inter-
acts with the gene CHRM5. The second rule ex-
presses that the gene CHRM1 interacts with the gene
CHRM5. The third, the fourth, and the fifth rules
express a chain of such interactions. In a rule con-
taining :-, the left-hand-side of :- is called the head
of the rule, the right-hand-side is called the body of
the rule. Such a rule p :- q, r. is read as “p if q
and r”. Here the head atom is p, and the body atoms
are q and r. The answer set for this program de-
scribes that there is a chain of interactions between
CHRM1 and CHRM5, ADRB1 and CHRM5, and
ADRB1 and CHRM1.

As mentioned above, the language of ASP is ex-
pressive enough to represent defaults, constraints,
preferences, aggregates, etc.. For instance, the rule
treats_2diseases(R) :-
#count{D:treats(R,D)}>=2, drug(R).

describes drugs R that treat at least 2 diseases.

3 A Controlled Natural Language for
Biomedical Queries

We introduce a controlled natural language, called
BIOQUERYCNL, to express biomedical queries,
whose grammar is shown in Table 1. This gram-
mar should be considered in connection with the
given biomedical ontologies. The italic words in the
grammar, for instance, represent the information ex-
tracted from the related ontologies. We call these
italic words ontology functions; the detailed descrip-
tion of these functions are given in Table 2.

With BIOQUERYCNL, the users can ask simple
queries, queries with nested relative clauses (with
any number of conjunctions and disjunctions), and
queries with cardinalities. Some sample queries are
given below.

(Q1) Which symptoms are alleviated by the drug
Epinephrine?

(Q2) What are the side-effects of the drugs that treat
the disease Asthma?

(Q3) What are the genes that are related to the
disease Asthma and are targeted by the drug
Epinephrine?

(Q4) What are the symptoms of the diseases that are
related to the gene ADRB1 or that are treated
by the drug Epinephrine?

(Q5) Which genes are targeted by at least 2 drugs
and are related to at most 3 diseases?

BIOQUERYCNL is a subset of Attempto Con-
trolled English (ACE) (Attempto, 2008), which can
represent a wide range of queries (Fuchs et al.,
2008), specialized for biomedical ontologies.

4 Converting Controlled Natural
Language Queries to Programs

We have implemented an algorithm, QUERY, pre-
sented in Algorithm 1, that obtains an ASP rule
Head ← Body from a query Q expressed in BIO-
QUERYCNL, via transforming Q into a DRS. We
will explain the main steps of the QUERY algorithm
by an example, considering query (Q4).

Algorithm 1 QUERY(Q)
Input: A query Q
Output: An ASP rule Head ← Body

1: D := Find the DRS of Q
2: Head := HEAD(D)
3: Body′ := BODY(D)
4: Body := POSTPROCESSING(Body′)
5: return Head ← Body

4.1 Transforming a CNL Query into DRS

Attempto Controlled English (ACE) text can be
converted into Discourse Representation Structures
(DRS) (Kamp, 1981) — a variant of the first-order
logic that is used for the dynamic interpretation of
natural language and systematic translation of natu-
ral language into logical form — without any am-
biguity, using tools like Attempto Parsing Engine
(APE). APE converts ACE text to DRS by an ap-
proach similar to (Blackburn and Bos, 2005), as ex-
plained in (Fuchs et al., 2008). For instance, APE
transforms query (Q4) into the following DRS:
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Table 1: The Grammar of BIOQUERYCNL

QUERY→ YESNOQUERY |WHQUERY QUESTIONMARK

YESNOQUERY→ DODOESQUERY | ISAREQUERY

WHQUERY→ WHATQUERY |WHICHQUERY

DODOESQUERY→ [ Do | Does ] Type() Instance(T ) PREDICATERELATION

ISAREQUERY→ [ Is | Are ] Type() Instance(T ) V erb(T )
WHATQUERY→ What BE Type() that PREDICATERELATION

WHATQUERY→ What BE OFRELATION that PREDICATERELATION

WHATQUERY→ What BE OFRELATIONINSTANCE that PREDICATERELATION

WHICHQUERY→ Which Type() PREDICATERELATION

OFRELATION→ Noun(T ) of Type()
OFRELATIONINSTANCE→ Noun(T ) of Type() Instance(T )
PREDICATERELATION→ ACTIVERELATION (CONNECTOR (that)? PREDICATERELATION)*

PREDICATERELATION→ PASSIVERELATION (CONNECTOR (that)? PREDICATERELATION)*
ACTIVERELATION→ V erb(T, T ′) Type() Instance(T ′)

ACTIVERELATION→ V erb(T, T ′) GENERALISEDQUANTOR PositiveNumber Type()
PASSIVERELATION→ BE V erb(T ′, T ) by Type() Instance(T ′)

PASSIVERELATION→ BE V erb(T ′, T ) by GENERALISEDQUANTOR PositiveNumber Type()
BE→ is | are
CONNECTOR→ and | or
GENERALISEDQUANTOR→ at least | at most | more than | less than | exactly
QUESTIONMARK→ ?

Table 2: The Ontology Functions

Type() returns the type information the ontologies keep, ex. gene, disease, drug
Instance(T ) returns instances of the type T , ex. Asthma for type disease
V erb(T ) returns the verbs related to the type T , ex. approve for type drug
V erb(T, T ′) returns the verbs where type T is the subject and type T ′ is the object, ex. drug treat disease
Noun(T ) returns the nouns that are related to the type T , ex. symptom for type disease

[A,B,C,D]
query(A,what)-1
predicate(B,be,A,C)-1
relation(C,of,D)-1
object(C,symptoms,countable,na,eq,1)-1

[E,F,G]
modifier_pp(F,to,E)-1
property(G,related,pos)-1
predicate(F,be,D,G)-1
object(E,gene_ADRB1,countable,na,eq,1)-1
v
[H,I]
predicate(I,treated,H,D)-1
object(H,drug_Epinephrine,

countable,na,eq,1)-1
object(D,diseases,countable,na,geq,2)-1

Note that the DRS consists of two kinds of expres-
sions. The lines with a list of uppercase letters, like
[E,F,G], describe the domain of the DRS; each up-
percase letter is a referent. The rest of the DRS de-
scribe the conditions about the domain.

The DRS above contains some predefined pred-
icates, such as object, property, predicate,
query, etc.. All the nouns, adjectives, verbs, mod-
ifiers, etc. are represented with one of them. For
instance,

• object describes objects and the relevant
forms of nouns denoting them (like “diseases”)

• predicate describes relations that are pro-

120



duced by different forms of verbs (like
“treated”),

• relation describes relations that are produced
by of-constructions (like “symptoms of dis-
ease”),

• query describes the form of the query and the
objects that the query is referring to.

Ontologies represent relations between concepts.
A rule layer over ontologies introduce further con-
cepts integrating them. ASP takes into account
relevant concepts and relations to answer a given
query about these ontologies. In the biomedical
queries we consider, the concepts and instances are
represented with object and the relations between
these concepts are represented with predicate and
relation. The query is also important in terms of
the type of information the user asks for.

4.2 Constructing the Head and the Body Atoms

Once the corresponding DRS is obtained from a
given BIOQUERYCNL query, the head and the body
atoms are constructed by analyzing the conditions in
the DRS, as described in Algorithms 2 and 3.

The HEAD algorithm is about the query pred-
icate, which refers to objects or relations that
are asked for in the given query. By following
the referents, starting from the one mentioned
in query, the algorithm finds out the type of
the information that is asked for in the given
query. Consider, for instance, query (Q4). The
referent mentioned in query(A,what) is A.
It is mentioned in predicate(B,be,A,C)-1,
and here it denotes an object with referent
C. Now let’s find where C is mentioned: in
object(C,symptoms,countable,na,eq,1)-1 to
denote symptoms. Therefore, the query asks for
symptoms. Based on this information, Algorithm 2
returns the head of the ASP rules as follows:

what_be_symptoms(SYM1)

The BODY algorithm analyzes the predicate and
the relation predicates. These two predicates de-
scribe relations between objects described by the
object predicates. The algorithm starts from the
predicate and the relation predicates, and then,
by following the referents, it returns the body atoms

of the ASP rule. For instance, Algorithm 3 returns
the following body atoms for query (Q4):
symptoms_of_diseases(symptom_SYM1,

disease_DIS1)
diseases_be_related_to_gene(disease_DIS1,

gene_‘‘ADRB1’’)
drug_treated_diseases(drug_‘‘Epinephrine’’,

disease_DIS1)

These body atoms are given to POSTPROCESSING

step, to produce bodies of the ASP rules.

4.3 Constructing the ASP Rules
POSTPROCESSING is the last step of the QUERY
algorithm. At this step, first the number of rules
is determined, and then the body atoms are placed
in the bodies of these rules. In ASP, a conjunc-
tive query can be represented by a rule. However,
disjunctive queries are represented by several rules
with same head but different bodies. For instance,
query (Q4) is a disjunctive query (a disjunction of
two queries), so there will be two rules representing
this query:
what_be_symptoms(SYM1) :-
symptoms_of_diseases(symptom_SYM1,

disease_DIS1),
diseases_be_related_to_gene(disease_DIS1,

gene_‘‘ADRB1’’).

what_be_symptoms(SYM1) :-
drug_treated_diseases(drug_‘‘Epinephrine’’,

disease_DIS1),
symptoms_of_diseases(symptom_SYM1,

disease_DIS1).

Next, the predicate names in the bodies of these
rules are matched with the names of the already de-
fined predicates in ontologies or in the rule layer
over these ontologies. After matching the predicate
names, the parameters of the predicates may have to
be reordered.

The matching of the predicates very much de-
pends on the user interface (UI). If UI enforces users
to use a specific grammar and lexicon while form-
ing the query, then the matching can be done with
an easy table look-up method. If the UI allows more
flexibility of constructing a query, then the match-
ing algorithm should use some basic Natural Lan-
guage Processing methods and similarity metrics to
find the most probable matching.

After matching the predicates, the ordering of the
parameters can be done easily. The BODY algorithm
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Algorithm 2 HEAD(D)
Input: A DRS
Output: Head of an ASP rule

1: query(Ref , QuestionWord) // e.g., query(A, which) for “Which drug ...”
2: if Ref is an object then
3: Object := REFERSTO(Ref ) // e.g., A refers to a “drug” DRG1
4: Head := CONCAT(QuestionWord, Object, Ref ) // e.g., which drug(DRG1)
5: else if Ref is a subject of a predicate then // query(A, what) for “What are the genes ...”
6: Object := REFERSTO(Ref ) // e.g., A refers to “genes” GENE1
7: Head := CONCAT(QuestionWord, Predicate, Object, Ref ) // e.g., what be genes(GENE1)
8: end if
9: return Head

returns the body predicates with the parameters. In
these parameters, the type and the instance names
are kept together. Thus, ordering of those parame-
ters are done just by using the type information. Af-
ter the ordering is done, the type information part is
removed from the parameters.

For instance, after matching the predicates, we get
the following ASP rule for query (Q4).

what_be_symptoms(SYM1) :-
disease_symptom(DIS1,SYM1),
disease_gene(DIS1,‘‘ADRB1’’).

what_be_symptoms(SYM1) :-
treats_disease(‘‘Epinephrine’’,DIS1),
disease_symptom(DIS1,SYM1).

With an ASP rule layer over ontologies, and
this ASP program, an ASP solver, like DLVHEX

(DLVHEX, 2009), returns an answer to query (Q4).
For instance, consider the ASP rule layer, and

the gene, disease, drug ontologies of (Bodenreider
et al., 2008). The ontologies of (Bodenreider et
al., 2008) are obtained from the ontologies PHAR-
MGKB (PharmGKB, 2008), UNIPROT (UniProt,
2008), GENE ONTOLOGY (GO) (GeneOntology,
2008), GENENETWORK database (GeneNetwork,
2008), DRUGBANK (DrugBank, 2008), and the
Medical Symptoms and Signs of Disease web page
(MedicalSymptomsSignsDisease, 2008). With this
rule layer and the ontologies, and the ASP program
above, the following is a part of the answer DLVHEX

finds to the query above:

noisy breathing faster breathing
shortness of breath coughing
chest tightness wheezing

4.4 Another Example

The algorithm discussed above returns the following
ASP program for query (Q5):

which_genes(GN1) :-
2<=#count{DRG1:drug_gene(DRG1,GN1)},
#count{DIS1:disease_gene(DIS1,GN1)}<=3.

Since query (Q5) contains cardinality constraints,
the ASP program uses the aggregate #count.

More examples of biomedical queries, and
the ASP programs generated by our program
can be seen at http://people.sabanciuniv.edu/
esraerdem/bioquery-asp/bionlp09/ .

5 Implementational Issues

We have implemented the algorithms explained
above in PERL. We have used Attempto Parsing
Engine APE to convert a given BIOQUERYCNL
query into a DRS. Since BIOQUERYCNL is about
biomedical ontologies, we provided APE some in-
formation about biomedical concepts, such as gene,
drug, and words that represent relations between
these concepts such as treat, target etc..

However, providing such information is not suf-
ficient to convert all BIOQUERYCNL biomedical
queries into programs, mainly due to specific in-
stances of these concepts (consider, for instance,
various drug names that appear in ontologies). One
way to deal with this problem is to extract from the
ontologies all instances of each concept and provide
them to APE as an additional lexicon. This may not
be the perfect solution since this process has to be
repeated when an instance is added to the ontology.
An alternative way can be enforcing the user to enter
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Algorithm 3 BODY(D)
Input: A DRS
Output: Body of an ASP rule

1: Body := empty string
2: for each predicate P do
3: // P can be of the form predicate(Ref , Verb, SubRef ), like predicate(H, targeted, A)
4: Subject := REFERSTO(SubRef ) // e.g., A refers to “genes” GENE1
5: if P has a verb phrase modifier then
6: 〈Modifier, Object〉 := REFERSTO(Ref ) // e.g., H refers to 〈 “by”, “drug” DRG1 〉
7: end if
8: if P has an object then // P can be of the form predicate(Ref , Verb, SubRef , ObjRef )
9: Object := REFERSTO(ObjRef )

10: end if
11: Body := CONCAT(Body, Subject, Verb, Modifier, Object)
12: // e.g., genes targeted by drugs(GENE1, DRG1)
13: end for
14: for each relation R do
15: // R can be of the form relation(Ref1, of , Ref2), like relation(C, of , D)
16: Object1 := REFERSTO(Ref1) // e.g., C refers to “symptoms” SY M1
17: Object2 := REFERSTO(Ref2) // e.g., D refers to “diseases” DIS1
18: Body := CONCAT(Body, Object1, ”‘of”’, Object2)
19: // e.g., symptoms of diseases(SY M1, DIS1)
20: end for
21: return Body

the concept name just before the instance (like “the
drug Epinephrine”) in the query. This is how we deal
with instance names, in the current version of our
implementations. However, such BIOQUERYCNL
queries are not in the language of APE; so, with
some preprocessing, we rewrite these queries in the
correct syntax for APE.

6 Conclusion

We have designed and developed a Controlled Nat-
ural Language (CNL), called BIOQUERYCNL, to
represent biomedical queries over some ontologies,
and provided a precise description of its grammati-
cal structure.

We have introduced an algorithm to convert
queries in BIOQUERYCNL to a program in Answer
Set Programming (ASP). The idea is to compute an-
swers to these queries automatically, by means of
automated reasoners in ASP, over biomedical on-
tologies in RDF(S)/OWL and a rule layer in ASP
integrating these ontologies. Our algorithm can
handle various forms of simple/complex disjunc-

tive/conjunctive queries that may contain (nested)
relative clauses and cardinality constraints.

We have implemented this algorithm in PERL,
and tried it with the ASP rule layer, and the ontolo-
gies of (Bodenreider et al., 2008).

One essential part of the overall system is an in-
telligent user interface that allows a user to enter
biomedical queries in BIOQUERYCNL. Design and
implementation of such a user-interface is a part of
our ongoing work.
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Abstract 

Medical concepts in clinical reports can be 

found with a high degree of variability of ex-

pression. Normalizing medical concepts to 

standardized vocabularies is a common way 

of accounting for this variability. One of the 

challenges in medical concept normalization 

is the difficulty in comparing two concepts 

which are orthographically different in repre-

sentation but are identical in meaning. In this 

work we describe a method to compare medi-

cal phrases by utilizing the information found 

in syntactic dependencies. We collected a 

large corpus of radiology reports from our 

university medical center. A shallow semantic 

parser was used to identify anatomical phras-

es. We performed a series of transformations 

to convert the anatomical phrase into a norma-

lized syntactic dependency representation. 

The new representation provides an easy in-

tuitive way of comparing the phrases for the 

purpose of concept normalization. 

1 Introduction 

A vast amount of electronic information is 

generated in hospitals as a part of routine clinical 

care due to the adoption of the electronic medical 

record by health care centers in the United States 

(Berner et al., 2005; Jha et al., 2006). A significant 

portion of this information is in the form of un-

structured free-text (Hall, 2000; Tange et al., 

1998). A free text representation makes it difficult 

for applications to accurately extract medical in-

formation for generic purposes (Ananiadou et al., 

2004). The problem of variability of expression in 

natural language expression has been well studied 

(Bates, 1986, 1989, 1998; Blair and Maron, 1985; 

Funk and Reid, 1983; Furnas et al., 1984; Gomez 

et al., 1990). In the medical domain in particular, 

users frequently express the same concept in dif-

ferent ways and different concepts in similar ways 

(Ananiadou and Nenadic, 2006). To illustrate, the 

terms heart attack and cardiac attack both refer to 

the same concept – myocardial infarction. Con-

versely the term left lobe could refer to the left lobe 

of lung or the left lobe of liver depending on the 

context (occurrence in a chest radiology report ver-

sus a gastro-intestinal radiology report). Such va-

riability suggests a need to normalize concepts 

encountered in medical reports to a standard voca-

bulary in order to ensure interoperability.  

 

Several standardized vocabularies exist in the 

medical domain such as the Unified Medical Lan-

guage System (Humphreys and Lindberg, 1993), 

Systematized Nomenclature of Medicine - Clinical 

Terms (College of American Pathologists, July 

2003), Medical Subject Headings (National Li-

brary of Medicine), and the International Classifi-

cation of Diseases (World Health Organization). 

There have been several attempts in the past 

(Aronson, 2001; Bashyam and Taira, 2005; Ba-

shyam et al., 2007; Cooper and Miller, 1998; 

Friedman et al., 2004; Nadkarni et al., 2001; Oliv-

er and Altman, 1994; Ruch et al., 2003; Zou et al., 

2003) to map medical concepts to their standar-

dized concept found in these terminologies. These 

approaches are based on mostly on lexical match-

ing (Bashyam et al., 2007), string matching (Nad-

karni et al., 2001), statistical indexing (Cooper and 
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Miller, 1998), natural language processing (Aron-

son, 2001; Friedman et al., 2004) information re-

trieval techniques (Bashyam and Taira, 2005; 

Oliver and Altman, 1994; Ruch et al., 2003; Zou et 

al., 2003) or a combination of these approaches 

(Cooper and Miller, 1998). These systems have 

managed to map a large percentage of medical 

terms to their respective standard terminologies in 

their reported experiments. While these systems 

have managed to perform satisfactorily for the task 

of normalizing simple expressions, they all ac-

knowledge the larger problem of normalizing leng-

thy expressions. To illustrate, Nadkarni et al. 

(2001) mention the mapping of the phrase spleen 

rupture and normal stomach to the concept sto-

mach rupture as a possible spurious mapping.  

 

We hypothesize that using deep syntactic in-

formation can help in avoiding such spurious map-

ping. We describe a system which uses information 

found in syntactic dependencies to help in the cod-

ing of lengthy phrases. Preliminary results using 

this approach are reported as a proof-of-concept. 

2 Background 

Syntactic dependency parsing has received 

much focus from the natural language processing 

community (Eisner, 1996; Kudo and Matsumoto, 

2000; Nivre and Scholz, 2004; Yamada and Mat-

sumoto, 2003). A syntactic dependency relation is 

an asymmetric relation between two words. One 

word is called the head, and the other word is 

called the modifier or dependent. A word in the 

sentence can play the role of the head in several 

dependency relations (i.e., it can have several mod-

ifiers) but each word can play the role of the mod-

ifier only once. A special word, named the root, 

does not play the role of the modifier in any rela-

tion. The set of dependency relations that can be 

defined on a sentence form a tree, called the de-

pendency tree. An example of dependencies in a 

typical sentence found in a radiology report is 

shown in Figure 1. 

  

Systems based on syntactic dependencies have 

been used successfully in several information re-

trieval experiments with results outperforming tra-

ditional retrieval systems (Croft et al., 1991; Gao 

et al., 2004; Gonzalez et al., 2005; Smeaton, 

1986). In particular, this method has been used for 

word sense disambiguation (Lin, 1997) and thesau-

rus construction (Lin, 1998). Dependency trees 

have also been used for medical concept represen-

tation in the domains of radiology (Steimann, 

1998) and pathology (Romacker et al., 1999). 

3 Methods 

3.1 Anatomy Phrase Extraction 

For identifying anatomy phrases, we use a spe-

cialized phrase parser trained to identify anatomy 

phrases within clinical reports. The input to the 

parser is a sentence tagged with a part-of-speech 

tag and a semantic tag. The lexical analyzer mod-

ule of our NLP system takes a single sentence as 

the input and produces an output of word tokens 

tagged with their syntactic and semantic classes. 

The semantic tag is obtained by mapping tokens in 

a sentence to a taxonomy handcrafted for the do-

main of radiology reports custom built from radi-

ology textbooks, radiology review manuals, 

radiology word compilations and published radiol-

ogy glossaries apart from actual radiology reports 

(Taira et al., 2001). Features of our implementation 

 

 
 

Figure 1. Example of a syntactic dependency parse tree with emphasis towards semantics. Each arc  

   shows a dependency relation between a head and a modifier. 
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include: 1) a large number (>450)  of semantic 

classes as compared to lexical sources currently 

available allowing improved discrimination for 

tasks such as syntactic parsing, semantic interpre-

tation and frame building; 2) the system recognizes 

special symbols including dates, medical abbrevia-

tions, medical coding symbols, numeric measure-

ments, image slice references, and proper names; 

and 3) the system performs some word sense dis-

ambiguation using surrounding syntactic and se-

mantic word features. 

 

Our phrase parsing module currently targets 

anatomy phrases (e.g., right upper lobe of lung), 

existential relationships (e.g., there is no evidence 

of), and spatial relationships (e.g., is located 1cm 

above). We utilize a supervised learning approach 

to estimate the feature weights to a maximum en-

tropy model which classifies words as the start, 

inside, end, single, or outside of a phrase boundary. 

A Viterbi dynamic programming algorithm 
 
is used 

to maximize the tag sequence probability. The 

anatomy phrase chunker has been tested on 4,500 

sentences with recall and precision scores of 97.1% 

and 97.4% respectively. 

3.2 Normalized Dependency Representation 

We perform a series of transformations to con-

vert an anatomical phrase from a free-text repre-

sentation to a normalized dependency vector space 

representation. The following steps are taken in the 

representation conversion: 

 

Syntactic Parsing  
 

The anatomy phrase identified by the phrase 

parser preserves lexical information which is used 

to obtain a dependency parse tree using a full syn-

tactic parser. This parser is based on a novel field 

theory approach to dependency parsing. The parser 

is strongly modeled for the radiology domain with 

performance accuracies of 84.9% and 89.9% for 

link precision and recall respectively for parsing 

whole sentences (Taira et al., 2007). In compari-

son, the state-of-the-art parsers have performance 

accuracies in the low nineties for link precision and 

recall in the domain of newspaper text, with per-

formance unknown in the domain of clinical text.  

 

Link Reduction 

 

 Our system classifies dependency links into 

two types – bilexical links and trilexical links. A 

bilexical link is a strong dependency relation be-

tween two words (e.g. determiner←noun) whereas 

a trilexical link usually has a mediator word in be-

tween the two words (e.g. finding→in→location). 

When possible, a trilexical link is converted to a 

bilexical link by the elimination of the mediator 

word and the link type is tagged by the mediator 

word. The link type can play important roles in 

certain cases. In cases where the mediator word is 

also important, the trilexical link is considered as a 

pair of bilexical links. 

 

Token Level Normalization 

 

Once the parse tree is obtained, the tokens are 

normalized to their base form. The normalization is 

an approximate kind of lemmatization. However 

we also perform word level synonym normaliza-

tion. For lemmatization, we use the Lexical Va-

riant Generator tools developed by the National 

Library of Medicine for biomedical text (McCray 

et al., 1994). For synonyms, we use a handcrafted 

lexicon built for the domain of radiology. This step 

helps in avoiding missing a mapping due to lexical 

differences due to pluralization, abbreviations and 

acronyms, case differences etc. This representation 

is referred to as the normalized dependency vector 

space representation 

3.3 Mapping to a Terminology 

The normalized dependency parse tree is 

represented as in a vector space as a bag-of-links as 

analogous to the so-called bag-of-words represen-

tation in conventional information retrieval. Two 

phrases can now be compared by using similarity 

measures such as cosine, dice, jaccard etc. within 

the dimension-space of dependency-links. One 

phrase can be the anatomy phrase in a clinical re-

port and the other phrase can be an entry in a stan-

dardized terminology. 
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Figure 2. Example illustrating the transformation of a medical phrase from a free-text representation to a 

normalized syntactic dependency  vector space representation. 

 

An exercise in normalization is described in 

Figure 2 to illustrate how this method works. Con-

sider the following phrase in a neuro-radiology 

report: ventral postero-medial thalamic nucleus. 

The corresponding concept in the target terminolo-

gy is the phrase postero-medial ventral nucleus of 

thalamus. These phrases if compared by string 

matching will not result in direct matches. Permut-

ing words and trying to compare rearrangements is 

complicated. In our approach, we first preprocess 

our terminology list and store it in a database. The 

preprocessing step is described in the right column 

(Phrase 2) of Figure 2. Starting with the phrase 

postero-medial ventral nucleus of thalamus, we 

first tokenize the individual words (lexical analy-

sis) in the first step. In the second step, we parse 

the phrase to arrive at the dependency tree. In the 

third step, the trilexical link nuc-

leus←of←thalamus is converted to a bilexical link 

by eliminating the word of and tagging it as the 

link type. In the following step, each word is nor-

malized to its base form. In the fifth step, the 

phrase is represented as a bag-of-links and stored 

in a database. Similarly all the other phrases in our 

terminology are stored. 

 

When the query phrase ventral postero-medial 

thalamic nucleus is compared against the terminol-

ogy it undergoes the same processes previously 

described (Figure 2, Phrase 1). The importance of 

word-normalization can be seen here. In step 4, the 

word thalamic is normalized to thalamus. The final 

output is the bag-of-links representation. For con-
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venience of comparison Figure 2 shows together, 

the query phrase and target phrase undergoing the 

various steps starting from a bag-of-words repre-

sentation to a bag-of-links representation. It is clear 

that both phrases look identical in the final repre-

sentation. While a string comparison would have 

missed equating the two in their original word-

level representation, a comparison in the depen-

dency vector space is likely to score them as a per-

fect match. 

4 Experiment and Results 

We obtained a set of 2500 neuro-radiology re-

ports from our university medical center. Using the 

shallow semantic parser, we extracted a set of 2551 

unique anatomical phrases. Of the 2551 phrases, 

819 phrases were single worded terms. We dis-

carded the single word terms. Single worded 

phrases do not fall into the difficult-to-map catego-

ry which this method is specifically aiming to ad-

dress. Moreover, a minimum of two words are 

required to define a syntactic dependency and thus 

the method is irrelevant for single worded terms. 

Thus we used only the 1732 multi-worded terms in 

our experiment. The average length of the multi-

worded terms was 2.48 words. 

 

We chose the UMLS, a coordinated repository 

of vocabularies as a target for concept coding. To 

reduce complexity, we removed non-English con-

cepts and concepts outside the domain of     neuro-

radiology by filtering out unrelated concepts. Our 

final terminology had a size of about 100,000 en-

tries. We preprocessed the entire terminology us-

ing the above mentioned steps and stored the 

dependency representation in a database. Every 

anatomy phrase was queried against this database 

and cosine similarity was used to measure relev-

ance. No weighting system was employed although 

it is possible to weight links by their types. A phy-

sician domain expert manually evaluated the re-

sults of the 1732 queries for performance. Of the 

1732 phrases, 1091  phrases (62.9% accuracy, 95% 

CI ±0.946%) were successfully matched. Since the 

target set is extremely large in size (as in any IR 

system), a recall analysis was not performed.  A 

baseline comparison with MMTx (in phrase mode) 

resulted in 1051 phrases (60.68% accuracy, 95% 

CI ±0.49%) being mapped by MMTx. Table 1 

summarizes the results. 

