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Introduction

Welcome to the CoNLL-2009 Shared Task!

The Shared Task of the 2009 Conference on Computational Natural Language Learning was prepared
under the auspices of the ACL Special Interest Group on Natural Language Learning as part of the
conference. The task, Syntactic and Semantic Dependencies in Multiple Languages, extends the 2008
task to six more languages. It has attracted over 60 teams, out of which 20 submitted a valid entry in this
friendly competition enterprise. In this volume, 18 papers describe the methodology and results of these
systems. The details on the data format design and preparation, their basic statistics, and summary of
the results and system approaches can be found in the overview paper that opens this volume. The task
maintains its own website, http://ufal.mff.cuni.cz/conll2009-st, where all the details
(including results) can be found.

We would like to thank the data providers and the members of the organization team for preparing,
merging and converting the data. Special thanks go to Jan Štěpánek, who centrally handled all data
checking and repackaging for distribution, and to the LDC team who made their data available to the
CoNLL-2009 Shared Task participants free of charge and helped with the licensed data distribution.
The website has been maintained also by Jan Štěpánek, Pavel Straňák and Jan Hajič. Massimiliano
Ciaramita has overseen the paper submission and reviewing process and the preparation of these
proceedings. And of course, we would like to thank the authors of the submitted systems (who
additionally also served as paper reviewers) - without them, the Shared Task would have been a
meaningless exercise!

We hope that you will enjoy the papers describing the systems submitted. Let them inspire you in your
own research!

Prague, April 23, 2009

Jan Hajič, for the Shared Task organizers
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Lluı́s Màrquez, Technical University of Catalonia, Barcelona (Spain)
Adam Meyers, New York University (USA)
Joakim Nivre, Uppsala University and Växjö University (Sweden)
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Multilingual Semantic Role Labelling with Markov Logic
Ivan Meza-Ruiz and Sebastian Riedel

Joint Memory-Based Learning of Syntactic and Semantic Dependencies in Multiple Lan-
guages
Roser Morante, Vincent Van Asch and Antal van den Bosch

The Crotal SRL System : a Generic Tool Based on Tree-structured CRF
Erwan Moreau and Isabelle Tellier

Parsing Syntactic and Semantic Dependencies for Multiple Languages with A Pipeline
Approach
Han Ren, Donghong Ji, Jing Wan and Mingyao Zhang

Multilingual Semantic Parsing with a Pipeline of Linear Classifiers
Oscar Täckström
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Abstract

For the 11th straight year, the Conference
on Computational Natural Language Learn-
ing has been accompanied by a shared task
whose purpose is to promote natural language
processing applications and evaluate them in
a standard setting. In 2009, the shared task
was dedicated to the joint parsing of syntac-
tic and semantic dependencies in multiple lan-
guages. This shared task combines the shared
tasks of the previous five years under a unique
dependency-based formalism similar to the
2008 task. In this paper, we define the shared
task, describe how the data sets were created
and show their quantitative properties, report
the results and summarize the approaches of
the participating systems.

1 Introduction

Every year since 1999, the Conference on Com-
putational Natural Language Learning (CoNLL)
launches a competitive, open “Shared Task”. A
common (“shared”) task is defined and datasets are
provided for its participants. In 2004 and 2005, the
shared tasks were dedicated to semantic role label-
ing (SRL) in a monolingual setting (English). In

2006 and 2007 the shared tasks were devoted to
the parsing of syntactic dependencies, using corpora
from up to 13 languages. In 2008, the shared task
(Surdeanu et al., 2008) used a unified dependency-
based formalism, which modeled both syntactic de-
pendencies and semantic roles for English. The
CoNLL-2009 Shared Task has built on the 2008 re-
sults by providing data for six more languages (Cata-
lan, Chinese, Czech, German, Japanese and Span-
ish) in addition to the original English1. It has thus
naturally extended the path taken by the five most
recent CoNLL shared tasks.

As in 2008, the CoNLL-2009 shared task com-
bined dependency parsing and the task of identify-
ing and labeling semantic arguments of verbs (and
other parts of speech whenever available). Partici-
pants had to choose from two tasks:

• Joint task (syntactic dependency parsingand
semantic role labeling), or

• SRL-only task (syntactic dependency parses
have been provided by the organizers, using
state-of-the art parsers for the individual lan-
guages).

1There are some format changes and deviations from the
2008 task data specification; see Sect. 2.3
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In contrast to the previous year, the evaluation data
indicated which words were to be dealt with (for the
SRL task). In other words, (predicate) disambigua-
tion was still part of the task, whereas theidenti-
fication of argument-bearing words was not. This
decision was made to compensate for the significant
differences between languages and between the an-
notation schemes used.

The “closed” and “open” challenges have been
kept from last year as well; participants could have
chosen one or both. In the closed challenge, systems
had to be trained strictly with information contained
in the given training corpus; in the open challenge,
systems could have been developed making use of
any kind of external tools and resources.

This paper is organized as follows. Section 2 de-
fines the task, including the format of the data, the
evaluation metrics, and the two challenges. A sub-
stantial portion of the paper (Section 3) is devoted
to the description of the conversion and develop-
ment of the data sets in the additional languages.
Section 4 shows the main results of the submitted
systems in the Joint and SRL-only tasks. Section 5
summarizes the approaches implemented by partic-
ipants. Section 6 concludes the paper. In all sec-
tions, we will mention some of the differences be-
tween last year’s and this year’s tasks while keeping
the text self-contained whenever possible; for details
and observations on the English data, please refer to
the overview paper of the CoNLL-2008 Shared Task
(Surdeanu et al., 2008) and to the references men-
tioned in the sections describing the other languages.

2 Task Definition

In this section we provide the definition of the shared
task; after introducing the two challenges and the
two tasks the participants were to choose, we con-
tinue with the format of the shared task data, fol-
lowed by a description of the evaluation metrics
used.

For three of the languages (Czech, English and
German), out-of-domain data (OOD) have also been
prepared for the final evaluation, following the same
guidelines and formats.

2.1 Closed and Open Challenges

Similarly to the CoNLL-2005 and CoNLL-2008
shared tasks, this shared task evaluation is separated
into two challenges:

Closed ChallengeThe aim of this challenge was to
compare performance of the participating systems in
a fair environment. Systems had to be built strictly
with information contained in the given training cor-
pus, and tuned with the development section. In
addition, the lexical frame files (such as the Prop-
Bank and NomBank for English, the valency dictio-
nary PDT-Vallex for Czech etc.) were provided and
may have been used. These restrictions mean that
outside parsers (not trained by the participants’ sys-
tems) could not be used. However, we did provide
the output of a single, state-of-the-art dependency
parser for each language so that participants could
build a SRL-only system (using the provided parses
as inputs) within the closed challenge (as opposed to
the 2008 shared task).

Open ChallengeSystems could have been devel-
oped making use of any kind of external tools and
resources. The only condition was that such tools or
resources must not have been developed with the an-
notations of the test set, both for the input and output
annotations of the data. In this challenge, we were
interested in learning methods which make use of
any tools or resources that might improve the per-
formance. The comparison of different systems in
this setting may not be fair, and thus ranking of sys-
tems is not necessarily important.

2.2 Joint and SRL-only tasks

In 2008, systems participating in the open challenge
could have used state-of-the-art parsers for the syn-
tactic dependency part of the task. This year, we
have provided the output of these parsers for all the
languages in an uniform way, thus allowing an or-
thogonal combination of the two tasks and the two
challenges. For the SRL-only task, participants in
the closed challenge simply had to use the provided
parses only.

Despite the provisions for the SRL-only task, we
are more interested in the approaches and results of
the Joint task. Therefore, primary system ranking is
provided for the Joint task while additional measures
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are computed for various combinations of parsers
and SRL methods across the tasks and challenges.

2.3 Data Format

The data format used in this shared task has been
based on the CoNLL-2008 shared task, with some
differences. The data follows these general rules:

• The files contain sentences separated by a blank
line.

• A sentence consists of one or more tokens and
the information for each token is represented on
a separate line.

• A token consists of at least 14 fields. The fields
are separated by one or more whitespace char-
acters (spaces or tabs). Whitespace characters
are not allowed within fields.

The data is thus a large table with whitespace-
separated fields (columns). The fields provided in
the data are described in Table 1. They are identical
for all languages, but they may differ in contents;
for example, some fields might not be filled for all
the languages provided (such as the FEAT or PFEAT
fields).

For the SRL-only task, participants have been
provided will all the data but the PRED and
APREDs, which they were supposed to fill in with
their correct values. However, they did not have
to determine which tokens are predicates (or more
precisely, which are the argument-bearing tokens),
since they were marked by ‘Y’ in the FILLPRED
field.

For the Joint task, participants could not (in ad-
dition to the PRED and APREDs) see the gold-
standard nor the predicted syntactic dependencies
(HEAD, PHEAD) and their labels (DEPREL, PDE-
PREL). These syntactic dependencies were also to
be filled by participants’ systems.

In both tasks, participants have been free to
use any other data (columns) provided, except the
LEMMA, POS and FEAT columns (to get more ‘re-
alistic’ results using only their automatically pre-
dicted variants PLEMMA, PPOS and PFEAT).

Besides the corpus proper, predicate dictionaries
have been provided to participants in order to be able
to properly match the predicates to the tokens in the

corpus; their contents could have been used e.g. as
features for the PRED/APREDs predictions (or even
for the syntactic dependencies, i.e., for filling in the
PHEAD and PDEPREL fields).

The system of filling-in the APREDs follows
the 2008 pattern; for each argument-bearing token
(predicate), a new APREDn column is created in the
order in which the predicate token is encountered
within the sentence (i.e., based on its ID seen as a
numerical value). Then, for each token in the sen-
tence, the value in the intersection of the APREDn
column and the token row is either left unfilled
(if the token is not an argument), or a predicate-
argument label(s) is(are) filled in.

The differences between the English-only 2008
task and this year’s multilingual task can be briefly
summarized as follows:

• only “split”2 lemmas and forms have been pro-
vided in the English datasets (for the other lan-
guages, original tokenization from the respec-
tive treebanks has been used);

• rich morphological features have been added
wherever available;

• syntactic dependencies by state-of-the-art
parsers have been provided (for the SRL-only
task);

• multiple semantic labels for a single token have
been allowed (and properly evaluated) in the
APREDs columns;

• predicates have been pre-identified and marked
in both the training and test data;

• some of the fields (e.g. theAPREDx) and val-
ues (ARG0→ A0 etc.) have been renamed.

2.4 Evaluation Measures

It was required that participants submit results in all
seven languages in the chosen task and in any of (or
both) the challenges. Submission of out-of-domain
data files has been optional.

The main evaluation measure, according to which
systems are primarily compared, is the Joint task,

2Splitting of forms and lemmas in English has been intro-
duced in the 2008 shared task to match the tokenization con-
vention for the arguments in NomBank.
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Field # Name Description
1 ID Token counter, starting at 1 for each new sentence
2 FORM Form or punctuation symbol (the token; “split” for English)
3 LEMMA Gold-standard lemma of FORM
4 PLEMMA Automatically predicted lemma of FORM
5 POS Gold-standard POS (major POS only)
6 PPOS Automatically predicted major POS by a language-specific tagger
7 FEAT Gold-standard morphological features (if applicable)
8 PFEAT Automatically predicted morphological features (if applicable)
9 HEAD Gold-standard syntactic head of the current token (IDor 0 if root)
10 PHEAD Automatically predicted syntactic head
11 DEPREL Gold-standard syntactic dependency relation (toHEAD)
12 PDEPREL Automatically predicted dependency relation toPHEAD
13 FILLPRED Contains ‘Y’ for argument-bearing tokens
14 PRED (sense) identifier of a semantic “predicate” coming from a current token
15... APREDn Columns with argument labels for each semanticpredicate (in the ID order)

Table 1: Description of the fields (columns) in the data provided. The values of columns 9, 11 and 14 and above are
not provided in the evaluation data; for the Joint task, columns 9–12 are also empty in the evaluation data.

closed challenge, Macro F1 score. However, scores
can also be computed for a number of other condi-
tions:

• Task: Joint or SRL-only

• Challenge: open or closed

• Domain: in-domain data (IDD, separated from
training corpus) or out-of-domain data (OOD)

Joint task participants are also evaluated separately
on the syntactic dependency task (labeled attach-
ment score, LAS). Finally, systems competing in
both tasks are compared on semantic role labeling
alone, to assess the impact of the the joint pars-
ing/SRL task compared to an SRL-only task on pre-
parsed data.

Finally, as an explanatory measure, precision and
recall of the semantic labeling task have been com-
puted and tabulated.

We have decided to omit several evaluation fig-
ures that were reported in previous years, such as the
percentage of completely correct sentences (“Exact
Match”), unlabeled scores, etc. With seven lan-
guages, two tasks (plus two challenges, and the
IDD/OOD distinction), there are enough results to
get lost even as it is.

2.4.1 Syntactic Dependency Measures

The LAS score is defined similarly as in the pre-
vious shared tasks, as the percentage of tokens for

which a system has predicted the correct HEAD and
DEPREL columns. The unlabeled attachment score
(UAS), i.e., the percentage of tokens with correct
HEAD regardless if the DEPREL is correct, has not
been officially computed this year. No precision and
recall measures are applicable, since all systems are
supposed to output a single dependency with a single
label (see also below the footnote to the description
of the combined score).

2.4.2 Semantic Labeling Measures

The semantic propositions are evaluated by con-
verting them to semantic dependencies, i.e., we cre-
ate n semantic dependencies from every predicate
to its n arguments. These dependencies are labeled
with the labels of the corresponding arguments. Ad-
ditionally, we create a semantic dependency from
each predicate to a virtual ROOT node. The latter
dependencies are labeled with the predicate senses.
This approach guarantees that the semantic depen-
dency structure conceptually forms a single-rooted,
connected (but not necessarily acyclic) graph. More
importantly, this scoring strategy implies that if a
system assigns the incorrect predicate sense, it still
receives some points for the arguments correctly as-
signed. For example, for the correct proposition:

verb.01: A0, A1, AM-TMP

the system that generates the following output for
the same argument tokens:

4



verb.02: A0, A1, AM-LOC

receives a labeled precision score of 2/4 because two
out of four semantic dependencies are incorrect: the
dependency to ROOT is labeled02 instead of01
and the dependency to theAM-TMP is incorrectly la-
beledAM-LOC. Using this strategy we compute pre-
cision, recall, and F1 scores for semantic dependen-
cies (labeled only).

For some languages (Czech, Japanese) there may
be more than one label in a given argument position;
for example, this happens in Czech in special cases
of reciprocity when the same token serves as two or
more arguments to the same predicate. The scorer
takes this into account and considers such cases to
be (as if) multiple predicate-argument relations for
the computation of the evaluation measures.

For example, for the correct proposition:

v1f1: ACT|EFF, ADDR

the system that generates the following output for
the same argument tokens:

v1f1: ACT, ADDR|PAT

receives a labeled precision score of 3/4 because
the PAT is incorrect and labeled recall 3/4 be-
cause the EFF is missing (should the ACT|EFF and
ADDR|PAT be taken as atomic values, the scores
would then be zero).

2.4.3 Combined Syntactic and Semantic Score

We combine the syntactic and semantic measures
into one global measure using macro averaging. We
compute macro precision and recall scores by aver-
aging the labeled precision and recall for semantic
dependencies with the LAS for syntactic dependen-
cies:3

LMP = Wsem ∗ LPsem + (1−Wsem) ∗ LAS (1)

LMR = Wsem ∗ LRsem + (1 −Wsem) ∗ LAS (2)

where LMP is the labeled macro precision and
LPsem is the labeled precision for semantic depen-
dencies. Similarly,LMR is the labeled macro re-
call andLRsem is the labeled recall for semantic
dependencies.Wsem is the weight assigned to the

3We can do this because the LAS for syntactic dependen-
cies is a special case of precision and recall, where the predicted
number of dependencies is equal to the number of gold depen-
dencies.

semantic task.4 The macro labeled F1 score, which
was used for the ranking of the participating sys-
tems, is computed as the harmonic mean ofLMP
andLMR.

3 Data

The unification of the data formats for the various
languages appeared to be a challenge in itself. We
will briefly describe the processes of the conversion
of the existing treebanks in the seven languages of
the CoNLL-2009 shared task. In many instances,
the original treebanks had to be not only converted
format-wise, but also merged with other resources in
order to generate useful training and testing data that
fit the task description.

3.1 The Input Corpora

The data used as the input for the transformations
aimed at arriving at the data contents and format de-
scribed in Sect. 2.3 are described in (Taulé et al.,
2008), (Xue and Palmer, 2009), (Hajič et al., 2006),
(Surdeanu et al., 2008), (Burchardt et al., 2006) and
(Kawahara et al., 2002).

In the subsequent sections, the procedures for the
data conversion for the individual languages are de-
scribed. The data has been collected by the main
organization site and checked for format errors, and
repackaged for distribution.

There were three packages of the data distributed
to the participants: Trial, Training plus Develop-
ment, and Evaluation. The Trial data were rather
small, just to give the feeling of the format and
languages involved. A visual representation of the
Trial data was also created to make understanding
of the data easier. Any data in the same format
can be transformed and displayed in the Tree Editor
TrEd5 (Pajas anďStěpánek, 2008) with the CoNLL
2009 Shared Task extension that can be installed
from within the editor. A sample visualization of an
English sentence after its conversion to the shared
task format (Sect. 2.3) is in Fig. 1.

Due to licensing requirements, every package of
the data had to be split into two portions. One
portion (Catalan, German, Japanese, and Spanish
data) was published on the task’s webpage for down-

4We assign equal weight to the two tasks, i.e.,Wsem = 0.5.
5http://ufal.mff.cuni.cz/∼pajas/tred
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Figure 1: Visualisation of the English sentence“And sometimes a reputable charity with a houshold name getsused
and doesn’t even know it.”(Penn Treebank, wsj0559) showing jointly the labeled syntactic and semantic depen-
dencies. The basic tree shape comes from the syntactic dependencies; syntactic labels and POS tags are on the 2nd

line at each node. Semantic dependencies which do not followthe syntactic ones use dotted lines. Predicate senses
in parentheses (use:01, ...) follow the word label. SRLs (A0, AM-TMP, ...) are on the last line. Please note that
multiple semantic dependencies (e.g., there are four forcharity: A0← know, A1← gets, A1← used, A1← name)
and self-dependencies (name) appear in this sentence.

load, the other portion (Czech, English, and Chinese
data) was invoiced and distributed by the Linguistic
Data Consortium under a special agreement free of
charge.

Distribution of the Evaluation package was a bit
more complicated, because there were two types of
the packages - one for the Joint task and one for the
SRL-only task. Every participant had to subscribe
to one of the two tasks; subsequently, they obtained
the appropriate data (again, from the webpage and
LDC).

Prior to release, each data file was checked to
eliminate errors. The following test were carried
out:

• For every sentence, number of PREDs rows
matches the number of APREDs columns.

• The first line of each file is never empty, while
the last line always is.

• The first character on a non-empty line is al-
ways a digit, the last one is never a whitespace.

• The number of empty lines (i.e. the number
of sentences) equals the number of lines begin-
ning with “1”.

• The data contain no spaces nor double tabs.

Some statistics on the data can be seen in Ta-
bles 2, 3 and 4. Whereas the training sizes of the
data have not been that different as they were e.g.
for the 2007 shared task on multilingual dependency
parsing (Nivre et al., 2007)6, substantial differences
existed in the distribution of the predicates and ar-
guments, the input features, the out-of-vocabulary
rates, and other statistical characteristics of the data.

Data sizes have been relatively uniform in all the
datasets, with Japanese having the smallest dataset

6http://nextens.uvt.nl/depparse-wiki/
DataOverview
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containing data for SRL annotation training. To
compensate at least for the dependency parsing part,
an additional, large Japanese corpus with syntactic
dependency annotation has been provided.

The average sentence length, the vocabulary sizes
for FORM and LEMMA fields and the OOV rates
characterize quite naturally the properties of the re-
spective languages (in the domain of the training and
evaluation data). It is no surprise that the FORM
OOV rate is the highest for Czech, a highly inflec-
tional language, and that the LEMMA OOV rate is
the highest for German (as a consequence of keeping
compounds as a single lemma). The other statistics
also reflect (to a large extent) the annotation speci-
fication and conventions used for the original tree-
banks and/or the result of the conversion process to
the unified CoNLL-2009 Shared Task format.

Starting with the POS and FEAT fields, it can be
seen that Catalan, Czech and Spanish use only the
12 major part-of-speech categories as values of the
POS field (with richly populated FEAT field); En-
glish and Chinese are the opposite extreme, disre-
garding the use of the FEAT field completely and
coding everything as a POS value. While for Chi-
nese this is quite understandable, English follows the
PTB tradition in this respect. German and Japanese
use relatively rich set of values in both the POS and
FEAT fields.

For the dependency relations (DEPREL), all
the languages use a similarly-sized set except for
Japanese, which only encodes the distinction be-
tween a root and a dependent node (and some in-
frequent special ones).

Evaluation data are over 10% of the size of the
training data for Catalan, Chinese, Czech, Japanese
and Spanish and roughly 5% for English and Ger-
man.

Table 3 shows the distribution of the five most fre-
quent dependency relations (determined as part of
the subtask of syntactic parsing). With the exception
of Japanese, which essentially does not label depen-
dency relations at this level, all the other languages
show little difference in this distribution. For exam-
ple, the unconditioned probability of “subjects” is
almost the same for all the six other languages (be-
tween 6 and 8 percent). The probability mass cov-
ered by the first five most frequent DEPRELs is also
almost the same (again, except for Japanese), sug-

gesting that the labeling task might have similar dif-
ficulty7. The most skewed one is for Czech (after
Japanese).

Table 4 shows similar statistics for the argument
labels (PRED/APREDs); it also adds the average
number of arguments per “predicate” token, since
this is part of the SRL task8. It is apparent from the
comparison of the “Total” rows in this table and Ta-
ble 3 that the first five argument labels cover more
that their syntactic counterparts. For example, the
arguments A0-A4 account for all but 3% of all ar-
guments labels, whereas Spanish and Catalan have
much more rich set of argument labels, with a high
entropy of the most-frequent-label distribution.