 

5 Discussion 

Analysis of the errors showed that the follow-

ing error types resulted in the inability to match 

phrases perfectly: 

 

Parsing without context: 

 

A syntactic parser can parse a sentence and 

identify dependency relations in a sentence. How-

ever, when a phrase is given as an input, it is not 

always easy to parse a phrase and generate a de-

pendency representation. There is context (remain-

ing portions of the sentence) missing which is 

needed to unambiguously parse the phrase. In the 

case of anatomical phrases, our system was able to 

parse it because the source sentences from which 

they were extracted were available. However, in 

the case of the UMLS phrases, there is no such 

available information. Therefore manual parsing of 

several UMLS phrases had to be performed. One 

potential solution to this problem could be to iden-

tify MEDLINE sentences that contain these UMLS 

concepts and obtain a dependency parse tree using 

the context of the sentence. 

 

Modular system architecture:  

 

Since the system is modular, any errors in one 

of the modules (tokenization, word level normali-

zation etc.) would result in the final dependency 

representation being imperfect. The specific errors 

we noticed were: 

 

Parsing Errors:  

 

Our parser has a higher accuracy for parsing 

phrases than whole sentences. However in this ex-

periment, there were 37 instances where it failed in 

MMTx 

Matched Phrases 

Syn. Dependency 

Matched Phrases  

1051 1091 n=1732 

60.68% 62.99% 
 

(±0.49%) (±0.49%) 
 

 

Table 1. Overview of Results 
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assigning the correct links. This resulted in partial 

matches. 

 

Word Normalization Errors: 

 

 There is a natural ambiguity introduced when 

words are normalized to their base forms. Words 

with completely different senses can have the same 

root form (e.g. left←leaves and left←left (spatial 

direction)). Similarly, a word can have different 

normalized forms depending on the sense (e.g. 

leaf←leaves and left←leaves). A robust method 

for word-level normalization is desired that can 

also perform word-sense disambiguation. Current-

ly the NLM’s word level normalization tool is be-

ing used which is not perfect and therefore errors 

introduced due to this module result in the entire 

phrase being transformed incorrectly or ambi-

guously. The ideal word level normalization will 

result in the words cancer, cancerous, carcinoma 

all conflating to the same word which is beyond 

purely morphological analysis. 

 

Link Reduction Errors:  

 

Not all relations manifest as simple bilexical 

and trilexical links. Some relations are tetralexical 

and although they can be reduced effectively to 

bilexical links, the methodology needs to be inves-

tigated. To illustrate, consider the phrases ‘mass 

consistent with cancer’ and ‘cancerous mass’ 

parsed as 

 

 mass←consistent←with←cancer 

 cancerous→mass.  

 

The former is parsed as four words with three 

links. To convert it into a bilexical link, the words 

‘consistent’ and ‘with’ need to be: (1) clustered as 

a single token and (2) eliminated by transferring it 

to the link as a label. This is a more complicated 

process and we still haven’t explored such abstrac-

tions. A robust rule based link reduction system is 

desired to handle such cases. 

 

Another limitation of this method is that the 

heuristic rules for link reduction may not be appli-

cable outside the radiology domain. Finally, syn-

tactic dependency parsers are built using 

computationally complex algorithms. Thus while 

using them can result in advanced language under-

standing, they may not be suitable for real-time 

applications. There is always a tradeoff between 

accuracy and speed and it remains to be seen if 

robust low complexity parsers can be developed. 

 

The inability to perform a recall analysis also 

make is difficult to judge the theoretical best per-

formance. That is, it is quite likely that there are 

many phrases in our dataset that do not have a cor-

responding UMLS concept. Performing a recall 

analysis would help in determining this. 

 

While we noticed several areas of improvement 

in our system, we were encouraged by the compar-

ison of the overall results of our system to that of 

MMTx. We did not do an error analysis of MMTx 

since several previous publications have docu-

mented the various kinds of errors in MMTx (Ba-

shyam et al., 2007; Divita et al., 2004; Meng et al., 

2005). Our idea is to provide a baseline compari-

son showing that our approach performs compara-

bly if not better than MMTx which is the most 

commonly used
1
 tool for concept coding. To our 

knowledge this the first time syntactic dependen-

cies have been used for this task, Previous attempts 

have relied purely on shallow parsers. 

 

6 Future Work 

Increasing the robustness of the individual 

modules is a primary requirement for further expe-

riments to prevent the weakest link effect cascading 

to the final output. Specifically we plan to work 

towards a robust word level normalization system. 

Additionally, robust evaluation methods including 

comparisons with other techniques will be investi-

gated. 

7 Conclusion 

Syntactic dependency based methods for med-

ical concept coding show promise. While some of 

the described implementations are specific to do-

main (radiology) and phrase type (anatomy), it is 

expected that the principle is general enough to be 

applied in other domains as well. 

                                                           
1 For an overview of recent applications of MMTx, see (Ba-

shyam et al., 2007) 
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Abstract

An important task in information retrieval is to
identify sentences that contain important relation-
ships between key concepts. In this work, we
propose a novel approach to automatically extract
sentence patterns that contain interactions involv-
ing concepts of molecular biology. A pattern is
defined in this work as a sequence of specialized
Part-of-Speech (POS) tags that capture the struc-
ture of key sentences in the scientific literature.
Each candidate sentence for the classification task
is encoded as a POS array and then aligned to
a collection of pre-extracted patterns. The qual-
ity of the alignment is expressed as a pairwise
alignment score. The most innovative component
of this work is the use of a Genetic Algorithm
(GA) to maximize the classification performance
of the alignment scoring scheme. The system
achieves an F-score of 0.834 in identifying sen-
tences which describe interactions between bio-
logical entities. This performance is mostly af-
fected by the quality of the preprocessing steps
such as term identification and POS tagging.

1 Introduction

Recent research in information extraction (IE) in bio-
logical science has focused on extracting information
about interactions between biological entities from re-
search communications. The type of interaction of in-
terest includes protein-protein, protein-DNA, gene reg-
ulations and other interactions between macromole-
cules. This work broadens the definition of the term
“interaction” to include other types of concepts that
are semantically related to cellular components and
processes. This contrasts with the past efforts focus-
ing strictly on molecular interactions (Blaschke et al.,
1999; Ono et al., 2001). We anticipate that identifying
the relationships between concepts of molecular biol-
ogy will facilitate the building of knowledge models,
improve the sensitivity of IE tasks and ultimately facil-

itate the formulation of new hypothesis by experimen-
talists.

The extraction of interactions is based on the heuris-
tic premise that interacting concepts co-occur within
a given section of text. The challenge is that co-
occurrence certainly does not guarantee that a passage
contains an interaction(Jang et al., 2006; Skusa et al.,
2005). Co-occurrence is highly dependent on the de-
finition of the section of text within which the target
terms are expected to be found. A thorough compari-
son on the prediction of protein-protein interaction be-
tween abstract-level co-occurrence and sentence-level
co-occurrence was undertaken (Raychaudhuri, 2006).
It is demonstrated that abstract co-occurrence is more
sensitive but less specific for interactions. At the cost
of wide coverage, sentence co-occurrence increases the
accuracy of interaction prediction. Since the ultimate
goal of IE is to extract knowledge and accuracy is the
most important aspect in evaluating the performance
of such systems, it makes sense to focus the effort
in seeking interaction sentences rather than passages
or abstracts. Not every co-occurrence in sentences
implies a relationship that expresses a fact. In the
2005 Genomics Track dataset, 50% of all sentence co-
occurrences of entities correspond to definite relation-
ships while the rest of the co-occurrences only convey
some possible relationships or contain no relationship
of interest (Li et al., 2005). Therefore, more sophisti-
cated text mining strategies are required to classify sen-
tences that describe interactions between co-occurring
concepts.

In the BioCreative II challenge1, teams were asked
to determine whether a given passage of text contained
information about the interaction between two proteins.
This classification task worked at the abstract level and
the interacting protein pairs were not required to be ex-
tracted. The task for the Learning Language in Logic

1http://biocreative.sourceforge.net/
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(LLL’05) challenge 2 was to build systems that ex-
tract interactions between genes or proteins from bio-
logical literature. From individual sentences annotated
with agent-target relations, patterns or models had to be
learned to extract these interactions. The task focused
on extracting only the interacting partners. The context
of an interaction may also be critical to the validity of
the extracted knowledge since not all statements found
in the literature are always true.

In this work, we propose an approach to automati-
cally extract patterns containing relevant interaction be-
tween biological concepts. This extraction is based on
the assumption that biological interactions are articu-
lated by a limited number of POS patterns embedded
in sentences where entities/concepts are co-occurring.
The extracted patterns are then applied to identify inter-
action sentences which describe interactions between
biological entities. Our work aims to identify precise
sentences rather than passages. Because of the nature
of the patterns, we hope that some of the contextual in-
formation present in interaction sentences also play a
role in the classification task.

The rest of the paper is organized as follows: In Sec-
tion 2, we review recent research advances in extracting
biological interactions. Section 3 describes an experi-
mental system designed for our work. Sections 4, 5
and 6 elaborate the approaches and algorithms. Per-
formance is evaluated in Section 7. Finally, Section 8
summarizes the paper and introduces future work.

2 Related work

Early on, Blaschke (Blaschke et al., 1999) employed
patterns to predict the presence of a protein-protein in-
teraction. A series of patterns was developed manu-
ally to cover the most obvious descriptions of protein
functions. This process was based on a set of key-
words, including interaction verbs, that are commonly
used to describe this type of interaction. A sentence ex-
traction system BioIE (Divoli and Attwood, 2005) also
uses patterns to extract entire sentences related to pro-
tein families, protein structures, functions and diseases.
The patterns were manually defined and consisted of
single words, word pairs, and small phrases.

Although systems relying on hand-coded patterns
have achieved some success in extracting biological in-
teractions, the strict requirement of dedicated expert
work is problematic. Moreover, each type of interac-
tion may require a definition of many different patterns
including different arrangements and different variants

2http://genome.jouy.inra.fr/texte/LLLchallenge/

of the same keyword. Manually encoding all patterns
encountered in a corpus is time-consuming and poten-
tially impractical in real applications. Thus, automati-
cally learning such patterns is an attractive solution.

An approach which combines dynamic program-
ming and sequence alignment algorithms as normally
used for the comparison between nucleotide sequences
was introduced by Huanget al. (Huang et al., 2004).
This approach is designed to generate patterns useful
for extracting protein-protein interactions. The main
problem with this approach is that the scoring scheme
that is required to implement the alignment algorithm is
difficult to define and contains a potentially large num-
ber of free parameters. We propose a method based
on Genetic Algorithm (GA) heuristics to maximize the
alignment procedure for the purpose of classification.
GAs were also used as a learning strategy to train finite
state automata for finding biological relation patterns
in texts(Plake et al., 2005). It was reported (Bunescu et
al., 2005; Hakenberg et al., 2005) that automatically
learned patterns identify biological interactions even
more accurately than hand-coded patterns.

3 Overview of system design

In this work, we have designed an experimental sys-
tem to facilitate the automatic extraction of biological
interaction patterns and the identification of interaction
sentences. It consists of three major modules: biolog-
ical text preprocessing, interaction pattern extraction,
and interaction sentence identification.

Biological text preprocessing reformats the original
biological texts into candidate sentences. A pattern
learning method is then proposed to automatically ex-
tract the representative patterns of biological interac-
tions. The obtained patterns are further used to iden-
tify instances that evidently describe biological inter-
actions. Poor performance during preprocessing will
have detrimental effects on later stages. In the follow-
ing sections, we will describe each component.

4 Biological text preprocessing

4.1 Sentence preparation

A heuristic method is implemented to detect sentence
boundaries (Mikheev, 2002) based on the assumption
that sentences are usually demarcated by some indica-
tive delimiting punctuation marks in order to segment
the biological texts into sentence units. Captions and
headings that are not grammatically valid sentences are
therefore detected and further eliminated for our work.
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4.2 Part-of-Speech tagging

POS tagging is then performed to associate each word
in a sentence with its most likely POS tag. Because
subsequent processing steps typically depend on the
tagger’s output, high performance at this level is cru-
cial for success in later stages. A statistical tagger Lin-
gua::EN::Tagger3 is used to perform this task.

4.3 Biological term annotation

A learning-based biological term annotation system,
ABTA (Jiampojamarn et al., 2005), is embedded in our
system. The type of terms includes molecules, such
as genes, proteins and cell lines, and also biological
processes. Examples of biological processes as entities
are: “T cell activation” and “IL-2 gene transcription”.
We consider that a broader definition of biological term
will include more facts from literature, thus leading to
more general use of interaction patterns for IE tasks.

ABTA considers the longest expression and ignores
embedded entities. Further, instead of distinguishing
terms from their relevant biology concepts, a unified
tag “BIO ” is assigned to all the identified terms. We
aim to discover patterns of the general interactions be-
tween biological concepts, not only the interactions be-
tween molecules, e.g., protein-protein interaction.

Tags likeNN (noun) andVB (verb) are typically used
to define entities and the action type of interactions,
and thus they are indispensable. However, tags such
asJJ(adjective) andRB(adverb) could occur at differ-
ent positions in a sentence. We decided to remove these
tags to prevent the combinatorial effect that these would
induce within the set of extracted patterns.

4.4 Text chunking

Next, a rule-based text chunker (Ramshaw and Mar-
cus, 1995) is applied on the tagged sentences to fur-
ther identify phrasal units, such as base noun phrases
NP and verbal unitsVB. This allows us to focus on the
holistic structure of each sentence. Text chunking is not
applied on the identified biological terms. In order to
achieve more generalized interaction patterns, a unified
tag “VB ” is used to represent every verbal unit instead
of employing different tags for various tenses of verbs.

As a result of preprocessing, every sentence is rep-
resented by its generalized form as a sequence of cor-
responding tags consisting of POS tags and predefined
tags. Table 1 summarizes the main tags in the system.

A biological interaction tends to involve at least three
objects: a pair of co-occurring biological entities con-

3http://search.cpan.org/˜acoburn

Tag name Tag description Tag type
BIO Biological entity Predefined
NP Base noun phrase Predefined
VB Verbal unit Predefined
IN Preposition POS
CC Coordinating conjunction POS
TO to POS
PPC Punctuation comma POS
PRP Possessive 2nd determiner POS
DET Determiner POS
POS Possessive POS

Table 1: Main tags used in the system

nected by a verb which specifies the action type of the
interaction. Thus, a constraint is applied that only sen-
tences satisfying form “BioEntity A – Verb – BioEn-
tity B” will be preserved as candidate sentences to be
further processed in the system. It is possible that the
presence of two entities in different sentence structures
implies a relationship. However, this work assumes the
underlying co-occurrence of two concepts and a verb in
the interest of improving the classification accuracy.

The obtained candidate sentences are split into train-
ing and testing sets. The training set is used to ex-
tract the representative patterns of biological interac-
tions. The testing set is prepared for identifying sen-
tences that evidently describe biological interactions.

5 Interaction pattern extraction

5.1 PATRICIA trees

The method we propose to extract interaction patterns
from candidate sentences is based on the use of PATRI-
CIA trees (Morrison, 1968). A PATRICIA tree uses
path compression by grouping common sequences into
nodes. This structure provides an efficient way of stor-
ing values while maintaining the lookup time for a key
of O(N). It has been applied to many large information
retrieval problems (Chien, 1997; Chen et al., 1998).

In our work, a PATRICIA tree is used for the first
time to facilitate the automatic extraction of interaction
patterns. All training sentences are inserted and stored
in a generic PATRICIA tree from which the common
patterns of POS tags can be efficiently stored and the
tree structure used to compute relevant usage statistics.

5.2 Potential pattern extraction

Patterns of straightforward biological interactions are
frequently encountered in a range of actual sentences.
Conversely, vague relationships or complex interac-
tions patterns are seldom repeated. Therefore, the

135



premise of this work is that there is a set of frequently
occurring interaction patterns that matches a majority
of stated facts about molecular biology. In this work, a
biological interaction patternis defined as follows:

Definition 5.1. A biological interaction patternbip
is a sequence of tags defined in Table 1 that captures an
aggregate view of the description of certain types of bi-
ological interactions based on the consistently repeated
occurrences of this sequence of tags in different inter-
action sentences.BIP = {bip1, bip2, · · · , bipk} repre-
sents the set of biological interaction patterns.

We first extract potential interaction patterns by
populating a PATRICIA tree using training sentences.
Every node in the tree contains one or more system
tags, which is the preceding tag sequence of its descen-
dant nodes in each sentence. Every sentence is com-
posed of a path of system tags from the root to a leaf.
Hence, we propose that the sequence of system tags
that can be formed from traversing the nodes of the tree
is a potential pattern of biological interactions. At the
same time, the occurrence frequency of each pattern is
also retrieved from the traversal of tree nodes.

A predefined frequency thresholdfmin is used as
a constraint to filter out patterns that occur less than
fmin times. It has been demonstrated that if an interac-
tion is well recognized, it will be consistently repeated
(Blaschke et al., 1999; Ono et al., 2001). The general-
ization and the usability of patterns can be controlled by
tuning fmin. Further, some filtering rules are adapted
to control the form of a pattern and enhance the quality
of the discovered patterns, such as if a pattern ends with
a tagIN, VB, CC or TO, the pattern will be rejected.
Flexibility in setting this threshold can be applied to
meet special demands. Algorithm 1 shows our pattern
learning method which has a time complexity ofO(n)
in the size of candidate sentences,n.

Algorithm 1 Patricia-Tree-based Extraction of Biolog-
ical Interaction Patterns
Input: Candidate SentencesCS ∈ Biological text; a prede-

fined thresholdfmin; a set of filtering rulesFR
Output: BIP : Set of biological interaction patterns

BIP ← ∅; PT ← ∅ //PT : Patricia Trie
for all sentencess ∈ CS do

PT ← Insert(s) //Populating Patricia Tree
for all nodesni ∈ PT do

bipi← Pattern(ni) //Concatenating tags in nodes
from root toni, which is a potential pattern
if Count(bipi) ≥ fmin and bipi does not meetFR
then

//Count(bipi) returns No. of occurrences ofbipi;
BIP ← bipi

5.3 Interaction verb mining

Although the obtained patterns are derived from the
candidate sentences possessing the form “BioEntity A
– Verb – BioEntity B”, some of them may not contain
facts about biological interactions. This is possible if
the action verbs do not describe an interaction. Quite a
few verbs, such as “report”, “believe”, and “discover”,
only serve a narrative discourse purpose. Therefore,
mining the correct interaction verbs becomes an impor-
tant step in the automatic discovery of patterns. We de-
cided to perform the method applied in (Huang et al.,
2004) to mine a list of interaction verbs. This will be
used to further improve the relevance of achieved pat-
terns by filtering out patterns formed by the sentences
in which the action verbs are not on the list.

6 Interaction sentence identification

Once the biological interaction patterns are obtained,
we perform interaction sentence identification on test-
ing sentences. For our work, they are partitioned into
two sets: interaction sentences which explicitly discuss
interactions between entities, and non-interaction sen-
tences which do not describe interactions, or merely
imply some vague relationships between entities. The
task of interaction sentence identification is treated as a
classification problem to differentiate between interac-
tion sentences and non-interaction sentences.

6.1 Pattern matching scoring

We first perform pattern matching by iteratively apply-
ing the interaction patterns to each testing sentence.
This is done using sequence alignment which calculates
the degree of the similarity of a sentence to an inter-
action pattern. Since patterns capture various ways of
expressing interactions among sentences, a high simi-
larity between an interaction sentence and a pattern is
expected. Therefore, we conjecture that the alignment
scores can be used to discriminate some type of inter-
action sentences from other types of sentences.

The scoring scheme involved in the pattern match-
ing consists of penalties for introducing gaps, match re-
wards and mismatch penalties for different system tag
pairs. Table 2 presents an example scoring scheme for
main tags. Penalties and rewards are denoted respec-
tively by negative and positive values.

As a variation of global alignment, an end-space free
alignment algorithm is implemented to facilitate the
alignment between patterns and testing sentences. The
shortest pattern is always preferred for a sentence in
case that same alignment score is achieved by multiple
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Tag Gap Match Mismatch
BIO -10 +8 -3
NP -8 +6 -3
VB -7 +7 -3
IN -6 +5 -1
CC -6 +5 -1
TO -1 +5 -1
PPC -1 +3 -1
PRP -1 +3 -1
DET -1 +3 -1
POS -1 +3 -1

Table 2: An alignment scoring scheme for system tags

patterns. As a result, each sentence is assigned to its
most appropriate pattern along with a maximum align-
ment score. Therefore, an interaction sentence will be
highlighted with a high alignment score by its most
similar interaction pattern, while a non-interaction sen-
tence will be characterized by a low alignment score
indicating rejections by all patterns. Essentially, this
procedure can be seen as a variation of the well-known
k Nearest Neighbors classification method, withk = 1.

6.2 Performance evaluation

We then evaluate whether the alignment scores can be
used to classify the testing sentences. We have pro-
posed two independent evaluation measures: statistical
analysis (SA) and classification accuracy (AC).

SA measures whether the scoring difference be-
tween the mean of interaction sentences and the mean
of non-interaction sentences is statistically significant.
If the difference is significant, there will be a tendency
that interaction sentences outscore non-interaction sen-
tences in alignment. Hence, it would be reliable to
use alignment scores to classify testing sentences. Al-
though non-interaction sentences could come from the
same documents as interaction sentences and discuss
concepts that are associated with the target interac-
tions, we assume that interaction sentences and non-
interaction sentences are two independent samples.

The statistical two-samplez test (Freund and Per-
les, 2006) is performed with the null hypothesis that
there is no scoring difference between the means of
interaction and non-interaction sentences. A compar-
atively largez will lead to the rejection of the null
hypothesis. Naturally, the increase ofz value will in-
crease the difference between the means and therefore
conceptually keep pushing the overall scoring distrib-
utions of two samples further away from each other.
Consequently, interaction sentences can be separated
from non-interaction sentences according to alignment

scores. In reality, the distinction between interaction
and non-interaction sentences is not absolute. Thus,
the scoring distributions of two samples can only be
distanced by a certain maximum value ofz depending
on the scoring scheme applied in pattern matching.

Conversely,AC measures the proportion of correctly
classified testing sentences, including both interaction
and non-interaction sentences, to the total testing sen-
tences. An appropriate thresholdT is determined for
obtained alignment scores to differentiate between in-
teraction and non-interaction sentences, and to facili-
tate the calculation of classification accuracy.

It is not possible to evaluate the performance without
correctly pre-labeled testing sentences. We decided to
manually classify the testing sentences in advance by
assigning each sentence an appropriate label of inter-
action or non-interaction. This work was done by two
independent experts, both with Ph.D. degrees in mole-
cular biology or a related discipline.

6.3 Scoring scheme optimization

The scoring scheme applied in pattern matching has a
crucial impact on the performance of interaction sen-
tence identification. An interesting problem is whether
there exists an optimal scoring scheme covering the
costs of gap, match and mismatch for different sys-
tem tags in the pattern matching alignment, which is
destined to achieve the best performance on classify-
ing testing sentences. To the best of our knowledge,
no efforts have been made to investigate this problem.
Instead, an empirical or arbitrary scoring scheme was
adopted in previous research for the pairwise align-
ments (Huang et al., 2004; Hakenberg et al., 2005). We
have proved that the problem is NP-hard by reducing a
well-known NP-hard problem3-SAT to this problem.
The proof is not presented in this work.

A genetic algorithm (GA) is used as a heuristic
method to optimize parameters of the scoring scheme
for sentence classification. The costs of penalties and
rewards for different system tags are encoded by inte-
ger values within two predefined ranges: [-50, 0) and
(0, 50], and assembled as a potential solution of scor-
ing scheme, which consists of 30 parameters covering
the costs for tags in the alignment as listed in Table 2.
The two evaluation measuresSA andAC are used as
the fitness function for GA respectively with the goal
of maximizingz value or classification accuracy.

GA is set up to evolve for 100 generations, each of
which consists of a population of 100 potential solu-
tions of scoring scheme. GA starts with a randomly
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generated population of 100 potential solutions and
proceeds until 100 generations are reached. The num-
ber of generations and the population size are decided
with consideration of the runtime cost of evaluating the
fitness function, which requires running the scoring al-
gorithm with each sentence. A large number of gener-
ations or a large population size would incur an expen-
sive runtime cost of evaluation.

In addition, we further divide the labeled set of can-
didate sentences into two subsets: The first dataset is
used to optimize parameters of the scoring scheme,
while the second dataset, testing set, is used to test the
achieved scheme on the task of sentence classification.

7 Results and evaluation

7.1 Dataset

Our experiments have been conducted on Genia cor-
pus (v3.02)4, the largest, publicly available corpus in
molecular biology domain. It consists of 2,000 biolog-
ical research paper abstracts and is intended to cover
biological reactions concerning transcription factors in
human blood cells. The information of sentence seg-
mentation, word tokenization, POS tagging and biolog-
ical term annotation is also encoded in the corpus.

7.2 Biological text preprocessing results

Evaluated using the inherently equipped annotation in-
formation, our system achieves nearly 99% accuracy
on segmenting sentences. Further, it obtains an overall
POS tagging accuracy of 91.0% on 364,208 individ-
ual words. We noticed that the tagging information en-
coded in Genia corpus is not always consistent through-
out the whole corpus, thus introducing detrimental ef-
fects on the tagging performance. Also, considering
that the tagger is parameterized according to the gen-
eral English domain, porting this tagger to the biology
domain is accompanied by some loss in performance.

The system reaches an F-score of 0.705 on annotat-
ing all biological terms including both multi-word and
single word terms. After performing text chunking, the
system produces a set of candidate sentences. We fur-
ther perform text chunking on Genia corpus based on
its encoded annotations and use the resulting set of sen-
tences for the subsequent experiments to provide a gold
standard to which results produced based on our system
annotations can be compared. Table 3 presents some
statistics of the preprocessed dataset. For each type of
annotations, we randomized the candidate sentence set

4http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/

and chose 12,525 candidate sentences as the training
set to extract biological interaction patterns. The rest
of candidate sentences are prepared as the testing set.

Attributes Genia Our system
Total preprocessed sentences 18,545 18,355
Candidate sentences 16,272 17,525
Training set sentences 12,525 12,525
Testing set sentences 6,020 5,000

Table 3: Statistics of experimental dataset

7.3 Interaction pattern extraction results

fmin = 5 is used to filter out the potential patterns
that appear less than 5 times in the training set. Eval-
uated by domain experts, lists of 300 interaction verbs
and 700 non-interaction verbs are obtained from 12,525
training sentences with Genia annotations. Inflectional
variants of the verbs are also added into the lists.

Refined by the filtering rules and the interaction
verbs, a final set of representative patterns of biological
interactions are obtained from Algorithm 1. We per-
formed our proposed pattern learning method on train-
ing sentences of both the GENIA and our own anno-
tations. There are respectively 241 and 329 potential
patterns. Of these, 209 and 302 were extracted. Inter-
estingly, only 97 extracted patterns are common to both
annotation schemes.

Table 4 lists the 10 most frequent interaction patterns
based on Genia annotations. For instance, a training
sentence conforming to the second pattern is “The ex-
pression of the QR gene is regulated by the transcrip-
tion factor AP-1.” (MEDLINE: 96146856).

Pattern count Pattern
264 BIO VB BIO IN BIO
261 NP IN BIO VB IN BIO
182 NP IN BIO VB BIO
162 BIO IN BIO VB IN BIO
160 BIO VB IN BIO IN BIO
143 NP IN BIO VB IN NP IN BIO
142 NP VB IN BIO VB BIO
138 PRP VB IN BIO VB BIO
126 BIO VB NP IN BIO IN BIO
121 NP IN BIO VB NP IN BIO

Table 4: Extracted Biological Interaction Patterns

7.4 Interaction sentence identification results

Since the total testing sentence set is large, we decided
to randomly extract 400 sentences from it as the sam-
ple set for our task. The 400 sentences were manu-
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Figure 1:AC comparison between two measures

ally pre-labeled into two classes: interaction and non-
interaction. Further, a subset of 300 testing sentences
was used by GA to optimize parameters of the scor-
ing scheme, while the remaining 100 sentences were
prepared to test the achieved scheme on sentence clas-
sification. The distribution of class labels of the sample
sentences is shown in Table 5.

Class label 300 sentences 100 sentences
No. % No. %

Interaction 158 52.67 53 53
Non-interaction 142 47.33 47 47

Table 5: Class distribution of sample sentences

7.4.1 Comparison between two measures

We applied the evaluation measures,SA and AC,
respectively to the subset of 300 testing sentences as
the fitness function for GA, and recorded the scoring
scheme of every generation resulted from GA. Figure 1
presents the distribution of achieved classification ac-
curacy in terms of each scoring scheme optimized by
GA. This comparison is done with respect to the gener-
ation and evaluated on 300 testing sentences using the
annotations from the Genia corpus.

The achieved classification accuracy forAC gen-
erally outperforms the classification accuracy derived
by SA. It reaches its highest classification accuracy
80.33% from the 91th generation. Therefore,AC is
considered more efficient with the system and becomes
our final choice of fitness function for GA.

7.4.2 Results of sentence identification

GA results in an optimized performance on the 300
sentences. It also results in an optimized scoring

scheme along with its associated scoring thresholdT ,
which are then applied together to the other 100 test-
ing sentences. Table 6 and 7 present the system perfor-
mance on the two sets respectively to both annotations.

Experimental Genia Our system
Results Interaction Non Interaction Non
Precision 0.757 0.887 0.704 0.702
Recall 0.928 0.665 0.761 0.640
F-score 0.834 0.750 0.731 0.670
OverallAC(%) 80.33 70.33

Table 6: Performance on 300 testing sentences

Experimental Genia Our system
Results Interaction Non Interaction Non
Precision 0.739 0.762 0.676 0.697
Recall 0.792 0.723 0.755 0.638
F-score 0.765 0.742 0.713 0.666
OverallAC(%) 75.96 70.00

Table 7: Performance on 100 testing sentences

Table 6 shows that when using the Genia annota-
tions the system achieves an 0.834 F-score in identify-
ing interaction sentences and an overallAC of 80.33%,
which is much higher than the proportion of either in-
teraction or non-interaction sentences in the 300 sen-
tence subset. This indicates that the system performs
well on both classes. In 100 generations GA is not able
to evolve a scoring scheme that leads to anAC above
80.33%. Moreover, our system annotations achieve
a lower performance than Genia annotations. We at-
tribute the difference to the accuracy loss of our system
annotations in the preprocessing steps as inaccurate an-
notations will lead to inappropriate patterns, thus harm-
ing the performance of sentence identification. For Ge-
nia annotations, the performance on the 100 testing sen-
tences suggests an overfitting problem.

There are a number of preprocessing steps that affect
the final classification performance. However, even as-
suming an ideal preprocessing of the unstructured text,
our method relies on the assumption that all interac-
tion sentences are articulated by a set of POS patterns
that are distinct to all other types of sentences. The
manual annotation of the training/testing set was a dif-
ficult task, so it is reasonable to assume that this will
also be difficult for the classifier. The use of passive
voice and the common use of comma splicing within
patterns makes sentence-level classification an espe-
cially difficult task. Another source of interactions that
our system cannot identify are implied and assume a
deeper semantic understanding of the concepts them-
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selves. Other sentences are long enough that the inter-
action itself is merely a secondary purpose to another
idea. All of these factors pose interesting challenges
for future development of this work.

Moreover, we also experimented with 10 empirical
scoring schemes derived from previous experiments on
the 300 sentences respectively, including the scheme in
the Table 2. Several fixed thresholds were attempted for
obtained alignment scores to differentiate between in-
teraction and non-interaction sentences. Without using
GA to optimize parameters of the scoring scheme, the
best performance of 10 empirical schemes is an overall
AC of 65.67%, which is outperformed at the 3rd gen-
eration of the GA optimization with Genia annotations.

7.5 System performance comparison

Within the framework of our system, we further con-
ducted experiments on the same dataset for sentence
identification using interaction patterns generated by
another pattern generating algorithm (PGA) (Huang et
al., 2004) in order to compare with the performance of
patterns obtained by our pattern learning method.

In our implementation, PGA iterates over all pairs
of candidate sentences in the training set and calculates
the best alignment for each pair in terms of the cost
scheme of gap penalties proposed (Huang et al., 2004).
Each consensus sequence from the optimal alignment
of each pair forms a pattern. The filter rules proposed
are also applied. PGA has a time complexity ofO(n2)
in the size of candidate sentences,n. Hence, our pro-
posed pattern learning method is much more efficient
when dealing with large collections of biological texts.
PGA produces a large number of patterns, even with
fmin = 5 and other filtering criteria. There are 37,319
common patterns between two types of annotations.

Attributes Genia Our system
Potential patterns (fmin = 5) 476,600 387,302
Extracted patterns (fmin = 5) 176,082 88,800

Table 8: Pattern extraction results of PGA

In order to make a direct comparison, we decided to
experiment with the same number of interaction pat-
terns. For Genia annotations, we chose the most fre-
quent 209 patterns generated by PGA to compare with
the 209 patterns by our method. For our system annota-
tions, two sets of 302 patterns are employed. Further, it
is found that there are 96 common patterns between the
two sets of 209 patterns for Genia annotations, and 153
common patterns between the two sets of 302 patterns
for our system annotations. Table 9 and 10 present the

results of sentence identification of PGA. The results
show that patterns generated by PGA do not perform
as well as patterns obtained by our method.

Experimental Genia Our system
Results Interaction Non Interaction Non
Precision 0.721 0.869 0.663 0.699
Recall 0.918 0.606 0.785 0.556
F-score 0.808 0.714 0.719 0.619
OverallAC(%) 77.00 67.67

Table 9: Performance of PGA on 300 testing sentences

Experimental Genia Our system
Results Interaction Non Interaction Non
Precision 0.664 0.796 0.698 0.635
Recall 0.849 0.574 0.566 0.766
F-score 0.745 0.667 0.625 0.694
OverallAC(%) 71.98 66.00

Table 10: Performance of PGA on 100 testing sentences

8 Conclusion and future work

In this paper, a novel approach is presented to auto-
matically extract the representative patterns of biologi-
cal interactions, which are used to detect sentences that
describe biological interactions. We conducted the ex-
periments on our designed system based on the Ge-
nia corpus. By means of a genetic algorithm, the sys-
tem achieves an 0.834 F-score using Genia annotations
and an 0.731 F-score using our system annotations in
identifying interaction sentences by evaluating 300 sen-
tences. By applying the optimized scoring scheme to
another set of 100 sentences, the system achieves com-
parable results for both types of annotations. Further-
more, by comparing with another pattern generating al-
gorithm, we infer that our proposed method is more ef-
ficient in producing patterns to identify interaction sen-
tences.

In our future work, we would like to employ the ob-
tained interaction patterns to guide the extraction of
specific interactions. The matching between patterns
and sentences will be performed and the matched parts
of each sentence will be extracted as candidate interac-
tions. Further reasoning processes can be performed
by means of available biological ontologies, such as
UMLS Semantic Network (Mccray and Bodenreider,
2002) and Gene Ontology (Consortium, 2001), to in-
fer new relations from the initial interactions. Such
processes can be employed to derive additional biolog-
ical knowledge from existing knowledge, or test for bi-
ological consistency of the newly entered data.
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2005. Biological Named Entity Recognition using N-
grams and Classification Methods. InProceedings of the
Conference Pacific Association for Computational Lin-
guistics, PACLING’05, Tokyo, Japan.

Jiao Li, Xian Zhang, Yu Hao, Minlie Huang, and Xiaoyan
Zhu. 2005. Learning domain-specific knowledge from
context–thuir at trec2005 genomics track. InProceed-
ings of 14th Text Retrireval Conference (TREC2005),
Gaithersburg, USA.

Alexa T. Mccray and Olivier Bodenreider. 2002. A concep-
tual framework for the biomedical domain. InSemantics

of Relationships, Kluwer, pages 181–198. Kluwer Acad-
emic Publishers.

Andrei Mikheev. 2002. Periods, capitalized words, etc.
Comput. Linguist., 28(3):289–318.

Donald R. Morrison. 1968. Patricia — Practical Algorithm
To Retrieve Information Coded in Alphanumeric.Jour-
nal of the ACM, 15(4):514–534.

Toshihide Ono, Haretsugu Hishigaki, Akira Tanigami, and
Toshihisa Takagi. 2001. Automated extraction of infor-
mation on protein-protein interactions from the biological
literature.Bioinformatics, 17(2):155–161.

Conrad Plake, Jorg Hakenberg, and Ulf Leser. 2005. Learn-
ing patterns for information extraction from free text. In
Proceedings of AKKD 2005, Karlsruhe, Germany.

Lance Ramshaw and Mitch Marcus. 1995. Text chunking
using transformation-based learning. InProceedings of
the Third Workshop on Very Large Corpora, pages 82–94,
Somerset, New Jersey.

Soumya Raychaudhuri. 2006.Computational Text Analy-
sis: For Functional Genomics and Bioinformatics. Ox-
ford University Press.

Andre Skusa, Alexander Ruegg, and Jacob Kohler. 2005.
Extraction of biological interaction networks from scien-
tific literature.Brief Bioinform, 6(3):263–276.

141



Proceedings of the Workshop on BioNLP, pages 142–143,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Using Hedges to Enhance a Disease Outbreak Report Text Mining System

Mike Conway, Nigel Collier
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku

Tokyo 101-8430, Japan
{mike|collier}@nii.ac.jp

Son Doan
Vanderbilt University Medical Center

2525 West End Ave., Suite 800
Nashville, TN 37235, USA

son.doan@vanderbilt.edu

1 Introduction
Identifying serious infectious disease outbreaks in
their early stages is an important task, both for na-
tional governments and international organizations
like the World Health Organization. Text mining
and information extraction systems can provide an
important, low cost and timely early warning sys-
tem in these circumstances by identifying the first
signs of an outbreak automatically from online tex-
tual news. One interesting characteristic of disease
outbreak reports — which to the best of our knowl-
edge has not been studied before — is their use of
speculative language (hedging) to describe uncertain
situations. This paper describes two uses of hedging
to enhance the BioCaster disease outbreak report
text mining system.

Following a brief description of the BioCaster
system and corpus (section 2), we discuss in section
3 previous uses of hedging in NLP and the meth-
ods used to identify hedges in the current work. In
section 4 we describe some initial classification ex-
periments using hedge features. Section 5 describes
a “speculative” method of tagging disease outbreak
reports with a metric designed to aid users of the
BioCaster system in identifying articles of inter-
est.

2 BioCaster System & Corpus
The BioCaster system scans online news reports
for stories concerning infectious disease outbreaks
(e.g. H5N1, Ebola) and makes its results available to
registered users as email alerts (Collier et al., 2008).
In addition to this email service, data that has been
filtered through a topic classifier but which is still

uninterpreted is used to populate a Google Map ap-
plication called the Global Health Monitor.1

The BioCaster corpus consists of 1000 news
articles downloaded from the WWW and then man-
ually categorized and annotated with Named Entities
by two PhD students. Articles were collected from
various news sources (e.g. BBC, New York Times
and ProMED-Mail2). Each document is classified
as either relevant (350) or reject (650).3

The corpus is designed to include difficult border-
line cases where more advanced understanding of
the context is required. For example, an article may
be about, say, polio, but not centrally concerned with
specific outbreaks of that disease. Instead, the arti-
cle could report a vaccination campaign or research
breakthrough.

3 Hedges
According to Hyland (1998), in an extensive study
of speculative language in science writing, hedges
“are the means by which writers can present a propo-
sition as an opinion rather than a fact.” More re-
cently, Kilicoglu and Bergler (2008) have presented
a method for automatically identifying hedges in the
biomedical domain. In the current work, we used a
science orientated hedge lexicon derived from Mer-
cer et al. (2004). The lexicon consisted of 72 verbs
(including appear, appears, appeared, appearing,
indicate, indicates, indicated, indicating, and so on)
and 32 non-verbs (including, about, quite, poten-

1www.biocaster.org
2ProMED-Mail is a human curated service for monitoring

disease outbreak reports (www.promedmail.org.)
3For copyright reasons, the BioCaster corpus is not pub-

licly available.
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Rank Hedge Rank Hedge
1 reported 9 suggests
2 suspected 10 estimated
3 probable 11 appeared
4 suspect 12 appearing
5 usually 13 mostly
6 see 14 assumes
7 reports 15 predicted
8 sought 16 suggested

Table 1: Statistically Significant Hedges

Features Naive Bayes SVM
Acc F Acc F

9000 χ2 94.8 0.93 92.2 0.89
Unigram 88.4 0.85 90.9 0.87
Unigram+hedge 88.0 0.85 91.7 0.89

Table 2: Classification Results

tially, likely and so on). Preliminary work showed
that the frequency of hedge words differs in the two
categories of the BioCaster corpus (relevant and
reject) at a highly significant level using the χ2 test
(P < 0.01). Table 1 shows the 16 most discriminat-
ing hedge words in the BioCaster corpus (identi-
fied using the χ2 feature selection method.)

4 Classification Experiment
The current BioCaster system uses n-gram based
text classification to identify disease outbreak re-
ports, and reject other online news. We used hedg-
ing features to augment this classifier, and evaluated
the results using a subset of the BioCaster cor-
pus. One binary hedging feature was used. The fea-
ture was “true” if and only if one of the 105 hedge
lexemes identified by Mercer et al. (2004) occurred
in the input document within 5 words of a disease
named entity. Results are shown in Table 2, where it
can be seen that the addition of a single binary hedge
feature to the unigram feature set increases accuracy
by 0.8%. The performance does not however reach
the level achieved by the χ2 9000 n-gram feature set
described in Conway et al. (2008).

5 Towards a “Speculative” Metric
Users of the BioCaster system would benefit
from an indicator of how “speculative” each news
article is, as breaking news regarding disease out-
breaks is characterized by uncertainty, which is en-
coded using hedging. We use the Mercer list of 105
hedging words as described above, in conjunction
with statistics derived from a 10,000 document sec-

Accept (%) Reject (%)
High 64.2 48.3
Medium 29.5 36.7
Low 6.3 15.0

Table 3: Proportion of Articles in Each Category

tion of the Reuters corpus to provide a “speculative”
metric.4 We calculated total frequencies for all 105
hedge words in each of the 10,000 Reuters docu-
ments — that is, the total number of hedge words
per document — then ranked these frequencies (af-
ter normalizing the frequencies to take account of
document length). The bottom third of documents
had hedge percentages in the range 0% - 0.2544%
(LOW). The middle third had hedge percentages in
the range 0.2545% - 1.0574 (MEDIUM). The range
for the top third was 1.0575% - 100% (HIGH). Doc-
uments inputted to the BioCaster system auto-
matically have their proportion of hedge words cal-
culated and are assigned a value according to their
position on the scale (LOW, MEDIUM or HIGH). Ta-
ble 3 shows that a majority of the documents in the
accept segment of the BioCaster corpus can be
tagged as highly speculative using this method.
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Abstract 

In the framework of contextual information 

retrieval in the biomedical domain, this paper 
reports on the automatic detection of disease 

concepts in two genres of biomedical text: 

sentences from the literature and PubMed user 

queries. A statistical model and a Natural 

Language Processing algorithm for disease 

recognition were applied on both corpora. 

While both methods show good performance 

(F=77% vs. F=76%) on the sentence corpus, 

results on the query corpus indicate that the 

statistical model is more robust (F=74% vs. 

F=70%).  

1 Introduction 

Contextual Information Retrieval (IR) is making 
use of additional information or assumptions about 

the users’ needs beyond the obvious intent of the 

query. IR systems need to go beyond the task of 
providing generally relevant information by assist-

ing users in finding information that is relevant to 

them and their specific needs at the time of the 

search. A practical example of a Google contextual 
IR feature is when the search engine returns a map 

showing restaurant locations to a user entering a 

query such as “Paris restaurants.” 
The contextual aspects of a user’s search were 

defined for example by Saracevic (1997) who dis-

cussed integrating the cognitive, affective, and sit-

uational levels of human computer interaction in 
IR systems. Other research efforts studied users’ 

search behavior based on their level of domain 

knowledge (Zhang et al., 2005) or aimed at  mod-

eling users’ interests and search habits (Rose and 
Levinson, 2004; Teevan et al., 2005).  

Information about the search context may be 

sought explicitly from the user through profiling or 
relevance feedback (Shen et al., 2005). Recent 

work also exploited query log analysis and basic 

computer environment information (Wen et al. 
2004), which involve no explicit interaction with 

the user. In adaptive information retrieval, context 

information is inferred based on query analysis and 

collection characteristics (Bai and Nie 2008).  
In the biomedical domain, a need for contextual 

information retrieval was identified in particular 

for clinical queries submitted to PubMed (Pratt and 
Wasserman, 2000). Building on the idea that a spe-

cific type of document is required for searches with 

a “clinical” context, the PubMed Clinical Queries 

portal was developed (Haynes and Wilczynski, 
2004). A perhaps more prominent contextual fea-

ture of PubMed is the “citation sensor”, which 

identifies queries classified by Rose and Levinson 
as reflecting a “Navigational” or “Obtain resource” 

goal. For example, the citation sensor will identify 

and retrieve a specific citation if the user enters the 
article title as the query. The analysis of Entrez 

logs shows that MEDLINE is the most popular 

database among the 30 or so databases maintained 

by the National Center for Biotechnology Informa-
tion (NCBI) as it receives most of Entrez traffic. 

This suggests that there is a need to complement 

the information retrieved from MEDLINE by giv-
ing contextual access to other NCBI resources re-
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levant to users’ queries, such as Entrez Gene, Clin-

ical Q&A or BookShelf. In addition, the NLM es-
timated that about 1/3 of PubMed users are not 

biomedical professionals. In this light, providing 

an access point to consumer information such as 

the Genetics Home Reference might also be useful. 
To achieve this, the sensor project was recently 

launched with the goal of recognizing a variety of 

biomedical concepts (e.g. gene, protein and drug 
names) in PubMed queries. These high-level con-

cepts will help characterize users’ search context in 

order to provide them with information related to 
their need beyond PubMed. For instance, if a user 

query contains the drug name “Lipitor”, it will be 

recognized by the drug sensor and additional in-

formation on this drug from Clinical Q&A will be 
shown in the side bar in addition to default 

PubMed results. Since disease names are common 

in PubMed queries, the goal of this work is to in-
vestigate and benchmark computational techniques 

for automatic disease name recognition as an aid to 

implementing PubMed search contexts. 

2 Related Work 

Despite a significant body of literature in biomedi-

cal named entity recognition, most work has been 

focused on gene, protein, drug and chemical names 
through challenges such as BioCreAtIvE

1
 or the 

TREC Genomics/Chemical tracks (Park and Kim, 

2006). Other work addressed the identification of 

“medical problems” in clinical text (Aronson et al. 
2007; Meystre and Haug, 2005). This task was the 

topic of a Medical NLP challenge
2
, which released 

a corpus of anonymized radiography reports anno-
tated with ICD9 codes. Although there is some 

interest in the biomedical community in the identi-

fication of disease names and more specifically the 
identification of relationships between diseases and 

genes or proteins (Rindflesh and Fizman, 2003), 

there are very few resources available to train or 

evaluate automatic disease recognition systems. To 
the best of our knowledge, the only publicly avail-

able corpus for disease identification in the litera-

ture was developed by Jimeno et al. (2008). The 
authors annotated 551 MEDLINE sentences with 

UMLS concepts and used this dataset to bench-

mark three different automatic methods for disease 

name recognition. A MEDLINE corpus annotated 
                                                        
1 http://biocreative.sourceforge.net/ 
2 http://www.computationalmedicine.org/challenge/index.php 

with “malignancy” mentions and part-of-speech 

tags is also available (Jin et al. 2006). This corpus 
is targeted to a very restricted type of diseases. The 

annotations are also domain specific, so that “can-

cer of the lung” is not considered a malignancy 

mention but a mention of malignancy and a men-
tion of malignancy location. 

As in previous studies, we aim to investigate the 

complexity of automatic disease recognition using 
state-of-the-art computational techniques. This 

work is novel in at least three aspects: first, in ad-

dition to using the MEDLINE sentence corpus 
(Jimeno et al 2008), we developed a new corpus 

comprising disease annotations on 500 randomly 

selected PubMed queries. This allowed us to inves-

tigate the influence of local context
3
 through the 

comparison of system performance between two 

different genres of biomedical text. Second, by 

using a knowledge based tool previously ben-
chmarked on the same MEDLINE corpus (Jimeno 

et al. 2008), we show that significant performance 

differences can be observed when parameters are 
adjusted. Finally, a state-of-the-art statistical ap-

proach was adapted for disease name recognition 

and evaluated on both corpora.  

3 Two Biomedical Corpora with disease 

annotations 

The first issue in the development of such a corpus 

is to define the very concept of disease. Among the 
numerous terminological resources available, such 

as Medical Subject Headings (MeSH
®
, 4,354 dis-

ease concepts) or the International Classification of 
Diseases (ICD9, ~18,000 disease concepts), the 

UMLS Metathesaurus
®
 is the most comprehensive: 

the 2008AB release includes 252,284 concepts in 

the disorder Semantic Group defined by McCray 
et al. (2001). The UMLS Metathesaurus is part of 

the Semantic Network, which also includes a set of 

broad subject categories, or Semantic Types, that 
provide a consistent categorization of all concepts 

represented in the Metathesaurus. The Semantic 

Groups aim at providing an even broader categori-
zation for UMLS concepts. For example, the dis-

order Semantic Group comprises 12 Semantic 

Types including Disease or Syndrome, Cell or Mo-

lecular Dysfunction and Congenital Abnormalities.  

                                                        
3 Here, by context, we mean the information surrounding a 
disease mention available in the corpora. This is different from 
the “search context” previously discussed.   
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Furthermore, like the gene mention (Morgan et 

al. 2008) and gene normalization (Smith et al. 
2008) tasks in BioCreative II, the task of disease 

name recognition can also be performed at two 

different levels: 
 

1. disease mention: the detection of a snippet 

of text that refers to a disease concept (e.g. 

“alzheimer” in the sample query shown in 

Table 2)  
2. disease concept: the recognition of a con-

trolled vocabulary disease concept (e.g. 

“C0002395-alzheimer’s disease” in our Ta-
ble 2 example) in text.  

 

In this work, we evaluate and report system per-

formance at the concept level. 

3.1 Biomedical literature corpus 

Sentence Kniest dysplasia is a moderately 

severe chondrodysplasia pheno-

type that results from mutations 
in the gene for type ii collagen 

col2a1.  

Annotations C0265279-Kniest dysplasia 

C0343284-Chondrodysplasia, 
unspecified 

Table 1: Excerpt of literature corpus (PMID: 7874117) 

 

The corpus made available by Jimeno et al. con-

sists of 551 MEDLINE sentences annotated with 
UMLS concepts or concept clusters: concepts that 

were found to be linked to the same term. For ex-

ample, the concepts “Pancreatic carcinoma” 
(C0235974) and “Malignant neoplasm of pan-

creas” (C0346647) share the same synonym “Pan-

creas Cancer”, thus they were clustered. The 

sentences were selected from a set of articles cu-
rated for Online Mendelian Inheritance in Man 

(OMIM) and contain an average of 27(+/- 11) to-

kens, where tokens are defined as sequences of 
characters separated by white space. A set of 

UMLS concepts (or clusters) is associated with 

each sentence in the corpus. However, no boun-
dary information linking a phrase in a sentence to 

an annotation was available. Table 1 shows a sam-

ple sentence and its annotations. 

 
 
 

3.2 Biomedical query corpus 

A total of 500 PubMed queries were randomly se-

lected and divided into two batches of 300 and 200 

queries, respectively. Queries were on average 
3.45(+/- 2.64) tokens long in the 300 query batch 

and 3.58(+/- 4.63) for the 200 query batch, which 

is consistent with the average length of PubMed 
queries (3 tokens) reported by Herskovic et al. 

(2007).  

The queries in the first set were annotated using 
Knowtator (Ogren, 2006) by three annotators with 

different backgrounds (one biologist, one informa-

tion scientist, one computational linguist). Two 

annotators annotated the queries using UMLS con-
cepts from the disorder group, while the other an-

notator simply annotated diseases without 

reference to UMLS concepts. Table 2 shows a 
sample query and its annotations. A consensus set 

was obtained after a meeting between the annota-

tors where diverging annotations were discussed 

and annotators agreed on a final, unique, version of 
all annotations.  The consensus set contains 89 dis-

ease concepts (76 unique). 
 

Query alzheimer csf amyloid 

Annotations  Ann. 1: “alzheimer”; 0-8;  

Ann. 2, 3: “alzheimer”; 0-8; 

C0002395-alzheimer’s disease 
Table 2: Excerpt of annotated 300-query corpus. Boun-

dary information is given as the character interval of the 
annotated string in the query (here, 0-8). 

 

The queries in the second set were annotated 

with UMLS concepts from the disorder group by 
one of the annotators who also worked on the pre-

vious set. In this set, 53 disease concepts were an-

notated (51 unique). 

4 Automatic disease recognition 

With the perspective of a contextual IR applica-

tion where the disease concepts found in queries 

will be used to refer users to disease-specific in-

formation in databases other than MEDLINE, we 
are concerned with high precision performance. 

For this reason, we decided to experiment with 

methods that showed the highest precision when 
compared to others. In addition, given the size of 

the corpora available and the type of the annota-
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tions, machine learning methods such as CRFs or 

SVM did not seem applicable.  
Table 3 shows a description of the training and 

test sets for each corpus. 

 
 Table 3: Description of the training and test sets 

4.1 Natural Language Processing 

Disease recognition was performed using the Natu-

ral Language Processing algorithm implemented in 

MetaMap (Aronson, 2001)
4
. The tool was re-

stricted to retrieve concepts from the disorder 

group, using the UMLS 2008AB release and 

“longest match” feature. 
In practice, MetaMap parses the input text into 

noun phrases, generates variants of these phrases 

using knowledge sources such as the SPECIALIST 

lexicon, and maps the phrases to UMLS concepts.  

4.2 Priority Model 

The priority model was first introduced in (Tanabe 

and Wilbur, 2006) and is adapted here to detect 
disease mentions in free text. Because our evalua-

tion is performed at the concept level, the mentions 

extracted by the model are then mapped to UMLS 

using MetaMap.  
The priority model approach is based on two sets 

of phrases: one names of diseases, D, and one 

names of non-diseases, N. One trains the model to 
assign two numbers, p and q, to each token t that 

appears in a phrase in either D or N. Roughly, p is 

the probability that a phrase from D or N that has 

the token t in it is actually from D and q is the rela-
tive weight that should be assigned to t for this 

purpose and represents a quality estimate. Given a 

phrase 

                                                        
4 Additional information is also available at 
http://metamap.nlm.nih.gov/ 

 
1 2 kph t t t     (1) 

and for each 
it  the corresponding numbers 

ip  and 

iq  we estimate the probability that ph D  by 

 
1 22 1

1 1
k kk

j i i jij j i
prob p q q p q

 
(2) 

 

The training procedure for the model actually 

chooses the values of all the p and q quantities to 

optimize the prob  values over all of D and N.  

For this work we have extended the approach to 

include a quantity  
2

1 1 22 1
1 1

k kk

j i i jij j i
qual q p q q p q prob

(3) 
 

which represents a weighted average of all the 

quality numbers 
iq . We apply this formula to ob-

tain qual as long as 0.5.prob  If 0.5prob we 

replace all numbers 
ip  by 1 ip  in (2) and (3) to 

obtain qual .  

For this application we obtained the sets D and 

N from the SEMCAT data (Tanabe, Thom et al. 
2006) supplemented with the latest UMLS data. 

We removed any term from D and N that contained 

less than five characters in order to decrease the 

occurrence of ambiguous terms.  Also the 1,000 
most frequent terms from D were examined ma-

nually and the ambiguous ones were removed. The 

end result is a set of 332,984 phrases in D and 
4,253,758 phrases in N. We trained the priority 

model on D and N and applied the resulting train-

ing to compute for each phrase in D and N a vector 

of values ,prob qual . In this way D and N are 

converted to DV  and NV . We then constructed a 

Mahalanobis classifier (Duda, Hart and Stork, 

2001) for two dimensional vectors as the differ-
ence in the Mahalanobis distance of any such vec-

tor to Gaussian approximations to DV  and NV .  We 

refer to the number produced by this classifier as 

the Mahalanobis score.  By randomly dividing both 
D and N into three equal size pieces and training 

on two from each and testing on the third, in a 

three-fold cross validation we found the Mahala-
nobis classifier to perform at 98.4% average preci-

sion and 93.9% precision-recall breakeven point. 

In a final step we applied a simple regression me-

thod to estimate the probability that a given Maha-

Data Lit. Corpus Query Corpus 

Training 276 sentences 

(487 disease con-
cepts, 185 unique) 

300 queries (89 

disease concepts, 
76 unique) 

Testing 275 sentences 

(437 disease con-

cepts, 185 unique) 

200 queries (53 

disease concepts, 

51 unique) 

All 551 sentences 

(924 disease con-

cepts, 280 unique) 

500 queries (142 

disease concepts, 

120 unique) 
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lanobis score was produced by a phrase belonging 

to D and not N. Given a phrase phr we will denote 
this final probability produced as PMA(phr).  