3.2 Catalan and Spanish

The Catalan and Spanish datasets (Taulé et al., 2008)
were generated from the AnCora corpora9 through
an automatic conversion process from a constituent-
based formalism to dependencies (Civit et al., 2006).

AnCora corpora contain about half million words
for Catalan and Spanish annotated with syntactic
and semantic information. Text sources for the Cata-
lan corpus are EFE news agency (∼75Kw), ACN
Catalan news agency (∼225Kw), and ‘El Periódico’
newspaper (∼200Kw). The Spanish corpus comes
from the Lexesp Spanish balanced corpus (∼75Kw),
the EFE Spanish news agency (∼225Kw), and the
Spanish version of ‘El Periódico’ (∼200Kw). The
subset from ‘El Periódico’ corresponds to the same
news in Catalan and Spanish, spanning from January
to December 2000.

Linguistic annotation is the same in both lan-
guages and includes: PoS tags with morphologi-
cal features (gender, number, person, etc.), lemma-
tization, syntactic dependencies (syntactic func-
tions), semantic dependencies (arguments and the-
matic roles), named entities and predicate semantic
classes (Lexical Semantic Structure, LSS). Tag sets
are shared by the two languages.

If we take into account the complete PoS tags,

7Yes, this is overgeneralization since this distribution does
not condition on the features, dependencies etc. But as a rough
measure, it often correlates well with the results.

8A number below 1 means there are some argument-bearing
words (often nouns) which have no arguments in the particular
sentence in which they appear.

9http://clic.ub.edu/ancora
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Characteristic Catalan Chinese Czech English German Japanese Spanish
Training data size (sentences)13200 22277 38727 39279 36020 4393a 14329
Training data size (tokens) 390302 609060 652544 958167 648677 112555a 427442
Avg. sentence length (tokens) 29.6 27.3 16.8 24.4 18.0 25.6 29.8
Tokens with argumentsb (%) 9.6 16.9 63.5 18.7 2.7 22.8 10.3
DEPREL types 50 41 49 69 46 5 49
POS types 12 41 12 48 56 40 12
FEAT types 237 1 1811 1 267 302 264
FORM vocabulary size 33890 40878 86332 39782 72084 36043 40964
LEMMA vocabulary size 24143 40878 37580 28376 51993 30402 26926
Evaluation data size (sent.) 1862 2556 4213 2399 2000 500 1725
Evaluation data size (tokens) 53355 73153 70348 57676 31622 13615 50630
Evaluation FORM OOVc 5.40 3.92 7.98/8.62d 1.58/3.76d 7.93/7.57d 6.07 5.63
Evaluation LEMMA OOVc 4.14 3.92 3.03/4.29d 1.08/2.30d 5.83/7.36d 5.21 3.69

Table 2: Elementary data statistics for the CoNLL-2009 Shared Task languages. The data themselves, the original
treebanks they were derived from and the conversion processare described in more detail in sections 3.2-3.7. All
evaluation data statistics are derived from the in-domain evaluation data.
aThere were additional 33257 sentences (839947 tokens) available for syntactic dependency parsing of Japanese; the type and
vocabulary statistics are computed using this larger dataset.
bPercentage of tokens with FILLPRED=‘Y’.
cPercentage of FORM/LEMMA tokens not found in the respectivevocabularies derived solely from the training data.
dOOV percentage for in-domain/out-of-domain data.

DEPREL Catalan Chinese Czech English German Japanese Spanish
sn 0.16 COMP 0.21 Atr 0.26 NMOD 0.27 NK 0.31 D 0.93 sn 0.16
spec 0.15 NMOD 0.14 AuxP 0.10 P 0.11 PUNC 0.14 ROOT 0.04 spec 0.15

Labels f 0.11 ADV 0.10 Adv 0.10 PMOD 0.10 MO 0.12 P 0.03 f 0.12
sp 0.09 UNK 0.09 Obj 0.07 SBJ 0.07 SB 0.07 A 0.00 sp 0.08
suj 0.07 SBJ 0.08 Sb 0.06 OBJ 0.06 ROOT 0.06 I 0.00 suj 0.08

Total 0.58 0.62 0.59 0.61 0.70 1.00 0.59

Table 3: Unigram probability for the five most frequent DEPREL labels in the training data of the CoNLL-2009
Shared Task is shown. Total is the probability mass covered by the five dependency labels shown.

APRED Catalan Chinese Czech English German Japanese Spanish
arg1-pat 0.22 A1 0.30 RSTR 0.30 A1 0.37 A0 0.40 GA 0.33 arg1-pat 0.20
arg0-agt 0.18 A0 0.27 PAT 0.18 A0 0.25 A1 0.39 WO 0.15 arg0-agt 0.19

Labels arg1-tem 0.15 ADV 0.20 ACT 0.17 A2 0.12 A2 0.12 NO 0.15 arg1-tem 0.15
argM-tmp 0.08 TMP 0.07 APP 0.06 AM-TMP 0.06 A3 0.06 NI 0.09 arg2-atr 0.08
arg2-atr 0.08 DIS 0.04 LOC 0.04 AM-MNR 0.03 A4 0.01 DE 0.06 argM-tmp 0.08

Total 0.71 0.91 0.75 0.83 0.97 0.78 0.70
Avg. 2.25 2.26 0.88 2.20 1.97 1.71 2.26

Table 4: Unigram probability for the five most frequent APREDlabels in the training data of the CoNLL-2009
Shared Task is shown. Total is the probability mass covered by the five argument labels shown. The “Avg.” line
shows the average number of arguments per predicate or otherargument-bearing token (i.e. for those marked by
FILLPRED=‘Y’).
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AnCora has 280 different labels. Considering only
the main syntactic categories, the tag set is reduced
to 47 tags. The syntactic tag set consists of 50 dif-
ferent syntactic functions. Regarding semantic ar-
guments, we distinguish Arg0, Arg1, Arg2, Arg3,
Arg4, ArgM, and ArgL. The first five tags are num-
bered from less to more obliqueness with respect
to the verb, ArgM corresponds to adjuncts. The
list of thematic roles consists of 20 different labels:
AGT (Agent), AGI (Induced Agent), CAU (Cause),
EXP (Experiencer), SCR (Source), PAT (Patient),
TEM (Theme), ATR (Attribute), BEN (Beneficiary),
EXT (Extension), INS (Instrument), LOC (Loca-
tive), TMP (Time), MNR (Manner), ORI (Origin),
DES (Goal), FIN (Purpose), EIN (Initial State), EFI
(Final State), and ADV (Adverbial). Each argument
position can map onto specific thematic roles. By
way of example, Arg1 can be PAT, TEM or EXT. For
Named Entities, we distinguish six types: Organiza-
tion, Person, Location, Date, Number, and Others.

An incremental process guided the annotation of
AnCora, since semantics depends on morphosyntax,
and syntax relies on morphology. This procedure
made it possible to check, correct, and complete
the previous annotations, thus guaranteeing the final
quality of the corpora and minimizing the error rate.
The annotation process was carried out sequentially
from lower to upper layers of linguistic description.
All resulting layers are independent of each other,
thus making easier the data management. The ini-
tial annotation was performed manually for syntax,
semiautomatically in the case of arguments and the-
matic roles, and fully automatically for PoS (Martı́
et al., 2007; Màrquez et al., 2007).

The Catalan and Spanish AnCora corpora were
straightforwardly translated into the CoNLL-2009
shared task formatting (information about named
entities was skipped in this process). The resulting
Catalan corpus (including training, development and
test partitions) contains 16,786 sentences with an av-
erage length of 29.59 lexical tokens per sentence.
Long sentences abound in this corpus. For instance,
10.73% of the sentences are longer than 50 tokens,
and 4.42% are longer than 60. The corpus con-
tains 47,537 annotated predicates (2.83 predicates
per sentence, on average) with 107,171 arguments
(2.25 arguments per predicate, on average). From
the latter, 73.89% correspond to core arguments and

26.11% to adjuncts. Numbers for the Spanish cor-
pus are comparable in all aspects: 17,709 sentences
with 29.84 lexical tokens on average (11.58% of the
sentences longer than 50 tokens, 4.07% longer than
60); 54,075 predicates (3.05 per sentence, on aver-
age) and 122,478 arguments (2.26 per predicate, on
average); 73.34% core arguments and 26.66% ad-
juncts.

The following are important features of the Cata-
lan and Spanish corpora in the CoNLL-2009 shared
task setting: (1) all dependency trees are projective;
(2) no word can be the argument of more than one
predicate in a sentence; (3) semantic dependencies
completely match syntactic dependency structures
(i.e., no new edges are introduced by the semantic
structure); (4) only verbal predicates are annotated
(with exceptional cases referring to words that can
be adjectives and past participles); (5) the corpus is
segmented so multi-words, named entities, temporal
expressions, compounds, etc. are grouped together;
and (6) segmentation also accounts for elliptical pro-
nouns (there are marked as empty lexical tokens ‘_’
with a pronoun POS tag).

Finally, the predicted columns (PLEMMA,
PPOS, and PFEAT) have been generated with the
FreeLing Open source suite of Language Analyz-
ers10. Accuracy in PLEMMA and PPOS columns
is above 95% for the two languages. PHEAD
and PDEPREL columns have been generated using
MaltParser11. Parsing accuracy (LAS) is above 86%
for the the two languages.

3.3 Chinese

The Chinese Corpus for the 2009 CoNLL Shared
Task was generated by merging the Chinese Tree-
bank (Xue et al., 2005) and the Chinese Proposition
Bank (Xue and Palmer, 2009) and then converting
the constituent structure to a dependency formalism
as specified in the CoNLL Shared Task. The Chi-
nese data used in the shared task is based on Chinese
Treebank 6.0 and the Chinese Proposition Bank 2.0,
both of which are publicly available via the Linguis-
tic Data Consortium.

The Chinese Treebank Project originated at Penn
and was later moved to University of Colorado at

10http://www.lsi.upc.es/∼nlp/freeling
11http://w3.msi.vxu.se/∼jha/maltparser
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Boulder. Now it is the process of being to moved
to Brandeis University. The data sources of the Chi-
nese Treebank range from Xinhua newswire (main-
land China), Hong Kong news, and Sinorama Maga-
zine (Taiwan). More recently under DARPA GALE
funding it has been expanded to include broadcast
news, broadcast conversation, news groups and web
log data. It currently has over one million words
and is fully segmented, POS-tagged and annotated
with phrase structure. The version of the Chinese
Treebank used in this shared task, CTB 6.0, includes
newswire, magazine articles, and transcribed broad-
cast news12. The training set has 609,060 tokens,
the development set has 49,620 tokens, and the test
set has 73,153 tokens.

The Chinese Proposition Bank adds a layer of se-
mantic annotation to the syntactic parses in the Chi-
nese Treebank. This layer of semantic annotation
mainly deals with the predicate-argument structure
of Chinese verbs and their nominalizations. Each
major sense (calledframeset) of a predicate takes a
number ofcore arguments annotated with numeri-
cal labelsArg0 throughArg5 which are defined in
a predicate-specific manner. The Chinese Proposi-
tion Bank also annotates adjunctive arguments such
as locative, temporal and manner modifiers of the
predicate. The version of the Chinese Propbank used
in this CoNLL Shared Task is CPB 2.0, but nominal
predicates are excluded because the annotation is in-
complete.

Since the Chinese Treebank is annotated with
constituent structures, the conversion and merging
procedure converts the constituent structures to de-
pendencies by identifying the head for each con-
stituent in a parse tree and making its sisters its de-
pendents. The Chinese Propbank pointers are then
shifted from the entire constituent to the head of that
constituent. The conversion procedure identifies the
head by first exploiting the structural information
in the syntactic parse and detecting six broad cate-
gories of syntactic relations that hold between the
head and its dependents (predication, modification,
complementation, coordination, auxiliary, andflat)
and then designating the head based on these rela-
tions. In particular, the first conjunct of a coordina-

12A small number of files were taken out of the CoNLL
shared task data due to conversion problems and time con-
straints to fix them.

tion structure is designated as the head and the heads
of the other conjuncts are the conjunctions preced-
ing them. The conjunctions all “modify” the first
conjunct.

3.4 Czech

For the training, development and evaluation data,
Prague Dependency Treebank 2.0 was used (Hajič
et al., 2006). For the out-of-domain evaluation data,
part of the Czech side of the Prague Czech-English
Dependency Treebank (version 2, under construc-
tion) was used13, see also (̌Cmejrek et al., 2004). For
the OOD data, no manual annotation of LEMMA,
POS, and FEAT existed, so the predicted values
were used. The same conversion procedure has been
applied to both sources.

The FORM column was created from theform
element of the morphological layer, not from the
“token” from the word-form layer. Therefore, most
typos, errors in word segmentation and tokenization
are corrected and numerals are normalized.

The LEMMA column was created from the
lemma element of the morphological layer. Only
the initial string of the element was used, so there is
no distinction between homonyms. However, some
components of the detailed lemma explanation were
incorporated into the FEAT column (see below).

The POS column was created form the morpho-
logical tag element, its first character more pre-
cisely.

The FEAT column was created from the remain-
ing characters of thetag element. In addition, the
special feature “Sem” corresponds to a semantic fea-
ture of the lemma.

For the HEAD and DEPREL columns, the PDT
analytical layer was used. The DEPREL was taken
from the analytic function (theafun node at-
tribtue). There are 27 possible values forafun el-
ement:Pred, Pnom, AuxV, Sb, Obj, Atr, Adv,
Atv, AtvV, Coord, Apos, ExD, and a number
of auxiliary and “double-function” labels. The first
nine of these are the “most interesting” from the
point of view of the shared task, since they relate to
semantics more closely than the rest (at least from
the linguistic point of view). The HEAD is a pointer
to its parent, which means the PDT’sord attribute

13http://ufal.mff.cuni.cz/pedt
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(within-sentence ID / word position number) of the
parent. If a node is a member of a coordination
or apposition (is_member element), its DEPREL
obtains the_M suffix. The parenthesis annotation
(is_parenthesis_root element) was ignored.

The PRED and APREDs columns were created
from the tectogrammatical layer of PDT 2.0 and the
valency lexicon PDT-Vallex according to the follow-
ing rules:

• Every line corresponding to an analytical node
referenced by a lexical reference (a/lex.rf)
from the tectogrammatical layer has a PRED
value filled. If the referring non-generated
tectogrammatical node (is_generated not
equal to 1) has a valency frame assigned
(val_frame.rf), the value of PRED is the
identifier of the frame. Otherwise, it is set to
the same value as the LEMMA column.

• For every tectogrammatical node, a corre-
sponding analytical node is searched for:

1. If the tectogrammatical node is not
generated and has a lexical reference
(a/lex.rf), the referenced node is
taken.

2. Otherwise, if the tectogrammatical node
has a coreference (coref_text.rf or
coref_gram.rf) or complement refer-
ence (compl.rf) to a node that has an
analytical node assigned (by 1. or 2.), the
assigned node is taken.

APRED columns are filled with respect to the
following correspondence: for a tectogrammatical
node P and its effective child C with functor F, the
column for P’s corresponding analytical node at the
row for C’s corresponding analytical node is filled
with F. Some nodes can thus have several functors
in one APRED column, separated by a vertical bar
(see Sect. 2.4.2).

PLEMMA, PPOS and PFEAT were gener-
ated by the (cross-trained) morphological tagger
MORCE (Spoustová et al., 2009), which gives full
combined accuracy (PLEMMA+PPOS+PFEAT)
slightly under 96%.

PHEAD and PDEPREL were generated by
the (cross-trained) MST parser for Czech (Chu–
Liu/Edmonds algorithm, (McDonald et al., 2005)),

which has typical dependency accuracy around
85%.

The valency lexicon, converted from (Hajič et al.,
2003), has four columns:

1. lemma (can occur several times in the lexicon,
with different frames)

2. frame identifier (as found in the PRED column)

3. list of space-separated actants and obligatory
members of the frame

4. example(s)

The source of the out-of-domain data uses an
extended valency lexicon (because of out-of-
vocabulary entries). For simplicity, the extended
lexicon was not provided; instead, such words were
not marked as predicates in the OOD data (their
FILLPRED was set to ‘_’) and thus not evaluated.

3.5 English

The English corpus is almost identical to the cor-
pus used in the closed challenge in the CoNLL-2008
shared task evaluation (Surdeanu et al., 2008). This
corpus was generated through a process that merges
several input corpora and converts them from the
constituent-based formalism to dependencies. The
following corpora were used as input to the merging
procedure:

• Penn Treebank 3– The Penn Treebank 3 cor-
pus (Marcus et al., 1994) consists of hand-
coded parses of the Wall Street Journal (test,
development and training) and a small subset
of the Brown corpus (W. N. Francis and H.
Kucera, 1964) (test only).

• BBN Pronoun Coreference and Entity Type
Corpus – BBN’s NE annotation of the Wall
Street Journal corpus (Weischedel and Brun-
stein, 2005) takes the form of SGML inline
markup of text, tokenized to be completely
compatible with the Penn Treebank annotation.
For the CoNLL-2008 shared task evaluation,
this corpus was extended by the task organizers
to cover the subset of the Brown corpus used as
a secondary testing dataset. From this corpus
we only used NE boundaries to derive NAME
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dependencies between NE tokens, e.g., we cre-
ate a NAME dependency fromMary to Smith
given the NE mentionMary Smith.

• Proposition Bank I (PropBank) – The Prop-
Bank annotation (Palmer et al., 2005) classifies
the arguments of all the main verbs in the Penn
Treebank corpus, other thanbe. Arguments are
numbered (Arg0, Arg1,. . .) based on lexical
entries or frame files. Different sets of argu-
ments are assumed for different rolesets. De-
pendent constituents that fall into categories in-
dependent of the lexical entries are classified as
various types of adjuncts (ArgM-TMP, -ADV,
etc.).

• NomBank – NomBank annotation (Meyers et
al., 2004) uses essentially the same framework
as PropBank to annotate arguments of nouns.
Differences between PropBank and NomBank
stem from differences between noun and verb
argument structure; differences in treatment of
nouns and verbs in the Penn Treebank; and dif-
ferences in the sophistication of previous re-
search about noun and verb argument structure.
Only the subset of nouns that take arguments
are annotated in NomBank and only a subset of
the non-argument siblings of nouns are marked
as ArgM.

The complete merging process and the conversion
from the constituent representation to dependencies
is detailed in (Surdeanu et al., 2008).

The main difference between the 2008 and 2009
version of the corpora is the generation of word lem-
mas. In the 2008 version the only lemmas pro-
vided were predicted using the built-in lemmatizer
in WordNet (Fellbaum, 1998) based on the most fre-
quent sense for the form and the predicted part-of-
speech tag. These lemmas are listed in the 2009
corpus under the PLEMMA column. The LEMMA
column in the 2009 version of the corpus contains
lemmas generated using the same algorithm but us-
ing the correct Treebank part-of-speech tags. Addi-
tionally, the PHEAD and PDEPREL columns were
generated using MaltParser14, similarly to the open
challenge corpus in the CoNLL 2008 shared task.

14http://w3.msi.vxu.se/∼nivre/research/
MaltParser.html

3.6 German

The German in-domain dataset is based on the an-
notated verb instances of the SALSA corpus (Bur-
chardt et al., 2006), a total of around 40k sen-
tences15. SALSA provides manual semantic role
annotation on top of the syntactically annotated
TIGER newspaper corpus, one of the standard Ger-
man treebanks. The original SALSA corpus uses se-
mantic roles in the FrameNet paradigm. We con-
structed mappings between FrameNet frame ele-
ments and PropBank argument positions at the level
of frame-predicate pairs semi-automatically. For the
frame elements of each frame-predicate pair, we first
identified the semantically defined PropBank Arg-
0 and Arg-1 positions. To do so, we annotated a
small number of very abstract frame elements with
these labels (Agent, Actor, Communicator as Arg-
0, and Theme, Effect, Message as Arg-1) and per-
colated these labels through the FrameNet hierar-
chy, adding further manual labels where necessary.
Then, we used frequency and grammatical realiza-
tion information to map the remaining roles onto
higher-numbered Arg roles. We considerably sim-
plified the annotations provided by SALSA, which
use a rather complex annotation scheme. In partic-
ular, we removed annotation for multi-word expres-
sions (which may be non-contiguous), annotations
involving multiple frames for the same predicate
(metaphors, underspecification), and inter-sentence
roles.

The out-of-domain dataset was taken from a study
on the multi-lingual projection of FrameNet annota-
tion (Pado and Lapata, 2005). It is sampled from
the EUROPARL corpus and was chosen to maxi-
mize the lexical coverage, i.e., it contains of a large
number of infrequent predicates. Both syntactic and
semantic structure were annotated manually, in the
TIGER and SALSA format, respectively. Since it
uses a simplified annotation schemes, we did not
have to discard any annotation.

For both datasets, we converted the syntactic
TIGER (Brants et al., 2002) representations into de-
pendencies with a similar set of head-finding rules
used for the preparation of the CoNLL-X shared task
German dataset. Minor modifications (for the con-

15Note, however, that typically not all predicates in each sen-
tence are annotated (cf. Table 2).
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version of person names and coordinations) were
made to achieve better consistency with datasets
of other languages. Since the TIGER annotation
allows non-contiguous constituents, the resulting
dependencies can be non-projective. Secondary
edges were discarded in the conversion. As for the
automatically constructed features, we used Tree-
Tagger (Schmid, 1994) to produce the PLEMMA
and PPOS columns, and the Morphisto morphol-
ogy (Zielinski and Simon, 2008) for PFEAT.

3.7 Japanese

For Japanese, we used the Kyoto University Text
Corpus (Kawahara et al., 2002), which consists of
approximately 40k sentences taken fromMainichi
Newspapers. Out of them, approximately 5k sen-
tences are annotated with syntactic and semantic de-
pendencies, and are used the training, development
and test data of this year’s shared task. The remain-
ing sentences, which are annotated with only syntac-
tic dependencies, are provided for the training cor-
pus of syntactic dependency parsers.