The second important ingredient of our statistic-

al process is how we produce phrases from a piece 

of text. Given a string of text TX we apply tokeni-
zation to TX to produce an ordered set of tokens 

1 2, , , nt t t . Among the tokens produced will be 

punctuation marks and stop words and we denote 

the set of all such tokens by Z . We call a token 

segment , ,j kt t  maximal if it contains no ele-

ment of Z  and if either 1j  or 
1jt Z  and 

likewise if k n  or 
1kt Z . Given text TX we 

will denote the set of all maximal token segments 

produced in this way by max ( ).S TX  Now given a 

maximal token segment mts= , ,j kt t  we define 

two different methods of finding phrases in mts. 

The first assumes we are given an arbitrary set of 
phrases PH.  We recursively define a set of phrases 

,I mts PH  beginning with this set empty and 

with the parameter u j .  Each iteration consists 

of asking for the largest v k  for which 

, ,u vt t PH . If there is such a v  we add 

, ,u vt t  to ,I mts PH  and set 1u v . 

Otherwise we set 1u u . We repeat this process 

as long as u k .  The second approach assumes 

we are given an arbitrary set of two token phrases 

P2.  Again we recursively define a set of phrases 

, 2J mts P  beginning with this set empty and 

with the parameter u j . Each iteration consists 

of asking for the largest v k  for which given any 

,  i u i v ,  1, 2i it t P . If there is such a v  

we add , ,u vt t  to , 2J mts P  and set 

1u v . Otherwise we set 1u u . We repeat 

this process as long as u k .   

In order to apply our phrase extraction proce-

dures we need good sets of phrases. In addition to 
D and N already defined above, we use another set 

of phrases defined as follows. Let R denote the set 

of all token strings with two or more tokens which 
do not contain tokens from Z and for which there 

are at least three MEDLINE records (title and ab-

stract text only) in which the token string is re-

peated at least twice. 

We then define R R D N . We make 

use of R  in addition to D and N. For the set 2P  
we take the set of all two token phrases in 

MEDLINE documents for which the two tokens 
co-occur as this phrase much more than expected, 

i.e., with a 
2 10,000 (based on the two-by-two 

contingency table).  

 
 

#Initialization: Given a text TX, set 
maxS S TX  and .X  

#Processing: While( S ){ 

  I. select mts S  

  II. If( ,I mts D ) ,K I mts D  

       else if( ,I mts R ) ,K I mts R  

        else if( ,I mts N ) K  

        else 

if( , 2J mts P ) , 2K J mts P  

        else K  

  III. X X K  

  IV. S S mts  

     } 

#Return: All pairs , ,  phr PMA phr phr X
 

 

Figure 1: Phrase finding algorithm 

 

With these preliminaries, our phrase finding al-
gorithm in pseudo-code is shown in Figure 1. 

The output of this algorithm may then be filtered 

by setting a threshold on the PMA values to accept. 

5 Results  

5.1 Assessing the difficulty of the task 

To assess the difficulty of disease recognition, we 
computed the inter-annotator agreement (IAA) on 

the 300-query corpus. Agreement was computed at 

the disease mention level for all three annotators 
and at the disease concept level for the two annota-

tors who produced UMLS annotations.  

Inter-annotator agreement measures for NLP 

applications have been recently discussed by 
Artstein and Poesio (2008) who advocate for the 

use of chance corrected measures. However, in our 

case, agreement was partly computed on a very 
large set of categories (UMLS concepts) so we 

decided to use Knowtator’s built-in feature, which 

computes IAA as the percentage of agreement and 
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allows partial string matches. For example, in the 

query “dog model transient ischemic attacks”, an-
notator 1 selected “ischemic attacks” as a disorder 

while annotator 2 and 3 selected “transient ischem-

ic attacks” as UMLS concept C0007787: Attacks, 

Transient Ischemic. In this case, at the subclass 
level (“disorder”) we have a match for this annota-

tion. But at the exact span or exact category level, 

there is no match. Table 4 shows details of IAA at 
the disease mention level when partial matches are 

taken into account. For exact span matches, the 

IAA is lower, at 64.87% on average. 
 

Disorder IAA Ann. 1 Ann. 2 Ann. 3 

Ann. 1 100% 71.77% 75.86% 

Ann. 2  100% 71.68% 

Ann. 3   100% 
Table 4: Agreement on disease mention annotations 

(partial match allowed) – average is 73.10% 

 

At the concept level, the agreement (when par-

tial matches were allowed) varied significantly 
depending on the semantic types. It ranged be-

tween 33% for Findings and 83% for Mental or 

Behavioral Dysfunction. However, agreement on 
the most frequent category, Disease or Syndrome, 

was 72%, which is close to the annotators’ overall 

agreement at the mention level. One major cause 

of disagreement was ambiguity caused by concepts 
that were clustered by Jimeno et al. For example, 

in query “osteoporosis and “fracture pattern”, an-

notator 2 marked “osteoporosis” with both 
“C0029456-osteoporosis”(a Disease or Syndrome 

concept) and “C1962963-osteoporosis adverse 

event”(a Finding concept) while annotator 3 only 
used “C0029456-osteoporosis”.    

5.2 Results on Literature corpus 

As shown in Table 3, the corpus was randomly 

split into a training set (276 sentences) and a test 

set (275 sentences). The training set was used to 
determine the optimal probability threshold for the 

Priority Model and parameter selection for Meta-

Map, respectively. 
 

Priority Model parameter adjustments: the first 

result observed from applying the Priority Model 

was that D yielded about 90% of the output of the 

algorithm. Also results coming from R  and 2P  
were not well mapped to UMLS concepts by Me-

taMap. As a result, in this work we ignored disease 

candidates retrieved based on R  and 2P . The best 
F-measure was obtained for a threshold of 0.3, 

which was consequently used on the test set.  
Since the Priority Model algorithm does not per-

form any mapping to a controlled vocabulary 

source, the mapping was performed by applying 
MetaMap to the snippets of text returned with a 

probability value above the threshold. 
 

Threshold P R F 

0 64 73 67 

.1 67 73 70 

.2 67 73 70 

.3 68 73 71 

.4 68 73 70 

.5 68 72 69 

.6 68 72 69 

.7 68 72 69 

.8 68 68 68 

.9 65 60 62 
Table 5: Precision (P), Recall (R) and F-measure of the 

Priority Model on the training set for different values of 

the probability threshold. 

 

The results presented in Table 5 were obtained 

before any MetaMap adjustments were made.  
 

MetaMap parameter adjustments: an error anal-

ysis was performed to adjust MetaMap settings. 
Errors fell into the following categories:  

 A more specific disease should have been 

recognized (e.g. “deficiency” vs. “C2 defi-

ciency”) 

 The definition of a cluster was lacking 

(e.g. “G6PD deficiency” comprised 
C0237987- Glucose-6-phosphate dehydro-

genase deficiency anemia and C0017758- 

Glucosphosphate Dehydrogenase Defi-
ciency but not C0017920- Deficiency of 

glucose-6-phosphatase)  

 MetaMap mapping was erroneous (e.g. 
“hereditary breast” was mapped to 

C0729233-Dissecting aneurysm of the 

thoracic aorta instead of C0346153-
Hereditary Breast Cancer)  

 

The results of inter-annotator agreement and fur-
ther study of MetaMap mappings indicated that 

concepts with the semantic type Findings seemed 
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to be frequently retrieved erroneously. For this rea-

son, we also experimented not taking Findings into 
account as an additional adjustment for MetaMap. 

Table 6 shows the results of applying the MetaMap 

adjustments yielded from the error analysis on the 

training corpus. 
 

Threshold Findings P R F 

.3 Yes 80 78 79 

.3 No 85 78 81 
Table 6: performance of the Priority Model on the train-

ing set for threshold .3 depending on whether mappings 

to Findings are used in the “adjustments”      

 

MetaMap disorder detection was also performed 

directly on the training corpus. An error analysis 
similar to what was presented above was carried 

out to determine the best parameters. Table 7 be-

low shows the results obtained when all concepts 
from the 12 Semantic Types (STs) in the disorder 

group are taken into account with no adjustments 

(“raw”). Then, results including the adjustments 
from the error analysis are shown when all 12 STs 

are taken into account, when Findings are excluded 

(11STs) and when only the most frequent 6STs in 

the training set are taken into account.    
 

Processing P R F 

Raw (12 STs) 50 77 61 

Adjusted (12 STs) 52 75 61 

Adjusted (11 STs) 57 73 64 

Adjusted (6 STs) 77 72 74 
Table 7: Performance of MetaMap on the training set      

 

Finally, Table 8 shows the performance of both 

methods on the test set, using the optimal settings 

determined on the training set:  
 

Method P R F 

Priority Model 80 74 77 

MetaMap 75 78 76 
Table 8: Precision (P), Recall (R) and F-measure of the 

Priority Model and MetaMap on the test set     

5.3 Results on Query Corpus 

The 300-query corpus was used as a training set 

and the 200-query corpus was used as a test set. 
For consistency with work on the literature corpus, 

we assessed the disease recognition on a gold stan-

dard set including “clusters” of UMLS concepts 
were appropriate. As previously with the Literature 

corpus, we used the training set to determine the 

best settings for each method. The performance of 
the Priority Model at different values of the proba-

bility threshold, based on the use of D and N as the 

sets of sample phrases is similar to that obtained 

with the literature corpus; 0.3 stands out as one of 
the three values for which the best F-measure is 

obtained (tied with .5 and .8).  

Because of the brevity of queries vs. sentences, 
the MetaMap error analysis was very succinct and 

resulted in:  

 Removal of C0011860-Diabetes mellitus 

type 2  as mapping for “diabetes” 

 Removal of all occurrences of C0600688-

Toxicity and C0424653-Weight symptom 

(finding)  

 Adjustment on the number of STs taken in-

to account 
 

The difference in performance obtained on the 
training set for the different MetaMap adjustments 

considered is shown in Table 9 when MetaMap 

was applied to Priority Model output and in Table 

10 when it was applied directly on the queries.    
 

Threshold Findings P R F 

.3 Yes 60 72 65 

.3 No 73 70 71 
Table 9: performance of the Priority Model on the train-

ing set for threshold .3 depending on whether mappings 

to Findings are used in the “adjustments” 

 
Processing P R F 

Raw (12 STs) 41 82 55 

Adjusted (12 STs) 44 82 57 

Adjusted (11 STs) 58 81 68 

Adjusted (6 STs) 64 75 69 
Table 10: performance of MetaMap on the training set 

 

Finally, Table 11 shows the performance of both 
methods on the test set, using the optimal settings 

determined on the training set:  

 

Method P R F 

Priority Model 76 72 74 

MetaMap 66 74 70 
Table 11: Precision (P), Recall (R) and F-measure of 

the Priority Model and MetaMap on the test set 
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6 Discussion 

Comparing the Two Methods. The performance 

of both methods on the query corpus is comparable 

to inter-annotator agreement (F=70-74 vs. IAA=72 
on Disease and Syndromes). On both corpora, the 

Priority Model achieves higher precision and F-

measure, while MetaMap achieves better recall.  
Comparing the results obtained with MetaMap 

with those reported by Jimeno et al., precision is 

lower, but recall is much higher. This is likely to 
be due to the different MetaMap settings, and the 

use of different UMLS versions - Jimeno et al. did 

not provide any of this information, but based on 

the publication date of their paper, it is likely that 
they used one of the 2006 UMLS releases. Meystre 

and Haug (2006) also found that significant per-

formance differences could be obtained with Me-
taMap by adjusting the content of the knowledge 

sources used.   

On both text genres, 0.3 was found to be the op-

timal probability threshold for the Priority Model. 
Based on the performance at different values of the 

threshold, it seems that the model is quite efficient 

at ruling out highly unlikely diseases. However, for 
values above .3 the performance does not vary 

greatly.  

 
Comparing Text Genres. For both methods, 

disease recognition seems more efficient on sen-

tences. This is to be expected: sentences provide 

more context (e.g. more tokens surrounding the 
disease mention are available) and allow for more 

efficient disambiguation, for example on acro-

nyms. Although acronyms are frequent both in 
queries and sentences, more undefined acronyms 

are found in queries. However, the difference in 

performance between the two methods seems 

higher on the query corpus. This indicates that the 
Priority Model could be more robust to sparse con-

text.  

It should be noted that there were diseases in all 
sentences in the literature corpus vs. about 1/3 to 

1/2 of the queries. In addition, the query corpus 

included many author names, which could create 
confusion with disease names (in particular for the 

Priority Model). This difficulty was not found in 

the sentence corpus. However, sentences some-

times contain negated mention of diseases, which 
never occurred in the query corpus where little to 

no syntax is used.  

We also noticed that while Findings seemed to 

be generally problematic concepts in both corpora, 
other concepts such as Injury and Poisoning were 

much more prevalent in the query corpus. For this 

reason, for the general task of disease recognition, 

a drastic restriction to as little as 6 STs is probably 
not advisable.  

 

Limitations of the study. One limitation of our 
study is the relatively small number of disease 

concepts in the query corpus. Although the query 

and sentence corpus contain about 500 que-
ries/sentences each, there are significantly less dis-

ease concepts found in queries compared to 

sentences. As a result, there is also less repetition 

in the disease concept found. This is partly due to 
the brevity of queries compared to sentences but 

mainly to the fact that while all the sentences in the 

literature corpus had at least one disease concept, 
this was not the case for the query corpus. We are 

currently addressing this issue with the ongoing 

development of a large scale query corpus anno-
tated for diseases and other relevant biomedical 

entities.  

7 Conclusions 

We found that of the two steps of disease recogni-
tion, disease mention gets the higher inter-

annotator agreement (vs. concept mapping). We 

have applied a statistical and an NLP method for 

the automatic recognition of disease concepts in 
two genres of biomedical text. While both methods 

show good performance (F=77% vs. F=76%) on 

the sentence corpus, results indicate that the statis-
tical model is more robust on the query corpus 

where very little disease context information is 

available (F=74% vs. F=70%). As a result, the 
priority model will be used for disease detection in 

PubMed queries in order to characterize users’ 

search contexts for contextual IR. 
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Abstract

This paper introduces the task of automatical-
ly  answering  clinical  comparison  questions 
using MEDLINE®  abstracts. In the beginning, 
clinical  comparison  questions  and  the  main 
challenges in recognising and extracting their 
components  are  described.  Then,  different 
strategies for retrieving  MEDLINE®  abstracts 
are shown. Finally, the results of an initial ex-
periment judging the relevance of MEDLINE® 

abstracts  retrieved by searching for the com-
ponents  of  twelve comparison  questions  will 
be shown and discussed.

1 Introduction

Clinicians  wishing  to  practice  evidence-based 
medicine need to keep up with a vast amount of 
ever changing research to be able to use the current 
best evidence in individual patient care (Sackett et 
al.,  1996).  This  can  be difficult  for  time-pressed 
clinicians, although methods such as systematic re-
views, evidence summaries and clinical guidelines 
can help to translate research into practice. 

In a survey commissioned by Doctors.net.uk, 
97% of  doctors  and  nurses  said that  they  would 
find  a  Question  Answering  (QA) Service  useful, 
where they can ask questions in their own words 
(Bryant  and  Ringrose  2005).  Studies  have  also 
shown that clinicians often want answers to partic-
ular questions,  rather than getting information on 
broad topics  (Chambliss & Conley,  1996;  Ely  et 
al., 1999, 2005).                                            

A type of question that  clinicians  commonly 
want answered are comparison questions. In a cor-
pus of clinical questions collected from the Nation-
al  Library  of  Health  (NLH) Question Answering 
Service  (http://www.clinicalanswers.nhs.uk),  ap-
proximately  16%  of  the  4580  questions  concern 
comparisons of different drugs, different treatment 
methods or different interventions as in (1).

(1) Have any studies directly compared the ef-
fects of Pioglitazone and Rosiglitazone on the 
liver?

Despite the frequency of comparison questions 
in  the  clinical  domain,  there  are  no  clinical  QA 
methods specially designed to answer them. This 
paper  introduces  the  task  of  answering  clinical 
comparison questions,  focusing  initially  on ques-
tions  involving  comparisons  between drugs.  Sec-
tion 2 presents an overview of comparative struc-
tures  and  Section  3,  relevant  previous  work  on 
clinical question answering and the computational 
extraction  of  comparisons.  Section  4  discusses 
strategies  for  retrieving  MEDLINE®  abstracts  in-
volving comparisons. Section 5 presents the results 
of  an initial  experiment  judging the  relevance of 
MEDLINE®  abstracts, which are then discussed in 
Section 6.

2 Background

2.1 Indicators of Comparative Constructions
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In  order  to  identify  questions  about  comparisons 
that should trigger special purpose search and ex-
traction mechanisms, as well as identifying explicit 
comparisons made in text, one needs to recognize 
constructions  commonly used to express compar-
isons in English (i.e. similarities and/or differences 
between two or more entities).  In this  paper,  the 
term “entity” refers to drugs, treatment methods or 
interventions, and the initial focus of the work is 
on  comparative  questions  in  which  two or  more 
drugs or interventions are compared with respect to 
a particular criterion such as efficacy in treating a 
certain disease. This reflects their common occur-
rence in the NLH corpus.
    Comparisons can appear in either a comparative 
form or a superlative form. The comparative form 
is used to compare two or more entities  with re-
spect  to  a  certain  attribute.  The superlative  form 
compares or contrasts one entity with a set of other 
entities and expresses the end of a spectrum. The 
following examples illustrate the difference:

Comparative form: 
Is  Ibuprofen better  than  Paracetamol for  
treating pain?
Superlative form: 

 Is Ibuprofen the best treatment for pain?

Friedman  (1989)  developed  one  of  the  first 
computational  treatments  of  comparative  struc-
tures.  Comparisons  are  challenging  because  they 
correspond to  a diverse  range of  syntactic  forms 
such as coordinate or subordinate conjunctions, ad-
verbial  constructions  or  wh-relative-like  clauses. 
Comparisons are cross-categorical and encompass 
adjectives, quantifiers, and adverbs. Adjectives and 
adverbs  indicating  comparisons  occur  in  the  fol-
lowing patterns:

Comparative adjectives and adverbs:

Regular adjectives and adverbs: 
ADJ/ADV -er (e.g. safer) [[as/than]1 X] [for Y]
Irregular adjectives and adverbs: 
e.g. worse/better [[as/than] X] [for Y]
Analytical adjectives and adverbs: 
e.g. less/more ADJ/ADV [than X] [for Y]

1As/ than are optional. For example see “A or B: What is 
safer?”

Superlative adjectives and adverbs:

Regular adjectives and adverbs:
ADJ/ADV -est (eg. safest) X [for Y]
Irregular adjectives and adverbs:
e.g. worst/best X [for Y]
Analytical adjectives and adverbs:
e.g. least/most ADJ/ADV X [for Y] 

Comparisons can also be expressed in other parts 
of speech. In the NLH corpus the following exam-
ples occur:

Verbs: compared to/with, differ from
Nouns: comparison, difference
Conjunctions: versus/vs, or and instead of

With  respect  to  their  semantics  (and  hence, 
with respect to other phrases or constructions they 
may appear  with)  comparatives  can be  scalar or 
non-scalar and express either equality or inequality 
between  the  compared  entities.  (Superlatives  are 
absolute and the notion of scalability and equality 
does not apply to them).

Scalar adjectives and adverbs refer to attributes 
that can be measured in degrees, implying a scale 
along which entities can be arrayed. Non-scalar ad-
jectives and adverbs refer to attributes that cannot 
be  measured  in  degrees.  Equality refers  to  con-
structs  where  two or more compared  entities  are 
equal  in respect  to  a  shared  quality,  whereas  in-
equality emphasises the difference between entities 
in respect to a certain quality.  

Table 1 gives an example showing the four pos-
sibilities for drugs and interventions.

Scalability Equality Example

+ + As efficient as x

- + Same intervention as x

+ - Better treatment than x

- - Drug x differs from drug y

Table 1. Features of comparatives.

The difference between  scalar and  non-scalar 
comparisons plays an important role as far as auto-
matic  processing  of  comparative  constructions 
with  SemRep  (Rindflesch  and  Fiszman,  2003; 
Rindflesch et al., 2005) is concerned. This will be 
discussed in Section 3.1.
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Regular expressions based on the given patterns 
for adjectives and adverbs and on the other parts of 
speech  shown above,  as  well  as  their  respective 
part-of-speech tags, were used to extract a subset 
of  comparison questions  from a corpus collected 
from the National Library of Health Question An-
swering Service website at http://www.clinicalan-
swers.nhs.uk, as described in Section 2.3.

2.2 The NLH QA Service

The NLH Question Answering service (QAS) was 
a on-line  service that  clinicians  in the UK could 
use to ask questions, that were then answered by a 
team  of  clinical  librarians  from  Trip  Database 
Ltd.2, founded by Jon Brassey and Dr Chris Price. 
The questions and their answers were then retained 
at the website and indexed by major clinical topics 
(e.g.  Cancer,  Cardiovascular  disease,  Diabetes, 
etc.)  so  that  clinicians  could  consult  the  QA 
archive to  check whether  information relevant  to 
their own clinical question was already available.

While the NHS QAS service was discontinued 
in 2008, its archive of questions and answers was 
integrated  into  ATTRACT3,  the  Welsh  National 
Public Health Service run by Jon Brassey. The aim 
of  both services has been to provide answers in a 
clinically relevant time frame using the best avail-
able evidence.

From the NLH QAS archive,  a total of 4580 
unique Q-A pairs of different degrees of complexi-
ty were collected for 34 medical fields representing 
questions asked and answered over a 36 month pe-
riod. These were put into an XML format that sep-
arated the questions from the answers, while co-in-
dexing them to indicate their association.

2.3 The Comparison Question Corpus
 
    A sub-corpus specifically of comparison ques-
tions was created by POS-tagging the questions of 
the  initial  corpus with the Penn Treebank tagset, 
using the TnT tagger (Brants 1999).  Regular ex-
pression  were  then  used  to  search  the  tagged 
corpus for  tagged lexical  elements  that  indicated 
the constructions noted in Section 2.2. 

2http://www.tripdatabase.com/index.html
3http://www.attract.wales.nhs.uk/

Some  questions  were  initially  retrieved  more 
than once because these questions contained more 
than  one  tag  which  was  a  comparison  indicator. 
These duplicates were removed. There may be oth-
er  comparative  questions  that  might  have  been 
missed  because  of  POS  tagging  errors.  A  small 
number  of  false  positives  were  removed  during 
manual  post-processing.  False positives were due 
to the fact that not all words tagged as superlatives 
are proper comparisons, but idiomatic expressions, 
such as “best practise”, or proportional quantifiers 
(Huddleston  and  Pullum,  2002)  such  as  “Most 
NSAIDs”. (Scheible (2008) distinguishes eight dif-
ferent classes in which the superlative construction 
is used in English but only five of the eight classes 
involve true comparisons.) The result is a subset of 
742 comparison questions out of the the total cor-
pus of 4580 Q-A pairs.                                

Table 2. shows the number of occurrences for 
each item.

POS tag/Lexical item Occurrences

JJR 195

RBR 124

JJS 207

RBS 68

versus, instead of 18

compared to/with, differ from 45

comparison, difference 85

Total 742

     Table 2. Number of comparison indicators

3 Related Work

As the focus of this paper is biomedical text,  the 
discussion here is limited to the work done in this 
context.  Section 3.1 will present work on finding 
assertions  involving  comparisons  in  MEDLINE® 

abstracts  and Section 3.2 will  show work on an-
swering clinical questions about comparisons.

3.1  Interpretation of Comparative Structures 

(Fiszman et al., 2007) describes work on auto-
matically interpreting comparative constructions in 
MEDLINE® abstracts. They use an extension of an 
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existing  semantic  processor,  SemRep (Rindflesch 
and Fiszman, 2003; Rindflesch et al., 2005), from 
the Unified Medical Language System resources to 
construct  semantic  predications  for  the  extracted 
comparative expressions. 

Fiszman et al. concentrate on extracting “struc-
tures  in  which  two drugs  are  compared  with re-
spect to a shared attribute”, such as a drug’s effica-
cy in treating a certain condition, illustrated in the 
following in example:                                     

(3) Losartan was more effective than atenolol 
in reducing cardiovascular morbidity and mor-
tality in patients with hyptertension,  diabetes,  
and LVH.                                           
[Example (20) in (Fiszman et al. 2007)]

The  drugs'  relative  merits  in  achieving  their 
purpose  is  expressed  by  positions  on  a  scale. 
Words like than, as, with, and to are cues for iden-
tifying compared terms, the comparison scale and 
the relative position of the compared entities on the 
scale.
    Fiszman et al. focused on extracting the drug 
names, the scale and the position on the scale as il-
lustrated in the SemRep representation from exam-
ple (1):

(4) Losartan COMPARED_WITH Atenolol
Scale: Effectivness
Losartan HIGHER_THAN Atenolol            
[Example (21) in (Fiszman et al. 2007)]

The overall  F-score for the SemRep performance 
on the test set is 81% .

Fiszman et al. do not deal with questions, nor 
with identifying the basis of the comparison or the 
population in this paper, both of which are impor-
tant  for  generating  relevant  answers  for  clinical 
questions.  However,  as  Fiszman  and  Demner-
Fushman have pointed out (personal  communica-
tion), it is possible to identify the basis of the com-
parison and the population. Two drugs function as 
arguments to the TREATS predicate, which identi-
fies the disease that is the basis for the comparison. 
SemRep can also identify the population using the 
predicate  PROCESS_OF.  For  the  question  “Is 
treatment  A better  than  treatment  B  for  treating 
disease C in  population D?”, SemRep would pro-
duce the following representation for the basis of 
the comparison (C) and the population (D):

    A TREATS C
    B TREATS C
    C PROCESS_OF D

There is an essential limitation to SemRep, how-
ever: Its comparative module only considers scalar 
comparative constructions, as presented in  Section 
2.1. Non-scalar comparisons, e.g. comparisons like 
“Is X the same intervention as Y?” or “How does 
drug X differ from drug Y?” cannot be extracted 
using SemRep. Also, the SemRep algorithm only 
recognises entities which occur on the left and the 
right side of the comparison cue and hence cannot 
recognize  comparisons  in  which  both  compared 
entities are to the right side of the comparative cue 
as in “Which is better: X or Y?”. This means that 
different  methods are needed in order to  process 
non-scalar comparisons  and  scalar comparisons 
that  cannot  be recognized because of their  struc-
ture. In future work, rules will be defined for the 
different  syntactic  structures  in which  non-scalar 
comparisons and scalar comparison with both enti-
ties on the same side of a comparative cue can oc-
cur to serve as a basis for argument extraction dur-
ing parsing.

There  may  also  be  problems  with  “Wh-”  or 
“anything” questions (e.g. “What is better than X 
for treating Y?” or “Is there anything better than X 
for  treating  Y?”),  because  “Wh-words”  or  “any-
thing”  do  not  have  a  type  that  can  be  mapped. 
While  Question  Typing   might  solve  such  prob-
lems, the point is that questions involving compar-
isons raise somewhat different  problems than as-
sertions, which I will have to deal with in the work 
being carried out here.

3.2   Answering Clinical Questions

  Demner-Fushman  and  Lin  (2006)  address  su-
perlative clinical questions of the type “What is the 
best treatment for X” by using a hybrid approach 
consisting of information retrieval and summariza-
tion. 

Demner-Fushman and Lin’s  task  breaks  down 
into subtasks of  identifying the drugs using UMLS 
concepts, clustering the abstracts for the drugs us-
ing  UMLS semantic  relationships  and  creating  a 
short summary for each abstract by  using the ab-
stract title and outcome sentence. They focus  pri-
marily on synthesising correct answers from a set 
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of  search  results  consisting  of  MEDLINE® cita-
tions. 
   The system (Cluster condition) performs well 
compared  to  the  baseline,  which  consists  of  the 
main interventions from the first three MEDLINE® 

abstracts retrieved by the manual PubMed queries. 
In a manual evaluation, only 20% of the drugs for 
the  baseline  were  evaluated  as  beneficial,  com-
pared to 39% for the Cluster condition. 60% of the 
PubMed  answers were judged as “good” in com-
parison to 83% for the  Cluster condition.

The system orders the clusters by size, equating 
the most popular drug with the best drug. While 
this assumption is not always correct, the authors 
have observed that drugs that are studied more are 
more likely to be beneficial. In addition, while this 
approach  might  work  for  questions  of  the  form 
“What is the best drug for X?” it cannot be used to 
answer other superlative questions such as Exam-
ples (5) or (6), because looking for the most stud-
ied drugs will not provide an answer to the ques-
tion which drug has the fewest  side effects  or is 
safest to use.

(5) Which drug for treating X has the fewest  
side effects?

(6) Which drug is safest to use for treating X?

Despite this shortcoming, however, Demner Fush-
man and Lin’s  work of implementing  an end-to-
end QA system for superlatives provides a model 
for all future work in this area.                                 

4 Strategies  for  Retrieving  MEDLINE® 

Abstracts  

As with (Fiszman et al., 2007) and (Demner-Fush-
man and Lin 2006),  the current work starts with 
information  retrieval.  In  particular,  exploratory 
manual  searches  were  first  carried  out  via  the 
OVID® portal to see if MEDLINE® abstracts are a 
useful  resource  for  answering  comparison  ques-
tions  such  as  “Is  drug  A better  than  drug  B for 
treating X?”

With the assistance of a medical librarian from 
the  University  of  Edinburgh’s  Information  Ser-
vices, different strategies to achieve the best possi-
ble  retrieval  of  relevant  abstracts  were  tried  out. 

Two separate cases were considered: comparisons 
involving  very  popular,  well-studied  drugs  and 
ones involving other drugs. First, strategies for the 
former  will  be described  and  illustrated  with the 
following example question:

(7) Is paracetamol better than ibuprofen for re-
ducing fever?      

Titles and abstracts were searched for each com-
pared entity  (paracetamol and ibuprofen) and the 
basis of the comparison (fever).  Then, the results 
were combined to return only abstracts containing 
both entities and the basis of the comparison. We 
found that search precision could be increased by 
limiting  the  search  to  comparative  study,  using 
OVID's  publication  type  limit.  That  is,   all  ab-
stracts that mention all three terms (i.e. the entities 
and the basis of the comparison) in the title or ab-
stract  involve  relevant  comparisons.  The  most 
common sources that were excluded by constrain-
ing the search to comparative studies are reviews, 
evaluation  studies  and  case  reports.  These  may 
contain relevant  information  but  the  initial  focus 
was on the study type that was most likely to in-
crease  precision.  (As  the  experiment  reported  in 
Section 5 and discussed in Section 6 shows, the re-
striction  to  comparative  studies  is  insufficient  to 
guarantee relevance.) 

Constraining the search to comparative studies 
has  somewhat  different  effects,  depending  on 
whether  the  drugs  mentioned  in  the  search  are 
well-studied or not.

For popular, well-studied drugs, looking for the 
drug names often leads to hundreds of returned ab-
stracts, most of which are not relevant. By includ-
ing the  basis  of  the  comparison and limiting  the 
study type to comparative studies, the number of 
returned abstracts  for a set of 30 questions drops 
on average to 15% of the size of the original set of 
returned abstracts. For Example (7) a search for the 
combination of both drug names retrieved 593 ab-
stracts.  Including the basis of the comparison de-
creased  the  number  to  139  abstracts.  After  con-
straining  the  results  to  comparative  studies,  the 
number of retrieved abstracts dropped to 24, which 
is a reduction of 83%.

For  less-studied  drugs,  the  difference  in  num-
bers of abstracts retrieved by including the basis of 
the comparison and limiting the search to the com-
parative study publication type is smaller compared 
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1.  Is there any evidence to suggest that torasemide is
better than furosemide as a diuretic?

2.  Is  lansoprazole  better  than  omeprazole  in  treating
dyspepsia?

3. Are  there  any  studies  comparing  topical  di-
clofenac gel with ibuprofen gel?

4. Effectiveness of Decapeptyl in treatment of prostate
cancer in comparison to Zoladex?

5. Which is more effective ibuprofen or diclofenac for  
arthritis pain for pain relief?

6. Is calcium citrate better absorbed and a more effec-
tive treatment for osteoporosis than calcium carbon-
ate?

Figure 1. Questions used in the experiment.

to the numbers  retrieved by only looking for the 
drug names, because fewer abstracts exist for these 
drugs, but the relevance of the returned abstracts 
improves as considerably as for the more studied 
drugs. (Recall was not analyzed during the explo-
rations because for answering clinical questions the 
relevance of the retrieved abstracts is more impor-
tant than retrieving all possible abstracts.)

There have also been cases where including the 
basis of the comparison leads to the return of no 
relevant abstracts. In this case, different strategies 
from the one discussed above will be necessary. 

Often drugs are known under generic names or 
the basis of the comparison is related to symptoms 
which are not explicitly mentioned in the question 
but which are still relevant. In order to recognise 
that different terms are actually related to the same 
drug or disease and belong to the same hierarchy, 
advantage was taken of OVID’s ability to map the 
entities  to  their  corresponding  MeSH  (Medical 
Subject  Headings)  terms and  to  “explode”  the 
MeSH terms to include  all of the narrower, more 
specific subheadings during the search.

So far the focus has been on manual retrieval 
of abstracts. The described search strategy of com-
bining  search terms  and  restricting  the  results  to 
the specific publication type could have been done 
using a  search engine which implements Boolean 
operators and is capable of indexing XML docu-
ments  However,  the  description  of  the  search 
strategy  and  the  presentation  of  the  intermediate 
searches,  which  would  have  been  performed  in-
ternally by a search engine, was regarded import-
ant to illustrate the impact of adding the basis of 
the comparison and the use of a publication type 
limit on the number of retrieved abstracts. 

7. Have any studies directly compared the effects of  
Pioglitazone and Rosiglitazone on the liver?

8. Is  Famvir  (famciclovir)  better  than  acyclovir  for  
Herpes zoster?

9. Is it true that men on captopril have a better quality
 of life than men on enalapril?

10. What is the first choice for Type 2 diabetes patients: 
sulphonylurea or metformin?

11. Is there any evidence as to which is more effective 
 at preventing malaria: Malarone or Doxycyline?

12.  In conjunctivitis which is better chloramphenicol or 
fucithalmic eye drops?

                                

5 Judging  the  Relevance  of   MEDLINE® 

Abstracts

A initial experiment was carried out to evaluate the 
relevance  of  the  abstracts  retrieved  from  MED-
LINE® via Ovid®  using the strategies described in 
the previous section. 

The experimental  subjects  were  eight  4th  year 
medical  students,  who evaluated the abstracts  re-
trieved for twelve clinical comparison questions in 
which two drugs were compared to each other with 
respect to a particular attribute. The questions dif-
fer in syntactic structure, but they all contain com-
parisons of two drugs. Figure 1 shows the list of 
questions.

The material presented to the medical students 
in  the  experiment  was  created  as  follows: 
The drug names and the basis of the comparison 
from the natural language questions were manually 
mapped  to  their  corresponding  MeSH terms  and 
used to retrieve abstracts via OVID® using the final 
strategy described in Section 4.. 

For any question, the maximum number of ab-
stracts  given to the  student  judges was 15,  com-
prising up-to-15 of the most recent abstracts. In to-
tal,  each judge evaluated 103 abstracts.  Each ab-
stract was assigned by each judge into one of three 
categories, based on the criteria given after the cat-
egory label:
       

1. Relevant: Both drugs from the question or 
their generic names are mentioned in the abstracts, 
the drugs are directly compared to each other and 
the disease or the attribute with respect to which 
they are being compared is also mentioned and the 
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same as stated in the question or synonymous to it 
(e.g. heartburn and dyspepsia would both count as 
right because they are closely related).

2.  Not  Relevant: The  drugs  or  their  generic 
names are not mentioned in the abstract, the drugs 
are not compared and/or the disease or the attribute 
with respect to which they are being compared is 
wrong (as in different  from what is stated in the 
question,  e.g.  effect  on blood pressure instead of 
use as a painkiller).

3.  Somewhat  Relevant: The  drugs  or  their 
generic names are mentioned but there are no sin-
gle  sentences  indicating  a  comparison  between 
them or the disease is not mentioned. If the wrong 
disease is mentioned, the abstract should be labeled 
“not relevant”.

The judges were also asked to explain the rea-
son for their choice of labels.                                 

The  inter-annotator  agreement  between  the 
judges was computed using a variant kappa statis-
tic for multiple annotators (Fleiss, 1971). The null 
hypothesis was rejected and it was ensured that the 
observed agreement is not accidental. 

Overall  inter-annotator agreement  for all  three 
categories  measured  by  the  kappa  statistic  was 
moderate at 0.58 for a total of 103 judgments. 47 
judgments were in the “somewhat relevant” cate-
gory.  If  annotator  agreement  is  only  assessed on 
the  remaining  56  judgments  from  the  two  cate-
gories “relevant” and “not relevant”, kappa is 0.97, 
which represents almost perfect agreement. 

6 Results and Discussion                    

Graph  1  shows  the  percentage  of  abstracts  that 
were judged relevant by the eight judges for each 
question.  The  numbers  of  retrieved  abstracts  for 
each question were: 15 abstracts for Question 1, 5, 
8 and 10, 9 abstracts for question 7 and 11, 7 ab-
stracts for Question 2, 5 abstracts for Question 9, 4 
abstracts  for  Question  6  and  12,  3  abstracts  for 
Question 3 and 2 abstracts for Question 4.

Question 1, 9 and 12 show a very high percent-
age of relevant abstracts (73%, 80% and 100%  re-
spectively), whereas no relevant abstracts were re-
trieved for questions 4, 5 and 11, and only one rel-
evant abstract (out of 15) for question 10. An ab-

stract was considered relevant when at least five of 
the eight judges considered it relevant.

                           

Graph 1. Percentage of abstracts judged relevant by the 
majority of the judges for each of the twelve questions. 
The label on the top of each bar is the actual percentage. 

Here the main sources for these disparate results 
are discussed, based on both the explanations given 
by  the  student  judges  and  discussions  with  our 
medical librarian.    

Approximately 30% (31 of 103) of the abstracts 
were labeled “not relevant” by the judges because 
they  lacked any direct  evidence of a comparison 
e.g. at least one sentence that explicitly compares 
the two drugs in question, even though the drugs 
are  mentioned  in  the  abstract  and  the  study is  a 
comparative study (as  indicated  in  its  MeSH in-
dices).  This  is  illustrated  in  Example  (9),  which 
shows the three sentences from one of the abstracts 
retrieved for Question 1 that explicitly mention the 
two drugs:

(9) Piretanide and furosemide have a constant 
extrarenal elimination and thus accumulate in  
renal failure.[...] Elimination of torasemide is 
independent of its renal excretion. Thus in renal 
failure, torasemide is the only loop diuretic in 
which the plasma concentration is strictly dose 
dependent. 
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 About 10% (10) of the abstracts were judged to 
be irrelevant because the drugs were compared as 
part of a treatment regime in combination with oth-
er drugs, as in Abstract 4 for Question 6 in which 
calcium  citrate  and  calcium  carbonate  are  com-
pared co-administered  with different  preparations 
of  sodium fluoride.  In two cases  (2% of  the  ab-
stracts),  doses  of  a  given  drug  were  compared 
against  other  dosages  instead  of  the  drugs them-
selves,  e.g.  30  mg lansoprazole  versus  20mg 
omeprazole.                         

A major factor for “not relevant” judgments was 
the time frame. This was relevant when retrieving 
abstracts  about  well-established  drugs  that  have 
been in existence for a long time, such as ibuprofen 
or  diclofenac. All but one of the 18 abstracts re-
trieved for the two questions about these two drugs 
were irrelevant,  even though the two drugs were 
explicitly mentioned in the abstract.  The problem 
is that they were grouped together as conventional 
non-steroidal  anti-inflammatory  drugs  (NSAIDs) 
and compared to newer NSAIDs or different pain 
medication. Such abstracts could only be excluded 
by analyzing the abstracts themselves. Whether to 
proceed systematically back through the abstracts 
ordered by recency, or to retrieve abstracts from a 
random time interval, or from a window of  n-years 
after the drug came on the market, will be a matter 
to be assessed empirically.

The  final  source  of  “non  relevant”  judgments 
was a problem with the judges and not with the ab-
stracts. In Question 2 regarding dyspepsia,  two out 
of seven abstracts were judged irrelevant because 
the drugs were not explicitly compared regarding 
dyspepsia but  only regarding H. pylori,  which is 
one of the possible causes for dyspepsia. Also ab-
stracts retrieved for Question 7 about the effect on 
lipid profiles were wrongly categorised by roughly 
a third of the judges as not being relevant to the 
liver.                                    
 The experiment has shown that searching for the 
drugs, the basis of the comparison and studies of 
the  publication  type  comparative  study  is  a  first 
step towards retrieving abstracts that can serve as 
answer  candidates  for  clinical  comparison  ques-
tions, but it has been shown not to be sufficient to 
guarantee the relevance of the retrieved abstracts.  

The two main problems discovered during the 
experiment  that  need  to  be  addressed  in  further 
processing steps for the retrieved abstracts concern 
abstracts lacking sentences in which the drugs are 

directly compared to each other and the retrieval of 
irrelevant  abstracts  for  well-established  drugs, 
which are used as a reference for comparing newer 
drugs to, instead of containing direct comparisons 
of the drugs in question. 

7 Conclusion and Future Work                  

This work introduced the task of answering clinical 
comparison questions  and pointed  out  challenges 
in recognising and extracting their components. It 
also described strategies for retrieving MEDLINE® 

abstracts  and  showed  that  only  looking  for  the 
compared  entities  without  including  the  basis  of 
the comparison is not enough to retrieve useful ab-
stracts.  

The initial experiment evaluating the relevance 
of retrieved abstracts for twelve clinical compari-
son  questions revealed a number of problems that 
need to be taken into account for future work, es-
pecially  the lack of sentences  containing  explicit 
comparisons  and  dealing  with  well-established 
drugs.

During the next stages, the process of identify-
ing  and  extracting  the  elements  of  a  comparison 
question as well as the process of retrieving  MED-
LINE® abstracts will be automated using tools from 
the UMLS Knowledge Sources. Features or rules 
will be defined to augment SemRep to deal with 
the  problems  concerning  non-scalar comparisons 
and  structurally  different  scalar  comparison  dis-
cussed in Section 3.1 to be able to automatically 
extract the relevant comparison components. Also, 
possible solutions will be researched to automati-
cally overcome the problems of retrieving relevant 
abstracts  identified  and  discussed  in  Section  6.
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Abstract

This paper compares domain-oriented and
linguistically-oriented semantics, based on the
GENIA event corpus and FrameNet. While
the domain-oriented semantic structures are
direct targets of Text Mining (TM), their ex-
traction from text is not straghtforward due
to the diversity of linguistic expressions. The
extraction of linguistically-oriented semactics
is more straghtforward, and has been studied
independentely of specific domains. In or-
der to find a use of the domain-independent
research achievements for TM, we aim at
linking classes of the two types of seman-
tics. The classes were connected by analyz-
ing linguistically-oriented semantics of the ex-
pressions that mention one biological class.
With the obtained relationship between the
classes, we discuss a link between TM and
linguistically-oriented semantics.

1 Introduction

This paper compares the linguistically-oriented and
domain-oriented semantics of the GENIA event cor-
pus, and suggests a factor for utilizing NLP tech-
niques for Text Mining (TM) in the bio-medical do-
main.

The increasing number of scientific articles in the
bio-medical domain has contributed in drawing con-
siderable attention to NLP-based TM. An impor-
tant step in NLP-based TM is obtaining the domain-
oriented semantics of sentences, as shown at the bot-
tom of figure 1. The BioInfer (Pyysalo et al., 2007)
and the GENIA event corpus (Kim et al., 2008) pro-
vide annotations of such semantic structures on col-

lections of bio-medical articles. Domain-oriented
semantic structures are valuable assets because their
representation suits information needs in the do-
main; however, the extraction of such structures is
difficult due to the large gap between the text and
these structures.

On the other hand, the extraction of linguistically-
oriented semantics from text has long been studied
in computational linguistics, and has recently been
formalized as Semantic Role Labeling (Gildea and
Jurafsky, 2002), and semantic structure extraction
(Baker et al., 2007)(Surdeanu et al., 2008). Seman-
tic structures in such tasks are exemplified in the
middle of figure 1. The linguistically-oriented se-
mantic structures are easier to extract, although the
information is not practical to the domain.

We aim at relating linguistically-oriented frames
of semantics with domain-oriented classes, thus
making a step forward in utilizing the computa-
tional linguistic resources for the bio-medical TM.
Of all the differences in the two type of seman-
tics, we focused on the fact that the former frames
are more sensitive to the perspective imposed by
the sentence writer. In the right hand-side exam-
ple of figure 1, the linguistically-oriented structure
treats PBMC, a cell entity, as an agent; however the
bio-medical structure reflects the scientific view that
there are no agents, objects acting with intention, in
bio-molecular phenomena.

As a preliminary investigation, we selected
four representative classes of bio-molecular phe-
nomena; Localization, Binding, Cell adhesion,
and Gene expression, and investigated domain-
oriented annotations for the classes in the GENIA
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…, whereas in many other cell types, NF-
kappa B TRANSLOCATES from cytosol 
to nucleus as a result of …


…, both C3a and C3a(desArg) were found 
to enhance IL-6 RELEASE by PBMC in a 
dose-dependent manner.


Natural language


FrameNet expression (Linguis4cally‐oriented seman4cs)


Class:     Mo)on 
Theme: NF‐kappa B 
Source: from cytosol 
Goal:     to nucleus 

Class:    Releasing 
Theme: IL‐6 
Agent:   PBMC 

GENIA expression (Biologically‐oriented seman4cs)


Class:       Localiza)on 
Theme:    NF‐kappa B 
FromLoc: cytosol 
ToLoc:      nucleus 

Theme:    IL‐6 
FromLoc: (inside of) PMBC 
ToLoc:      (outside of) PMBC 

Figure 1: A comparison of the linguistically-oriented and biologically-
oriented structure of semantics

event corpus. Expressions mentioning the four
classes were examined and manually classified into
linguistically-oriented frames, represented by those
defined in FrameNet (Baker et al., 1998). FN frames
associated to a bio-molecular event class constitute a
list of possible perspectives in mentioning phenom-
ena of the class.

The rest of this paper is structured in the fol-
lowing way: Section 2 reviews the existing work
on semantic structures and expression varieties in
the bio-medical domain, and provides a compari-
son to our work. In section 3, we describe the GE-
NIA event corpus, and the FrameNet frames used as
linguistically-oriented classes in our investigation.
Sections 4 and 5 explain the methods and results of
the corpus investigation; in particular the sections in-
vestigate how the linguistic frames were associated
to the domain-oriented classes of semantics. Finally,
we provide discussion and conclusion in section 6
and 7.

2 Related Work

Existing work on semantics approached domain-
oriented semantic structures from linguistically-
oriented semantics. In contrast, our approach uses
domain-oriented semantics to find the linguistic se-
mantics that represent them. We believe that the two
different approaches could complement each other.

The PASbio(Wattarujeekrit et al., 2004) pro-
poses Predicate Argument Structures (PASs), a type
of linguistically-oriented semantic structures, for
domain-specific lexical items, based on PASs de-

fined in PropBank(Wattarujeekrit et al., 2004) and
NomBank(Meyers et al., 2004). The PASs are de-
fined per lexical item, and is therefore distinct from a
biologically-oriented representation of events. (Co-
hen et al., 2008) investigated syntactic alternations
of verbs and their nominalized forms which oc-
curred in the PennBioIE corpus(Kulick et al., 2004),
whilst keeping PASs of the PASBio in their minds.

The BioFrameNet(Dolbey et al., 2006) is an at-
tempt to extend the FrameNet with specific frames
to the bio-medical domain, and to apply the frames
to corpus annotation. Our attempts were similar, in
that both were: 1) utilizing the FN frames or their
extensions to classify mentions of biological events,
and 2) relating the frames and the FEs (roles of par-
ticipants) with classes in domain ontologies; e.g. the
Gene Ontology(Ashburner et al., 2000).

As far as the authors know, it is the first at-
tempt to explicitly address the problem of linking
linguistically-oriented and domain-oriented frames
of semantics. However, it has been indirectly stud-
ied through works on TM or Relation Extraction
using linguistically-oriented semantic structures as
features, such as in the case with (Harabagiu et al.,
2005).

3 Corpora

　We used domain-oriented annotations of the GE-
NIA event corpus and linguistically-oriented frames
defined in FrameNet (FN), to link domain-oriented
and linguistically-oriented frames of semantics. We
briefly describe these resources next.
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Mo#on


Releasing


Ge-ng


A/aching


Being_located


Becoming


Event
 State
GENIA event


Biological_process


Viral_life_cycle


Cellular_process


Physiological_process
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Cell_communica#on


Localiza#on


Binding


Metabolism


DNA_metabolism


Gene_expression


Crea#ng


Being_a/ached


Figure 2: The resulting relationship between linguistically-oriented and
biologically-oriented frames.

The GENIA event corpus consists of 1,000 Med-
line abstracts; that is, 9,372 sentences annotated
with domain-oriented semantic structures. The an-
notation was completed for all mentions of biolog-
ical events, and resulted in 6,114 identified events.
Examples of annotated event structures are shown at
the bottom of figure 1. Each structure has attributes
type and themes, which respectively show the bio-
logical class of the mentioned event and phrases ex-
pressing the event participants. The event classes are
defined based on the terms in the Gene Ontology.
For example, the Localization class in the GENIA
event corpus is defined as an equivalent of the GO
term Localization (GO0051179). The event classi-
fications used in the corpus are depicted in the left
hand-side of figure 2. Arrows in the figure depict
the inheritance relations defined in the GENIA event
ontology. For instance, the Localization class is de-
fined as a type of Physiological process. Each of
the annotated structures has additional attributes that
point phrases that the annotator of the structure used
as a clue. Among the attributes, the clueType at-
tribute shows a clue phrase to the event class. In our
investigation, the attribute was treated as a predicate,
or an equivalent of the lexical unit in the FN.

FN is a network of frames that are are
linguistically-oriented classifications of semantics.

A FN frame is defined as “a script-like conceptual
structure that describes a particular type of situation,
object, or event and the participants and proposi-
tions involved in it,” and is associated with words,
or lexical units, evoking the frame. For instance, the
verbs move, go and fly are lexical units of the Mo-
tion frame, and they share the same semantic struc-
ture. Each FN frame has annotation examples form-
ing an attestation of semantic overlap between the
lexical units. Additionally, FN defines several types
of frame-frame relations; e.g. inheritance, prece-
dence, subframe, etc. The right hand-side of figure
2 shows some FN frames and inheritance relation-
ships between them. The FN provides linguistically-
oriented classifications of event mentions based on
surface expressions, and also shows abstract rela-
tions between the frames.

4 Additional Annotation

Our aim is to link linguistically-oriented and
domain-oriented frames of the bio-medical text’s se-
mantics. A major problem in this task was that there
were no annotated corpora with both types of se-
mantic structures. Therefore, we decided to concen-
trate on the mentions of a few classes of biological
phenomena, and to annotate samples of the mentions
with linguistically-oriented structures conforming to
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Freq. Keyword Frame
693 binding Attaching
247 bind Attaching
125 interaction Attaching, Being attached
120 complex –
99 bound Attaching, Being attached
91 interact Attaching, Being attached
61 form Becoming
52 crosslink Attaching
46 formation Becoming

Table 1: The most frequent keywords of the Binding class,
mentioned 2,006 times in total.

Freq. Keyword Frame
131 translocation Motion
81 secretion Releasing
75 release Releasing
32 secrete Releasing
25 mobilization Motion
23 localization Being located
20 uptake Getting
18 translocate Motion
15 expression Creating

9 present Being located

Table 2: The most frequent keywords of the Localization
class, mentioned 582 times in total.

the FrameNet annotations.
The following provides the annotation proce-

dures. First, we collected linguistic expressions that
mention each of the selected GENIA event classes
from the GENIA event corpus. We then sampled
and annotated them with their linguistically-oriented
semantics which conformed to the FrameNet.

4.1 Target Classes and Keywords

We concentrated mainly on the mentions of four GE-
NIA classes; Localization, Binding, Cell adhesion,
and Gene expression. Gene expression, Binding,
and Localization are three of the most frequent four
classes in the GENIA event corpus.1 Binding and
Localization are the two most primitive molecular
events. The Cell adhesion class was included as a
comparison for the Binding class.

Counting keywords for mentioning events was
close to automatic. We extracted phrases pointed
by a clueType attribute from each event structure.
We then tokenized the phrases, performed a simple
stemming on the tokens, and counted the resulting
words. The stemming process simply replaced each
inflected word to its stem by consulting a small list
of inflected words with their stems. Manual work
was only used in making the small list.

4.2 FN Annotation

A major challenge encountered in annotating a sam-
pled expression with a semantic structure conform-
ing to FN, was in the assignment of a FN frame to

1Except correlation and regulation classes which express re-
lational information rather than events.

the mention. Our decision was based on the follow-
ing four points: 1) keywords used in the mention, 2)
description of FN frames, 3) syntactic positions of
the event participants, and 4) frame-frame relations.

The first indicates that a FN frame became a can-
didate frame for the mention, if the keyword in the
mention is a lexical unit of the FN frame. FN frames
and their lexical units could be easily checked by
consulting the FN dictionary. If there were no en-
tries for the keyword in the dictionary, synonyms or
words in the keyword’s definition were used. For ex-
ample, the verb translocate has no entries in the FN
dictionary, and the frames for verbs such as move
were used instead.

For the second point, we discarded FN frames that
are either evoked by a completely different sense of
the keyword, or too specific of a non-biological sit-
uations.

Before we assigned a FN frame to each mention,
we manually examined the syntactic positions of all
event participants present in the sampled GENIA
mentions. Combinations of the syntactic position
and event participants observed for a keyword were
compared with sample annotations of the candidate
FN frames.

We checked frame-frame relations between the
candidate frames, because they can be regarded
as evidence that shows that the conception of the
frames is related. For our aim, it was sufficient to
choose a set of frames that best describes the differ-
ent perspectives for mentioning one type of molecu-
lar phenomena. Even when some keywords seemed
to be dissimilar in the three points mentioned above,
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Freq. Keyword Frame
98 adhesion Being attached
19 adherence Being attached
16 interaction Being attached, Attaching
15 binding Attaching

8 adherent Being attached

Table 3: The most frequent keywords of the Cell adhesion
class, mentioned 193 times in total.

Freq. Keyword Frame
1513 expression Creating
357 express Creating
239 production Creating

71 overexpression Creating
69 produce Creating
62 synthesis Creating

Table 4: The most frequent keywords of the
Gene expression class, mentioned 2,769 times in
total.

a single frame could be assigned to them if it was
quite clear that they shared a similar perspective.
The frame-frame relations provided in the FN were
treated as clues to the similarity.

Keywords frequently used in each event class are
listed in tables 1, 2, 3, and 4, with the final assign-
ment of FN frames to each keyword.

5 Analysis

After the linguistic annotation was performed, we
compared the GENIA event structure and the frame
structure of each sampled expression, and obtained
relations of the GENIA class-FN frame and GE-
NIA slot-FN participant. The resulting relationships
between FN frames and the four GENIA classes
demonstrate a gap between linguistically-oriented
and domain-oriented classification of events, as
shown in figure 2.

The relations can be explained by decomposing it
into two cases: 1) 1-to-n mappings, and 2) n-to-1
mappings. The n-to-n mapping from GENIA to FN
can then be regarded as a mix of the two cases. In
the following sections, the two cases are described
in detail. Further, we show conversion examples of
a FN structure to a GENIA event structure, which
were supported by the obtained GENIA participant-
FN participant relations.

5.1 1-to-N Mapping: Different Perspectives on
the Same Phenomena

A 1-to-n mapping from GENIA to FN can be ex-
plained as the case where the same molecular phe-
nomena are expressed from different perspectives.

5.1.1 Binding Expressed in Multiple frames

The Binding class in GENIA is defined as
“the selective, often stoichiometric interaction of a
molecule with one or more specific sites on an-
other molecule.” We associated the class with three
frames, and two frames of the three, Attaching and
Becoming frames, represent different perspectives
for mentioning the class. The Being attached frame
shares the same conception as Attaching, but ex-
presses states instead of events. See table 1 for key-
words of the class, and the frames assigned to the
words.

Attaching: In the perspective represented by this
frame, a binding phenomenon was recognized as a
event in which protein molecules were simply at-
tached to one another.

[The 3’-CAGGTG E-boxItem] could BIND
[USF proteinsGoal], · · ·
(PubMed ID 10037751, Event IDs E11, E12, E13)

Becoming: In the perspective represented by this
frame, a product of a binding event was treated, on
the surface, as a different entity from the original
parts.

When activated, [glucocorticoid recep-
torsEntity] FORM [a dimerFinal category] · · ·
(PubMed ID 10191934, Event ID E5)

This type of expression was possible because a prod-
uct of a binding often obtains a different function-
ality, and can be treated as a different type of en-
tity. Note that this frame was not associated with the
Cell adhesion class described in section 5.2.
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A
 C
B 

Figure 3: A schematic figure of translocation.

Being attached: Annotators recognized a protein
binding event from the sentence below, which basi-
cally mentions a state of the NF-kB.