This corpus adopts a dependency structure repre-
sentation, and thus the conversion to the CoNLL-
2009 format was relatively straightforward. How-
ever, since the original dependencies are annotated
on the basis of phrases (Japanesebunsetsu), we
needed to automatically convert the original annota-
tions to word-based ones using several criteria. We
used the following basic criteria: the words except
the last word in a phrase depend on the next (right)
word, and the last word in a phrase basically depends
on the head word of the governing phrase.

Semantic dependencies are annotated for both
verbal predicates and nominal predicates. The se-
mantic roles (APRED columns) consist of 41 sur-
face cases, many of which are case-marking post-
positions such asga (nominative),wo (accusative)
andni (dative). Semantic frame discrimination is not
annotated, and so the PRED column is the same as
the LEMMA column. The original corpus contains
coreference annotations and inter-sentential seman-
tic dependencies, such as inter-sentential zero pro-
nouns and bridging references, but we did not use
these annotations, which are not the target of this
year’s shared task.

To produce the PLEMMA, PPOS and PFEAT
columns, we used the morphological analyzer JU-

MAN 16 and the dependency and case structure an-
alyzer KNP17. To produce the PHEAD and PDE-
PREL columns, we used the MSTParser18.

4 Submissions and Results

Participants uploaded the results through the shared
task website, and the official evaluation was per-
formed centrally. Feedback was provided if any for-
mal problems were encountered (for a list of checks,
see the previous section). One submission had to
be rejected because only English results were pro-
vided. After the evaluation period had passed, the
results were anonymized and published on the web.

A total of 20 systems participated in the closed
challenge; 13 of them in the Joint task and seven in
the SRL-only task. Two systems participated in the
open challenge (Joint task). Moreover, 17 systems
provided output in the out-of-domain part of the task
(11 in the OOD Joint task and six in the OOD SRL-
only task).

The main results for the core task - the Joint task
(dependency syntaxand semantic relations) in the
context of the closed challenge - are summarized and
ranked in Table 5.

The largest number of systems can be compared
in the SRL results table (Table 6), where all the sys-
tems have been evaluated solely on the SRL perfor-
mance regardless whether they participated in the
Joint or SRL-only task. However, since the results
might have been influenced by the supplied parser,
separate ranking is provided for both types of the
systems.

Additional breakdown of the results (open chal-
lenge, precision and recall tables for the semantic
labeling task, etc.) are available from the CoNLL-
2009 Shared Task website19.

5 Approaches

Table 7 summarizes the properties of the systems
that participated in the closed the open challenges.

16http://nlp.kuee.kyoto-u.ac.jp/
nl-resource/juman-e.html

17http://nlp.kuee.kyoto-u.ac.jp/
nl-resource/knp-e.html

18http://sourceforge.net/projects/
mstparser

19http://ufal.mff.cuni.cz/conll2009-st
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Rank System Average Catalan Chinese Czech English German Japanese Spanish
1 Che 82.64 81.84 76.38 83.27 87.00 82.44 85.65 81.90
2 Chen 82.52 83.01 76.23 80.87 87.69 81.22 85.28 83.31
3 Merlo 82.14 82.66 76.15 83.21 86.03 79.59 84.91 82.43
4 Bohnet 80.85 80.44 75.91 79.57 85.14 81.60 82.51 80.75
5 Asahara 78.43 75.91 73.43 81.43 86.40 69.84 84.86 77.12
6 Brown 77.27 77.40 72.12 75.66 83.98 77.86 76.65 77.21
7 Zhang 76.49 75.00 73.42 76.93 82.88 73.76 78.17 75.25
8 Dai 73.98 72.09 72.72 67.14 81.89 75.00 80.89 68.14
9 Lu Li 73.97 71.32 65.53 75.85 81.92 70.93 80.49 71.72
10 Lluı́s 71.49 56.64 66.18 75.95 81.69 72.31 81.76 65.91
11 Vallejo 70.81 73.75 67.16 60.50 78.19 67.51 77.75 70.78
12 Ren 67.81 59.42 75.90 60.18 77.83 65.77 77.63 57.96
13 Zeman 51.07 49.61 43.50 57.95 50.27 49.57 57.69 48.90

Table 5: Official results of the Joint task, closed challenge. Teams are denoted by the last name (first name added
only where needed) of the author who registered for the evaluation data. Results are sorted in descending order of the
language-averaged macro F1 score on the closed challenge Joint task. Bold numbers denote the best result for a given
language.

Rank Rank in task System Average Catalan Chinese Czech English German Japanese Spanish
1 1 (SRLonly) Zhao 80.47 80.32 77.72 85.19 85.44 75.99 78.15 80.46
2 2 (SRLonly) Nugues 80.31 80.01 78.60 85.41 85.63 79.71 76.30 76.52
3 1 (Joint) Chen 79.96 80.10 76.77 82.04 86.15 76.19 78.17 80.29
4 2 (Joint) Che 79.94 77.10 77.15 86.51 85.51 78.61 78.26 76.47
5 3 (Joint) Merlo 78.42 77.44 76.05 86.02 83.24 71.78 77.23 77.19
6 3 (SRLonly) Meza-Ruiz 77.46 78.00 77.73 75.75 83.34 73.52 76.00 77.91
7 4 (Joint) Bohnet 76.00 74.53 75.29 79.02 80.39 75.72 72.76 74.31
8 5 (Joint) Asahara 75.65 72.35 74.17 84.69 84.26 63.66 77.93 72.50
9 6 (Joint) Brown 72.85 72.18 72.43 78.02 80.43 73.40 61.57 71.95
10 7 (Joint) Dai 70.78 66.34 71.57 75.50 78.93 67.43 71.02 64.64
11 8 (Joint) Zhang 70.31 67.34 73.20 78.28 77.85 62.95 64.71 67.81
12 9 (Joint) Lu Li 69.72 66.95 67.06 79.08 77.17 61.98 69.58 66.23
13 4 (SRLonly) Baoli Li 69.26 74.06 70.37 57.46 69.63 67.76 72.03 73.54
14 10 (Joint) Vallejo 68.95 70.14 66.71 71.49 75.97 61.01 68.82 68.48
15 5 (SRLonly) Moreau 66.49 65.60 67.37 71.74 72.14 66.50 57.75 64.33
16 11 (Joint) Lluı́s 63.06 46.79 59.72 76.90 75.86 62.66 71.60 47.88
17 6 (SRLonly) Täckström 61.27 57.11 63.41 71.05 67.64 53.42 54.74 61.51
18 7 (SRLonly) Lin 57.18 61.70 70.33 60.43 65.66 59.51 23.78 58.87
19 12 (Joint) Ren 56.69 41.00 72.58 62.82 67.56 54.31 58.73 39.80
20 13 (Joint) Zeman 32.14 24.19 34.71 58.13 36.05 16.44 30.13 25.36

Table 6: Official results of the semantic labeling, closed challenge, all systems. Teams are denoted by the last name
(first name added only where needed) of the author who registered for the evaluation data. Results are sorted in
descending order of the semantic labeled F1 score (closed challenge). Bold numbers denote the best result for a given
language. Separate ranking is provided for SRL-only systems.

The second column of the table highlights the over-
all architectures. We used+ to indicate that the
components are sequentially connected. The lack of
a + sign indicates that the corresponding tasks are
performed jointly.

It is perhaps not surprising that most of the obser-
vations from the 2008 shared task still hold; namely,
the best systems overall do not use joint learning or

optimization (the best such system was placed third
in the Joint task, and there were only four systems
where the learning methodology can be considered
“joint”).

Therefore, most of the observations and conclu-
sions from 2008 shared task hold as well for the
current results. For details, we will leave it to the
reader to interpret the architectures and methods
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when comparing Table 7 with the Tables 5 and 6).

6 Conclusion

This year’s task has been demanding in several re-
spects, but certainly the most difficulty came from
the fact that participants had to tackle all seven lan-
guages. It is encouraging that despite this added af-
fort the number of participating systems has been
almost the same as last year (20 vs. 22 in 2008).

There are several positive outcomes from this
year’s enterprise:

• we have prepared a unified format and data for
several very different lanaguages, as a basis
for possible extensions towards other languages
and unified treatment of syntactic depenndecies
and semantic role labeling across natural lan-
guages;

• 20 participants have produced SRL results for
all seven languages, using several different
methods, giving hope for a combined system
with even substantially better performance;

• initial results have been provided for three lan-
guages on out-of-domain data (being in fact
quite close to the in-domain results).

Only four systems tried to apply what can be de-
scribed as joint learning for the syntactic and seman-
tic parts of the task. (Morante et al., 2009) use a true
joint learning formulation that phrases syntactico-
semantic parsing as a series of classification where
the class labels are concatenations of syntactic and
semantic edge labels. They predict (a), the set of
syntactico-semantic edge labels for each pair of to-
kens; (b), the set of incoming syntactico-semantic
edge labels for each individual token; and (c), the
existence of an edge between each pair of tokens.
Subsequently, they combine the (possibly conflict-
ing) output of the three classifiers by a ranking ap-
proach to determine the most likely structure that
meets all well-formedness constraints. (Lluı́s et al.,
2009) present a joint approach based on an exten-
sion of Eisner’s parser to accommodate also seman-
tic dependency labels. This architecture is similar
to the one presented by the same authors in the past
edition, with the extension to a second-order syn-
tactic parsing and a particular setting for Catalan

and Spanish. (Gesmundo et al., 2009) use an in-
cremental parsing model with synchronous syntac-
tic and semantic derivations and a joint probability
model for syntactic and semantic dependency struc-
tures. The system uses a single input queue but two
separate stacks and synchronizes syntactic and se-
mantic derivations at every word. The synchronous
derivations are modeled with an Incremental Sig-
moid Belief Network that has latent variables for
both syntactic and semantic states and connections
from syntax to semantics and vice versa. (Dai et
al., 2009) designed an iterative system to exploit
the inter-connections between the different subtasks
of the CoNLL shared task. The idea is to decom-
pose the joint learning problem into four subtasks
– syntactic dependency identification, syntactic de-
pendency labeling, semantic dependency identifica-
tion and semantic dependency labeling. The initial
step is to use a pipeline approach to use the input of
one subtask as input to the next, in the order speci-
fied. The iterative steps then use additional features
that are not available in the initial step to improve the
accuracy of the overall system. For example, in the
iterative steps, semantic information becomes avail-
able as features to syntactic parsing, so on and so
forth.

Despite these results, it is still not clear whether
joint learning has a significant advantage over other
approaches (and if yes, then for what languages). It
is thus necessary to carefully plan the next shared
tasks; it might be advantageous to bring up a sim-
ilar task in the future once again, and/or couple it
with selected application(s). There, (we hope) the
benefits of the dependency representation combined
with semantic roles the way we have formulated it
in 2008 and 2009 will really show up.
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of the Czech Republic, projects MSM0021620838
and LC536; the Grant Agency of the Academy of
sciences of the Czech Republic 1ET201120505 (for
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Lluı́s Màrquez, Luis Villarejo, M. Antònia Martı́, and
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Manu Bertran. 2007. Anotación semiautomática
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Petr Pajas and JaňStěpánek. 2008. Recent advances in
a feature-rich framework for treebank annotation. In
The 22nd International Conference on Computational
Linguistics - Proceedings of the Conference (COL-
ING’08), pages 673–680, Manchester.

M. Palmer, D. Gildea, and P. Kingsbury. 2005. The
Proposition Bank: An annotated corpus of semantic
roles.Computational Linguistics, 31(1):71–106.

Helmut Schmid. 1994. Probabilistic part-of-speech tag-
ging using decision trees. InProceedings of Interna-
tional Conference on New Methods in Language Pro-
cessing.

Drahomı́ra ”Johanka” Spoustová, Jan Hajič, Jan Raab,
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Abstract 

We propose a system to carry out the joint pars-
ing of syntactic and semantic dependencies in 
multiple languages for our participation in the 
shared task of CoNLL-2009. We present an it-
erative approach for dependency parsing and 
semantic role labeling. We have participated in 
the closed challenge, and our system achieves 
73.98% on labeled macro F1 for the complete 
problem, 77.11% on labeled attachment score 
for syntactic dependencies, and 70.78% on la-
beled F1 for semantic dependencies. The cur-
rent experimental results  show that our method 
effectively improves system performance. 

1 Introduction 

In this paper we describe the system submitted to 
the closed challenge of the CoNLL-2009 shared 
task on joint parsing of syntactic and semantic de-
pendencies in multiple languages.  

Give a sentence, the task of dependency parsing 
is to identify the syntactic head of each word in the 
sentence and classify the relation between the de-
pendent and its head. The task of semantic role 
labeling is to label the senses of predicates in the 
sentence and labeling the semantic role of each 
word in the sentence relative to each predicate. 

The difficulty of this shared task is to perform 
joint task on dependency parsing and semantic role 
labeling. We split the shared task into four sub-
problems: syntactic dependency parsing, syntactic 
dependency label classification, word sense disam-
biguation, and semantic role labeling. And we pro-

pose a novel iterative approach to perform the joint 
task. In the first step, the system performs depend-
ency parsing and semantic role labeling in a pipe-
lined manner and the four sub-problems extract 
features based on the known information. In the 
iterative step, the system performs the four tasks in 
a pipelined manner but uses features extracted 
from the previous parsing result. 

The remainder of the paper is structured as fol-
lows. Section 2 presents the technical details of our 
system. Section 3 presents experimental results and 
the performance analysis. Section 4 looks into a 
few issues concerning our forthcoming work for 
this shared task, and concludes the paper. 

2 System description 

This section briefly describes the main components 
of our system: a) system flow; b) syntactic parsing; 
c) semantic role labeling; d) an iterative approach 
to perform joint syntactic-semantic parsing. 

2.1 System flow 

As many systems did in CoNLL Shared Task 2008, 
the most direct way for such task is pipeline ap-
proach. First, Split the system into four subtasks: 
syntactic dependency parsing, syntactic depend-
ency relation labeling, predicate sense labeling and 
semantic role labeling. Then, execute them one by 
one. In our system, we extend this pipeline system 
to an iterative system so that it can do a joint label-
ing to improve the performance. 

Our iterative system is based on the pipeline 
system. For the first iteration (original step), we 
use the pipeline system to parse and label the 
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whole sentence. For the rest iterations (iterative 
step), we use another pipeline system to parse and 
label it. The structure of this pipeline is the same as 
the original one, but each subtask can have much 
more features than the original subtask. Because 
the whole sentence has been labeled in the original 
step, all information is available for every subtask. 
For example, when doing syntactic dependency 
relation labeling, we can add some features about 
sense and semantic role. It seems like using syntac-
tic results to do semantic labeling, then using se-
mantic results to improve syntactic labeling. This 
is the core idea of our joint system. Figure 1 shows 
the main flow of our system. 
 

 
Figure 1. The main flow of iteration system 
 
 
 
 

2.2 Dependency Parsing 

In the dependency parsing step, we split the task 
into two sub-problems: syntactic dependency pars-
ing and syntactic dependency relation labeling. 

In the syntactic dependency parsing stage, 
MSTParser1, a dependency parser that searches for 
maximum spanning trees over directed graphs, is 
applied. Due to the differences between the seven 
languages, we use different parameters to train a 
parsing model. Specifically, as Czech and German 
languages are none-projective and the others are 
projective, we train Czech and German languages 
with parameter “none-projective” and the others 
with “projective”. 

On the syntactic dependency label classification 
step, we used the max-entropy classification algo-
rithm to train the model. This step contains two 
processes. In the first process the sub-problem 
trains the model with the following basic features: 

Start 

End 

Syntactic dependency 
parsing 

Syntactic dependency 
relation labeling 

Set count = iterate times 
Set isIterStep = false 

Predicate sense label-
ing 

Semantic role labeling 

count -- 
isIterStep = true 

count = 0 

Y

 
Get fea-

tures: 
this step 

return the 
feature of 

system 
judge by 

the type of 
sub task  
and the 

parameter 
isIterStep. 

N

• FORM1: FORM of the head. 
• LEMMA1: LEMMA of the head. 
• STEM1 (English only): STEM of the head. 
• POS1: POS of the head. 
• IS_PRED1: the value of FILLPRED of the 

head. 
• FEAT1: FEAT of the head. 
• LM_STEM1 (English only): the left-most 

modifier’s STEM of head. 
• LM_POS1: the left-most modifier’s POS 

of head. 
• L_NUM1: number of the head’s left modi-

fiers. 
• RM_STEM1 (English only): the right-

most modifier’s STEM of head. 
• RM_POS1: the right-most modifier’s POS 

of head. 
• M_NUM1: number of modifiers of the 

head. 
• SUFFIX1 (English only): suffix of the 

head. 
• FORM2: FORM of the dependent. 
• LEMMA2: LEMMA of the dependent. 
• STEM2 (English only): STEM of the de-

pendent. 
• POS2: POS of the dependent. 
• IS_PRED2: the value of FILLPRED of the 

dependent. 

                                                           
1 http://sourceforge.net/projects/mstparser 
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• FEAT2: FEAT of the dependent. 
• LM_STEM2 (English only): the left-most 

modifier’s STEM of dependent. 
• LM_POS2: the left-most modifier’s POS 

of dependent. 
• L_NUM2:  number of the dependent’s left 

modifiers. 
• RM_STEM2 (English only): the right-

most modifier’s STEM of dependent. 
• RM_POS2: the right-most modifier’s POS 

of dependent. 
• M_NUM2: number of modifiers of the de-

pendent. 
• SUFFIX2 (English only): suffix of the de-

pendent. 
• DEP_PATH_ROOT_POS2: POS list from 

dependent to tree’s root through the syn-
tactic dependency path. 

• DEP_PATH_ROOT_LEN2: length from 
dependent to tree’s root through the syn-
tactic dependency path.  

• POSITION: The position of the word with 
respect to its predicate. It has three values, 
“before”, “is” and “after”, for the predicate. 

In the iterative step, in addition to the features 
mentioned above, the sub-task trains the model 
with the following features: 

• DEP_PATH_ROOT_POS1: POS list from 
head to tree’s root through the syntactic 
dependency path. 

• DEP_PATH_ROOT_REL1: length from 
dependent to tree’s root through the syn-
tactic dependency path. 

• PRED_POS: POS list of all predicates in 
the sentence. 

• FORM2 + DEP_PATH_REL: component 
of FORM2 and the POS list from head to 
the dependent through the syntactic de-
pendency path. 

• POSITION + FORM2 
• STEM1 + FORM2 (English only) 
• STEM1 + STEM2 (English only) 
• POSITION + POS2 
• ROLE_LIST2: list of APRED when the 

dependent is a predicate. 
• ROLE: list of APRED and PRED when 

the head is predicate. 
• L_ROLE: the nearest semantic role in its 

left side when head is a predicate. 

• R_ROLE: the nearest semantic role in its 
right side when head is a predicate. 

• IS_ROLE1: whether dependent is a se-
mantic role of head when head is a predi-
cate. 

2.3 Semantic role labeling 

Unlike CoNLL-2008 shared task, this shared task 
does not need to identify predicates. So the main 
task of this step is to label the sense of each predi-
cate and label the semantic role for each predicate. 

When labeling the sense of each predicate, we 
build a classification model for each predicate. As 
the senses of different predicates are usually unre-
lated even if they have the same sense label, this 
makes it difficult for us to use only one classifier to 
label them. But this approach leads to another issue. 
The set of predicates in the training set cannot 
cover all predicates. For new predicates in the test 
set, no classification model can be found for them, 
and we build a most common sense for them. The 
features we used are as follow: 

• DEPREL1: DEPREL of the predicate. 
• STEM1 
• POS1 
• RM_STEM1 (English only) 
• RM_POS1 
• FORM2 
• POS2 
• SUFFIX2 
• VOICE (English only): VOICE of predi-

cate. 
• POSITION + POS2 
• L_POS1 + POS1 + R_POS1: component 

of left word’s POS and predicate POS and 
right word’s POS. 

• FORM2 + DEP_PATH_REL 
• DEP_PATH_ROOT_POS1 
• DEP_PATH_ROOT_REL1 

When labeling the semantic role, we use a simi-
lar approach as we did in CoNLL Shared Task 
2008. However, as the frames information is not 
supplied for all languages, we do not use it in this 
task. The features we use are as follows: 

• DEPREL1 
• STEM1 (English only) 
• POS1 
• RM_STEM1 (English only) 
• RM_POS1 
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• FORM2 
• POS2 
• SUFFIX2 
• VOICE2 (English only) 
• POSITION 
• DEP_PATH_REL 
• DEP_PATH_POS 
• SENSE2 
• SENSE2 + VOICE2 
• POSITION +  VOICE2 
• DEP_PATH_LEN 
• DEP_PATH_ROOT_REL1 

Moreover, we build an iterative model in this 
shared task. When doing an iterative labeling, the 
previous labeling results are known. So we can 
design some new features for checking the previ-
ous results in a global view. The features we add 
for the iterative model are as follows: 

• SENSE1: SENSE of the predicate. 
• SENSE1 + VOICE1: component of the 

SENSE + VOICE of predicate. 
• VOICE1 + FORM1: component of VOICE 

and FORM. 
• ROLE_LIST1: list of APRED of predicate. 

2.4 Iterative Approach 

As described above, some subtasks have two 
groups of features. One is for the pipeline model, 
and the other is for the iterative model. The usage 
of these two types of model is the same. The only 
difference is that they use different features. The 
iterative model can get more information, so they 
can use more features. These additional features 
can contain some joint and global (like frame and 
global structure) information. The performance 
may be improved because the viewer is extended. 
Some structural error and semantic conflict can be 
fixed. 

Although the usage of the two types of model is 
the same, there are some differences when building 
the models. 

In the iterative step, all information is available 
for doing parsing and labeling. For example, when 
doing syntactic dependency relation labeling in the 
iterative step, the fields “HEAD”, “DEPREL”, 
“PRED” and “APREDs” are filled by the pervious 
iteration. So all these information can be used in 
the iterative step. This will cause one issue: use 
“HEAD1” to label “HEAD2”. When training the 

model, “HEAD1” is golden. The classifier will 
build a model directly and let “HEAD2” equal to 
“HEAD1”. However, in the iterative step, 
“HEAD1” is not golden, but such model makes it 
impossible to change the results.. The iterative step 
will be useless. 