In T cells and T cell lines, [NF-kBItem]
is BOUND [to a cytoplasmic proteic in-
hibitor, the IkBGoal].
(PubMed ID 1958222, Event ID E2, E102)

Although this type of expression shares a similar
point of view with the Attaching frame, we classi-
fied these expressions into the Being attached frame
in order to demonstrate cases in which a prerequisite
Binding event was inferred from a state.

5.1.2 Translocation Expressed in Multiple
Frames

The Localization class in the GENIA corpus is de-
fined as a class for “any process by which a cell, a
substance, or a cellular entity, such as a protein com-
plex or organelle, is transported to, and/or main-
tained in a specific location.” Sampled expressions
of the class separated into mentions of a process, by
which an entity was transported to a specific loca-
tion, and those of the process in which an entity was
maintained in a specific location. We concentrate on
the former in this section, and describe the latter in
section 5.1.3.

We associated the frames: Motion, Releasing and
Getting with what we call translocation events, or
Localization events in which an entity was trans-
ported to a specific location. Figure 3 provides a
schematic representation of a translocation event.
Each of the three frames had a different perspective
in expressing the translocations. See table 2 for key-
words of the frames.

Motion: This group consists of expressions cen-
tered on the translocated entities of the translocation
- namely, B in the figure 3.

[NK cell NFATTheme] · · · MIGRATES [to
the nucleusGoal] upon stimulation,· · ·
(PubMed ID 7650486, Event ID E33)

Activation of T lymphocytes · · · results
in TRANSLOCATION [of the transcrip-
tion factors NF-kappa B, AP-1, NFAT, and
STATTheme] [from the cytoplasmSource] [into
the nucleusGoal].
(PubMed ID 9834092, Event ID E67)

These expressions are similar to those of the Motion
frame in the FN.

[Her footTheme] MOVED [from the
brakeSource] [to the acceleratorGoal] and the
car glided forward.

Releasing: This group consists of expressions
centered on a starting point of the translocation -
namely, A in the figure 3.

In [unstimulated cells whichAgent] do not
SECRETE [IL-2Theme], only Sp1 binds to
this region, · · ·
(PubMed ID 7673240, Event ID E13)

Activation of NF-kappaB is thought to
be required for [cytokineTheme] RELEASE
[from LPS-responsive cellsAgent], · · ·
(PubMed ID 1007564, Event ID E14)

The verbal keywords occurred as a transitive in
most cases, and had subjects and objects that ex-
pressed starting points and entities in the transloca-
tions. This is a typical syntactic pattern of the Re-
leasing frame, if we regarded an Agent in the FN as
a starting point of the movement of a Theme.

[The policeAgent] RELEASED [the sus-
pectTheme].

Getting: This group consists of expressions cen-
tered on a goal point of the translocation - namely,
C in figure 3. We assumed that this group has an
opposite point of view from the Releasing frame.
The noun uptake was found to be a keyword in this
group.

The integral membrane · · · appears to play
a physiological role in binding and UP-
TAKE [of Ox LDLTheme] [by monocyte-
macrophagesRecipient], · · ·
(PubMed ID 9285527, Event ID E10)
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To summarize, we observed three groups of ex-
pressions that mention translocation events, and
each group represented different perspectives to
mention the events. Each of the groups and the as-
sociated frame seemed similar, in that they shared
similar keywords and possible syntactic positions to
express the event participant.

5.1.3 Localization excluding Translocation
Expressed in Multiple Frames

Localization events excluding translocations were
expressed in the Being located and Creating frames.

Being located: This group consists of expressions
that simply mention an entity in a specific location.

· · · [recombinant NFAT1Theme] LOCAL-
IZES [in the cytoplasm of transiently
transfected T cellsLocation] · · ·
(PubMed ID 8668213, Event ID E23)

Creating: A noun expression was observed to be
used by instances mentioning the presence of pro-
teins.

horbol esters are required to induce
[AIM/CD69Created entity] Cell-surface EX-
PRESSION as well as · · ·
(PubMed ID 1545132, Event ID E12)

Expressions in these cases indicate an abbrevi-
ation for gene expression, which is a event of
Gene expression class. This type of overlap be-
tween the Localization and Gene expression is ex-
plained in section 5.2.2

5.2 N-to-1 Mapping: Same Conception for
Different Molecular Phenomenon

In contrast to the cases described in section 5.1, the
same conception could be applied to different bio-
logical phenomena.

5.2.1 Shared Conception for Binding and
Cell adhesion

Molecular events classified into Binding and
Cell adhesion shared the conception that two enti-
ties were attached to each other. However, types of
the entities involved are different. They are: the pro-
tein molecule in Binding, and cell in Cell adhesion.

CD36 is a cell surface glycoprotein
· · ·, which INTERACTS with throm-
bospondin, · · ·, and erythrocytes para-
sitized with Plasmodium falciparum.

In the sentence above, an event involving a cell sur-
face glycoprotein and thrombospondin was recog-
nized as a Binding, whereas an event involving a cell
surface glycoprotein and erythrocytes was classified
as a Cell adhesion event.

5.2.2 Shared Expressions of Localization and
Gene expression

Both Localization and Gene expression classes
are connected with the Creating frame. Some
Localization events have a dependency on the
Gene expression event. Protein molecules are made
in events classified into the Gene expression class.

[Th1 cellsCreator] PRODUCE [IL-2 and
IFN-gammaCreated entity], · · ·
(PubMed ID 10226884, Event ID E11, E12)

The molecules are then translocated somewhere.
Consequently, localized protein molecules might in-
dicate a Gene expression event, and a phrase “pro-
tein expression” was occasionally recognized as
mentioning a Localization.

horbol esters are required to induce
[AIM/CD69Created entity] cell-surface EX-
PRESSION as well as · · ·
(PubMed ID 1545132, Event ID E12)

5.3 Conversion of FN Structures to GENIA
Events

During the investigation, we compared participant
slots of GENIA and FN structures, in addition to the
structures themselves. Figures 4 and 5 depict con-
version examples from a FN structure and its par-
ticipants to a GENIA structure, with the domain-
oriented type of each participant entity. The conver-
sions were supported by samples, and need quanti-
tative evaluation.

6 Discussion

By annotating sentences of the GENIA event corpus
with semantic structures conforming to FrameNet,
we explicitly compared linguistically-oriented and
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Class:  Binding 
Theme: Protein A, protein B 

FrameNet expression
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Theme: Protein 
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GENIA expression
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Figure 4: FN-to-GENIA conversions for Binding
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Figure 5: FN-to-GENIA conversions for Localization.

domain-oriented semantics of the bio-molecular ar-
ticles. Our preliminary result illustrates the gap be-
tween the two type of semantics, and a relationship
between them. We discuss development of a Text
Mining (TM) system, in association with the extrac-
tion of linguistically-oriented semantics, which has
been studied independently of TM.

First, our result would show that TM involves at
least two qualitatively different tasks. One task is
related to our results; that is, recognizing equiva-
lent events which are expressed from different per-
spectives, and hence expressed by using different
linguistic frames, and at the same time distinguish-
ing event mentions which share the same linguistic
frame but belong to different domain classes. Our
investigation indicates that this task is mainly depen-
dent on domain knowledge and how a phenomenon
can be conceptualized. Another task of TM is the ex-
traction of linguistically-oriented semantics, which
basically maps various syntactic realizations to the
shared structures. In order to develop a TM system,
we need to solve the two difficult tasks.

Second, TM could benefit from linguistically-
oriented frames by using them as an intermediat-
ing layer between text and domain-oriented infor-
mation. The domain-oriented semantic structures,
which is a target of TM, are inevitably dependent
on the domain. On the other hand, the extraction of
linguistically-oriented semantics from text is less de-
pendent. Therefore, using the linguistically-oriented
structure could be favorable to domain portability of
a TM system.

Our aim was explicitly linking linguistically-
oriented and domain-oriented semantics of the bio-
molecular articles, and the preliminary result show
the possibility of the extraction of linguistically-
oriented semantics contributing to TM. Further in-

vestigation of the relationship would be a important
step forward for TM in the bio-molecular domain.

Our investigation was preliminary. For exam-
ple, conversions from FN structures to GENIA event
structures, depicted in figures 4 and 5, were based
on manual investigation. Further, they were attested
by limited samples in the corpus. For our results to
contribute to a TM system, evaluation of the conver-
sions and automatic extraction of such conversions
must be considered.

7 Conclusion

This paper presents a relationship of domain-
oriented and linguistically-oriented frames of se-
mantics, obtained by an investigation of the GE-
NIA event corpus. In the investigation, we anno-
tated sample sentences from the GENIA event cor-
pus with linguistically-oriented semantic structures
as those of FrameNet, and compared them with
domain-oriented semantic annotations that the cor-
pus originally possesses. The resulting relations
between the domain-oriented and linguistically-
oriented frames suggest that mentions of a bio-
logical phenomenon could be realized in a num-
ber of linguistically-oriented frames, and that
the linguistically-oriented frames represent possible
perspectives in mentioning the phenomenon. The
resulting relations would illustrate a challenge in
developing a Text Mining system, and would indi-
cate importance of linguistically-oriented frames as
an intermediating layer between text and domain-
oriented information. Our future plan includes
evaluation of our conversions from a linguistically-
oriented to a domain-oriented structure, and auto-
matic extraction of such conversions.
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Abstract 

Question answering is different from infor-
mation retrieval in that it attempts to an-
swer questions by providing summaries 
from numerous retrieved documents rather 
than by simply providing a list of docu-
ments that requires users to do additional 
work.  However, the quality of answers that 
question answering provides has not been 
investigated extensively, and the practical 
approach to presenting question answers 
still needs more study. In addition to fac-
toid answering using phrases or entities, 
most question answering systems use a sen-
tence-based approach for generating an-
swers. However, many sentences are often 
only meaningful or understandable in their 
context, and a passage-based presentation 
can often provide richer, more coherent 
context. However, passage-based presenta-
tions may introduce additional noise that 
places greater burden on users. In this 
study, we performed a quantitative evalua-
tion on the two kinds of presentation pro-
duced by our online clinical question 
answering system, AskHERMES 
(http://www.AskHERMES.org). The over-
all finding is that, although irrelevant con-
text can hurt the quality of an answer, the 
passage-based approach is generally more 
effective in that it provides richer context 
and matching across sentences. 

1 Introduction 

Question answering is different from informa-
tion retrieval in that it attempts to answer ques-
tions by providing summaries from numerous 
retrieved documents rather than by simply pro-
viding a list of documents for preparing the user 
to do even more exploration. The presentation of 
answers to questions is a key factor in its effi-
ciently meeting the information needs of infor-
mation users. 

 
While different systems have adopted a variety 
of approaches for presenting the results of ques-
tion answering, the efficacy of the use of these 
different approaches in extracting, summarizing, 
and presenting results from the biomedical lit-
erature has not been adequately investigated.  In 
this paper, we compare the sentence-based ap-
proach and the passage-based approach by using 
our own system, AskHERMES, which is de-
signed to retrieve passages of text from the bio-
medical literature in response to ad hoc clinical 
questions.   

2 Background 

2.1 Clinical Question Collection 

The National Library of Medicine (NLM) has 
published a collection of 4,653 questions that 
can be freely downloaded from the Clinical 
Questions Collection website1 and includes the 
questions below: 
 

                                                           
1 http://clinques.nlm.nih.gov/JitSearch.html 
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Question 1: “The maximum dose of estradiol 
valerate is 20 milligrams every 2 weeks. We 
use 25 milligrams every month which seems to 
control her hot flashes. But is that ade-
quate for osteoporosis and cardiovascular 

disease prevention?” 
 

Question 2: “Child has pectus carinatum. Ra-
diologist told Dr. X sometimes there are as-
sociated congenital heart problems. Dr. X 
wants to study up on this. Does the patient 

have these associated problems?” 
 
Such examples show that clinicians pose com-
plex questions of a far greater sophistication 
than the simple term searches that typical infor-
mation retrieval systems require as input. Ask-
HERMES, however, has been designed to 
handle such complexity as it encounters it. 

2.2 Result Presentation 

In recent years, there has been an emergence of 
numerous search engines – both open domain 
and domain-specific – as well as question an-
swering systems, and these systems have em-
ployed a variety of methods for presenting their 
results, including the use of metadata, sentences, 
snippets, and passages. PubMed (Anon 2009a) 
and EAGLi (Anon 2009b), for example, use ar-
ticle metadata to present their results, and the 
combination of title, author name and publica-
tion name that they use works like the citation at 
the end of a paper to provide users with a gen-
eral idea of what the listed article is about. On 
the other hand, AnswerBus (Anon 2009c) and 
AnswerEngine (Anon 2009d) extract sentences 
from relevant articles, then rank and list them 
one by one to answer the questions that users 
have.  In response to a query, Google and other 
general search engines provide the title of a 
work plus a snippet of text to provide metadata 
as well as multiple matching hints from articles. 
In response to user questions, Start (Anon 
2009e), Powerset(Anon 2009f) and Ask (Anon 
2009g) provide a single passage as output, mak-
ing them ideal for answering simple questions 
because they do not require users to access and 
read extra articles in order to answer the ques-
tions they have.  

 
Each of these methods of presentation has 
strengths and weaknesses.  First, a strength of 
using metadata is that it provides a way for dis-
covering the general idea of an article, but it 
does not explain to a user why the article is rele-
vant to the query or question, making it difficult 
to decide whether it is worth the time and effort 
to access the listed article to read more. An ap-

proach presenting a single sentence in response 
to a query can result in a good answer if the user 
is lucky but typically provides a limited idea of 
what the target article contains and demands that 
users access the source of the item to learn more. 
A snippet-based approach can provide a hint as 
to why the target article is relevant, but snippets 
are limited in that they are composed of seg-
ments and usually cannot be read at all; even 
presenting a snippet with metadata as Google 
does is not suitable for adequately answering 
many questions.  
 
We propose a passage-based approach in which 
each passage is constructed by coherent sen-
tences.  The approach we propose is similar to 
that used by Start and Ask, but these systems 
have limited knowledge bases and require que-
ries to be written using very specific question 
types. On the other hand, our system will be able 
to answer ad hoc questions (that is, questions not 
limited to specific types).  Furthermore, the sys-
tem we propose will be oriented toward answer-
ing questions in the biomedical community, a 
field in which automated question answering 
and information retrieval and extraction are in 
strong demand.    

3 Passage-Based Approach versus Sen-
tence-Based Approach  

We define as sentence-based approaches those 
approaches that return a list of independently 
retrieved and ranked sentences. Although all the 
sentences are assumed to be relevant to the ques-
tion, there are no assumptions of their relation-
ship with each other. On the other hand, a 
passage-based approach is defined as one that 
returns a list of independently retrieved and 
ranked passages, each of which can comprise 
multiple tightly coupled sentences. 
 
The passage-based approach has two benefits: 

 
1. It provides richer context for reading 

and understanding. 
2. It provides greater evidence for relevant 

ranking of the passage by matching 
across sentences. 
 

For example, in Figure 1, the passage-based out-
put of the top results of AskHERMES pertains 
to the question “What is the difference between 
the Denver ii and the regular Denver develop-
mental screening test?” The first answer is a 
passage with two sentences; the first sentence in 
the passage informs users that there have been 
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criticisms of the “Denver Developmental 
Screening Test,” and the second sentence shows 
that “Denver II” addressed several concerns of 
the “Denver Developmental Screening Test.” 
The two sentences indicate that the article will 
mention several issues that answer the question. 
And the second passage directly shows the an-
swer to the question: The criteria to select Den-
ver II and the difference between the two tests.  

 
If we use the sentence-based approach (see Fig-
ure 2), the sentences in the first passage will be 
ranked very low and might not appear in the re-
sults because both of them contain only one of 

the screening tests mentioned in the question. 
The second passage will be reduced to only the 
second sentence, which is an incomplete answer 
to the question; consequently, the user may re-
main uninformed of the selection criteria be-
tween the two screening tests without further 
examination of the article. Figure 2 shows the 
sentence-based output of the same question. A 
comparison of the examples in the figure clearly 
shows how the results of the query are affected 
by the two approaches. The first result is incom-
plete, and the second and third results are irrele-
vant to the question although they have many 
matched terms. 

 

 
Figure 1. AskHERMES’ passage-based output for the question “What is the difference between the Den-
ver ii and the regular Denver developmental screening test?” 

 
 

Figure 2. AskHERMES’ sentence-based output for the question “What is the difference between 
the Denver ii and the regular Denver developmental screening test?” 
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While the results shown in Figures 1 and 2 suggest 
that a passage-based approach might be better than 
a sentence-based approach for question answering, 
this is not to say that passage-based approaches are 
infallible. Most importantly, a passage-based ap-
proach can introduce noisy sentences that place an 
additional burden on users as they search for the 
most informative answers to their questions. In 
Figure 3, the first sentence in the output of sen-

tence-based approach answers the question. How-
ever, the passage-based approach does not answer 
the question until the fourth passage, and when it 
does, it outputs the same core answer sentence that 
was provided in the sentence-based approach. Ad-
ditionally, the core sentence is nested within a 
group of sentences that on their own are only mar-
ginally relevant to the query and in effect bury the 
answer. 

 

 
Figure 3. An example comparing the sentence-based approach and passage-based approach 

 

4 Evaluation Design 

To evaluate whether the passage-based presenta-
tion improves question answering, we plugged two 
different approaches into our real system by mak-
ing use of either the passage-based or the sentence-
based ranking and presentation unit constructor. 
Both of them share the same document retrieval 
component, and they share the same ranking and 
clustering strategies. In our system, we used a den-
sity-based passage retrieval strategy (Tellex et al. 

2003) and a sequence sensitive ranking strategy 
similar to ROUGE (F. Liu and Y. Liu 2008). An 
in-house query-oriented clustering algorithm was 
used to construct the order and structure of the fi-
nal hierarchical presentation. The difference be-
tween the two approaches is the unit for ranking 
and presentation. A passage-based approach takes 
the passage as its primary unit, with each passage 
consisting of one or more sentences. Those sen-
tences in the passage are extracted from the adja-
cent matching sentences in the original article.  
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To evaluate the difference between the passage-
based presentation and sentence-based presenta-
tion, we randomly selected 20 questions from 
4,653 clinical questions. A physician (Dr. John 
Ely) was shown the corresponding passage-based 
and sentence-based outputs of every question and 
was then asked to judge the relevance of the output 
and which output had the higher quality answer. 
Because physicians have little time in clinical set-
tings to be sifting through data, we presented only 
the top five units (sentences or passages) of output 
for every question. 

 

 
Figure 4. A partial screenshot of AskHERMES 
illustrating hierarchical clustering based on the 
question “What is the dose of sporanox?” 

 
For answer extraction, we built a hierarchical 
weighted-keyword grouping model (Yu and Cao 
2008;Yu and Cao 2009). More specifically, in us-
ing this model we group units based on the pres-
ence of expanded query-term categories: 
keywords, keyword synonyms, UMLS concepts, 
UMLS synonyms, and original words, and we then 
prioritize the groups based on their ranking. For 
example, units that incorporate keywords are 

grouped into the first cluster, followed by the clus-
ter of units that incorporate keyword synonyms, 
UMLS concepts, etc. The units that appear syn-
onymous are in the clusters with the same parent 
cluster. Figure 4 shows an example of the top 
branch of the clusters for the question “What is the 
dose of sporanox?” in which the answers are or-
ganized by sporanox and dose as well as their 
synonyms. 
 

5 Evaluation Result and Discussion 

We classify physician evaluations as being of the 
following four types and plot their distribution in 
Figure 5: 

• Hard Question: The question is considered 
difficult because it is patient-specific or 
unclear (that is, it is a poorly formed ques-
tion), e.g., “Multiple small ulcers on ankles 
and buttocks. No history of bites. I sent 
him for a complete blood count (cbc) and 
blood sugar but I don't know what these 
are.” 

• Failed Question: Neither approach can find 
any relevant information for the question. 

• Passage Better: Passage-based approach 
presents more useful information for an-
swering the question. 

• Sentence Better: Sentence-based approach 
provides the same amount of useful infor-
mation while reducing the effort required 
by the passage-based approach. 

 

Failed 
Question

25%

Passage 
Better
40%

Sentence 
Better
15%

Hard 
Question

20%

 
Figure 5. Distribution of the defined Evaluation 

categories 
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The evaluation data is shown in Table 1.  In our 
study, the score range is set from 0 to 5 with the 
value 0 referring to answers that are totally irrele-
vant to the question and the value 5 meaning there 
is enough information to fully answer the question. 
Our results show that the passage-based approach 
is better than the sentence-based approach (p-value 
< 0.05).  

 
Table 1. Quantitative measurement of the answers 
generated by both approaches to the 20 questions 

No. 
Passage-based 
approach score 

Sentence-based 
approach score 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

mean 
s.deviation 

3 
2 
2 
0 
0 
1 
3 
3 
0 
0 
1 
1 
3 
0 
1 
2 
0 
1 
0 
0 

1.15 
1.18 

1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
2 
2 
4 
0 
0 
1 
0 
0 
0 
0 

0.55 
1.05 

p-value 0.01 

 
Through further analysis of the results, we found 
that 70% of the sentences yielded by the sentence-
based approach did not answer the question at all 
(the score is zero), while this was true for only 
40% of the output of the passage-based approach. 
This indicates that the passage-based approach pro-
vides more evidence for answering questions by 
providing richer context and matching across sen-
tences.  
 
On the other hand, if the question was too general 
and included a plethora of detail and little focus, 
both approaches failed.  For example, in the ques-

tion “One year and 10-month-old boy removed 
from his home because of parental neglect. Care-
taker says he often cries like he's in pain, possibly 
abdominal pain. Not eating, just drinking liquids, 
not sleeping. The big question with him: "is it 
something physical or all adjustment disorder?"” 
there is a great deal of description of the boy, and a 
variety of common symptoms are also provided. 
AskHERMES found a passage containing all of the 
following extracted words: “availability, because, 
before, between, changes, children, decrease, dis-
order/disorders, drug, eating, going, increase, indi-
cations/reasons, intake, laboratory, level, may, 
often, one, patient/patients, physical, recom-
mended, routinely, specific, still, symp-
tom/symptoms, two, urine, used, women, 
treat/treated/treating/therapy/treatment/treatments, 
and work.” But since these words are so commonly 
used in a variety of scenarios, the output passage is 
off-topic. 

 
For very simple questions, the sentence-based ap-
proach works well for providing answers in a very 
concise form. For example, the question “what is 
the dose of zyrtec for a 3-year-old?” can be an-
swered by the dosage amount for the target age 
group, and the query resulted in this answer: 
“…children of both sexes aged between 2 to 6 
years with allergy rhinitis (AR) were included in 
this study, who were randomly selected to be 
treated with Zyrtec (Cetirizine 2 HCL) drops 5 mg 
daily for 3 weeks.” From a literal view, this looks 
like an answer to the question because it discusses 
the dosage of Zyrtec for the specific age group; 
however, it actually describes an experiment and 
does not necessarily provide the suggested dosage 
that the user is seeking. This leads to an interesting 
problem for clinical question answering: how 
should experimental data be distinguished from 
suggestion data for recommended daily usage? 
People tend to ask for the best answer instead of 
the possible answers. This is one of the main rea-
sons why in Table 1, there is no perfect score (5). 
 
Our result looks similar to the conclusion of Lin et 
al (Jimmy Lin et al. 2003), whose study on open-
domain factoid question answering indicates a 
preference among users for the answer-in-
paragraph approach rather than  the three other 
types of presentation: exact-answer (that is, answer 
entity), answer-in-sentence, and answer-in-
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document. The results of both Lin’s research and 
our own indicate the usefulness of context, but 
Lin’s work focuses on how surrounding context 
helps users to understand and become confident in 
answers retrieved by simple open-domain queries, 
while our research reveals that adjacent sentences 
can improve the quality of answers retrieved using 
complex clinical questions. Our results also indi-
cate that context is important for relevance rank-
ing, which has not been thoroughly investigated in 
previous research. Furthermore, our work places 
emphasis on proper passage extraction from the 
document or paragraph because irrelevant context 
can also be a burden to users, especially for physi-
cians who have limited time for reading through 
irrelevant text. Our continuous sentence-based pas-
sage extraction method works well for our study, 
but other approaches should be investigated to im-
prove the passage-based approach.  
 
With respect to the quality of the answer, the con-
tent of the output is not the only important issue. 
Rather, the question itself and the organization of 
content are also important issues to consider. Luo 
and Tang (Luo and Tang 2008) proposed an itera-
tive user interface to capture the information needs 
of users to form structured queries with the assis-
tance of a knowledge base, and this kind of ap-
proach guides users toward a clearer and more 
formal representation of their questions. DynaCat 
(Pratt and Fagan 2000) also uses a knowledge-
based approach to organize search results. Thus, 
applying domain-specific knowledge is promising 
for improving the quality of an answer, but the dif-
ficulty of the knowledge-based approach is that 
building and updating such knowledge bases is 
human labor intensive, and furthermore, a knowl-
edge-based approach restricts the usage of the sys-
tem.  
 

6 Conclusion and Future Work 

In this study, we performed a quantitative evalua-
tion on the two kinds of presentation produced by 
our online clinical question answering system, 
AskHERMES. Although there is some indication 
that sentence-based passages are more effective for 
some question types, the overall finding is that by 
providing richer context and matching across sen-
tences, the passage-based approach is generally a 

more effective approach for answering questions. 
Compared to Lin’s study on open-domain factoid 
questions (Jimmy Lin et al. 2003), our study ad-
dresses the usefulness of context for answering 
complex clinical questions and its ability to im-
prove answer quality instead of just adding sur-
rounding context to the specific answer. 
While conducting this investigation, we noticed 
that simple continuous sentence-based passage 
constructions have limitations in that they have no 
semantic boundary and will form too long a pas-
sage if the question contains many common words. 
Therefore, we will take advantage of recent ad-
vances we have made in HTML page analysis 
components to split documents into paragraphs and 
use the paragraph as the maximum passage, that is, 
a passage will only group sentences that appear in 
the same paragraph. Furthermore, by setting the 
boundary at a single paragraph, we can loosen the 
adjacency criterion of our current approach, which 
requires that the sentences in a passage be next to 
each other in the original source, and instead adopt 
a requirement that they only be in the same para-
graph. This will enable us to build a model consist-
ing of one or more core sentences as well as 
several satellite sentences that could be used to 
make the answer more complete or understandable. 
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Abstract

Historically, suicide risk assessment has re-
lied on question-and-answer type tools. These
tools, built on psychometric advances, are
widely used because of availability. Yet there
is no known tool based on biologic and cogni-
tive evidence. This absence often cause a vex-
ing clinical problem for clinicians who ques-
tion the value of the result as time passes. The
purpose of this paper is to describe one exper-
iment in a series of experiments to develop a
tool that combines Biological Markers (Bm)
with Thought Markers (Tm), and use machine
learning to compute a real-time index for as-
sessing the likelihood repeated suicide attempt
in the next six-months. For this study we fo-
cus using unsupervised machine learning to
distinguish between actual suicide notes and
newsgroups. This is important because it gives
us insight into how well these methods dis-
criminate between real notes and general con-
versation.

1 Introduction

It is estimated that each year 800,000 die by suicide
worldwide (World Health Organization, 2001). In
the United States, suicide ranks second as the lead-
ing cause of death among 25-34 year-olds and the
third leading cause of death among 15-25 year-olds
(Kung et al., 2008). The challenge for those who
care for suicide attempters, such as an Emergency
Medicine clinicians, is to assess the likelihood of an-
other attempt, a more lethal one. We believe to fully
asses this risk a tool must be developed that mea-
sures both the biological and cognitive state of the

patient. Such a tool will include Biological Mark-
ers (Bm): measured by the concentration of cer-
tain biochemical markers, Thought Markers(Tm):
measured by artifacts of thought that have been re-
duced to writing or transcribe speech, and Clini-
cal Markers(Cm): measured by traditional clinical
risk factors. In this study we focus on theTm be-
cause of BioNLP’s important role. Here, we employ
machine-learning analysis to examine suicide notes
and how these notes compare to newsgroups. This
is one experiment in a series of experiments that are
intended to provide insight into how best to apply
linguistic tools when responding to suicidal patients.