We design a simple method to avoid this issue.  
• Firstly, split the training set into N (N>1) 

subsets.  
• Secondly, for each subset, use the left N-1 

subsets to build an original sub-model (use 
features in the pipeline step). 

• Thirdly, use each sub-model to label the 
corresponding subset. 

• Lastly, use these labeled N subsets to ex-
tract samples (use features in the iterative 
step) for building the iterative model. 

In this way, the “HEAD1” is not golden any 
more. And for each sub-task, we can use the simi-
lar method to build the original model and the it-
erative model.  

Moreover, in our system, we only build the it-
erative models for syntactic dependency relation 
labeling and semantic role labeling. For syntactic 
dependency parsing, we use an approach with very 
high time and space complexity, so it is not added 
to the iterative step. Thus, its results will not be 
changed in the iterative step. For sense labeling, 
we build classification models for every predicate. 
There are too many models and each model con-
tains only a few classes. We think they are not 
suitable for building the iterative model. But, as its 
previous sub-task (syntactic dependency relation 
labeling) is added to the iterative step, it is useful 
to add it to the iterative step. Though we do not 
build an iterative model for sense labeling, we can 
directly use its pipeline model. This is another ad-
vantage of our iterative model: if one subtask is not 
suitable for doing iterative labeling/parsing, we can 
use its pipeline model instead. 

3 Experiments and Results 

We have tested our system with the test set and 
obtained official results as shown in Table 1. We 
have tried to find how the iterative step influences 
syntactic dependency parsing and semantic role 
labeling. For syntactic dependency parsing and 
semantic role labeling, we do experiments on the 
test set. 
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 Macro F1 Score 
Average 73.98 
Catalan 72.09 
Chinese 72.72 
Czech 67.14 

English 81.89 
German 75.00 
Japanese 80.89 
Spanish 68.14 

Table 1. The Macro F1 Score of every languages and 
the average value. 

3.1 Syntactic Dependency Parsing 

Dependency Parsing can be split into two sub-
problems: syntactic dependency parsing and syn-
tactic dependency label classification. We use the 
iterative method on syntactic dependency label 
classification. We do experiments on the test set.  

On the test set, we do two group experiments. In 
the first group, we build a subtest to test this sub-
task only. All other information is given, and we 
just label the dependency relation. The results are 
shown in Table 2. The row of “Initial step” shows 
the results of this sub task in the original step. The 
left two rows show the results in the iterative step 
with iterating once and twice. The table shows that 
the iterative approach improves the performance. 
Especially for Catalan, the performance increases 
by 2.89%. 

Certainly, in the whole system, this subtask can-
not get golden information about sense and seman-
tic roles. So we test it in the whole system (joint 
test) on the test set in the second group of experi-
ments. As shown in Table 3, the iterative step is 
not as good as previous test. But it is still useful for 
some languages. The reason that some languages 
have no improvements on the iterative step is that 
the result of the initial step is not so good. 

3.2 Semantic Role Labeling 

Like syntactic dependency parsing, we do two tests 
on Semantic Role Labeling. This result is not con-
sistent with the official data because we have add-
ed some features of the subtask. The results of 
subtest can be found in Table 4. And Table 5 
shows the results of the joint test. These two 
groups of results show that the advantage of the 
iterative step is not as good as that of syntactic de-
pendency labeling in subtest. But it improves the 
performance for most languages. The iterative step 
improves the performance in both two tests.  

3.3 Analysis of Results  

From the experimental results, we can see that the 
effect of each part of the iterative step depends on 
the overall labeling result of the previous step. And 
the labeling effect varies with different languages. 
Iterative approach can improve the performance of 
the system but it strongly depends on the initial 
labeling result.  

4 Conclusion and Future Work  

This paper has presented a simple discriminative 
system submitted to the CoNLL-2009 shared task 
to address the learning task of syntactic and seman-
tic dependencies. The paper first describes how to 
carry out syntactic dependency parsing and seman-
tic role labeling, and then a new iterative approach 
is presented for joint parsing. The experimental 
results show that the iterative process can improve 
the labeling accuracy on syntactic and semantic 
analysis. However, this approach probably depends 
on the accuracy of the initial labeling results. The 
results of the initial labeling results will affect the 
effect of the iterative process.  

Because of time constraints and inadequate ex-
perimental environment, our first results do not 
meet our expectation, and the effect of the iterative 
step is not so clear. Next, we will strive to refine 
our approach to produce good results for the syn-
tactic dependency parsing, since it has a great im-
pact on the final parsing results. 
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 Average Catalan Chinese Czech Czech-ood English English-ood German German-ood Japanese Spanish
Initial step 93.64 95.66 95.01 88.10 88.10 96.79 92.98 96.41 89.71* 98.17 95.48
Iteration 1 94.60 98.56* 96.08* 88.59 88.29 97.31* 94.57* 96.63* 89.31 98.34 98.30
Iteration 2 94.65 98.55 96.08* 88.68* 88.45* 97.29 94.56 96.63* 89.53 98.35* 98.33*
Table 2. The subtest result of Labeled Syntactic Accuracy of each language and the average performance value 

on test set. (* denotes the best score for the system) 
 

 Average Catalan Chinese Czech Czech-ood English English-ood German German-ood Japanese Spanish
Initial step 74.02 77.75 73.81 58.69* 55.50* 84.75 78.85 82.45 66.27* 90.45* 71.64
Iteration 1 73.90 77.82 73.86* 58.17 54.95 84.81 78.95 82.51* 65.78 90.43 71.68
Iteration 2 73.94 77.85* 73.86* 58.31 55.13 84.82* 79.02* 82.46 65.85 90.45* 71.69*
Table 3. The joint test result of Labeled Syntactic Accuracy of each language and the average performance value 

on test set. (* denotes the best score for the system) 
 
 Average Catalan Chinese Czech Czech-ood English English-ood German German-ood Japanese Spanish

Initial step 83.83 88.56 85.86 88.08 86.20* 86.23 82.09 80.98 78.82 74.32* 87.45
Iteration 1 84.34 89.02* 87.14* 87.88 86.09 86.66 82.07 83.66* 79.28* 74.06 87.59
Iteration 2 84.36 89.02* 87.01 88.10* 86.17 86.78* 82.34* 83.15 79.18 74.06 87.81*
Table 4. The sub test result of Semantic Labeled F1 of each language and the average performance value on test 

set. (* denotes the best score for the system) 

 Average Catalan Chinese Czech Czech-ood English English-ood German German-ood Japanese Spanish
Initial step 70.01 66.87 71.63 75.50 75.71 78.97 69.87 67.50 58.47 70.91* 64.64
Iteration 1 70.15 67.12 71.98 75.54 75.68 79.40 70.17* 68.08* 58.55* 70.69 64.32
Iteration 2 70.20 67.33* 71.99* 75.65* 75.90* 79.47* 69.98 67.98 58.33 70.70 64.65*
Table 5. The joint test result of Semantic Labeled F1 of each language and the average performance value on test 

set. (* denotes the best score for the system) 
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Abstract

In this paper we present a system submitted to the
CoNLL Shared Task 2009 performing the identifi-
cation and labeling of syntactic and semantic depen-
dencies in multiple languages. Dependencies are
truly jointly learned, i.e. as if they were a single
task. The system works in two phases: a classifica-
tion phase in which three classifiers predict different
types of information, and a ranking phase in which
the output of the classifiers is combined.

1 Introduction

In this paper we present the machine learning system
submitted to the CoNLL Shared Task 2009 (Hajič
et al., 2009). The task is an extension to multi-
ple languages (Burchardt et al., 2006; Hajič et al.,
2006; Kawahara et al., 2002; Palmer and Xue, 2009;
Surdeanu et al., 2008; Taulé et al., 2008) of the
CoNLL Shared Task 2008, combining the identifica-
tion and labeling of syntactic dependencies and se-
mantic roles. Our system is a joint-learning system
tested in the “closed” challenge, i.e. without making
use of external resources.

Our system operates in two phases: a classifica-
tion phase in which three memory-based classifiers
predict different types of information, and a rank-
ing phase in which the output of the classifiers is
combined by ranking the predictions. Semantic and
syntactic dependencies are jointly learned and pro-
cessed. In the task description no precise defini-
tion is given of joint learning. We consider that a
joint-learning system is one in which semantic and

syntactic dependencies are learned and processed
jointly as a single task. In our system this is achieved
by fully merging semantic and syntactic dependen-
cies at the word level as the first step.

One direct consequence of merging the two tasks,
is that the class space becomes more complex;
the number of classes increases. Many machine-
learning approaches do not scale well to larger class
spaces in terms of efficiency and computer resource
requirements. Memory-based learning is a noted ex-
ception, as it is largely insensitive to the number of
classes in terms of efficiency. This is the primary
reason for using memory-based learning. Memory-
based language processing (Daelemans and van den
Bosch, 2005) is based on the idea that NLP prob-
lems can be solved by storing solved examples of the
problem in their literal form in memory, and apply-
ing similarity-based reasoning on these examples in
order to solve new ones. Memory-based algorithms
have been previously applied to semantic role la-
beling and parsing separately (Morante et al., 2008;
Canisius and Tjong Kim Sang, 2007).

We briefly discuss the issue of true joint learning
of two tasks in Section 2. The system is described
in Section 3, Section 4 presents and discusses the
results, and in Section 5 we put forward some con-
clusions and future research.

2 Joint learning

When two tasks share the same feature space, there
is the natural option to merge them and consider the
merge as a single task. The merging of two tasks
will typically lead to an increase in the number of
classes, and generally a more complex class space.
In practice, if two combined tasks are to some ex-
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tent related, the increase will tend to be less than the
product of the number of classes in the two original
tasks, as classes from both tasks will tend to cor-
relate. Yet, even a mild increase of the number of
classes leads to a further fragmentation of the class
space, and thus to less training examples per class
label. Joint learning can therefore only lead to posi-
tive results if the data sparsity effect of the fragmen-
tation of the class space is counter-balanced by an
improved learnability.

Here, we treat the syntactic and semantic tasks as
one and the same task. At the word level, we merge
the class labels of the two tasks into single labels,
and present the classifiers with these labels. Further
on in our system, as we describe in the next sec-
tion, we do make use of the compositionality of the
labels, as the semantic and syntactic output spaces
represented two different types of structure.

3 System description

The joint system that we submitted works in
two phases: a classification phase in which three
memory-based classifiers predict different aspects of
joint syntactic and semantic labeling, and a ranking
phase in which the output of the classifiers is com-
bined. Additionally, a memory-based classifier is
used for predicate sense disambiguation. As a first
step, before generating the instances of the classi-
fiers we merge the semantic and syntactic dependen-
cies into single labels. The merged version of the
dependencies from an example sentence is shown
in Table 1, where column MERGED DEPs contains
all the dependencies of a token separated by a blank
space expressed in labels with the following format:
PHEAD::PDEPREL:APRED.

3.1 Phase 1: Classification
In the classification phase, three classifiers predict
different local aspects of the global output structure.
The classifiers have been optimized for English, by
training on the full training set and testing on the
development set; these optimized settings were then
used for the other six languages. We experimented
with manually selected parameters and with param-
eters selected by a genetic algorithm, but the param-
eters found by the genetic algorithm did not yield
better results than the manually selected parameters.

N Token Merged Dependencies
1 Housing 2::NMOD:A1
2 starts 2:: :A2 3::SBJ: 4:: :A1 6:: :A1 13:: :A0
3 are 0::ROOT:
4 expected 3::VC:
5 to 4::OPRD:C-A1
6 quicken 5::IM:
7 a 8::NMOD:
8 bit 6::OBJ:A2
9 from 6::ADV:A3
10 August 13::NMOD:AM-TMP
11 ’s 10::SUFFIX:
12 annual 13::NMOD:AM-TMP
13 pace 9::PMOD:
14 of 13::NMOD:A2
15 1,350,000 16::NMOD:
16 units 14::PMOD:
17 . 3::P:

Table 1: Example sentence with merged depen-
dency labels.

3.1.1 Classifier 1: Pairwise semantic and
syntact dependencies

Classifier 1 predicts the merged semantic and syn-
tactic dependencies that hold between two tokens.
Instances represent combinations of pairs of tokens
within a sentence. Each token is combined with all
other tokens in the sentence. The class predicted is
the PDEPREL:APRED label. The amount of classes
per language is shown in Table 2 (“Classifier 1”).

Number of classes
Lang. Classifier 1 Classifier 2
Cat 111 111
Chi 309 1209
Cze 395 1221
Eng 351 1957
Ger 152 300
Jap 103 505
Spa 124 124

Table 2: Number of classes per language predicted
by Classifiers 1 and 2.

We use an IB1 memory–based algorithm as im-
plemented in TiMBL (version 6.1.2) 1, a memory-
based classifier based on the k-nearest neighbor

1TiMBL: http://ilk.uvt.nl/timbl
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rule. The IB1 algorithm was parameterised by us-
ing modified value difference as the similarity met-
ric, gain ratio for feature weighting, using 11 k-
nearest neighbors, and weighting the class vote of
neighbors as a function of their inverse linear dis-
tance. Because of time limitations we used TRIBL
for Czech and Chinese to produce the official results,
although we also provide postevaluation results pro-
duced with IB1. TRIBL is a hybrid combination
of IB1 and IGTREE, a fast decision-tree approxi-
mation of k-NN (Daelemans and van den Bosch,
2005), trading off fast decision-tree lookup on the
most important features (in our experiments, five)
with slower k-NN classification on the remaining
features.

The features2 used by this classifier are:

• The word, lemma, POS and FILLPRED3 of the to-
ken, the combined token and of two tokens before
and after token and combined token.

• POS and FILLPRED of the third token before and
after token and combined token.

• Distance between token and combined token, loca-
tion of token in relation to combined token.

Because data are skewed towards the NONE
class, we downsampled the training instances so that
there would be a negative instance for every positive
instance. Instances with the NONE class to be kept
were randomly selected.

3.1.2 Classifier 2: Per-token relations
Classifier 2 predicts the labels of the dependency

relations of a token with its syntactic and/or seman-
tic head(s). Instances represent a token. As an ex-
ample, the instance that represents token 2 in Table 1
would have as class: :A2-SBJ: - :A1- :A1- :A0.
The amount of classes per language is shown in Ta-
ble 2 under “Classifier 2”. The number of classes
exceeds 1,000 for Chinese, Czech, and English.

The features used by the classifier are the word,
lemma, POS and FILLPRED of the token and two
tokens before and after the token. We use the IB1
memory–based algorithm parameterised in the same
way as Classifier 1.

2POS refers to predicted part-of-speech and lemma to pre-
dicted lemma in the description of features for all classifiers.

3The FILLPRED column has value Y if a token is a predi-
cate.

3.1.3 Classifier 3: Pairwise detection of a
relation

Classifier 3 is a binary classifier that predicts
whether two tokens have a dependency relation. In-
stance representation follows the same scheme as
with Classifier 1. We use the IGTREE algorithm as
implemented in TiMBL. The data are also skewed
towards the NONE class, so we downsampled the
training instances so that there would be a negative
instance for every four positive instances.

The features used by this classifier are:

• The word, lemma, POS and FILLPRED of the to-
ken, of the combined token, and of two tokens be-
fore and after the token.

• Word and lemma of two tokens before and after
combined token.

• Distance between token and combined token.

3.1.4 Results
The results of the Classifiers are presented in Ta-

ble 3. The performance of Classifiers 1 and 3 is sim-
ilar across languages, whereas the scores for Clas-
sifier 2 are lower for Chinese, Czech and English.
This can be explained by the fact that the number of
classes that Classifier 2 predicts for these languages
is significantly higher.

Lang. C1 C2 C3
Cat 94.77 86.30 97.96
Chi 92.10 70.11 95.47
Cze 87.33 67.87 93.88
Eng 94.17 76.16 95.37
Ger 92.76 83.23 93.77
Jap 91.55 81.22 96.75
Spa 94.76 84.40 96.39

Table 3: Micro F1 scores per classifier (C) and per
language.

Training times for the three classifiers were rea-
sonably short, as is to be expected with memory-
based classification. With English, C2 takes just
over two minutes to train, and C3 half a minute. C1
takes 8 hours and 18 minutes, due to the much larger
amount of examples and features.

3.2 Phase 2: Ranking
The classifier that is at the root of generating the
desired output (dependency graphs and semantic
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role assignments) is Classifier 1, which predicts the
merged semantic and syntactic dependencies that
hold between two tokens (PDEPREL:APRED la-
bels). If this classifier would be able to predict the
dependencies with 100% accuracy, no further pro-
cessing would be necessary. Naturally, however, the
classifier predicts incorrect dependencies to a certain
degree, and does not provide a graph in wich all to-
kens have at least a syntactic head. It achieves 51.3%
labeled macro F1. The ranking phase improves this
performance. This is done in three steps: (i) ranking
the predictions of Classifier 1; (ii) constructing an
intermediate dependency tree, and (iii) adding extra
semantic dependencies to the tree.

3.2.1 Ranking predictions of Classifier 1
In order to disambiguate between all possible de-

pendencies predicted by this classifier, the system
applies ranking rules. It analyses the dependency
relations that have been predicted for a token with
its potential parents in the sentence and ranks them.
For example, for a sentence with 10 tokens, the sys-
tem would make 10 predictions per token. The pre-
dictions are first ranked by entropy of the class dis-
tribution for that prediction, then using the output of
Classifier 2, and next using the output of Classifier 3.

Ranking by entropy In order to compute entropy
we use the (inverse-linear) distance-weighted class
label distributions among the nearest neighbors that
Classifier 1 was able to find. For example, the pre-
diction for an instance can be: { NONE (2.74),
NMOD: (0.48) }. We can compute the entropy for
this instance using the formula in (1):

−
n∑

i=1

P (labeli)log2(P (labeli)) (1)

with
- n: the total number of different labels in the distri-

bution, and
- P (labeli):

the weight of label i
the total sum of the weights in the distribution

The system ranks the prediction with the lowest
entropy in position 1, while the prediction with the
highest entropy is ranked in the last position. The
rationale behind this is that the lower the entropy,
the more certain the classifier is about the predicted
dependency. Table 4 lists the first six heads for the

predicate word ‘starts’ ranked by entropy (cf. Ta-
ble 1).

Head Predicted label Distribution Entropy
Housing NONE { NONE (8.51) } 0.0
expected :A1 { :A1 (5.64) } 0.0
to NONE { NONE (4.74) } 0.0
quicken :A0 { :A0 (4.13), :A1 (0.18), :A2 (0.31) } 0.56
are NONE { NONE (2.56), SBJ: (0.52) } 0.65
starts :A0 { :A0 (7.90), :A1 (0.61), :A2 (1.50) } 0.93

Table 4: Output of Classifier 1 for the first six heads
of ‘starts’, ranked by entropy.

On the development data for English, applying
this rule causes a marked error reduction of 26.5%
on labeled macro F1: from 51.3% to 64.2%.

Ranking by Classifier 2 The next ranking step is
performed by using the predictions of Classifier 2,
i.e. the estimated labels of the dependency rela-
tions of a token with its syntactic and/or semantic
head(s). The system ranks the predictions that are
not in the set of possible dependencies predicted by
Classifier 2 at the bottom of the ranked list.

Head Predicted label Distribution Entropy
expected :A1 { :A1 (5.64) } 0.0
Housing NONE { NONE (8.51) } 0.0
to NONE { NONE (4.74) } 0.0
quicken :A0 { :A0 (4.13), :A1 (0.18), :A2 (0.31) } 0.56
are NONE { NONE (2.56), SBJ: (0.52) } 0.65
starts :A0 { :A0 (7.90), :A1 (0.61), :A2 (1.50) } 0.93

Table 5: Output of Classifier 1 for the first six heads
of ‘starts’. Ranked by entropy and Classifier 2.

Because this is done after ranking by entropy, the
instances with the lowest entropy are still at the top
of the list. Table 5 displays the re-ranked six heads
of ‘starts’, given that Classifier 2 has predicted that
possible relations to heads are SBJ:A1 and :A1, and
given that only ‘expected’ is associated with one of
these two relations.

On the development data for English, applying
this rule induces a 9.0% error reduction on labeled
macro F1: from 64.2% to 67.4%.

Ranking by Classifier 3 The final ranking step
makes use of Classifier 3, which predicts the rela-
tion that holds between two tokens. The dependency
relations predicted by Classifier 1 that are not con-
firmed by Classifier 3 predicting that a relation exists
are moved to the end of the ranked list. Table 6 lists
the resulting ranked list. On the development data
for English, applying this rule yields another 5.2%
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error reduction on labeled macro F1: from 67.4% to
69.1%.

Head Predicted label Distribution Entropy
expected :A1 { :A1 (5.64) } 0.0
quicken :A0 { :A0 (4.13), :A1 (0.18), :A2 (0.31) } 0.56
starts :A0 { :A0 (7.90), :A1 (0.61), :A2 (1.50) } 0.93
Housing NONE { NONE (8.51) } 0.0
to NONE { NONE (4.74) } 0.0
are NONE { NONE (2.56), SBJ: (0.52) } 0.65

Table 6: Output of Classifier 1 for the first six heads
of ‘starts’. Ranked by entropy, Classifier 2, and
Classifier 3.

3.2.2 Construction of the intermediate
dependency tree

After ranking the predictions of Classifier 1, the
system selects a syntactic head for every token. This
is motivated by the fact that every token has one and
only one syntactic head. The system selects the pre-
diction with the best ranking that has in the PDE-
PREL part a value different than “ ”.

The intermediate tree can have more than one root
or no root at all. To make sure that every sentence
has one and only one root we apply some extra rules.
If the sentence does not have a token with a root la-
bel, the system checks the distributions of Classi-
fier 1. The token with the rootlabel in its distribution
that is the head of the biggest number of tokens is
taken as root. If the intermediate tree has more than
one root, the last root is taken as root. The other root
tokens get the label with a syntax part (PDEPREL)
that has the highest score in the distribution of Clas-
sifier 1.

The product of this step is a tree in which ev-
ery token is uniquely linked to a syntactic head.
Because syntactic and semantic dependencies have
been linked, the tree contains also semantic depen-
dencies. However, the tree is missing the purely se-
mantic dependencies. The next step adds these rela-
tions to the dependency tree.

3.2.3 Adding extra semantic dependencies
In order to find the tokens that have only a seman-

tic relation with a predicate, the system analyses for
each predicate (i.e. tokens marked with Y in FILL-
PRED) the list of predictions made by Classifier 1
and selects the predictions in which the PDEPREL
part of the label is “ ” and the APRED part of the
label is different than “ ”. On the development data

for English, applying this rule produces a 6.7% er-
ror reduction on labeled macro F1: from 69.1% to
71.1%.

3.3 Predicate sense disambiguation
Predicate sense disambiguation is performed by a
classifier per language that predicts the sense of the
predicate, except for Japanese, as with that language
the lemma is taken as the sense. We use the IGTREE
algorithm. Instances represent predicates and the
features used are the word, lemma and POS of the
predicate, and the lemma and POS of two tokens be-
fore and after the predicate. The results per language
are presented in Table 7.

Lang. Cat Chi Cze Eng Ger Spa
F1 82.40 94.85 87.84 93.64 73.57 81.13

Table 7: Micro F1 for the predicate sense disam-
biguation.

4 Overall results

The system was developed by training on the train-
ing set provided by the task organisers and testing
on the development set. The final results were ob-
tained by testing on the testing set. Table 8 shows
the global results of the system for syntactic and se-
mantic dependencies.

Lang. F1 Precision Recall
Cat 73.75 74.91 72.63
Chi 67.16 68.09 66.26
Chi* 67.79 68.70 66.89
Cze 60.50 62.55 58.58
Cze* 68.68 70.38 67.07
Eng 78.19 79.69 76.74
Ger 67.51 69.52 65.62
Jap 77.75 81.91 73.98
Spa 70.78 71.34 70.22
Av. 70.81 72.57 69.15

Table 8: Macro F1, precision and recall for all de-
pendencies per language. Postevaluation results are
marked with *.

Table 9 shows the scores of syntactic and seman-
tic dependencies in isolation.
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Syntax Semantics
Lang. LA F1 Precision Recall
Cat 77.33 70.14 72.49 67.94
Chi 67.58 66.71 68.59 64.93
Chi* 67.92 67.63 69.48 65.86
Cze 49.41 71.49 75.68 67.75
Cze* 60.03 77.28 80.73 74.11
Eng 80.35 75.97 79.04 73.13
Ger 73.88 61.01 65.15 57.36
Jap 86.17 68.82 77.66 61.80
Spa 73.07 68.48 69.62 67.38
Av. 72.54 68.95 72.60 65.76

Table 9: Labeled attachment (LA) score for syntac-
tic dependencies and Macro F1, precision and recall
of semantic dependencies per language. Postevalua-
tion results are marked with *.

5 Conclusions

In this paper we presented the system that we sub-
mitted to the “closed” challenge of the CoNLL
Shared Task 2009. We observe fairly low scores,
which can be possibly improved for all languages by
making use of the available morpho-syntactic fea-
tures, which we did not use in the present system,
by optimising the classifiers per language, and by
improving the reranking algorithm. We also ob-
serve a relatively low recall on the semantic task as
compared to overall recall, indicating that syntactic
dependencies are identified with a better precision-
recall balance. A logical continuation of this study
is to compare joint learning to learning syntactic and
semantic dependencies in isolation, using the same
architecture. Only then will we be able to put for-
ward conclusions about the performance of a joint
learning system versus the performance of a system
that learns syntax and semantics independently.
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Abstract

In this paper we present our syntactic and se-
mantic dependency parsing system submitted
to both the closed and open challenges of the
CoNLL 2009 Shared Task. The system ex-
tends the system of Zhang, Wang, & Uszko-
reit (2008) in the multilingual direction, and
achieves 76.49 average macro F1 Score on the
closed joint task. Substantial improvements
to the open SRL task have been observed that
are attributed to the HPSG parses with hand-
crafted grammars. †

1 Introduction

The CoNLL 2009 shared task (Hajič et al., 2009)
continues the exploration on learning syntactic and
semantic structures based on dependency notations
in previous year’s shared task. The new addition
to this year’s shared task is the extension to mul-
tiple languages. Being one of the leading compe-
titions in the field, the shared task received sub-
missions from systems built on top of the state-
of-the-art data-driven dependency parsing and se-
mantic role labeling systems. Although it was
originally designed as a task for machine learning
approaches, CoNLL shared tasks also feature an
‘open’ track since 2008, which encourages the use
of extra linguistic resources to further improve the
†We are indebted to our DELPH-IN colleagues, specifi-

cally Peter Adolphs, Francis Bond, Berthold Crysmann, and
Montserrat Marimon for numerous hours of support in adapt-
ing their grammars and the PET software to parsing the CoNLL
data sets. The first author thanks the German Excellence Clus-
ter of Multimodal Computing and Interaction for the support
of the work. The second author is funded by the PIRE PhD
scholarship program. Participation of the third author in this
work was supported by the University of Oslo, as part of its re-
search partnership with the Center for the Study of Language
and Information at Stanford University. Our deep parsing ex-
perimentation was executed on the TITAN HPC facilities at the
University of Oslo.

performance. This makes the task a nice testbed for
the cross-fertilization of various language process-
ing techniques.

As an example of such work, Zhang et al. (2008)
have shown in the past that deep linguistic parsing
outputs can be integrated to help improve the per-
formance of the English semantic role labeling task.
But several questions remain unanswered. First, the
integration only experimented with the semantic role
labeling part of the task. It is not clear whether
syntactic dependency parsing can also benefit from
grammar-based parsing results. Second, the English
grammar used to achieve the improvement is one of
the largest and most mature hand-crafted linguistic
grammars. It is not clear whether similar improve-
ments can be achieved with less developed gram-
mars. More specifically, the lack of coverage of
hand-crafted linguistic grammars is a major concern.
On the other hand, the CoNLL task is also a good
opportunity for the deep processing community to
(re-)evaluate their resources and software.

2 System Architecture

The overall system architecture is shown in Figure 1.
It is similar to the architecture used by Zhang et al.
(2008). Three major components were involved.
The HPSG parsing component utilizes several hand-
crafted grammars for deep linguistic parsing. The
outputs of deep parsings are passed to the syntactic
dependency parser and semantic role labeler. The
syntactic parsing component is composed of a mod-
ified MST parser which accepts HPSG parsing re-
sults as extra features. The semantic role labeler is
comprised of a pipeline of 4 sub-components (pred-
icate identification is not necessary in this year’s
task). Comparing to Zhang et al. (2008), this archi-
tecture simplified the syntactic component, and puts
more focus on the integration of deep parsing out-
puts. While Zhang et al. (2008) only used seman-
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Figure 1: Joint system architecture.

tic features from HPSG parsing in the SRL task, we
added extra syntactic features from deep parsing to
help both tasks.

3 HPSG Parsing for the CoNLL Data

DELPH-IN (Deep Linguistic Processing with
HPSG) is a repository of open-source software and
linguistic resources for so-called ‘deep’ grammat-
ical analysis.1 The grammars are rooted in rela-
tively detailed, hand-coded linguistic knowledge—
including lexical argument structure and the linking
of syntactic functions to thematic arguments—and
are intended as general-purpose resources, applica-
ble to both parsing and generation. Semantics in
DELPH-IN is cast in the Minimal Recursion Seman-
tics framework (MRS; Copestake, Flickinger, Pol-
lard, & Sag, 2005), essentially predicate – argument
structures with provision for underspecified scopal
relations. For the 2009 ‘open’ task, we used the
DELPH-IN grammars for English (ERG; Flickinger,
2000), German (GG; Crysmann, 2005), Japanese
(JaCY; Siegel & Bender, 2002), and Spanish (SRG;
Marimon, Bel, & Seghezzi, 2007). The grammars
vary in their stage of development: the ERG com-
prises some 15 years of continuous development,
whereas work on the SRG only started about five
years ago, with GG and JaCY ranging somewhere
inbetween.

3.1 Overall Setup

We applied the DELPH-IN grammars to the CoNLL
data using the PET parser (Callmeier, 2002) running

1See http://www.delph-in.net for background.

it through the [incr tsdb()] environment (Oepen &
Carroll, 2000), for parallelization and distribution.
Also, [incr tsdb()] provides facilities for (re-)training
the MaxEnt parse selection models that PET uses for
disambiguation.

The two main challenges in applying DELPH-
IN resources to parsing CoNLL data were (a) mis-
matches in basic assumptions, specifically tokeniza-
tion and the inventory of PoS tags provided as part of
the input, and (b) the need to adapt the resources for
new domains and genres—in particular in terms of
parse disambiguation—as the English and Spanish
grammars at least had not been previously applied
to the corpora used in the CoNLL shared task.

The importance of the first of these two aspects
is often underestimated. A detailed computational
grammar, inevitably, comes with its own assump-
tions about tokenization—the ERG, for example, re-
jects the conventional assumptions underlying the
PTB (and derived tools). It opts for an analysis of
punctuation akin to affixation (rather than as stand-
alone tokens), does not break up contracted negated
auxiliaries, and splits hyphenated words like ill-
advised into two tokens (the hyphen being part of
the first component). Thus, a string like Don’t you!
in the CoNLL data is tokenized as the four-element
sequence 〈do, n’t, you, !〉,2 whereas the ERG analy-
sis has only two leaf nodes: 〈don’t, you!〉.

Fortunately, the DELPH-IN toolchain recently
incorporated a mechanism called chart mapping
(Adolphs et al., 2008), which allows one to map
flexibly from ‘external’ input to grammar-internal
assumptions, while keeping track of external token
identities and their contributions to the final analysis.
The February 2009 release of the ERG already had
this machinery in place (with the goal of supporting
extant, PTB-trained PoS taggers in pre-processing
input to the deep parser), and we found that only a
tiny number of additional chart mapping rules was
required to ‘fix up’ CoNLL-specific deviations from
the PTB tradition. With the help of the original de-
velopers, we created new chart mapping configura-
tions for the German and Japanese grammars (with
17 and 16 such accomodation rules, respectively) in
a similar spirit. All four DELPH-IN grammars in-

2Note that the implied analogy to a non-contracted variant is
linguistically mis-leading, as ∗Do not you! is ungrammatical.
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clude an account of unknown words, based on un-
derspecified ‘generic’ lexical entries that are acti-
vated from PoS information.

The Japenese case was interesting, in that
the grammar assumes a different pre-processor
(ChaSen, rather than Juman), such that not only to-
ken boundaries but also PoS tags and morphological
features had to be mapped. From our limited ex-
perience to date, we found the chart mapping ap-
proach adequate in accomodating such discrepan-
cies, and the addition of this extra layer of input
processing gave substantial gains in parser cover-
age (see below). For the Spanish data, on the other
hand, we found it impossible to make effective use
of the PoS and morphological information in the
CoNLL data, due to more fundamental discrepan-
cies (e.g. the treatment of enclitics and multi-word
expressions).

3.2 Retraining Disambiguation Models

The ERG includes a domain-specific parse selection
model (for tourism instructions); GG only a stub
model trained on a handful of test sentences. For
use on the CoNLL data, thus, we had to train new
parse selections models, better adapted to the shared
task corpora. Disambiguation in PET is realized by
conditional MaxEnt models (Toutanova, Manning,
Flickinger, & Oepen, 2005), usually trained on full
HPSG treebanks. Lacking this kind of training ma-
terial, we utilized the CoNLL dependency informa-
tion instead, by defining an unlabeled dependency
accuracy (DA) metric for HPSG analyses, essen-
tially quantifying the degree of overlap in head –
dependent relations against the CoNLL annotations.

Calculating DA for HPSG trees is similar to the
procedure commonly used for extracting bi-lexical
dependencies from phrase structure trees, in a sense
even simpler as HPSG analyses fully determine
headeness. Taking into account the technical com-
plication of token-level mismatches, our DA met-
ric loosely corresponds to the unlabeled attachment
score. To train CoNLL-specific parse selection mod-
els, we parsed the development sections in 500-best
mode (using the existing models) and then mechani-
cally ‘annotated’ the HPSG analyses with maximum
DA as preferred, all others as dis-preferred. In other
words, this procedure constructs a ‘binarized’ em-
pirical distribution where estimation of log-linear

Grammar Coverage Time
ERG 80.4% 10.06 s
GG 28.6% 3.41 s

JaCY 42.7% 2.13 s
SRG 7.5% 0.80 s

Table 1: Performance of the DELPH-IN grammars.

model parameters amounts to adjusting conditional
probabilities towards higher DA values.3

Using the [incr tsdb()] MaxEnt experimentation
facilities, we trained new parse selection models
for English and German, using the first 16,000 sen-
tences of the English training data and the full Ger-
man training corpus; seeing that only inputs that (a)
parse successfully and (b) have multiple readings,
with distinct DA values are relevant to this step, the
final models reflect close to 13,000 sentences for En-
glish, and a little more than 4,000 items for German.
Much like in the SRL component, these experiments
are carried out with the TADM software, using ten-
fold cross-validation and exact match ranking accu-
racy (against the binarized training distribution) to
optimize estimation hyper-parameters

3.3 Deep Parsing Features

HPSG parsing coverage and average cpu time per
input for the four languages with DELPH-IN gram-
mars are summarized in Table 1. The PoS-based
unknown word mechanism was active for all gram-
mars but no other robustness measures (which tend
to lower the quality of results) were used, i.e. only
complete spanning HPSG analyses were accepted.
Parse times are for 1-best parsing, using selective
unpacking (Zhang, Oepen, & Carroll, 2007).

HPSG parsing outputs are available in several dif-
ferent forms. We investigated two types of struc-
tures: syntactic derivations and MRS meaningrep-
resentations. Representative features were extracted
from both structures and selectively used in the sta-
tistical syntactic dependency parsing and semantic
role labeling modules for the ‘open’ challenge.

3We also experimented with using DA scores directly as em-
pirical probabilities in the training distribution (or some func-
tion of DA, to make it fall off more sharply), but none of
these methods seemed to further improve parse selection per-
formance.
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Deep Semantic Features Similar to Zhang et al.
(2008), we extract a set of features from the seman-
tic outputs (MRS) of the HPSG parses. These fea-
tures represent the basic predicate-argument struc-
ture, and provides a simplified semantic view on the
target sentence.

Deep Syntactic Dependency Features A HPSG
derivation is a tree structure. The internal nodes are
labeled with identifiers of grammar rules, and leaves
with lexical entries. The derivation tree provides
complete information about the actual HPSG anal-
ysis, and can be used together with the grammar to
reproduce complete feature structure and/or MRS.
Given that the shared task adopts dependency rep-
resentation, we further map the derivation trees into
token-token dependencies, labeled by corresponding
HPSG rules, by defining a set of head-finding rules
for each grammar. This dependency structure is dif-
ferent from the dependencies in CoNLL dataset, and
provides an alternative HPSG view on the sentences.
We refer to this structure as the dependency back-
bone (DB) of the HPSG anaylsis. A set of features
were extracted from the deep syntactic dependency
structures. This includes: i) the POS of the DB par-
ent from the predicate and/or argument; ii) DB la-
bel of the argument to its parent (only for AI/AC);
iii) labeled path from predicate to argument in DB
(only for AI/AC); iv) POSes of the predicate’s DB
dependents

4 Syntactic Dependency Parsing

For the syntactic dependency parsing, we use the
MST Parser (McDonald et al., 2005), which is a
graph-based approach. The best parse tree is ac-
quired by searching for a spanning tree which max-
imizes the score on either a partially or a fully con-
nected graph with all words in the sentence as nodes
(Eisner, 1996; McDonald et al., 2005). Based on our
experience last year, we use the second order setting
of the parser, which includes features over pairs of
adjacent edges as well as features over single edges
in the graph. For the projective or non-projective
setting, we compare the results on the development
datasets of different languages. According to the
parser performance, we decide to use non-projective
parsing for German, Japanese, and Czech, and use
projective parsing for the rest.

For the Closed Challenge, we first consider
whether to use the morphological features. We find
that except for Czech, parser performs better with-
out morphological features on other languages (En-
glish and Chinese have no morphological features).
As for the other features (i.e. lemma and pos) given
by the data sets, we also compare the gold standard
features and P-columns. For all languages, the per-
formance decreases in the following order: training
with gold standard features and evaluating with the
gold standard features, training with P-columns and
evaluating with P-columns, training with gold stan-
dard features and testing with P-columns. Conse-
quently, in the final submission, we take the second
combination.

The goal of the Open Challenge is to see whether
using external resources can be helpful for the pars-
ing performance. As we mentioned before, our
deep parser gives us both the syntactic analysis of
the input sentences using the HPSG formalism and
also the semantic analysis using MRS as the repre-
sentation. However, for the syntactic dependency
parsing, we only extract features from the syntac-
tic HPSG analyses and feed them into the MST
Parser. Although, when parsing with gold standard
lemma and POS features, our open system outper-
forms the closed system on out-domain tests (for En-
glish), when parsing with P-columns there is no sub-
stantial improvement observed after using the HPSG
features. Therefore, we did not include it in the final
submission.

5 Semantic Role Labeling

The semantic role labeling component used in the
submitted system is similar to the one described
by Zhang et al. (2008). Since predicates are indi-
cated in the data, the predicate identification mod-
ule is removed from this year’s system. Argument
identification, argument classification and predicate
classification are the three sub-components in the
pipeline. All of them are MaxEnt-based classifiers.
For parameter estimation, we use the open source
TADM system (Malouf, 2002).

The active features used in various steps of SRL
are fine tuned separately for different languages us-
ing development datasets. The significance of fea-
ture types varies across languages and datasets.
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ca zh cs en de ja es

SY
N Closed 82.67 73.63 75.58 87.90 84.57 91.47 82.69

ood - - 71.29 81.50 75.06 - -
SR

L
Closed 67.34 73.20 78.28 77.85 62.95 64.71 67.81

ood - - 77.78 67.07 54.87 - -
Open - - - 78.13 (↑0.28) 64.31 (↑1.36) 65.95 (↑1.24) 68.24 (↑0.43)

ood - - - 68.11 (↑1.04) 58.42 (↑3.55) - -

Table 2: Summary of System Performance on Multiple Languages

In the open challenge, two groups of extra fea-
tures from HPSG parsing outputs, as described in
Section 3.3, were used on languages for which we
have HPSG grammars, that is English, German,
Japanese, and Spanish.

6 Result Analysis

The evaluation results of the submitted system are
summarized in Table 2. The overall ranking of
the system is #7 in the closed challenge, and #2
in the open challenge. While the system achieves
mediocre performance, the clear performance dif-
ference between the closed and open challenges of
the semantic role labeler indicates a substantial gain
from the integration of HPSG parsing outputs. The
most interesting observation is that even with gram-
mars which only achieve very limited coverage, no-
ticeable SRL improvements are obtained. Con-
firming the observation of Zhang et al. (2008), the
gain with HPSG features is more significant on out-
domain tests, this time on German as well.

The training of the syntactic parsing models for
all seven languages with MST parser takes about
100 CPU hours with 10 iterations. The dependency
parsing takes 6 – 7 CPU hours. The training and test-
ing of the semantic role labeler is much more effi-
cient, thanks to the use of MaxEnt models and the
efficient parameter estimation software. The train-
ing of all SRL models for 7 languages takes about 3
CPU hours in total. The total time for semantic role
labeling on test datasets is less than 1 hour.

Figure 2 shows the learning curve of the syntactic
parser and semantic role labeler on the Czech and
English datasets. While most of the systems con-
tinue to improve when trained on larger datasets, an
exception was observed with the Czech dataset on
the out-domain test for syntactic accuracy. In most
of the cases, with the increase of training data, the
out-domain test performance of the syntactic parser

and semantic role labeler improves slowly relative
to the in-domain test. For the English dataset, the
SRL learning curve climbs more quickly than those
of syntactic parsers. This is largely due to the fact
that the semantic role annotation is sparser than the
syntactic dependencies. On the Czech dataset which
has dense semantic annotation, this effect is not ob-
served.

7 Conclusion

In this paper, we described our syntactic parsing and
semantic role labeling system participated in both
closed and open challenge of the (Joint) CoNLL
2009 Shared Task. Four hand-written HPSG gram-
mars of a variety of scale have been applied to parse
the datasets, and the outcomes were integrated as
features into the semantic role labeler of the sys-
tem. The results clearly show that the integration of
HPSG parsing results in the semantic role labeling
task brings substantial performance improvement.
The conclusion of Zhang et al. (2008) has been re-
confirmed on multiple languages for which we hand-
built HPSG grammars exist, even where grammati-
cal coverage is low. Also, the gain is more signifi-
cant on out-of-domain tests, indicating that the hy-
brid system is more robust to cross-domain varia-
tion.
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Žabokrtský, Z. (2006). Prague Dependency Treebank
2.0 (Nos. Cat. No. LDC2006T01, ISBN 1-58563-370-
4). Philadelphia, PA, USA: Linguistic Data Consor-
tium.

Kawahara, D., Kurohashi, S., & Hasida, K. (2002). Con-
struction of a Japanese relevance-tagged corpus. In
Proceedings of the 3rd International Conference on
Language Resources and Evaluation (pp. 2008–2013).
Las Palmas, Canary Islands.

Malouf, R. (2002). A comparison of algorithms for max-
imum entropy parameter estimation. In Proceedings
of the 6th conferencde on natural language learning
(CoNLL 2002) (pp. 49–55). Taipei, Taiwan.

Marimon, M., Bel, N., & Seghezzi, N. (2007). Test suite
construction for a Spanish grammar. In T. H. King &

E. M. Bender (Eds.), Proceedings of the Grammar En-
gineering Across Frameworks workshop (p. 250-264).
Stanford, CA: CSLI Publications.

Oepen, S., & Carroll, J. (2000). Performance profiling for
parser engineering. Natural Language Engineering, 6
(1), 81 – 97.

Palmer, M., Kingsbury, P., & Gildea, D. (2005). The
Proposition Bank: An Annotated Corpus of Semantic
Roles. Computational Linguistics, 31(1), 71–106.

Palmer, M., & Xue, N. (2009). Adding semantic roles
to the Chinese Treebank. Natural Language Engineer-
ing, 15(1), 143–172.