To gain insight into the suicidal mind, researchers
have suggested empirically analyzing national mor-
tality statistics, psychological autopsies, nonfatal
suicide attempts and documents such as suicide
notes (Shneidman and Farberow, 1957; Maris,
1981). Most suicide notes analysis has focused
on classification and theoretical-conceptual analysis.
Content analysis has been limited to extracting ex-
plicit information from a suicide note, e.g., length of
the message, words, and parts of speech (Ogilvie et
al., 1969). Classification analysis uses data such as
age, sex, marital status, educational level, employ-
ment status and mental disorder (Ho et al., 1998;
Girdhar et al., 2004; Chavez et al., 2006; Demirel
et al., 2007). Only a very few studies have utilized
theoretical-conceptual analysis , despite the asser-
tion in the first formal study of suicide notes (Shnei-
dman and Farberow, 1957) that such an analysis has
much promise. So, the inconclusive nature of the
methods of analysis has limited their application to
patient care.
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Our own research has taken a different approach.
In particular we first wanted to determine if mod-
ern machine learning methods could be applied to
free-text from those who committed suicide. Our
first experiment focused on the the ability of ma-
chine learning to distinguish between real suicide
notes and elicited suicide notes as well as mental
health professionals. This is an important question
since all current care is based on a mental health pro-
fession’s interpretation. Our findings showed that
mental health professionals accurately selected gen-
uine suicide notes 50% of the time and the super-
vised machine learning methods were accurate 78%
(Pestian et al., 2008). In this study we shift from
supervised to unsupervised machine learning meth-
ods. Even though these methods have rich history
we know of no research that has applied them to
suicide notes. Our rationale for this study, then, is
that since our ultimate goal is to create a Suicide
Risk Index that incorporates biological and thought
markers it is important to determine if unsupervised
methods can distinguish between suicidal and non-
suicidal writings. To conduct this research we de-
veloped a corpus of over 800 suicide notes from in-
dividuals who had committed suicide, as opposed to
those who attempted or ideated about suicide. This
is an important contribution and, as far as we know,
it is the largest ever developed. It spans 70 years of
notes, and now includes multiple languages. Details
of this corpus are described below. We also created
a corpus of data from various newsgroups that acted
as non-suicidal writings. These corpora were used
to conduct the analysis. The sections below describe
the cluster analysis process and results.

2 Data

Suicide Notes Corpus
Data for the suicide note database were collected
from around the United States. They were either
in a hand written or typed written form. Once the
note was acquired it was scanned into the database.
Optical character recognition was attempted on the
typed written notes, but not accurate, so the notes
were read from the scanned version and type into the
database exactly as seen. A second person reviewed
what was typed. There were limitation in collecting
deceased demographics. The table 1 provides vari-

ous descriptive statistics.
Newsgroup Corpus
Newsgroup data was selected because it was conve-
nient and as close to normal discourse as we could
find. We understood that and ideal comparison
group would be composed of Internet blogs or e-
mails that were written by suicide ideators. True,
a Google query of ”suicide blog” yields millions
of response, a review of many of these responses
shows that the data are of little use for this analy-
sis. In our opinion, the next suitable corpora was
found in a 20 newsgroup collection from the Uni-
versity of California in Irvine (UCI) machine learn-
ing repository1. Most of the newsgroups have no
relevance to suicide notes. Since our hypothesis
is that unsupervised learning methods can tell the
difference between suicidal and non-suicidal writ-
ing we selected discussions that we believed may
have some similarity to suicide writings. This se-
lection was based on reviewing the newsgroups
with experts. We had conjectured that if an unsu-
pervised method could distinguish between similar
clusters those methods could distinguish between
dissimilar clusters. The newsgroups ultimately se-
lected weretalk.politics.guns, talk.politics.mideast,
talk.politics.misc, talk.religion.misc. Each news-
group contains 1000 articles (newsgroup postings).
Headers and quotes from other postings were re-
moved.

3 Methods

Basic statistics are calculated using variables ex-
tracted by Linguistic Inquiry and Word Count ver-
sion 2007 software (LIWC2007) (Chung and Pen-
nebaker, 2007). J. W. Pennebaker, C. K. Chung, M.
Ireland, A. Gonzales, and R. J. Booth created an an-
notated dictionary. Each word in the dictionary is
assigned to at least one of the following high level
category: linguistic process, psychological process,
personal concern, or spoken category. These cat-
egories provide an efficient and effective method
for studying the various emotional, cognitive, and
structural components present in individuals’ verbal
and written speech samples (Chung and Pennebaker,
2007; Pennebaker et al., 2001). Here it is used to
analyze differences between suicide notes and news-

1http://archive.ics.uci.edu/ml/
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group articles.
Feature space was prepared using open source al-

gorithms available inPerl language2. First, Brian
Duggan spell checking software that uses aspell li-
brary was used (Text::SpellCheckermodule3). Then,
tokenizer created by Aaron Coburn was used (Lin-
gua::EN::Taggermodule2) to extract words was ap-
plied. After that, words were filtered with 319 ele-
ment stop word list4. Next, the Richardson/Franz
English stemmer was included in the pre-processing
stage (Lingua::Stemmodule2). Features that ap-
peared in less than 10 documents or in more than 500
documents were removed. Documents that had less
than 10 features or more than 500 were removed.
Finally, columns and rows were normalized to have
unitary lengths. These last steps of pre-processing
are used to reduce outliers.

Calculations are done using open source software
calledR5. Clustering is done with the following al-
gorithms: expectation maximization (EM) (Witten
and Frank, 2000), simple k-means with euclidean
distance (SKM) (Witten and Frank, 2000), and
sequential information bottleneck algorithm (sIB)
(Slonim et al., 2002). The last approach has been
shown to work well work well when clustering doc-
uments. Specificity, sensitivity and F1 measure are
used as performance measures (Rijsbergen, 1979).
Multidimensional scaling with euclidean distance
measures is used for visualization purposes (Cox
and Cox, 1994).

To extract features that represent each cluster,
Pearson correlation coefficient is used. The correla-
tion coefficientr is calculated between each feature
and each cluster separatelyr(wi, cj) wherewi is ith
word andcj is jth cluster.N best features with the
highest values for each cluster are selected as most
representative.

4 Results

Descriptive statistics for the data sets are listed in
table 1. It shows syntactic differences between lan-
guage use in suicide notes and newsgroups when
Lingua::EN::Taggeris used.

2http://www.perl.org
3http://search.cpan.org
4http://www.dcs.gla.ac.uk/idom/irresources/

/linguistic utils/stopwords
5http://www.r-project.org

Table 1: Descriptive statistics of suicide note corpus and
newsgroups.

suicide
corpus

newsgroups

Sample Size 866 4000 (1000
per group)

Collection Years 1945-2009 1992-1993
Avg tokens per record
(SD)

105 (154) 243 (582)

Range of tokens per
record

1-1837 0-11024

Average (SD) nouns 25.21 (34.81) 77.19
(181.63)

Average (SD) pronouns 16.58 (26.69) 18.05 (63.18)
Average (SD) verbs 21.07 (32.82) 41.31

(109.23)
Average (SD) adjec-
tives

6.43 (9.81) 16.92 (36.45)

Table 2 summarizes information about the lin-
guistic and psychological processes of the data.
The idea of ”process” is derived from the Lin-
guistic Inquiry and Word Count (LIWC2007) soft-
ware (Chung and Pennebaker, 2007). This software
conducts traditional natural language processing by
placing various word into categories. For example,
sixltrs includes words that are at least six letters in
length. A full description of this software, dictio-
naries, reliability and validity tests can be found on
LIWC’s website.6. Table 2 shows that suicide notes
are, in many ways, different than normal text. For
our study this provides inspiration for continued re-
search.

Table 2: Mean and standard deviation in linguistic and
psychological processes. Selected categories with small-
est p-values (<0.0001) are shown.

suicide guns mideast politics religion
artcl 3.31 (2.79) 7.80 (3.52) 7.37 (3.34) 7.21 (3.40) 7.07 (3.51)
sixltrs 14.20 (7.34) 21.22 (6.32) 23.24 (7.03) 22.41 (7.13) 21.37 (7.87)
prnoun 16.75 (6.82) 11.96 (5.15) 10.64 (4.92) 11.77 (5.18) 13.21 (5.76)
prepos 10.61 (4.35) 12.13 (3.97) 12.89 (3.89) 12.21 (3.97) 11.75 (4.07)
verb 14.69 (5.99) 12.75 (4.72) 11.54 (4.74) 12.72 (4.63) 13.54 (4.97)
biolog 2.70 (3.04) 0.93 (1.27) 0.85 (1.50) 1.59 (2.08) 1.10 (1.75)
affctiv 7.71 (5.39) 4.83 (2.87) 4.77 (3.45) 4.90 (3.18) 5.10 (3.93)
cognitv 12.68 (5.76) 16.14 (5.93) 14.72 (5.62) 16.00 (5.49) 17.14 (6.17)
social 10.45 (5.86) 8.10 (4.20) 8.43 (4.71) 8.76 (4.37) 9.06 (5.17)

The four newsgroup data sets are combined
as follows: talk.politics.guns + suicide notes
= guns, talk.politics.mideast+ suicide notes =
mideast,talk.politics.misc+ suicide notes = politics,

6http://www.liwc.net/liwcdescription.php#index1
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talk.religion.misc+ suicide notes = religion. Each
data set contained 1866 documents before document
and feature selection is applied. Table 3 has final
number of features while table 4 has final number of
documents. In general sIB clustering algorithm per-
formed best for all data sets with respect to F1 mea-
sure (mean = 0.976, sd = 0.008). The average score
also did not change when the number of clusters var-
ied from two to six (mean = 0.973, sd = 0.012). Per-
formance of k-means and expectation maximization
algorithm was much worse. If number of clusters
was varied between two and six for different data
sets the algorithms achieved F1 measure 0.146 lower
than sIB (SKM mean = 0.831, sd = 0.279, EM mean
= 0.824, sd = 0.219). Table 3 summarizes perfor-
mance of best algorithms for each data set if two
clusters are chosen.

Table 3: Best clustering algorithms for each newsgroup
when clustered with suicide notes in case of two clus-
ters (alg = clustering algorithm, sens = sensitivity, spec
= specificity, F1 = F1 measure, #f = number of features,
sIB = sequential information bottleneck, SKM = simple
k-means).

dataset alg sens spec F1 #f
guns sIB .9689 .9834 .9721 1658

mideast sIB .9837 .9942 .9877 2023
politics SKM .9705 .9889 .9769 1694
religion sIB .9787 .9700 .9692 1553

If the desired number of clusters is increased to
four then two major sub-groups are discovered in
suicide notes: emotional (represented by words like:
love, forgive, hope, and want) and non-emotional
(represented by words like:check, bank, and no-
tify). Example of the first type of note might be
(suicide note was annonymized and misspellings left
unchanged):

Jane I am bitterly sorry for what I have done to
you. Please try to forgive me. I can’t live with-
out you and you don’t want me. I can’t blame you
though. But I love you very much. I didn’t act like it
but I did and still do. Please try to be happy, Jane.
That is all I ask. I try hope for the best for you and
I guess that is all there is for me to say. Good by.
John Johnson. Please mail this to Mom. Mrs. Jane
Johnson. Cincinnati, OH.

Example of a non-emotional suicide note might be:

There is no use living in pains. That arthritis and
hardening of the arteries are too much for me. There
are two hundred and five dollars in the bank, and
here are fifty- five dollars and eight cents. I hope that
will be enough for my funeral. You have to notify the
Old Age Assistance Board. Phone - 99999.

Table 4 shows best five ranked features for each clus-
ter for each data set according to correlation coeffi-
cient CC. Features are in the order of rank so that
feature with the highestCC is first. Even though
that we use different newsgroups as control groups
same sub-groups of suicide notes are discovered.
sIB is the most stable and best performing algorithm
in this experiment so it was used to discover those
clusters. Stemmed word that appear in best five
ranked features in at least three data sets are marked
bold.

Figures 1, 2, 3, and 4 show high-dimensional doc-
ument/stemmed word feature space projected on a
two dimensional plane using multidimensional scal-
ing (MDS) initialized by principal component analy-
sis. Each figure has different rotation but the shapes
are similar. In addition MDS shows very little mix-
ing of suicide notes and newsgroups which is also
explained by results in the table 3.

Figure 1: MDS showing suicide notes and
talk.politics.guns articles (s character in the figure
means suicide note whilea character depicts newsgroup
article, colors are used as cluster numbers).
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Table 4: Best five features when four clusters are created
by the sIB algorithm (#c = cluster number, #a = number
of newsgroup articles in a cluster, #s = number of suicide
notes in a cluster). Stemmed word that appear in best five
ranked features in at least three data sets are marked bold.

dataset #c stemmed words #a #s
guns 1 address,bank, bond,notifi ,

testam
28 204

guns 2 clinton, fbi, foreign, jim,
spea

318 2

guns 3 forgiv , god, hope, love,
want

4 381

guns 4 crime, firearm, gun, law,
weapon

541 8

mideast 1 appressian, armenia, arme-
nian, ohanu, proceed

464 5

mideast 2 arab, congress, isra, israel,
jew

379 4

mideast 3 bank, check, funer, insur,
testam

10 233

mideast 4 forgiv , good, hope, love,
want

2 355

politics 1 compound, disclaim, fbi,
govern, major

593 12

politics 2 clayton, cramer, optilink,
relat, uunet

274 1

politics 3 bank, box, check, funer,
notifi

11 258

politics 4 forgiv , good, hope, life,
love

11 330

religion 1 bank, bond, check, notifi ,
paper

36 192

religion 2 frank, object, observ, the-
ori, valu

279 0

religion 3 activ, christian, jesu, ko-
resh, net

502 10

religion 4 forgiv , hope, love, sorri,
want

12 395

5 Conclusions

Our findings suggest that unsupervised methods can
distinguish between suicide notes and newsgroups,
our proxy for general discussion. This is important
because it is helpful in determining if NLP can be
useful when integrating thought markers with bio-
logical and clinical markers (f(Bm, Tm, Cm)). In
other words, can an NLP tools accurately distin-
guish between suicidal and normal thought markers
(T S

m 6= TN
m )? Moreover these unsupervised meth-

ods have shown an ability to find sub-groups of sui-
cide notes even when other types of newsgroups are
present. In our analysis, one subgroup showed no

Figure 2: MDS showing suicide notes and
talk.politics.mideastarticles (s character in the fig-
ure means suicide notes whilea character depicts
newsgroup article, colors are used as cluster numbers).

Figure 3: MDS showing suicide notes and
talk.politics.misc articles (s character in the figure
means suicide note whilea character depicts newsgroup
article, colors are used as cluster numbers).

emotional content while the other was emotionally
charged. This finding is consistent with Tuckman’s,
1959 work that showed suicide notes fall into six
emotional categories: emotionally neutral, emotion-
ally positive, emotionally negative directed inward,
emotionally negative directed outward, emotionally
negative directed inward and outward (Tuckman et
al., 1959). The next step in developing a Suicide
Risk Index is to conduct a clinical trail in the Emer-
gency Department that will collectBm, Tm, Cm

and test multiple methods for computing the Suicide
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Figure 4: MDS showing suicide notes and
talk.religion.misc articles (s character in the figure
means suicide note whilea character depicts newsgroup
article, colors are used as cluster numbers).

Risk Index.
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Abstract 

With the rapidly growing use of electronic 
health records, the possibility of large-scale 
clinical information extraction has drawn 
much attention. It is not, however, easy to ex-
tract information because these reports are 
written in natural language. To address this 
problem, this paper presents a system that 
converts a medical text into a table structure. 
This system’s core technologies are (1) medi-
cal event recognition modules and (2) a nega-
tive event identification module that judges 
whether an event actually occurred or not. 
Regarding the latter module, this paper also 
proposes an SVM-based classifier using syn-
tactic information. Experimental results dem-
onstrate empirically that syntactic information 
can contribute to the method’s accuracy. 

1 Introduction 

The use of electronic texts in hospitals is increas-
ing rapidly everywhere. This study specifically 
examines discharge summaries, which are reports 
generated by medical personnel at the end of a pa-
tient’s hospital stay. They include massive clinical 
information about a patient’s health, such as the 
frequency of drug usage, related side-effects, and 
correlation between a disease and a patient’s ac-
tions (e.g., smoking, drinking), which enables un-

precedented large-scale research, engendering 
promising findings. 
N

A

(1
(2
(3

                                                          

evertheless, it is not easy to extract clinical in-
formation from the reports because these reports 
are written in natural language. An example of a 
discharge summary is presented in Table 1. The 
table shows records that are full of medical jargon, 
acronyms, shorthand notation, misspellings, and 
sentence fragments (Tawanda et al., 2006). 

To address this problem, this paper presents a 
proposal of a system that extracts medical events 
and date times from a text. It then converts them 
into a table structure. We designate this system 
TEXT2TABLE, which is available from a web 
site 1 . The extraction method, which achieves a 
high accuracy extraction, is based on Conditional 
Random Fields (CRFs) (Lafferty et al., 2001). 

nother problem is posed by events that do not 
actually occur, i.e., future scheduled events, events 
that are merely intended to take place, or hypo-
thetical events. As described herein, we call such 
non-actual events negative events. Negative 
events are frequently mentioned in medical re-
cords; actually, in our corpus, 12% of medical 
events are negative. Several examples of negative 
events (in italic letters) are presented below: 
 

) no headache 
) keep appointment of radiotherapy 
) .. will have intravenous fluids 

 
1 http://lab0.com/  
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) .. came for radiotherapy 
) .. came for headache 
) Every week radiation therapy and chemical 
erapy are scheduled 
) Please call Dr. Smith with worsening head-
he or back pain, or any other concern. 

 
Negative events have two characteristics. First, 
various words and phrases indicate that an event is 
negative. For this study, such a word or phrase that 
makes an event negative is called a negative trig-
ger. For instance, a negation word “no” is a nega-
tive trigger in (1). A noun “appointment” in (2) is a 
negative trigger. Similarly, the auxiliary “will” in 
(3) signals negation. More complex phenomena are 
presented in (4) and (4'). For instance, “radiother-
apy” in (4) is a negative event because the therapy 
will be held in the future. In contrast, “headache” 
in (4') is not negative because a patient actually has 
a “headache”. These indicate that a simple rule-
based approach (such as a list of triggers) can only 
imply classification of whether an event is negative 
or not, and that information of the event category 
(e.g., a therapy or symptom) is required. 

nother characteristic is a long scope of a nega-
tive trigger. Although negative triggers are near the 
descriptive words of events in (1)–(4), there could 
alternatively be a great distance of separation, as 
portrayed in (5) and (6). In (5), a noun coordina-
tion separates a negative trigger from the event. In 
(6), the trigger “please” renders all events in that 
sentence negative. These indicate that neighboring 
words are insufficient to determine whether an 
event is negative or not. To deal with (5), syntactic 
information is helpful because the trigger and the 
event are neighboring in the dependency structure, 
as portrayed in Fig. 2. To deal with (6), bag-of-
word (BOW) information is desired. 

ecause of the observation described above, this 
paper presents a proposal of a classifier: whether 
an event is negative or not. The proposed classifier 
uses various information, the event category, 
neighboring words, BOW, and dependent phrases. 

he point of this paper is two-fold: (1) We pro-
pose a new type of text-summarizing system 
(TEXT2TABLE) that requires a technique for a 
negative event identification. (2) We investigate 
what kind of information is helpful for negative 
event identification. 

he experiment results revealed that, in spite of 
the risk of parsing error, syntactic information can 

contribute to performance, demonstrating the fea-
sibility of the proposed approach. 

lthough experiments described in this paper are 
related to Japanese medical reports, the proposed 
method does not depend on specific languages or 
domains. 
 

Table 1: A Health Record Sample. 
BRIEF RESUME OF HOSPITAL COURSE : 57 yo with 
NSCLCa with back pain and headache . Trans-
ferred from neurosurgery for additional mgmt 
with palliative XRT to head . Pt initially 
presented with cough and hemoptysis to his 
primary MD . On CXR he was found to have a 
upper left lobe mass . He subsequently un-
derwent bronchoscopy and bx revealed non-
small cell adeno CA. STaging revealed multi-
ple bony mets including skull, spine with 
MRI revealing mild compression of vertebral 
bodies at T9, T11, T12 . T9 with encroach-
ment of spinal cord underwent urgent XRT 
with no response so he was referred to neu-
rosurgery for intervention . MRI-rt. fron-
tal, left temporal, rt cerebellar 
hemorrhagic enhancing lesions- most likely 
extensive intracranial mets– T-spine surgery 
considered second priority and plan to radi-
ate cranially immediately with steroid and 
anticonvulsant . He underwent simulation on 
3/28 to whole brain and T3-T7 fields with 
plan for rx to both sites over 2.5 weeks. 
Over the past 2 weeks he has noted frontal 
and occipital HA with left eyelid swelling, 
ptosis, and denies CP, SOB, no sig. BM in 
past 5 days, small amt of stool after sup-
pository. Neuro–He was Dilantin loaded and a 
level should be checked on 3/31 . He is to 
continue Decadron . Onc–He is to receive XRT 
on 3/31 and daily during that week . Pain 
control–Currently under control with MS con-
tin and MSIR prn. regimen . Follow HA, LBP. 
ENDO–Glucose control monitored while on de-
cadron with SSRI coverage . Will check 
HgbA1C prior to discharge . GI–Aggressive 
bowel regimen to continue at home . Pt is 
Full Code . ADDITIONAL COMMENTS: Please call 
Dr. Xellcaugh with worsening headache or 
back pain, or any other concern . Keep ap-
pointment as scheduled with XRT . Please 
check fingerstick once a day, and record, 
call MD if greater than 200 .  
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Figure 1: Visualization result (Left), magnified (Right). 
 

 
Figure 2: Negative Triggers and Events on a Depend-
ency Structure. 
 

Table 2: Corpora and Modalities 
CORPUS MODALITY 
ACE asserted, or other 
TIMEML must, may, should, would, or 

could 
Prasad et al., 
2006 

assertion, belief, facts or eventu-
alities 

Saurí et al., 2007 certain, probable, possible, or 
other 

Inui et al., 2008 affirm, infer, doubt, hear, intend, 
ask, recommend, hypothesize, or 
other 

THIS STUDY S/O, necessity, hope, possible, 
recommend, intend  

 
Table 3: Markup Scheme (Tags and Definitions) 

Tag Definition (Examples) 
R Remedy, Medical operation 

(e.g. radiotherapy) 
T Medical test, Medical examination 

(e.g., CT, MRI) 
D Deasese, Symptom 

(e.g., Endometrial cancer, headache) 
M Medication, administration of a drug 

(e.g., Levofloxacin, Flexeril) 
A patient action 

(e.g., admitted to a hospital) 
V Other verb 

(e.g., cancer spread to ...)  
 

2 Related Works 

2.1 Previous Markup Schemes 
In the NLP field, fact identification has not been 
studied well to date. Nevertheless, similar analyses 
can be found in studies of sentence modality. 

The Automatic Content Extraction (ACE)2 in-
formation extraction program deals with event ex-
traction, by which each event is annotated with 
temporal and modal markers. 
A

S  

A

T

                                                          

 similar effort is made in the TimeML project 
(Pustejovsky et al., 2003). This project specifically 
examines temporal expressions, but several modal 
expressions are also covered. 

Prasad et al. (2006) propose four factuality clas-
sifications (certain, probable...etc.) for the Penn 
Discourse TreeBank (PDTB) 3. 

aurí et al. (2007) propose three modal categories
for text entailment tasks. 

mong various markup schemes, the most recent 
one is Experience Mining (Inui et al., 2008), which 
collects personal experiences from the web. They 
also distinguish whether an experience is an actual 
one or not, which is a similar problem to that con-
fronting us. 

able 2 portrays a markup scheme adopted by 
each project. Our purpose is similar to that of Ex-
perience Mining. Consequently, we fundamentally 
adopt its markup scheme. However, we modify the 
label to suit medical mannerisms. For example, 
“doubt” is modified into “(S/O) suspicion of”. Rare 
modalities such as “hear” are removed. 
 
2.2 Previous Algorithms 
Negation is a traditional topic in medical fields. 
Therefore, we can find many previous studies of 
the topic in the relevant literature. 

An algorithm, NegEx4 was proposed by Chap-
man et al. (Chapman et al., 2001a; Chapman et al., 
2001b). It outputs an inference of whether a term is 
positive or negative. The original algorithm is 
based on a list of negation expressions. Goldin et al. 
(2003) incorporate machine learning techniques 
(Naïve Bayes and decision trees) into the algorithm. 
The extended version (ConText) was also proposed 
(Chapman et al., 2007). 

Elkin et al. (2005) use a list of negation words 
and a list of negation scope-ending words to iden-

 
2 http://projects.ldc.upenn.edu/ace/ 
3 http://www.seas.upenn.edu/~pdtb/ 
4 http://www.dbmi.pitt.edu/chapman/NegEx.html 
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tify negated statements and their scope. Their tech-
nique was used in The MAYO Clinic Vocabulary 
Server (MCVS)5, which encodes clinical expres-
sions into medical ontology (SNOMED-CT) and 
identifies whether the event is positive or negative. 
M

H

T

A

                                                          

utalik et al. (2001) earlier developed Negfinder 
to recognize negated patterns in medical texts. 
Their system uses regular expressions to identify 
words indicating negation. Then it passes them as 
special tokens to the parser, which makes use of 
the single-token look-ahead strategy. 

uang and Lowe (2007) implemented a hybrid 
approach to automated negation detection. They 
combined regular expression matching with 
grammatical parsing: negations are classified based 
on syntactic categories. In fact, they are located in 
parse trees. Their hybrid approach can identify ne-
gated concepts in radiology reports even when they 
are located distantly from the negative term. 

he Medical Language Extraction and Encoding 
(MedLEE) system was developed as a general 
natural language processor to encode clinical doc-
uments in a structured form (Friedman et al., 
1994). Negated concepts and certainty modifiers 
are also encoded within the system. 

Veronika et al. (2008) published a negation 
scope corpus6 in which both negation and uncer-
tainty are addressed. 

lthough their motivations are identical to ours, 
two important differences are apparent. (1) Previ-
ous (except for Veronika et al., 2008) methods deal 
with the two-way problem (positive or negative), 
whereas the analyses proposed herein tackle more 
fine-grained modalities. (2) Previous studies (ex-
cept for Huang et al., 2007) are based on BOW 
approaches, whereas we use syntactic information. 

3 Medical Text Summarization System: 
TEXT2TABLE 

Because the core problem of this paper is to iden-
tify negative events, this section briefly presents a 
description of the entire system, which consists of 
four steps. The detailed algorithm of negative iden-
tification is explained in Section 4. 
STEP 1: Event Identification 
First, we define the event discussed in this paper. 
We deal with events of six types, as presented in 

 
5 http://mayoclinproc.highwire.org/content/81/6/741.figures-
only 
6 www.inf.u-szeged.hu/rgai/bioscope 

Table 3. Two of the four are Verb Phrases (base 
VPs); the others are noun phrases (base-NPs). Be-
cause this task is similar to Named Entity Recogni-
tion (NER), we use the state-of-the art NER 
method, which is based on the IOB2 representation 
and Conditional Random Fields (CRFs). In learn-
ing, we use standard features, as shown in Table 4. 
 

Table 4: Features for Event Identification 
Lexicon 
and 
Stem 

Current target word (and its stem) and its 
surrounding words (and stem). The win-
dow size is five words (-2, -1, 0, 1, 2). 

POS Part of speech of current target word and 
its surrounding words (-2, -1, 0, 1, 2). The 
part of speech is analyzed using a POS 
tagger7. 

DIC A fragment for the target word appears in 
the medical dictionary (Ito et al., 2003).  

 
STEP 2: Normalization 
As described in Section 1, a term in a record is 
sometimes an acronym: shorthand notation. Such 
abbreviations are converted into standard notation 
through (1) date time normalization or (2) event 
normalization. 
(1) Date Time Normalization 
As for date time expressions, relative date expres-
sions are converted into YYYY/MM/DD as fol-
lows. 
  On Dec Last year → 2007/12/XX 
  10 Dec 2008        → 2008/12/10 
These conversions are based on heuristic rules. 
(2) Event Normalization 
Medical terms are converted into standard notation 
(dictionary entry terms) using orthographic disam-
biguation (Aramaki et al., 2008). 
STEP 3: TIME–EVENT Relation Identification 
Then, each event is tied with a date time. The cur-
rent system relies on a simple rule (i.e., an event is 
tied with the latest date time). 
STEP 4: Negative Identification 
The proposed SVM classifier distinguishes nega-
tive events from other events. The detailed algo-
rithm is described in the next section. 