Siegel, M., & Bender, E. M. (2002). Efficient deep pro-
cessing of Japanese. In Proceedings of the 3rd work-
shop on asian language resources and international
standardization at the 19th international conference
on computational linguistics. Taipei, Taiwan.

Surdeanu, M., Johansson, R., Meyers, A., Màrquez, L.,
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Abstract

Motivated by the large number of languages
(seven) and the short development time (two
months) of the 2009 CoNLL shared task, we
exploited latent variables to avoid the costly
process of hand-crafted feature engineering,
allowing the latent variables to induce features
from the data. We took a pre-existing gener-
ative latent variable model of joint syntactic-
semantic dependency parsing, developed for
English, and applied it to six new languages
with minimal adjustments. The parser’s ro-
bustness across languages indicates that this
parser has a very general feature set. The
parser’s high performance indicates that its la-
tent variables succeeded in inducing effective
features. This system was ranked third overall
with a macro averaged F1 score of 82.14%,
only 0.5% worse than the best system.

1 Introduction

Recent research in syntax-based statistical machine
translation and the recent availability of syntac-
tically annotated corpora for multiple languages
(Nivre et al., 2007) has provided a new opportunity
for evaluating the cross-linguistic validity of statis-
tical models of syntactic structure. This opportu-
nity has been significantly expanded with the 2009
CoNLL shared task on syntactic and semantic pars-
ing of seven languages (Hajič et al., 2009) belonging
to several different language families.

We participate in this task with a generative,
history-based model proposed in the CoNLL 2008

0Authors in alphabetical order.

shared task for English (Henderson et al., 2008) and
further improved to tackle non-planar dependencies
(Titov et al., 2009). This model maximises the joint
probability of the syntactic and semantic dependen-
cies and thereby enforces that the output structure be
globally coherent, but the use of synchronous pars-
ing allows it to maintain separate structures for the
syntax and semantics. The probabilistic model is
based on Incremental Sigmoid Belief Networks (IS-
BNs), a recently proposed latent variable model for
syntactic structure prediction, which has shown very
good performance for both constituency (Titov and
Henderson, 2007a) and dependency parsing (Titov
and Henderson, 2007b). The use of latent variables
enables this architecture to be extended to learning
a synchronous parse of syntax and semantics with-
out overly restrictive assumptions about the linking
between syntactic and semantic structures.

In this work, we evaluate the ability of this
method to generalise across several languages. We
take the model as it was developed for English, and
apply it directly to all seven languages. The only
fine-tuning was to evaluate whether to include one
feature type which we had previously found did not
help for English, but helped overall. No other fea-
ture engineering was done. The use of latent vari-
ables to induce features automatically from the data
gives our method the adaptability necessary to per-
form well across all seven languages, and demon-
strates the lack of language specificity in the models
of Henderson et al. (2008) and Titov et al. (2009).

The main properties of this model, that differen-
tiate it from other approaches, is the use of syn-
chronous syntactic and semantic derivations and the
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use of online planarisation of crossing semantic de-
pendencies. This system was ranked third overall
with a macro averaged F1 score of 82.14%, only
0.5% worse than the best system.

2 The Synchronous Model

The use of synchronous parsing allows separate
structures for syntax and semantics, while still mod-
eling their joint probability. We use the approach
to synchronous parsing proposed in Henderson et al.
(2008), where we start with two separate derivations
specifying each of the two structures, then synchro-
nise these derivations at each word. The individual
derivations are based on Nivre’s shift-reduce-style
parsing algorithm (Nivre et al., 2006), as discussed
further below. First we illustrate the high-level struc-
ture of the model, discussed in more detail in Hen-
derson et al. (2008).

Let Td be a syntactic dependency tree with
derivation D1

d, ..., D
md
d , and Ts be a semantic

dependency graph with derivation D1
s , ..., D

ms
s .

To define derivations for the joint structure
Td, Ts, we divide the two derivations into the
chunks between shifting each word onto the

stack, ct
d = D

bt
d

d , ..., D
et
d

d and ct
s = D

bt
s

s , ..., D
et
s

s ,

where D
bt
d−1

d = D
bt
s−1

s = Shiftt−1 and

D
et
d+1

d = D
et
s+1

s = Shiftt. Then the actions of
the synchronous derivations consist of quadruples
Ct = (ct

d, Switch, ct
s, Shiftt), where Switch means

switching from syntactic to semantic mode. This
gives us the following joint probability model,
where n is the number of words in the input.

P (Td, Ts) =
∏n

t=1 P (Ct|C1, . . . , Ct−1) (1)

These synchronous derivations C1, . . . , Cn only re-
quire a single input queue, since the Shift actions are
synchronised, but they require two separate stacks,
one for the syntactic derivation and one for the se-
mantic derivation.

The probability of each synchronous derivation
chunk Ct is the product of four factors, related to
the syntactic level, the semantic level and the two
synchronising steps. The probability of ct

d is de-
composed into one probability for each derivation
action Di, conditioned on its history using the chain
rule, and likewise for ct

s. These probabilities are es-
timated using the method described in section 3.

Syn cross Sem cross Sem tree No parse
Cat 0% 0% 61.4% 0%
Chi 0% 28.0% 28.6% 9.5%
Cze 22.4% 16.3% 6.1% 1.8%
Eng 7.6% 43.9% 21.4% 3.9%
Ger 28.1% 1.3% 97.4% 0.0%
Jap 0.9% 38.3% 11.2% 14.4%
Spa 0% 0% 57.1% 0%

Table 1: For each language, percentage of training sen-
tences with crossing arcs in syntax and semantics, with
semantic arcs forming a tree, and which were not parsable
using the Swap action.

One of the main characteristics of our syn-
chronous representation, unlike other synchronous
representations of syntax and semantics (Nesson et
al., 2008), is that the synchronisation is done on
words, rather than on structural components. We
take advantage of this freedom and adopt different
methods for handling crossing arcs for syntax and
for semantics.

While both syntax and semantics are represented
as dependency graphs, these graphs differ substan-
tially in their properties. Some statistics which in-
dicate these differences are shown in table 1. For
example, English syntactic dependencies form trees,
while semantic dependency structures are only trees
21.4% of the time, since in general each struc-
ture does not form a connected graph and some
nodes may have more than one parent. The syn-
tactic dependency structures for only 7.6% of En-
glish sentences contain crossing arcs, while 43.9%
of the semantic dependency structures contain cross-
ing arcs. Due to variations both in language char-
acteristics and annotation decisions across corpora,
these differences between syntax and semantics vary
across the seven languages, but they are consis-
tent enough to motivate the development of new
techniques specifically for handling semantic depen-
dency structures. In particular, we use a different
method for parsing crossing arcs.

For parsing crossing semantic arcs (i.e. non-
planar graphs), we use the approach proposed in
Titov et al. (2009), which introduces an action Swap
that swaps the top two elements on the parser’s
stack. The Swap action allows the parser to reorder
words online during the parse. This allows words
to be processed in different orders during different
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portions of the parse, so some arcs can be specified
using one ordering, then other arcs can be specified
using another ordering. Titov et al. (2009) found that
only using the Swap action as a last resort is the best
strategy for English (compared to using it preemp-
tively to address future crossing arcs) and we use
the same strategy here for all languages.

Syntactic graphs do not use a Swap action.
We adopt the HEAD method of Nivre and Nils-
son (2005) to de-projectivise syntactic dependencies
outside of parsing.1

3 Features and New Developments

The synchronous derivations described above are
modelled with a type of Bayesian Network called an
Incremental Sigmoid Belief Network (ISBN) (Titov
and Henderson, 2007a). As in Henderson et al.
(2008), the ISBN model distinguishes two types of
latent states: syntactic states, when syntactic deci-
sions are considered, and semantic states, when se-
mantic decision are considered. Latent states are
vectors of binary latent variables, which are condi-
tioned on variables from previous states via a pattern
of connecting edges determined by the previous de-
cisions. These latent-to-latent connections are used
to engineer soft biases which reflect the relevant do-
mains of locality in the structure being built. For
these we used the set of connections proposed in
Titov et al. (2009), which includes latent-to-latent
connections both from syntax states to semantics
states and vice versa. The latent variable vectors are
also conditioned on a set of observable features of
the derivation history. For these features, we start
with the feature set from Titov et al. (2009), which
extends the semantic features proposed in Hender-
son et al. (2008) to allow better handling of the non-
planar structures in semantics. Most importantly, all
the features previously included for the top of the
stack were also included for the word just under the
top of the stack. To this set we added one more type
of feature, discussed below.

We made some modifications to reflect differ-
ences in the task definition between the 2008 and
2009 shared tasks, and experimented with one
type of features which had been previously imple-

1The statistics in Table 1 suggest that, for some languages,
swapping might be beneficial for syntax as well.

mented. For the former modifications, the system
was adapted to allow the use of the PFEAT and
FILLPRED fields in the data, which both resulted
in improved accuracy for all the languages. The
PFEAT data field (automatically predicted morpho-
logical features) was introduced in the system in
two ways, as an atomic feature bundle that is pre-
dicted when predicting the word, and split into its
elementary components when conditioning on a pre-
vious word, as was done in Titov and Henderson
(2007b). Because the testing data included a spec-
ification of which words were annotated as predi-
cates (the FILLPRED data field), we constrained the
parser’s output so as to be consistent with this speci-
fication. For rare predicates, if the predicate was not
in the parser’s lexicon (extracted from the training
set), then a sense was taken from the list of senses
reported in the Lexicon and Frame Set resources
available for the closed challenge. If this informa-
tion was not available, then a default sense was con-
structed based on the automatically predicted lemma
(PLEMMA) of the predicate.

We also made use of a previously implemented
type of feature that allows the prediction of a seman-
tic link between two words to be conditioned on the
syntactic dependency already predicted between the
same two words. While this feature had previously
not helped for English, it did result in an overall im-
provement across the languages.

Also, in comparison with previous experiments,
the search beam used in the decoding phase was in-
creased from 50 to 80, producing a small improve-
ment in the overall development score.

All development effort took about two person-
months, mostly by someone who had no previous
experience with the system. Most of this time was
spent on the above differences in the task definition
between the 2008 and 2009 shared tasks.

4 Results and Discussion

We participated in the joint task of the closed chal-
lenge, as described in Hajič et al. (2009). The
datasets used in this challenge are described in Taulé
et al. (2008) (Catalan and Spanish), Palmer and Xue
(2009) (Chinese), Hajič et al. (2006) (Czech), Sur-
deanu et al. (2008) (English), Burchardt et al. (2006)
(German), and Kawahara et al. (2002) (Japanese).
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Rank Average Catalan Chinese Czech English German Japanese Spanish
macro F1 3 82.14 82.66 76.15 83.21 86.03 79.59 84.91 82.43
syntactic acc 1 @85.77 @87.86 76.11 @80.38 88.79 87.29 92.34 @87.64
semantic F1 3 78.42 77.44 76.05 86.02 83.24 71.78 77.23 77.19

Table 2: The three main scores for our system. Rank is within task.

Rank Ave Cze-ood Eng-ood Ger-ood
macro F1 3 75.93 @80.70 75.76 71.32
syn Acc 2 78.01 @76.41 80.84 76.77
sem F1 3 73.63 84.99 70.65 65.25

Table 3: Results on out-of-domain for our system. Rank
is within task.

The official results on the testing set are shown in
tables 2, 3, and 4. The symbol “@” indicates the
best result across systems. In table 5, we show our
rankings across the different datasets, amongst sys-
tems submitted for the same task.

The overall score used to rank systems is the un-
weighted average of the syntactic labeled accuracy
and the semantic labeled F1 measure, across all lan-
guages (“macro F1” in table 2). We were ranked
third, out of 14 systems. There was only a 0.5% dif-
ference between our score and that of the best sys-
tem, while there was a 1.29% difference between our
score and the fourth ranked system. Only consid-
ering syntactic accuracy, we had the highest aver-
age score of all systems, with the highest individual
score for Catalan, Czech, and Spanish. Only con-
sidering semantic F1, we were again ranked third.
Our results for out-of-domain data (table 3) achieved
a similar level of success, although here we were
ranked second for average syntactic accuracy. Our
precision on semantic arcs was generally much bet-
ter than our recall (shown in table 4). However,
other systems had a similar imbalance, resulting in
no change in our third place ranking for semantic
precision and for semantic recall. Only when the se-
mantic precision is averaged with syntactic accuracy
do we squeeze into second place (“macro Prec”).

To get a more detailed picture of the strengths
and weaknesses of our system, we computed its rank
within each dataset, shown in table 5. Overall, our
system is robust across languages, with little fluc-
tuation in ranking for the overall score, including
for out-of-domain data. The one noticeable excep-
tion to this consistency is the syntactic score for En-

data time (min) macro F1
Czech 25% 5007 73.84

50% 3699 77.57
75% 4201 79.10
100% 6870 80.55

English 25% 1300 79.02
50% 1899 81.61
75% 3196 82.41
100% 3191 83.27

Table 6: Training times and development set accuracies
using different percentages of the training data, for Czech
and English.

glish out-of-domain data. The other ranks for En-
glish out-of-domain and English in-domain scores
are also on the poor side. These results support our
claim that our parser has not undergone much hand-
tuning, since it was originally developed for English.
It is not currently clear whether this relative differ-
ence reflects a English-specific weakness in our sys-
tem, or that many of the other systems have been
fine-tuned for English.

On the higher end of our dataset rankings, we
do relatively well on Catalan, Czech, and Span-
ish. Catalan and Spanish are unique amongst these
datasets in that they have no crossing arcs in their
semantic structure. Czech seems to have semantic
structures which are relatively well handled by our
derivations with Swap. As indicated above in ta-
ble 1, only 2% of sentences are unparsable, despite
16% requiring the Swap action. However, this argu-
ment does not explain why our parser did relatively
poorly on German semantic dependencies. Regard-
less, these observations would suggest that our sys-
tem is still having trouble with crossing dependen-
cies, despite the introduction of the Swap operation,
and that our learning method could achieve better
performance with an improved treatment of cross-
ing semantic dependencies.

Table 6 shows how accuracies and training times
vary with the size of the training dataset, for Czech
and English. Training times vary in part because
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Rank Ave Cat Chi Cze Eng Ger Jap Spa Cze-ood Eng-ood Ger-ood
semantic Prec 3 81.60 79.08 80.93 87.45 84.92 75.60 83.75 79.44 85.90 72.89 75.19
semantic Rec 3 75.56 75.87 71.73 @84.64 81.63 68.33 71.65 75.05 @84.09 68.55 57.63
macro Prec 2 83.68 83.47 78.52 83.91 86.86 81.44 88.05 83.54 81.16 76.86 @75.98
macro Rec 3 80.66 @81.86 73.92 @82.51 85.21 77.81 81.99 81.35 @80.25 74.70 67.20

Table 4: Semantic precision and recall and macro precision and recall for our system. Rank is within task.

Rank by Ave Cat Chi Cze Eng Ger Jap Spa Ave-ood Cze-ood Eng-ood Ger-ood
macro F1 3 2 3 2 4 4 3 2 3 1 4 3
syntactic Acc 1 1 4 1 3 2 2 1 2 1 7 2
semantic F1 3 2 4 2 4 5 4 2 3 2 4 3

Table 5: Our system’s rank within task according to the three main measures, for each dataset.
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Figure 1: Difference in development set macro F1 as the
search beam is decreased from the submitted beam (80)
to 40, 20, 10, and 5, plotted against parser speed.

random variations can result in different numbers of
training cycles before convergence. Accuracies ap-
pear to be roughly log-linear with data size.

Figure 1 shows how the accuracy of the parser de-
grades as we speed it up by decreasing the search
beam used in decoding, for each language. For some
languages, a slightly smaller search beam is actually
more accurate,2 but for smaller beams the trade-off
of accuracy versus words-per-second is roughly lin-
ear. Parsing time per word is also linear in beam
width, with a zero intercept.

5 Conclusion

In the joint task of the closed challenge of the
CoNLL 2009 shared task (Hajič et al., 2009), we in-
vestigated how well a model of syntactic-semantic
dependency parsing developed for English would

2This fact suggests that we could have gotten improved re-
sults by tailoring the search beam to individual languages.

generalise to the other six languages. This model
provides a single generative probability of the joint
syntactic and semantic dependency structures, but
allows separate representations for these two struc-
tures by parsing the two structures synchronously.
Finding the statistical correlations both between and
within these structures is facilitated through the use
of latent variables, which induce features automat-
ically from the data, thereby greatly reducing the
need for hand-coded feature engineering.

This latent variable model proved very robust
across languages, achieving a ranking of between
second and fourth on each language, including for
out-of-domain data. The extent to which the parser
does not rely on hand-crafting is underlined by the
fact that its worst ranking is for English, the lan-
guage for which it was developed (particularly for
out-of-domain data). The parser was ranked third
overall out of 14 systems, with a macro averaged F1
score of 82.14%, only 0.5% worse than the best sys-
tem.

Both joint learning and conditioning decisions
about semantic dependencies on latent representa-
tions of syntactic parsing states were crucial to the
success of our model, as was previously demon-
strated in Henderson et al. (2008). There, remov-
ing this conditioning led to a 3.5% drop in the SRL
score. This result seems to contradict the gen-
eral trend in the CoNLL-2008 shared task, where
joint learning had only limited success. The lat-
ter fact may be explained by recent theoretical re-
sults demonstrating that pipelines can be preferable
to joint learning (Roth et al., 2009) when no shared
hidden representation is learnt. Our system (Hender-
son et al., 2008) was the only one which attempted to
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learn a common hidden representation for this mul-
titask learning problem and also was the only one
which achieved significant gain from joint parameter
estimation. We believe that learning shared hidden
representations for related NLP problems is a very
promising direction for further research.
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Abstract

This paper describes our contribution to the
semantic role labeling task (SRL-only) of the
CoNLL-2009 shared task in the closed chal-
lenge (Hajič et al., 2009). Our system con-
sists of a pipeline of independent, local clas-
sifiers that identify the predicate sense, the ar-
guments of the predicates, and the argument
labels. Using these local models, we carried
out a beam search to generate a pool of candi-
dates. We then reranked the candidates using
a joint learning approach that combines the lo-
cal models and proposition features.

To address the multilingual nature of the data,
we implemented a feature selection procedure
that systematically explored the feature space,
yielding significant gains over a standard set
of features. Our system achieved the second
best semantic score overall with an average la-
beled semantic F1 of 80.31. It obtained the
best F1 score on the Chinese and German data
and the second best one on English.

1 Introduction

In this paper, we describe a three-stage analysis ap-
proach that uses the output of a dependency parser
and identifies the arguments of the predicates in a
sentence. The first stage consists of a pipeline of
independent classifiers. We carried out the pred-
icate disambiguation with a set of greedy classi-
fiers, where we applied one classifier per predicate
lemma. We then used a beam search to identify
the arguments of each predicate and to label them,
yielding a pool of candidate propositions. The sec-
ond stage consists of a reranker that we applied to

the candidates using the local models and proposi-
tion features. We combined the score of the greedy
classifiers and the reranker in a third stage to select
the best candidate proposition. Figure 1 shows the
system architecture.

We evaluated our semantic parser on a set of seven
languages provided by the organizers of the CoNLL-
2009 shared task: Catalan and Spanish (Taulé et
al., 2008), Chinese (Palmer and Xue, 2009), Czech
(Hajič et al., 2006), English (Surdeanu et al., 2008),
German (Burchardt et al., 2006), and Japanese
(Kawahara et al., 2002). Our system achieved an
average labeled semantic F1 of 80.31, which cor-
responded to the second best semantic score over-
all. After the official evaluation was completed, we
discovered a fault in the training procedure of the
reranker for Spanish. The revised average labeled
semantic F1 after correction was 80.80.

2 SRL Pipeline

The pipeline of classifiers consists of a predicate
disambiguation (PD) module, an argument identi-
fication module (AI), and an argument classifica-
tion (AC) module. Aside from the lack of a pred-
icate identification module, which was not needed,
as predicates were given, this architecture is identi-
cal to the one adopted by recent systems (Surdeanu
et al., 2008), as well as the general approach within
the field (Gildea and Jurafsky, 2002; Toutanova et
al., 2005).

We build all the classifiers using the L2-
regularized linear logistic regression from the LIB-
LINEAR package (Fan et al., 2008). The package
implementation makes models very fast to train and
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Figure 1: System architecture.

use for classification. Since models are logistic, they
produce an output in the form of probabilities that
we use later in the reranker (see Sect. 3).

2.1 Predicate Disambiguation

We carried out a disambiguation for all the lem-
mas that had multiple senses in the corpora and we
trained one classifier per lemma. We did not use the
predicate lexicons and we considered lemmas with a
unique observed sense as unambiguous.

English required a special processing as the sense
nomenclature overlapped between certain nominal
and verbal predicates. For instance, the nominal
predicate plan.01 and the verbal predicate plan.01
do not correspond to the same semantic frame.
Hence, we trained two classifiers for each lemma
plan that could be both a nominal and verbal predi-
cate.

Table 1: Feature sets for predicate disambiguation.

ca ch cz en ge sp
PredWord • • •
PredPOS • •
PredDeprel • • •
PredFeats • • •
PredParentWord • • • • •
PredParentPOS • • •
PredParentFeats • •
DepSubCat • • • • •
ChildDepSet • • • • • •
ChildWordSet • • • • • •
ChildPOSSet • • • • •

2.2 Argument Identification and Classification

We implemented the argument identification and
classification as two separate stages, because it en-
abled us to apply and optimize different feature sets

in each step. Arguments were identified by means
of a binary classifier. No pruning was done, each
word in the sentence was considered as a potential
argument to all predicates of the same sentence.

Arguments were then labeled using a multiclass
classifier; each class corresponding to a certain la-
bel. We did not apply any special processing with
multiple dependencies in Czech and Japanese. In-
stead, we concatenated the composite labels (i.e.
double edge) to form unique labels (i.e. single edge)
having their own class.

2.3 Identification and Classification Features

For the English corpus, we used two sets of features
for the nominal and the verbal predicates both in the
AI and AC steps. This allowed us to create different
classifiers for different kinds of predicates. We ex-
tended this approach with a default classifier catch-
ing predicates that were wrongly tagged by the POS
tagger. For both steps, we used the union of the two
feature sets for this catch-all class.

We wanted to employ this procedure with the two
other languages, Czech and Japanese, where predi-
cates had more than one POS type. As feature selec-
tion (See Sect. 2.4) took longer than expected, par-
ticularly in Czech due to the size of the corpus and
the annotation, we had to abandon this idea and we
trained a single classifier for all POS tags in the AI
and AC steps.

For each data set, we extracted sets of features
similar to the ones described by Johansson and
Nugues (2008). We used a total of 32 features that
we denote with the prefixes: Pred-, PredParent-,
Arg-, Left-, Right-, LeftSibling-, and RightSibling-
for, respectively, the predicate, the parent of the
predicate, the argument, the leftmost and rightmost
dependents of the argument, and the left and right

44



Table 2: Feature sets for argument identification and classification.

Argument identification Argument classification
ca ch cz en ge ja sp ca ch cz en ge ja sp

PredWord • N •
PredPOS N • • V •
PredLemma N • • • • N,V • •
PredDeprel
Sense • • V • • • • N,V • • •
PredFeats • • •
PredParentWord V • V •
PredParentPOS V V •
PredParentFeats •
DepSubCat • •
ChildDepSet • • • • V • • •
ChildWordSet N • •
ChildPOSSet • • N •
ArgWord • • N,V • • • • • • N,V • • •
ArgPOS • • N,V • • • • • • N,V •
ArgFeats • • • • •
ArgDeprel • • • V • • • • • V • •
DeprelPath • • • N,V • • • • • V •
POSPath • • • N,V • • • • V • •
Position • N,V • • • • N,V • •
LeftWord • • • • N • •
LeftPOS • • V
LeftFeats • • •
RightWord • N • • N,V •
RightPOS N • • N,V •
RightFeats • •
LeftSiblingWord • • • • N •
LeftSiblingPOS • • • • N,V •
LeftSiblingFeats • • •
RightSiblingWord • • V • • • • • •
RightSiblingPOS • •
RightSiblingFeats •

sibling of the argument. The suffix of these names
corresponds to the column name of the CoNLL for-
mat, except Word which corresponds to the Form
column. Additional features are:

• Sense: the value of the Pred column, e.g.
plan.01.

• Position: the position of the argument with re-
spect to the predicate, i.e. before, on, or after.

• DepSubCat: the subcategorization frame of the
predicate, e.g. OBJ+OPRD+SUB.

• DeprelPath: the path from predicate to argu-
ment concatenating dependency labels with the

direction of the edge, e.g. OBJ↑OPRD↓SUB↓.

• POSPath: same as DeprelPath, but depen-
dency labels are exchanged for POS tags, e.g.
NN↑NNS↓NNP↓.

• ChildDepSet: the set of dependency labels of
the children of the predicate, e.g. {OBJ, SUB}.

• ChildPOSSet: the set of POS tags of the chil-
dren of the predicate, e.g. {NN, NNS}.

• ChildWordSet: the set of words (Form) of the
children of the predicate, e.g. {fish, me}.
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2.4 Feature Selection

We selected the feature sets using a greedy forward
procedure. We first built a set of single features and,
to improve the separability of our linear classifiers,
we paired features to build bigrams. We searched
the space of feature bigrams using the same proce-
dure. See Johansson (2008, page 83), for a com-
plete description. We intended to carry out a cross-
validation search. Due to the lack of time, we re-
sorted to using 80% of the training set for training
and 20% for evaluating the features. Table 2 con-
tains the complete list of single features we used.
We omitted the feature bigrams.

Feature selection turned out to be a massive task.
It took us three to four weeks searching the feature
spaces, yet in most cases we were forced to interrupt
the selection process after a few bigram features in
order to have our system ready in time. This means
that our feature sets can probably be further opti-
mized.

When the training data was initially released,
we used the exact feature set from Johansson and
Nugues (2008) to compute baseline results on the
development set for all the languages. After feature
selection, we observed an increase in labeled seman-
tic F1 close to 10% in most languages.

2.5 Applying Beam Search

The AI module proceeds left to right considering
each word as an argument of the current predicate.
The current partial propositions are scored by com-
puting the product of the probabilities of all the
words considered so far. After each word, the cur-
rent pool of partial candidates is reduced to the beam
size, k, and at the end of the sentence, the top k scor-
ing propositions are passed on to the AC module.

Given k unlabeled propositions, the AC module
applies a beam search on each of these propositions
independently. This is done in a similar manner,
proceeding from left to right among the identified
arguments, keeping the l best labelings in its beam,
and returning the top l propositions, when all iden-
tified arguments have been processed. This yields
n = k × l complete propositions, unless one of the
unlabeled propositions has zero arguments, in which
case we have n = (k − 1) × l + 1.

The probability of a labeled proposition according

to the local pipeline is given by PLocal = PAI ×
PAC , where PAI and PAC is the output probability
from the AI and AC modules, respectively. In the
case of empty propositions, PAC was set to 1.

3 Global Reranker

We implemented a global reranker following
Toutanova et al. (2005). To generate training ex-
amples for the reranker, we trained m AI and AC
classifiers by partitioning the training set in m parts
and using m − 1 of these parts for each AI and AC
classifier, respectively.

We applied these AI and AC classifiers on the part
of the corpus they were not trained on and we then
generated the top n propositions for each predicate.
We ran the CoNLL evaluation script on the proposi-
tions and we marked the top scoring one(s) as pos-
itive. We marked the others negative. If the correct
proposition was not in the pool of candidates, we
added it as an extra positive example. We used these
positive and negative examples as training data for
the global reranker.

3.1 Reranker Features

We used all the features from the local pipeline for
all the languages. We built a vector where the AI
features were prefixed with AI- and the AC features
prefixed with lab−, where lab was any of the argu-
ment labels.

We added one proposition feature to the concate-
nation of local features, namely the sequence of core
argument labels, e.g. A0+plan.01+A1. In Catalan
and Spanish, we considered all the labels prefixed by
arg0, arg1, arg2, or arg3 as core labels. In Chinese
and English, we considered only the labels A0, A1,
A2, A3, and A4. In Czech, German, and Japanese,
we considered all the labels as core labels.

Hence, the total size of the reranker vector space
is |AI| + |L| × |AC| + |G|, where |AI| and |AC|
denotes the size of the AI and AC vector spaces, re-
spectively, |L| corresponds to the number of labels,
and |G| is the size of additional global features.

We ran experiments with the grammatical
voice that we included in the string represent-
ing the sequence of core argument labels, e.g.
A1+plan.01/Passive+A0. The voice was derived by
hand-crafted rules in Catalan, English, German, and
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Spanish, and given in the Feat column in Czech.
However, we did not notice any significant gain in
performance. The hand-crafted rules use lexical
forms and dependencies, which we believe classi-
fiers are able to derive themselves using the local
model features. This also applies to Czech, as Pred-
Feats was a feature used in the local pipeline, both
in the AI and AC steps.

3.2 Weighting the Models

In Sect. 2.5, we described how the pipeline was used
to generate the top n propositions, each with its own
local probability PLocal. Similar to softmax, we nor-
malized these local probabilities by dividing each of
them by their total sum. We denote this normalized
probability by P

′
Local. The reranker gives a proba-

bility on the complete proposition, PReranker. We
weighted these probabilities and chose the proposi-
tion maximizing PF inal = (P

′
Local)

α × PReranker.
This is equivalent to a linear combination of the log
probabilities.

3.3 Parameters Used

For the submission to the CoNLL 2009 Shared Task,
we set the beam widths to k = l = 4, yielding can-
didate pools of size n = 13 or n = 16 (See Sec-
tion 2.5). We used m = 5 for training the reranker
and α = 1 for combining the local model with the
reranker.

4 Results

Our system achieved the second best semantic score,
all tasks, with an average labeled semantic F1 of
80.31. It obtained the best F1 score on the Chinese
and German data and the second best on English.
Our system also reached the third rank in the out-of-
domain data, all tasks, with a labeled semantic F1 of
74.38. Post-evaluation, we discovered a bug in the
Spanish reranker model causing the poor results in
this language. After correcting this, we could reach
a labeled semantic F1 of 79.91 in Spanish. Table 3
shows our official results in the shared task as well
as the post-evaluation update.

We also compared the performance of a greedy
strategy with that of a global model. Table 4 shows
these figures with post-evaluation figures in Spanish.
Table 5 shows the training time, parsing time, and
the parsing speed in predicates per second. These

figures correspond to complete execution time of
parsing, including loading models into memory, i.e.
a constant overhead, that explains the low parsing
speed in German. We implemented our system to
be flexible for easy debugging and testing various
ideas. Optimizing the implementation would reduce
execution times significantly.

Table 3: Summary of submitted results: closed challenge,
semantic F1. * denotes the post-evaluation results ob-
tained for Spanish after a bug fix.

Unlabeled Labeled
Catalan 93.60 80.01
Chinese 84.76 78.60
Czech 92.63 85.41
English 91.17 85.63
German 92.13 79.71
Japanese 83.45 76.30
Spanish 92.69 76.52
Spanish* 93.76 79.91
Average 90.06 80.31
Average* 90.21 80.80

Table 4: Improvement of reranker. * denotes the post-
evaluation results obtained for Spanish after a bug fix.

Greedy Reranker Gain
Catalan 79.54 80.01 0.47
Chinese 77.84 78.60 0.76
Czech 84.99 85.41 0.42
English 84.44 85.63 1.19
German 79.01 79.71 0.70
Japanese 75.61 76.30 0.69
Spanish 79.28 76.52 -2.76
Spanish* 79.28 79.91 0.63
Average 80.10 80.31 0.21
Average* 80.10 80.80 0.70

5 Conclusion

We have built and described a streamlined and ef-
fective semantic role labeler that did not use any
lexicons or complex linguistic features. We used a
generic feature selection procedure that keeps lan-
guage adaptation minimal and delivers a relatively
even performance across the data sets. The system is
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Table 5: Summary of training and parsing times on an Apple Mac Pro, 3.2 GHz.

Training Parsing (Greedy) Speed (Greedy) Parsing (Reranker) Speed (Reranker)
(min) (min:sec) (pred/sec) (min:sec) (pred/sec)

Catalan 46 1:10 71 1:21 62
Chinese 139 2:35 79 3:45 55
Czech 299 18:47 40 33:49 22
English 421 6:25 27 8:51 20
German 15 0:21 26 0:22 25
Japanese 48 0:37 84 1:02 50
Spanish 51 1:15 69 1:47 48

robust and can handle incorrect syntactic parse trees
with a good level of immunity. While input parse
trees in Chinese and German had a labeled syntac-
tic accuracy of 78.46 (Hajič et al., 2009), we could
reach a labeled semantic F1 of 78.60 and 79.71 in
these languages. We also implemented an efficient
global reranker in all languages yielding a 0.7 av-
erage increase in labeled semantic F1. The reranker
step, however, comes at the expense of parsing times
increased by factors ranging from 1.04 to 1.82.
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Abstract

Our CoNLL 2009 Shared Task system in-
cludes three cascaded components: syntactic
parsing, predicate classification, and semantic
role labeling. A pseudo-projective high-order
graph-based model is used in our syntactic de-
pendency parser. A support vector machine
(SVM) model is used to classify predicate
senses. Semantic role labeling is achieved us-
ing maximum entropy (MaxEnt) model based
semantic role classification and integer linear
programming (ILP) based post inference. Fi-
nally, we win the first place in the joint task,
including both the closed and open challenges.

1 System Architecture

Our CoNLL 2009 Shared Task (Hajič et al., 2009):
multilingual syntactic and semantic dependencies
system includes three cascaded components: syn-
tactic parsing, predicate classification, and semantic
role labeling.

2 Syntactic Dependency Parsing

We extend our CoNLL 2008 graph-based
model (Che et al., 2008) in four ways:

1. We use bigram features to choose multiple pos-
sible syntactic labels for one arc, and decide the op-
timal label during decoding.

2. We extend the model with sibling features (Mc-
Donald, 2006).

3. We extend the model with grandchildren fea-
tures. Rather than only using the left-most and right-
most grandchildren as Carreras (2007) and Johans-
son and Nugues (2008) did, we use all left and right
grandchildren in our model.

4. We adopt the pseudo-projective approach in-
troduced in (Nivre and Nilsson, 2005) to handle the
non-projective languages including Czech, German
and English.

2.1 Syntactic Label Determining

The model of (Che et al., 2008) decided one la-
bel for each arc before decoding according to uni-
gram features, which caused lower labeled attach-
ment score (LAS). On the other hand, keeping all
possible labels for each arc made the decoding in-
efficient. Therefore, in the system of this year, we
adopt approximate techniques to compromise, as
shown in the following formulas.

f lbl
uni(h, c, l) = f lbl

1 (h, 1, d, l) ∪ f lbl
1 (c, 0, d, l)

L1(h, c) = arg maxK1
l∈L(w · f lbl

uni(h, c, l))

f lbl
bi (h, c, l) = f lbl

2 (h, c, l)

L2(h, c) = arg maxK2

l∈L1(h,c)(w · {f lbl
uni ∪ f lbl

bi })
For each arc, we firstly use unigram features to

choose the K1-best labels. The second parameter of
f lbl
1 (·) indicates whether the node is the head of the

arc, and the third parameter indicates the direction.
L denotes the whole label set. Then we re-rank the
labels by combining the bigram features, and choose
K2-best labels. During decoding, we only use the
K2 labels chosen for each arc (K2 ¿ K1 < |L|).

2.2 High-order Model and Algorithm

Following the Eisner (2000) algorithm, we use spans
as the basic unit. A span is defined as a substring
of the input sentence whose sub-tree is already pro-
duced. Only the start or end words of a span can link
with other spans. In this way, the algorithm parses
the left and the right dependence of a word indepen-
dently, and combines them in the later stage.

We follow McDonald (2006)’s implementation of
first-order Eisner parsing algorithm by modifying its
scoring method to incorporate high-order features.
Our extended algorithm is shown in Algorithm 1.

There are four different span-combining opera-
tions. Here we explain two of them that correspond
to right-arc (s < t), as shown in Figure 1 and 2. We
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Algorithm 1 High-order Eisner Parsing Algorithm
1: C[s][s][c] = 0, 0 ≤ s ≤ N , c ∈ cp, icp # cp: complete; icp: incomplete
2: for j = 1 to N do
3: for s = 0 to N do
4: t = s + jL
5: if t > N then
6: break
7: end if

# Create incomplete spans
8: C[s][t][icp] = maxs≤r<t;l∈L2(s,t)(C[s][r][cp] + C[t][r + 1][cp] + Sicp(s, r, t, l))
9: C[t][s][icp] = maxs≤r<t;l∈L2(t,s)(C[s][r][cp] + C[t][r + 1][cp] + Sicp(t, r, s, l))

# Create complete spans
10: C[s][t][cp] = maxs<r≤t;l=C[s][r][icp].label(C[s][r][icp] + C[r][t][cp] + Scp(s, r, t, l))
11: C[t][s][cp] = maxs≤r<t;l=C[t][r][icp].label(C[r][s][cp] + C[t][r][icp] + Scp(t, r, s, l))
12: end for
13: end for

follow the way of (McDonald, 2006) and (Carreras,
2007) to represent spans. The other two operations
corresponding to left-arc are similar.

 

Figure 1: Combining two spans into an incomplete span

Figure 1 illustrates line 8 of the algorithm in Al-
gorithm 1, which combines two complete spans into
an incomplete span. A complete span means that
only the head word can link with other words fur-
ther, noted as “→” or “←”. An incomplete span
indicates that both the start and end words of the
span will link with other spans in the future, noted as
“99K” or “L99”. In this operation, we combine two
smaller spans, sps→r and spr+1←t, into sps99Kt with
adding arcs→t. As shown in the following formu-
las, the score of sps99Kt is composed of three parts:
the score of sps→r, the score of spr+1←t, and the
score of adding arcs→t. The score of arcs→t is
determined by four different feature sets: unigram
features, bigram features, sibling features and left
grandchildren features (or inside grandchildren fea-
tures, meaning that the grandchildren lie between s
and t). Note that the sibling features are only related
to the nearest sibling node of t, which is denoted as
sck here. And the inside grandchildren features are
related to all the children of t. This is different from

the models used by Carreras (2007) and Johansson
and Nugues (2008). They only used the left-most
child of t, which is tck′ here.

ficp(s, r, t, l) = funi(s, t, l) ∪ fbi(s, t, l)
∪ fsib(s, sck, t) ∪ {

⋃k′
i=1 fgrand(s, t, tci, l)}

Sicp(s, r, t, l) = w · ficp(s, r, t, l)

S(sps99Kt) = S(sps→r) + S(spr+1←t)
+ Sicp(s, r, t, l)

In Figure 2 we combine sps99Kr and spr→t into
sps→t, which explains line 10 in Algorithm 1. The
score of sps→t also includes three parts, as shown
in the following formulas. Although there is no new
arc added in this operation, the third part is neces-
sary because it reflects the right (or called outside)
grandchildren information of arcs→r.

r trc1 rcks r s tr rc1 rck

l
l

 

Figure 2: Combining two spans into a complete span

fcp(s, r, t, l) =
⋃k

i=1 fgrand(s, r, rci, l)

Scp(s, r, t, l) = w · fcp(s, r, t, l)

S(sps→t) = S(sps99Kr)
+ S(spr→t) + Scp(s, r, t, l)

50



2.3 Features
As shown above, features used in our model can be
decomposed into four parts: unigram features, bi-
gram features, sibling features, and grandchildren
features. Each part can be seen as two different sets:
arc-related and label-related features, except sibling
features, because we do not consider labels when us-
ing sibling features. Arc-related features can be un-
derstood as back-off of label-related features. Actu-
ally, label-related features are gained by simply at-
taching the label to the arc-features.

The unigram and bigram features used in our
model are similar to those of (Che et al., 2008), ex-
cept that we use bigram label-related features. The
sibling features we use are similar to those of (Mc-
Donald, 2006), and the grandchildren features are
similar to those of (Carreras, 2007).

3 Predicate Classification

The predicate classification is regarded as a super-
vised word sense disambiguation (WSD) task here.
The task is divided into four steps:

1. Target words selection: predicates with multi-
ple senses appearing in the training data are selected
as target words.

2. Feature extraction: features in the context
around these target words are extracted as shown in
Table 4. The detailed explanation about these fea-
tures can be found from (Che et al., 2008).

3. Classification: for each target word, a Support
Vector Machine (SVM) classifier is used to classify
its sense. As reported by Lee and Ng (2002) and
Guo et al. (2007), SVM shows good performance on
the WSD task. Here libsvm (Chang and Lin, 2001)
is used. The linear kernel function is used and the
trade off parameter C is 1.

4. Post processing: for each predicate in the test
data which does not appear in the training data, its
first sense in the frame files is used.

4 Semantic Role Labeling

The semantic role labeling (SRL) can be divided
into two separate stages: semantic role classification
(SRC) and post inference (PI).

During the SRC stage, a Maximum en-
tropy (Berger et al., 1996) classifier is used to
predict the probabilities of a word in the sentence

Language No-duplicated-roles
Catalan arg0-agt, arg0-cau, arg1-pat, arg2-atr, arg2-loc
Chinese A0, A1, A2, A3, A4, A5,
Czech ACT, ADDR, CRIT, LOC, PAT, DIR3, COND
English A0, A1, A2, A3, A4, A5,
German A0, A1, A2, A3, A4, A5,
Japanese DE, GA, TMP, WO
Spanish arg0-agt, arg0-cau, arg1-pat, arg1-tem, arg2-atr,

arg2-loc, arg2-null, arg4-des, argL-null, argM-
cau, argM-ext, argM-fin

Table 1: No-duplicated-roles for different languages

to be each semantic role. We add a virtual role
“NULL” (presenting none of roles is assigned)
to the roles set, so we do not need semantic role
identification stage anymore. For a predicate
of each language, two classifiers (one for noun
predicates, and the other for verb predicates) predict
probabilities of each word in a sentence to be each
semantic role (including virtual role “NULL”). The
features used in this stage are listed in Table 4.

The probability of each word to be a semantic role
for a predicate is given by the SRC stage. The re-
sults generated by selecting the roles with the largest
probabilities, however, do not satisfy some con-
strains. As we did in the last year’s system (Che et
al., 2008), we use the ILP (Integer Linear Program-
ming) (Punyakanok et al., 2004) to get the global op-
timization, which is satisfied with three constrains:

C1: Each word should be labeled with one and
only one label (including the virtual label “NULL”).

C2: Roles with a small probability should never
be labeled (except for the virtual role “NULL”). The
threshold we use in our system is 0.3.

C3: Statistics show that some roles (except for
the virtual role “NULL”) usually appear once for
a predicate. We impose a no-duplicate-roles con-
straint with a no-duplicate-roles list, which is con-
structed according to the times of semantic roles’
duplication for each single predicate. Table 1 shows
the no-duplicate-roles for different languages.

Our maximum entropy classifier is implemented
with Maximum Entropy Modeling Toolkit1. The
classifier parameters are tuned with the development
data for different languages respectively. lp solve
5.52 is chosen as our ILP problem solver.

1http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html
2http://sourceforge.net/projects/lpsolve
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5 Experiments

5.1 Experimental Setup
We participate in the CoNLL 2009 shared task
with all 7 languages: Catalan (Taulé et al., 2008),
Chinese (Palmer and Xue, 2009), Czech (Hajič et
al., 2006), English (Surdeanu et al., 2008), Ger-
man (Burchardt et al., 2006), Japanese (Kawahara
et al., 2002), and Spanish (Taulé et al., 2008). Be-
sides the closed challenge, we also submitted the
open challenge results. Our open challenge strategy
is very simple. We add the SRL development data
of each language into their training data. The pur-
pose is to examine the effect of the additional data,
especially for out-of-domain (ood) data.

Three machines (with 2.5GHz Xeon CPU and
16G memory) were used to train our models. Dur-
ing the peak time, Amazon’s EC2 (Elastic Com-
pute Cloud)3 was used, too. Our system requires
15G memory at most and the longest training time
is about 36 hours.