4 Modality Identification Algorithm 

First, we define the negative. We classify modality 
events into eight types (Table 5). These classifica-
tions are motivated by those used in previous stud-

                                                           
7 http://chasen-legacy.sourceforge.jp/ 
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ies (Inui et al., 2008). However, we simplify their 
scheme because several categories are rare in this 
domain. 
T

U

hese classes are not exclusive. For that reason, 
they sometimes lead to multiple class events. For 
example, given “No chemotherapy is planned”, an 
event “chemotherapy” belongs to two classes, 
which are “NEGATION” and “FUTURE”. 
Training Phase 

sing a corpus with modality annotation, we train 
a SVM classifier for each category. The training 
features come from four parts: 
(1) Current phrases: words included in a current 
event. We also regard their STEMs, POSs, and the 
current event category as features. 
(2) Surrounding phrases: words included in the 
current event phrase and its surrounding two 
phrases (p1, p2, n1, n2, as depicted in Fig. 3). The 
unit of the phrase is base-NP/VP, which is pro-
duced by the Japanese parser (Kurohashi et al., 
1994). Its window size is two in the neighboring 
phrase (p1, p2, c, n1, n2). We also deal with their 
STEMs and POSs. 
(3) Dependent phrases: words included in the 
parent phrase of the current phrase (d1 in Fig. 3), 
and grandparent phrases (d2 in Fig. 3). We also 
deal with their STEMs and POSs. 
(4) Previous Event: words (with STEMs and 
POSs) included in the previous (left side) events. 
Additionally, we deal with the previous event cate-
gory and the modality class. 
(5) Bag-of-words: all words (with STEMs and 
POSs) in the sentence. 
 
TEST Phrase 
During the test, each SVM classifier runs. 
Although this task is multiclass labeling, several 
class combinations are unnatural, such as 
FUTURE and S/O. We list up possible label com-
binations (that have at least one occurrence in the 
corpora); if such a combination appears in a text, 
we adapt a high confidence label (using a marginal 
distance). 
 

5 Experiments 

We investigate what kind of information contrib-
utes to the performance in various machine learn-
ing algorithms. 
 

Table 5: Classification of Modalities 
NEGATION An event with negation words 

such as “not” or “no”. 
FUTURE An event that is scheduled for 

execution in the future. 
PURPOSE An event that is planed by a doc-

tor, but its time schedule is am-
biguous (just a hope/intention).  

S/O An event (usually a disease) that 
is suspected. For example, given 
“suspected microscopic tumor in 
...”, “microscopic tumor'' is an 
S/O event.” 

NECESSITY An event (usually a remedy or 
medical test) that is required. 

INTEND An event that is hoped for by a 
patient.  
Note that if the event is hoped by 
a doctor, we regard is a 
PURPOSE or FUTURE. For ex-
ample, given “He hoped for 
chemical therapy”, “chemical 
therapy” is INTEND. 

POSSIBLE An event (usually remedy) that is 
possible under the current situa-
tion. 

RECOMMEND An event (usually remedy) that is 
recommended by other doctor(s). 

 
 
5.1 Corpus and Setting 
We collected 435 Japanese discharge summaries in 
which events and the modality are annotated. For 
training, we used the CRF toolkit8 with standard 
parameters. In this experiment setting, the input is 
an event with its contexts. The output is an event 
modality class (positive of negative in two-way) 
(or more detailed modality class in nine-way). 
T

 

                                                          

he core problem addressed in this paper is mo-
dality classification. Therefore, this task setting 
assumes that all events are identified correctly. 
Table 6 presents the event identification accuracy. 
Except for the rare class V (the other verb), we got 
more than 80% F-scores. It is true that the accu-
racy is not perfect. Nevertheless, most of the re-
maining problems in this step will be solved using 
a larger corpus. 

5.2 Comparable Methods 
We conducted experiments in the 10-fold cross 
validation manner. We investigated the perform-

 
8 http://crfpp.sourceforge.net/ 
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ance in various feature combinations and the fol-
lowing machine learning methods. 
 

 
Figure 3: Features 

 
Table 6: Event Identification Result. Tag precision re-
call F-score.  

 # P R F 
A (ACTION) 1,556 94.63 91.04 92.80 
V (VERB) 1,047 84.64 74.89 79.47 
D (DISEASE) 3,601 85.56 80.24 82.82 
M (MEDICINE) 1,045 86.99 81.34 84.07 
R (REMEDY) 1,699 84.50 76.36 80.22 
T (TEST) 2,077 84.74 76.68 80.51 
ALL 11,025 84.74 76.68 80.51  

 
Table 7: Various Machine Learning Method 

SVM Support Vector Machine (Vapnik, 
1999). We used TinySVM9 with a 
polynomial kernel (degree=2). 

AP Averaged Perceptron (Collins, 2002) 
PA1 Passive Aggressive I (Crammer et 

al., 2006)* 
PA2 Passive Aggressive II (Crammer et 

al., 2006)* 
CW Confidence Weighted (Dredze et al., 

2008)* 
* The online learning library10 is used for AP PA1,2 
CW . 
 
5.3 Evaluation Metrics 
We adopt evaluation of two types: 
(1) Two-way: positive or negative: 
(2) Nine-way: positive or one of eight modality 
categories. 
Recall and F-measure are investigated in both for 
evaluation precision. 
 
5.4 Results 
The results are shown in Table 8 (Two-Way) and 
in Table 9 (Nine-Way). 
Current Event Category 
The results in ID0–ID1 indicate that the current 
event category (CAT) is useful. However, events 
are sometimes misestimated in real settings. We 
                                                           

In

R

A

A

H

9 http://chasen.org/ taku/software/TinySVM/ 
10 http://code.google.com/p/oll 

must check more practical performance in the fu-
ture. 
Bag-of-words (BOW) Information 
Results in ID1–ID2 indicate that BOW is impor-
tant. 
Surrounding Phrase Contribution 
The results appearing in ID2–ID9 represent the 
contribution of each feature position. From ID3, 
ID4, and ID7 results, next phrases (n1, n2) and 
parent phrases (d1) were able to boost the accuracy. 
Despite the risk of parsing errors, parent phrases 
(d1) are helpful, which is an insight of this study. 

 contrast, we can say that the following features 
had little contribution: previous phrases (p1, p2 
from ID5 and ID6), grandparent phrases (d2 from 
ID8), and previous events (e from ID9). 

egarding p1 and p2, these modalities are rarely 
expressed in the previous parts in Japanese. 

s for d2, the grandparent phrases might be too 
removed from the target events. 

s for e, because texts in health records are frag-
mented, each event might have little relation. 

owever, the above features are also helpful in 
cases with a stronger learning algorithm. 

In fact, among ID10–ID14, the SVM-based 
classifier achieved the best accuracy with all fea-
tures (ID14). 
 

Table 8: Two-way Results 

 
● indicates the used feature. c are features from the cur-
rent phrase. p1, p2, n1, n2 are features from surrounding 
phrases. e are features from a previous event. BOW is a 
bag-of-words using features from an entire sentence. 
CAT is the category of the current event. 
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Learning Methods 
Regarding the learning algorithms, all online learn-
ing methods (ID7 and ID15–17) showed lower ac-
curacies than SVM (ID11), indicating that this task 
requires heavy learning. 
 
Nine-way Results 
Table 9 presents the accuracies of each class. Fun-
damentally, we can obtain high performance in the 
frequent classes (such as NEGATION, PURPOSE, 
and S/O). In contrast, the classifier suffers from 
low frequent classes (such as FUTURE). How to 
handle such examples is a subject of future study. 
 

Table 9: Two-way Results 
 # Preci-

sion 
Re-
call 

F-
measure 

NEGATION 441 84.19 77.36 80.63 
PURPOSE 346 91.35 63.87 75.17 
S/O 242 90.74 72.39 80.53 
FUTURE 97 23.31 55.96 32.91 
POSSIBLE 36 83.33 40.55 54.55 
INTEND 32 76.66 29.35 42.44 
RECOMMEND 21 95.71 38.57 54.98 
NECESSITY 4 100 0 0  

 
4.5 Future Works 
In this section, we will discuss several remaining 
problems. First, as described, the classifier suffers 
from low frequent modality classes. To give more 
examples for such classes is an important problem. 
Our final goal is to realize precise information ex-

traction from health records. Our IE systems are 
already available at the web site (http://lab0.com). 
Comprehensive evaluation of those systems is re-
quired. 

6 Conclusions 

This paper presented a classifier that identified 
whether an event has actually occurred or not. The 
proposed SVM-based classifier uses both BOW 
information and dependency parsing results. The 
experimental results demonstrated 85.8 F-
measure% accuracy and revealed that syntactic 
information can contribute to the method’s accu-
racy. In the future, a method of handling low-
frequency events is strongly desired. 
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Abstract

In this paper we introduce a web application
(SAPIENT) for sentence based annotation of
full papers with semantic information. SAPI-
ENT enables experts to annotate scientific pa-
pers sentence by sentence and also to link re-
lated sentences together, thus forming spans
of interesting regions, which can facilitate text
mining applications. As part of the system,
we developed an XML-aware sentence split-
ter (SSSplit) which preserves XML markup
and identifies sentences through the addition
of in-line markup. SAPIENT has been used
in a systematic study for the annotation of
scientific papers with concepts representing
the Core Information about Scientific Papers
(CISP) to create a corpus of 225 annotated pa-
pers.

1 Introduction

Given the rapid growth in the quantity of scientific
literature, particularly in the Biosciences, there is
an increasing need to work with full papers rather
than abstracts, both to identify their key contribu-
tions and to provide some automated assistance to
researchers (Karamanis et al., 2008; Medlock and
Briscoe, 2007). Initiatives like OTMI1, which aim
to make full papers available to researchers for text
mining purposes is further evidence that relying
solely on abstracts presents important limitations for
such tasks. A recent study on whether information
retrieval from full text is more effective than search-
ing abstracts alone (Lin Jimmy, 2009) showed that

1http://opentextmining.org/wiki/Main Page

the former is indeed the case. Their experimental re-
sults suggested that span-level analysis is a promis-
ing strategy for taking advantage of the full papers,
where spans are defined as paragraphs of text as-
sessed by humans and deemed to be relevant to one
of 36 pre-defined topics. Therefore, when working
with full papers, it is important to be able to iden-
tify and annotate spans of text. In previous research,
sentence based annotation has been used to identify
text regions with scientific content of interest to the
user (Wilbur et al., 2006; Shatkay et al., 2008) or
zones of different rhetorical status (AZ) (Teufel and
Moens, 2002). Sentences are the structural units of
paragraphs and can be more flexible than paragraphs
for text mining purposes other than information re-
trieval.

Current general purpose systems for linguistic an-
notation such as Callisto2 allow the creation of a
simple annotation schema that is a tag set augmented
with simple (e.g. string) attributes for each tag.
Knowtator (Ogren, 2006) is a plug-in of the knowl-
edge representation tool Protégé3, which works as
a general purpose text annotation tool and has the
advantage that it can work with complex ontology-
derived schemas. However, these systems are not
particularly suited to sentence by sentence annota-
tion of full papers, as one would need to highlight
entire sentences manually. Also these systems work
mainly with plain text, so they do not necessarily
interpret the structural information already available
in the paper, which can be crucial to annotation deci-
sions for the type of high level annotation mentioned

2http://callisto.mitre.org/manual/use.html
3http://protege.stanford.edu/
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above. The OSCAR3 (Corbett et al., 2007) tool for
the recognition and annotation of chemical named
entities fully displays underlying paper information
in XML but is not suited to sentence by sentence an-
notation.

To address the above issues, we present a sys-
tem (SAPIENT) for sentence by sentence annota-
tion of scientific papers which supports ontology-
motivated concepts representing the core informa-
tion about scientific papers (CISP) (Soldatova and
Liakata, 2007). An important aspect of the system is
that although annotation is sentence based, the sys-
tem caters for identifiers, which link together sen-
tences pertaining to the same concept. This way
spans of interest or key regions are formed. SAPI-
ENT also incorporates OSCAR3 capability for the
automatic recognition of chemical named entities
and runs within a browser, which makes it platform
independent. SAPIENT takes as input full scien-
tific papers in XML, splits them into individual sen-
tences, displays them and allows the user to anno-
tate each sentence with one of 11 CISP concepts as
well as link the sentence to other sentences refer-
ring to the same instance of the concept selected.
The system is especially suitable for so called multi-
dimensional annotation (Shatkay et al., 2008) or
ontology-motivated annotation, where a label origi-
nates from a class with properties. SAPIENT is cur-
rently being employed by 16 Chemistry experts to
develop a corpus of scientific papers (ART Corpus)
annotated with Core Information about Scientific
Papers (CISP) covering topics in Physical Chemistry
and Biochemistry.

2 SAPIENT System Description

We chose to implement SAPIENT as a web appli-
cation, so as to make it platform independent and
easier to incorporate as part of an online workflow.
We have used state of the art web technologies to
develop SAPIENT, namely Java, Javascript (with
Asynchronous JavaScript and XML (AJAX) func-
tionality), XSLT, CSS and XML. The system has a
client-server architecture (see Figure 1), with pa-
pers being uploaded and stored on the server but
functionality for annotation contained in Javascript,
which runs client-side in the browser. This is in-
spired by but in contrast with OSCAR3 (Corbett

et al., 2007), which also allows manual annota-
tion alongside the automated annotation of chemical
named entities, but where each minor edit is saved
to the server, writing to a file. We chose to make
more of the functionality client-side in order to re-
duce the number of server requests, which could be-
come problematic if the system became widely dis-
tributed.

SAPIENT Architecture

User InputUser Input Browser Browser 
XML Http
request

response

Click on paper

Paper in
.xml Page for paper 

upload &
links to uploaded

papers

Paper displayed
in dynamic html

Javascript based
annotation with 
CISP

  Processing
    with .xsl

Click on Save

ServerServer

Annotations saved
In mode2.xml

Paper saved 
as source.xml

1) Paper is split
into sentences
with SSSplit
2) Paper saved
as mode2.xml

OSCAR annotations

Figure 1: Architecture of the SAPIENT System

SAPIENT has been designed to take as input full
papers in XML, conforming to the SciXML schema
(Rupp et al., 2006)(see Section 3).

To view or annotate a paper, a user must first up-
load it. The index page of SAPIENT shows a list
of papers already uploaded (available as links) and
an interface for uploading more papers (See Figure
2). Once the user selects a link to a paper, the pa-
per is split into sentences using the XML-aware sen-
tence splitter SSSplit which we have developed (See
section 4) and is included in the server-side Java.
The resultant XML file is stored alongside the origi-
nal upload. Sentence splitting involves detecting the
boundaries of sentences and, in this context, mark-
ing the latter by inline <s></s> tags added to the
original XML. The <s></s> tags contain an id at-
tribute enumerating the sentence.

After sentence splitting, the new XML file
containing sentence boundaries marked by <s
id=#NUM>< /s> tags is parsed by XSLT into
HTML, so that it displays in the browser. In the
HTML interface dynamically generated in this way,
Javascript annotation drop-downs are available for
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Figure 2: Index page of the SAPIENT System

each sentence. The user can perform annotations
by selecting items from the drop-downs and all the
corresponding annotation information is stored in
Javascript until a request to save is made by the user.

The Javascript drop-downs allow annotation at
two levels (Figure 3), enabling a sentence to have a
semantic label (type) with properties (subtypes) and
an identifier (conceptID).

In the current implementation of SAPIENT, The
type drop-down value corresponds to the selection
of one out of 11 general scientific concepts (Li-
akata and Soldatova, 2008), namely (‘Background’,
‘Conclusion’, ‘Experiment’, ‘Goal of the Investi-
gation’, ‘Hypothesis’,‘Method’, ‘Model’, ‘Motiva-
tion’, ‘Object of the Investigation’, ‘Observation’,
‘Result’). These labels originate from a set of
meta-data (The Core Information about Scientific
Concepts (CISP) (Soldatova and Liakata, 2007)
which were constructed using an ontology method-
ology, based on an ontology of experiments EXPO
(Soldatova and King, 2006). Because these labels
map to ontology classes, they can also have prop-
erties. For example, ‘Method’ has the property
‘New’/‘Old’,‘Advantage’/‘Disadvantage’. These
properties are dependent on the type selected and
are expressed in terms of the subtype drop-down.
The third drop-down, concept ID allows a user to
provide a concept identifier. The latter is an entity
formed by the name of a concept and a number (e.g.
“Res2”). Concept identifiers uniquely identify an in-
stance of a concept (e.g. the second Result), but not
a sentence. That is, concept identifiers designate and
link together instances of the same semantic con-
cept, spread across different sentences, which can
be in different parts of the paper. For example, the
second result (“Res2”) can be referred to by 1 sen-

tence in the abstract, 5 sentences in the Discussion
and 2 sentences in the Conclusion sections.

The distinction between sentence identifiers and
concept identifiers is an important characteristic of
the system. It means that the system does not neces-
sarily assume a ‘1-1’ correspondence between a sen-
tence and a concept, but rather that concepts can be
represented by spans of often disjoint text. There-
fore, SAPIENT indirectly allows the annotation of
discourse segments beyond the sentence level and
also keeps track of co-referring sentences.

2.1 SAPIENT Usability

Even though SAPIENT has been primarily designed
to work with CISP concepts, it can be used to an-
notate papers according to any sentence based anno-
tation scheme. Changes required can be easily per-
formed by modifying the XSL sheet which dynami-
cally generates HTML from XML and organises the
structure of drop-down menus. Automated noun-
phrase based annotation from existing ontologies
is available to SAPIENT users through OSCAR3
(Corbett et al., 2007), since SAPIENT incorporates
OSCAR3 functionality for chemical named entity
recognition. The latter is implemented as a link
which when selected calls the OSCAR3 workflow
(integrated in the system) to automatically recognise
chemical named entities (NEs) (See Figure 5).

When all annotations (both sentence based and
chemical NEs) are saved to the server, a new ver-
sion of the XML file is produced, which contains
in-line annotation for sentences as well as extra in-
line annotation for the semantic concepts and NEs
embedded within <s></s> tags. These annotation
tags are compliant with the SciXML schema (Rupp
et al., 2006) and in the case of sentence-based anno-
tations are of the form:

<annotationART atype=‘‘GSC’’
type=#TYPE
conceptID=#CONCEPTID
novelty=‘‘Yes/No’’
advantage=‘‘Yes/No’’

</annotationART>

(See Figure 4). The attribute type, stands for the
CISP concept selected for the sentence in question.
The conceptID attribute is an enumerator of the par-
ticular concept, which the sentence refers to. For
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example, two different sentences will have differ-
ent sentence ids but if they refer to the same con-
cept (e.g. the same “Conclusion”) , they will be
assigned the same concept ID (e.g. “Con3”). The
attributes novelty and advantage, are properties of
the concepts assigned to a sentence and depend
on the concept selection. They take boolean val-
ues or the dummy value “None” if the properties
are not defined for a particular concept. For ex-
ample, these attributes are relevant when the con-
cept selected is a ‘Method’, in which case the
method can be “New/Old” and/or have an “Advan-
tage/Disadvantage”. The novelty and advantage at-
tributes co-exist in the annotation (as can be seen in
Figure 4) but they are not set by the system at the
same time. For instance, if a sentence refers to a new
method, it will be given the type ‘Method’ and the
subtype “New”; this sets the novelty attribute in the
underlying XML to “Yes” and leaves the advantage
attribute set to the default “None”. The sentence will
also be given a conceptID, e.g. “Met1”. If another
sentence refers to an advantage of this method, then
the new sentence will be assigned the type ‘Method’,
the subtype “Advantage” (which sets the underlying
advantage attribute to “Yes”) and the same concep-
tID “Met1”. The novelty attribute value is then in-
herited from the novelty attribute value of the first
coreferring sentence, which in this case is “New”.

3 Input: Paper in XML

SAPIENT currently accepts as input papers in XML,
especially ones compliant with the SciXML schema
(Rupp et al., 2006). SciXML is ideally suited for
this purpose as it was developed for representing the
logical structure of scientific research papers. Tags
used in the schema serve the purpose of paper iden-
tification (e.g. <TITLE>,<AUTHOR>), defining
sections of the paper (e.g. <DIV>,<HEADER>),
text sections with specific function and formatting
(e.g. <ABSTRACT>, <EQUATION>), paragraph
tags <P>, references, tables, figures and footnotes,
lists, bibliography. SAPIENT operates only on the
<TITLE>, <ABSTRACT> ,<BODY> and <P>
tags, leaving out any list elements following the
body, such as acknowledgements, figures or refer-
ences at the end of the paper. This is because we
make the assumption that only the abstract and the

body contain sentences with semantic content of any
importance to the research carried out in the paper.
This would have been different if SAPIENT anno-
tated figures as well, but such provision is not cur-
rently made. Tags such as <REF>, citations in the
text, are included within the sentence boundaries.

Even though SAPIENT was developed with the
SciXML schema in mind, it will work with any
well formed XML document that has <PAPER>
as the root node and which also contains an
<ABSTRACT> and <BODY> node. Therefore, it
is relatively easy to adapt SAPIENT to other XML
schemas.

4 SSSplit: Sapient Sentence Splitting

4.1 Sentence Matching

The reason for developing our own sentence split-
ter was that sentence splitters widely available could
not handle XML properly. The XML markup con-
tains useful information about the document struc-
ture and formatting in the form of inline tags,
which is important for determining the logical struc-
ture of the paper. The latter is worth preserv-
ing for our purposes, since it can influence the
annotation of individual sentences. XML markup
(e.g. <ABSTRACT>,<REF>,<EQUATION>)
needs to be combined carefully with tags designat-
ing sentence boundaries (<s></s>), so that the
resulting document is in well formed XML. Cur-
rent sentence splitters ignore XML markup, which
means that any document formatting/information
would have to be removed in order to use them.
RASP (Briscoe et al., 2006), the sentence splitter
used in the Sciborg project4 at the University of
Cambridge, can deal with XML but has to be com-
piled for different operating systems, which would
result in compromising the platform independence
of SAPIENT. A recent MPhil thesis (Owusu, 2008)
has also developed an XML-aware sentence splitter
but the code is in Microsoft C#.Net and therefore not
platform independent.

We have written the XML-aware sentence split-
ter SSSplit in the platform-independent Java lan-
guage (version 1.6), based on and extending open
source Perl code5 for handling plain text. In or-

4http://www.cl.cam.ac.uk/research/nl/sciborg/www/
5http://search.cpan.org/ tgrose/HTML-Summary-0.017/
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Figure 3: Example of SAPIENT annotation through selection from drop-down menu.

Figure 4: Behind the scenes: Example XML fragment of a paper annotated using SAPIENT.

Figure 5: Incorporation of OSCAR3 annotations in SAPIENT, after selecting the link “Auto Annotate”
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der to make our sentence splitter XML aware, we
translated the Perl regular expression rules into Java
and modifed them to make them compatible with the
SciXML(Rupp et al., 2006) schema. We then fur-
ther improved the rules, by training on a set of 14
papers in SciXML. This involved displaying the pa-
pers, checking whether the XML was well formed
and making corrections accordingly. We would ob-
serve cases of oversplit and undersplit sentences and
amend the rules while keeping them as general as
possible. The rules in SSSplit were evaluated by
comparing the system output against a gold standard
of 41 papers, where sentence boundaries had been
provided by human experts (See section 4.2). The
sentence splitter is integrated within the SAPIENT
system but is also available as a separate package
(“SSSplit”). This should enable any future work to
easily incorporate or extend it. It is currently trained
for splitting papers in SciXML, but can be easily
ported to any other kind of XML, as discussed in
section 3.

4.2 SSSplit Evaluation

SAPIENT and SSSplit have been have been em-
ployed by more than 20 different users to success-
fully display 270 full papers. For a more accurate
evaluation of the quality of the sentences produced
by SSSplit, we used a Perl script which compared
the sentence boundaries (start and end) generated
by SSSplit, to sentence tags in a set of 41 papers
(SciXML files) annotated manually by human ex-
perts. If both the start and end of a sentence matched
up in the generated and manual versions, we consid-
ered this a true positive result. In the case where a
sentence did not match in the two versions, we first
searched for a matching end in our generated set of
sentences and then in the hand annotated version. If
the ‘true’ end of the sentence (as defined by the man-
ual annotation) was found in later sentences in the
SSSplit version, this meant that the system had split
a sentence too early, or “oversplit”. This we consid-
ered to be a false positive, since we had detected a
sentence boundary where in reality there was none.
This would result in the following sentence being
matched at the end only, which also counts as a false
positive. In the case where the end of the SSSplit
sentence was found in a later sentence, within the
set of ‘true’ sentences, it meant that our sentence

RASP Owusu SSSplit
Precision 0.994 0.996 0.964

Recall 0.983 0.990 0.994
F-measure 0.988 0.992 0.978

Table 1: Comparison of sentence splitters in RASP,
Owusu and SSSplit.

spanned too wide, or that the system had “under-
split”. These cases we considered to be false nega-
tives, as we had failed to detect a sentence boundary
where there was one.

Our training consisted of 14 papers in the fields of
physical chemistry and biochemistry. A different set
of 41 papers distinct from the training set but from
the same thematic domain was used as a test set. Out
of these 41 papers, 36 feature as a test set (with n-
fold validation) also for the sentence splitters RASP
(Briscoe et al., 2006) and the XML-aware sentence
splitter developed by (Owusu, 2008). The results for
all three systems, obtained as medians of Precision,
Recall and F-measure for the 36 papers are shown in
Table 1.

Precision is the proportion of true positives over
all end and start tags returned, giving a measure of
the number of boundaries identified correctly. Re-
call is the proportion of true positives over all the
relevant start and end tags in the hand-annotated pa-
pers, giving a measure of the number of boundaries
actually found. F-Measure combines Precision and
Recall to give a more balanced view on the system
performance.

In comparison with RASP and the XML-Aware
splitter of (Owusu, 2008), SSSplit performed well,
though it did not outperform these systems. Their
highest result for precision was 0.996 (vs 0.964 for
SSSplit) and for recall 0.990 (vs 0.994 for SSSplit).
We can explain their higher results somewhat by
their use of n-fold cross-validation on 36 out of the
same 41 papers that we used, which can allow in-
formation from the test set to leak into the training
data. We did not perform n-fold cross-validation, as
this would have involved going through each of the
papers and removing any potential influence on our
regular expression rules of the sentences included
within, which is a non-trivial process. Our test data
was completely unseen, which meant that our eval-
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Training Testing
(1979 sentences) (5002 sentences)

Precision 0.961 0.964
Recall 0.995 0.994

F-measure 0.96875 0.978

Table 2: Comparison of SSSplit on the training and test-
ing papers. The training set consisted of 14 papers (1979
sentences) and the testing set of 41 papers (5002 sen-
tences).

uation is stricter, avoiding any influence from the
training data.

In addition to the comparison between SSSplit
and the other two XML-aware sentence splitters, we
also performed a comparison between our training
and testing sets, depicted in Table 2.

As can be seen in Table 2, recall was only slightly
better on the training set than the test set, but preci-
sion was worse on the training set, presumably be-
cause of lack of attention being paid to the oversplit-
ting in a particular paper (“b103844n”). This shows
that we have not overfitted to the training set in de-
veloping our splitter. Our recall is particularly high,
indicating that our splitter makes very few false neg-
ative errors. We can attribute many of the false pos-
itive errors to our somewhat small set of abbrevi-
ations considered, resulting in oversplit sentences.
We would like to incorporate a more sophisticated
approach to abbreviations in the future.

5 Performing CISP Annotations

Within the context of the ART project (Soldatova et
al., 2007), SAPIENT has been used by 16 Chem-
istry experts to annotate 265 papers from RSC Pub-
lishing journals, covering topics in Physical Chem-
istry and Biochemistry. Experts have been anno-
tating the papers sentence by sentence, assigning
each sentence one of 11 core scientific concepts and
linking together sentences across a paper which re-
fer to the same instance of a concept. The aim
is to create a corpus of annotated papers (ART-
corpus) with regions of scientific interest identified
by CISP concepts (“Result”,“Conclusion”, “Obser-
vation”,“Method” and so on).

A preliminary evaluation of the experts’ agree-
ment on the ART Corpus, based on a sample of

41 papers, annotated by the 16 experts in non-
overlapping groups of 3, shows significant agree-
ment between annotators, given the difficulty of
the task (an average kappa co-efficient of 0.55 per
group). The details of this work are beyond the
scope of the current paper, but the preliminary re-
sults underline the usability of both the CISP meta-
data and SAPIENT. In the future, we plan to further
evaluate the ART Corpus by incorporating existing
machine learning algorithms into SAPIENT and au-
tomating the generation of CISP meta-data. This
would make SAPIENT a very useful tool and would
indeed add a lot more value to the meta-data, since
training and paying annotators is a costly process
and manually annotating papers is incredibly time
consuming.

6 Conclusion and Future Work

We have presented SAPIENT, a web-based tool for
the annotation of full papers, sentence by sentence,
with semantic information. We have also discussed
how these annotations result in the indirect defini-
tion of regions of interest within the paper. The sys-
tem has been already tested in a systematic study
and has been employed for the creation of a corpus
of papers annotated with CISP concepts (ART Cor-
pus). In the future we plan to extend SAPIENT so
that the system can itself suggest annotation labels
to users. We also plan to target the needs of partic-
ular users such as authors of papers, reviewers and
editors.

SAPIENT, SSSplit and their documenta-
tion are both available for download from
http://www.aber.ac.uk/compsci/Research/bio/art/sapient/.
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