During training the predicate classification (PC)
and the semantic role labeling (SRL) models, golden
syntactic dependency parsing results are used. Pre-
vious experiments show that the PC and SRL test re-
sults based on golden parse trees are slightly worse
than that based on cross trained parse trees. It is,
however, a pity that we have no enough time and ma-
chines to do cross training for so many languages.

5.2 Results and Discussion
In order to examine the performance of the ILP
based post inference (PI) for different languages, we
adopt a simple PI strategy as baseline, which se-
lects the most likely label (including the virtual la-
bel “NULL”) except for those duplicate non-virtual
labels with lower probabilities (lower than 0.5). Ta-
ble 2 shows their performance on development data.

We can see that the ILP based post inference can
improve the precision but decrease the recall. Ex-
cept for Czech, almost all languages are improved.
Among them, English benefits most.

The final system results are shown in Table 3.
Comparing with our CoNLL 2008 (Che et al., 2008)
syntactic parsing results on English4, we can see that
our new high-order model improves about 1%.

3http://aws.amazon.com/ec2/
4devel: 85.94%, test: 87.51% and ood: 80.73%

Precision Recall F1
Catalan simple 78.68 77.14 77.90

Catalan ILP 79.42 76.49 77.93
Chinese simple 80.74 74.36 77.42

Chinese ILP 81.97 73.92 77.74
Czech simple 88.54 84.68 86.57

Czech ILP 89.23 84.05 86.56
English simple 83.03 83.55 83.29

English ILP 85.63 83.03 84.31
German simple 78.88 75.87 77.34

German ILP 82.04 74.10 77.87
Japanese simple 88.04 70.68 78.41

Japanese ILP 89.23 70.16 78.56
Spanish simple 76.73 75.92 76.33

Spanish ILP 77.71 75.34 76.51

Table 2: Comparison between different PI strategies

For the open challenge, because we did not mod-
ify the syntactic training data, its results are the same
as the closed ones. We can, therefore, examine the
effect of the additional training data on SRL. We can
see that along with the development data are added
into the training data, the performance on the in-
domain test data is increased. However, it is inter-
esting that the additional data is harmful to the ood
test.

6 Conclusion and Future Work

Our CoNLL 2009 Shared Task system is com-
posed of three cascaded components. The pseudo-
projective high-order syntactic dependency model
outperforms our CoNLL 2008 model (in English).
The additional in-domain (devel) SRL data can help
the in-domain test. However, it is harmful to the ood
test. Our final system achieves promising results. In
the future, we will study how to solve the domain
adaptive problem and how to do joint learning be-
tween syntactic and semantic parsing.
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Syntactic Accuracy (LAS) Semantic Labeled F1 Macro F1 Score
devel test ood devel test ood devel test ood

Catalan closed 86.65 86.56 —– 77.93 77.10 —– 82.30 81.84 —–open —– —– 77.36 —– 81.97

Chinese closed 75.73 75.49 —– 77.74 77.15 —– 76.79 76.38 —–open —– —– 77.23 —– 76.42

Czech closed 80.07 80.01 76.03 86.56 86.51 85.26 83.33 83.27 80.66
open —– —– 86.57 85.21 —– 83.31 80.63

English closed 87.09 88.48 81.57 84.30 85.51 73.82 85.70 87.00 77.71
open —– —– 85.61 73.66 —– 87.05 77.63

German closed 85.69 86.19 76.11 77.87 78.61 70.07 81.83 82.44 73.19
open —– —– 78.61 70.09 —– 82.44 73.20

Japanese closed 92.55 92.57 —– 78.56 78.26 —– 85.86 85.65 —–open —– —– 78.35 —– 85.70

Spanish closed 87.22 87.33 —– 76.51 76.47 —– 81.87 81.90 —–open —– —– 76.66 —– 82.00

Average closed —– 85.23 77.90 —– 79.94 76.38 —– 82.64 77.19
open 80.06 76.32 82.70 77.15

Table 3: Final system results

References
Adam L. Berger, Stephen A. Della Pietra, and Vincent

J. Della Pietra. 1996. A maximum entropy approach
to natural language processing. Computational Lin-
guistics, 22.

Aljoscha Burchardt, Katrin Erk, Anette Frank, Andrea
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Catalan Chinese Czech English German Japanese Spanish
ChildrenPOS ¨ ♦ ¨♦

ChildrenPOSNoDup ¨ ♦ ¨ ♦
ConstituentPOSPattern ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

ConstituentPOSPattern+DepRelation ¨ ♦ ¨ ♦ ¨ ♦
ConstituentPOSPattern+DepwordLemma ¨ ♦ ¨ ♦ ¨ ♦
ConstituentPOSPattern+HeadwordLemma ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

DepRelation N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M ¨ ♦
DepRelation+DepwordLemma ¨ ♦ ¨ ♦

DepRelation+Headword N M N M N N M N M N
DepRelation+HeadwordLemma ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

DepRelation+HeadwordLemma+DepwordLemma ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦
DepRelation+HeadwordPOS N M N M N M N M N M N

Depword ¨ ♦ ¨ ♦
DepwordLemma ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

DepwordLemma+HeadwordLemma ¨ ♦ ¨ ♦ ¨ ♦
DepwordLemma+RelationPath ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

DepwordPOS N M N M N M ¨ ♦ N M N M ¨ ♦ N M
DepwordPOS+HeadwordPOS ¨ ♦ ¨ ♦

DownPathLength ¨ ♦ ¨ ♦
FirstLemma ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

FirstPOS ¨ ♦ ¨ ♦
FirstPOS+DepwordPOS ¨ ♦ ¨ ♦ ¨ ♦

FirstWord ¨ ♦ ¨ ♦
Headword N M N M N M N M N M ¨ ♦ N

HeadwordLemma N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ ¨ ♦ N
HeadwordLemma+RelationPath ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

HeadwordPOS N M N M N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M
LastLemma ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

LastPOS ¨ ♦ ¨ ♦
LastWord ¨ ♦

Path ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦
Path+RelationPath ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

PathLength ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦
PFEAT N M N M N M

PFEATSplit N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M ¨ ♦
PFEATSplitRemoveNULL N M N M N M

PositionWithPredicate ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦
Predicate N M ¨ ♦ N M N M ¨ ♦ N M N M N M ¨ ♦

Predicate+PredicateFamilyship ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦
PredicateBagOfPOSNumbered M N M N M N M

PredicateBagOfPOSNumberedWindow5 N M N M N M N M N M
PredicateBagOfPOSOrdered N M N M N M N M N

PredicateBagOfPOSOrderedWindow5 N M N M N M N M N M N M
PredicateBagOfPOSWindow5 N N M N M N M N M N

PredicateBagOfWords M N M N N M N M
PredicateBagOfWordsAndIsDesOfPRED N M N M M N M N M

PredicateBagOfWordsOrdered M N M N M M N M N M
PredicateChildrenPOS N M ¨ ♦ N M N M N M N M N M ¨ ♦

PredicateChildrenPOSNoDup N M N M N M N M N M N M
PredicateChildrenREL N M ¨ ♦ N M N M N M N M ¨ ♦ N M

PredicateChildrenRELNoDup N M ¨ ♦ N M N M N M N M ¨ ♦ N M
PredicateFamilyship ¨ ♦

PredicateLemma N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ N M ¨ ♦ ¨ ♦ N M ¨ ♦
PredicateLemma+PredicateFamilyship ¨ ♦ ¨ ♦ ¨ ♦

PredicateSense ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦
PredicateSense+DepRelation ¨ ♦ ¨ ♦

PredicateSense+DepwordLemma ¨ ♦ ¨ ♦
PredicateSense+DepwordPOS ¨ ♦ ¨ ♦

PredicateSiblingsPOS N M N M N N M N M N M
PredicateSiblingsPOSNoDup N M ¨ ♦ N M N M N M N M N M ¨ ♦

PredicateSiblingsREL N M ¨ ♦ N M N M N M N M N M
PredicateSiblingsRELNoDup N M N M ¨ ♦ M N M N M ¨ ♦ N M ¨ ♦

PredicateVoiceEn N M
PredicateWindow5Bigram N M N M N M N M

PredicateWindow5BigramPOS N M N M N M N M N M N M
RelationPath ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦
SiblingsPOS ¨ ♦ ¨ ♦
SiblingsREL ¨

SiblingsRELNoDup ¨ ♦ ¨ ♦
UpPath ¨ ♦ ¨ ♦ ¨ ♦ ¨

UpPathLength ¨ ♦
UpRelationPath ¨ ♦ ¨ ♦ ¨ ♦

UpRelationPath+HeadwordLemma ¨ ♦ ¨ ♦ ¨ ♦ ¨ ♦

Table 4: Features that are used in predicate classification (PC) and semantic role labeling (SRL). N: noun predicate
PC, M: verb predicate PC, ¨: noun predicate SRL, ♦: verb predicate SRL.
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Abstract

This paper describes our system about mul-
tilingual semantic dependency parsing (SR-
Lonly) for our participation in the shared task
of CoNLL-2009. We illustrate that semantic
dependency parsing can be transformed into
a word-pair classification problem and im-
plemented as a single-stage machine learning
system. For each input corpus, a large scale
feature engineering is conducted to select the
best fit feature template set incorporated with a
proper argument pruning strategy. The system
achieved the top average score in the closed
challenge: 80.47% semantic labeled F1 for the
average score.

1 Introduction

The syntactic and semantic dependency parsing in
multiple languages introduced by the shared task
of CoNLL-2009 is an extension of the CoNLL-
2008 shared task (Hajič et al., 2009). Seven lan-
guages, English plus Catalan, Chinese, Czech, Ger-
man, Japanese and Spanish, are involved (Taulé et
al., 2008; Palmer and Xue, 2009; Hajič et al., 2006;
Surdeanu et al., 2008; Burchardt et al., 2006; Kawa-
hara et al., 2002). This paper presents our research
for participation in the semantic-only (SRLonly)
challenge of the CoNLL-2009 shared task, with a

∗This study is partially supported by CERG grant 9040861
(CityU 1318/03H), CityU Strategic Research Grant 7002037,
Projects 60673041 and 60873041 under the National Natural
Science Foundation of China and Project 2006AA01Z147 un-
der the ”863” National High-Tech Research and Development
of China.

highlight on our strategy to select features from a
large candidate set for maximum entropy learning.

2 System Survey

We opt for the maximum entropy model with Gaus-
sian prior as our learning model for all classification
subtasks in the shared task. Our implementation of
the model adopts L-BFGS algorithm for parameter
optimization as usual. No additional feature selec-
tion techniques are applied.

Our system is basically improved from its early
version for CoNLL-2008 (Zhao and Kit, 2008). By
introducing a virtual root for every predicates, The
job to determine both argument labels and predicate
senses is formulated as a word-pair classification
task in four languages, namely, Catalan, Spanish,
Czech and Japanese. In other three languages, Chi-
nese, English and German, a predicate sense clas-
sifier is individually trained before argument label
classification. Note that traditionally (or you may
say that most semantic parsing systems did so) ar-
gument identification and classification are handled
in a two-stage pipeline, while ours always tackles
them in one step, in addition, predicate sense classi-
fication are also included in this unique learning/test
step for four of all languages.

3 Pruning Argument Candidates

We keep using a word-pair classification procedure
to formulate semantic dependency parsing. Specif-
ically, we specify the first word in a word pair as a
predicate candidate (i.e., a semantic head, and noted
as p in our feature representation) and the next as an
argument candidate (i.e., a semantic dependent, and
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noted as a). We do not differentiate between verbal
and non-verbal predicates and our system handles
them in the exactly same way.

When no constraint available, however, all word
pairs in the an input sequence must be considered,
leading to very poor efficiency in computation for
no gain in effectiveness. Thus, the training sample
needs to be pruned properly. As predicates overtly
known in the share task, we only consider how to
effectively prune argument candidates.

We adopt five types of argument pruning strate-
gies for seven languages. All of them assume that a
syntactic dependency parsing tree is available.

As for Chinese and English, we continue to use
a dependency version of the pruning algorithm of
(Xue and Palmer, 2004) as described in (Zhao and
Kit, 2008). The pruning algorithm is readdressed as
the following.

Initialization: Set the given predicate candidate
as the current node;

(1) The current node and all of its syntactic chil-
dren are selected as argument candidates.

(2) Reset the current node to its syntactic head and
repeat step (1) until the root is reached.

Note that the given predicate candidate itself is
excluded from the argument candidate list for Chi-
nese, that is slightly different from English.

The above pruning algorithm has been shown ef-
fective. However, it is still inefficient for a single-
stage argument identification/classification classifi-
cation task. Thus we introduce an assistant argument
label ‘ NoMoreArgument’ to alleviate this difficulty.
If an argument candidate in the above algorithm is
labeled as such a label, then the pruning algorithm
will end immediately. In training, this assistant label
means no more samples will be generated for the
current predicate, while in test, the decoder will not
search more argument candidates any more. This
adaptive technique more effectively prunes the ar-
gument candidates. In fact, our experiments show
1/3 training memory and time may be saved from it.

As for Catalan and Spanish, only syntactic chil-
dren of the predicate are considered as the argument
candidates.

As for Czech, only syntactic children, grandchil-
dren, great-grandchildren, parent and siblings of the
predicate are taken as the argument candidates.

As for German, only syntactic children, grand-
children, parent, siblings, siblings of parent and sib-
lings of grandparent of the predicate are taken as the
argument candidates.

The case is somewhat sophisticated for Japanese.
As we cannot identify a group of simple predicate-
argument relations from the syntactic tree. Thus
we consider top frequent 28 syntactic relations be-
tween the predicate and the argument. The parser
will search all words before and after the predicate,
and only those words that hold one of the 28 syn-
tactic relations to the predicate are considered as
the argument candidate. Similar to the pruning al-
gorithm for Chinese/English/German, we also in-
troduce two assistant labels ‘ leftNoMoreArgument’
and ‘ rightNoMoreArgument’ to adaptively prune
words too far away from the predicate.

4 Feature Templates

As we don’t think that we can benefit from know-
ing seven languages, an automatic feature template
selection is conducted for each language.

About 1000 feature templates (hereafter this tem-
plate set is referred to FT ) are initially considered.
These feature templates are from various combina-
tions or integrations of the following basic elements.

Word Property. This type of elements include
word form, lemma, part-of-speech tag (PoS), FEAT
(additional morphological features), syntactic de-
pendency label (dprel), semantic dependency label
(semdprel) and characters (char) in the word form
(only suitable for Chinese and Japanese)1.

Syntactic Connection. This includes syntactic
head (h), left(right) farthest(nearest) child (lm, ln,
rm, and rn), and high(low) support verb or noun.
We explain the last item, support verb(noun). From
the predicate or the argument to the syntactic root
along the syntactic tree, the first verb(noun) that is
met is called as the low support verb(noun), and the
nearest one to the root is called as the high support
verb(noun).

Semantic Connection. This includes semantic
1All lemmas, PoS, and FEAT for either training or test are

from automatically pre-analyzed columns of every input files.
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FEATn 1 2 3 4 5 6 7 8 9 10 11
Catalan/Spanish postype gen num person mood tense punct

Czech SubPOS Gen Num Cas Neg Gra Voi Var Sem Per Ten

Table 1: Notations of FEATs

head (semhead), left(right) farthest(nearest) seman-
tic child (semlm, semln, semrm, semrn). We say
a predicate is its argument’s semantic head, and the
latter is the former’s child. Features related to this
type may track the current semantic parsing status.

Path. There are two basic types of path between
the predicate and the argument candidates. One is
the linear path (linePath) in the sequence, the other
is the path in the syntactic parsing tree (dpPath). For
the latter, we further divide it into four sub-types
by considering the syntactic root, dpPath is the full
path in the syntactic tree. Leading two paths to the
root from the predicate and the argument, respec-
tively, the common part of these two paths will be
dpPathShare. Assume that dpPathShare starts from
a node r′, then dpPathPred is from the predicate to
r′, and dpPathArgu is from the argument to r′.

Family. Two types of children sets for the predi-
cate or argument candidate are considered, the first
includes all syntactic children (children), the second
also includes all but excludes the left most and the
right most children (noFarChildren).

Concatenation of Elements. For all collected el-
ements according to linePath, children and so on, we
use three strategies to concatenate all those strings
to produce the feature value. The first is seq, which
concatenates all collected strings without doing any-
thing. The second is bag, which removes all dupli-
cated strings and sort the rest. The third is noDup,
which removes all duplicated neighbored strings.

In the following, we show some feature template
examples derived from the above mentioned items.

a.lm.lemma The lemma of the left most child of
the argument candidate.

p.h.dprel The dependant label of the syntactic
head of the predicate candidate.

a.pos+p.pos The concatenation of PoS of the ar-
gument and the predicate candidates.

p−1.pos+p.pos PoS of the previous word of the
predicate and PoS of the predicate itself.

a:p|dpPath.lemma.bag Collect all lemmas along
the syntactic tree path from the argument to the pred-

icate, then removed all duplicated ones and sort the
rest, finally concatenate all as a feature string.

a:p.highSupportNoun|linePath.dprel.seq Collect
all dependant labels along the line path from the ar-
gument to the high support noun of the predicate,
then concatenate all as a feature string.

(a:p|dpPath.dprel.seq)+p.FEAT1 Collect all de-
pendant labels along the line path from the argument
to the predicate and concatenate them plus the first
FEAT of the predicate.

An important feature for the task is dpTreeRela-
tion, which returns the relationship of a and p in a
syntactic parse tree and cannot be derived from com-
bining the above basic elements. The possible values
for this feature include parent, sibling etc.

5 Automatically Discovered Feature
Template Sets

For each language, starting from a basic feature tem-
plate set (a small subset of FT ) according to our
previous result in English dependency parsing, each
feature template outside the basic set is added and
each feature template inside the basic set is removed
one by one to check the effectiveness of each fea-
ture template following the performance change in
the development set. This procedure will be contin-
uously repeated until no feature template is added or
removed or the performance is not improved.

There are some obvious heuristic rules that help
us avoid trivial feature template checking, for ex-
ample, FEAT features are only suitable for Cata-
lan, Czech and Spanish. Though FEAT features are
also available for Japanese, we don’t adopt them for
this language due to the hight training cost. To sim-
plify feature representation, we use FEAT1, FEAT2,
and so on to represent different FEAT for every lan-
guages. A lookup list can be found in Table 1. Ac-
cording to the list, FEAT4 represents person for
Catalan or Spanish, but Cas for Czech.

As we don’t manually interfere the selection pro-
cedure for feature templates, ten quite different fea-
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Ca Ch Cz En Gr Jp Sp
Ca 53
Ch 5 75
Cz 11 10 76
En 11 11 12 73
Gr 7 7 7 14 45
Jp 6 22 13 15 10 96
Sp 22 9 18 15 9 12 66

Table 2: Feature template set: argument classifier

Ch En Gr
Ch 46
En 5 9
Gr 17 2 40

Table 3: Feature template set: sense classifier

ture template sets are obtained at last. Statistical in-
formation of seven sets for argument classifiers is in
Table 2, and those for sense classifiers are in Table 3.
Numbers in the diagonals of these two tables mean
the numbers of feature templates, and others mean
how many feature templates are identical for every
language pairs. The most matched feature template
sets are for Catalan/Spanish and Chinese/Japanese.
As for the former, it is not so surprised because these
two corpora are from the same provider.

Besides the above statistics, these seven feature
template sets actually share little in common. For
example, the intersection set from six languages, as
Chinese is excluded, only includes one feature tem-
plate, p.lemma (the lemma of the predicate candi-
date). If all seven sets are involved, then such an in-
tersection set will be empty. Does this mean human
languages share little in semantic representation? :)

It is unlikely to completely demonstrate full fea-
ture template sets for all languages in this short re-
port, we thus only demonstrate two sets, one for En-
glish sense classification in Table 4 and the other for
Catalan argument classification in Table 52.

6 Word Sense Determination

The shared task of CoNLL-2009 still asks for the
predicate sense. In our work for CoNLL-2008 (Zhao
and Kit, 2008), this was done by searching for a right

2Full feature lists and their explanation for all languages will
be available at the website, http://bcmi.sjtu.edu.cn/˜zhaohai.

p.lm.pos
p.rm.pos
p.lemma
p.lemma + p.lemma1

p.lemma + p.children.dprel.noDup
p.lemma + p.currentSense
p.form
p.form−1 + p.form
p.form + p.form1

Table 4: Feature set for English sense classification

example in the given dictionary. Unfortunately, we
late found this caused a poor performance in sense
determination. This time, an individual classifier is
used to determine the sense for Chinese, English or
German, and this is done by the argument classifier
by introducing a virtual root for every predicates for
the rest four languages3. Features used for sense
determination are also selected following the same
procedure in Section 5. The difference is only pred-
icate related features are used for selection.

7 Decoding

The decoding for four languages, Catalan, Czech,
Japanese and Spanish is trivial, each word pairs will
be checked one by one. The first word of the pair
is the virtual root or the predicate, the second is the
predicate or every argument candidates. Argument
candidates are checked in the order of different syn-
tactic relations to their predicate, which are enumer-
ated by the pruning algorithms in Section 3, or from
left to right for the same syntactic relation. After
the sense of the predicate is determined, the label of
each argument candidate will be directly classified,
or, it is proved non-argument.

As for the rest languages, Chinese, English or
German, after the sense classifier outputs its result,
an optimal argument structure for each predicate is
determined by the following maximal probability.

Sp = argmax
∏

i

P (ai|ai−1, ai−2, ...), (1)

where Sp is the argument structure, P (ai|ai−1...)
is the conditional probability to determine the la-
bel of the i-th argument candidate label. Note that

3For Japanese, no senses for predicates are defined. Thus it
is actually a trivial classification task in this case.
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p.currentSense + p.lemma
p.currentSense + p.pos
p.currentSense + a.pos
p−1.FEAT1
p.FEAT2
p1.FEAT3
p.semrm.semdprel
p.lm.dprel
p.form + p.children.dprel.bag
p.lemman (n = −1, 0)
p.lemma + p.lemma1

p.pos−1 + p.pos
p.pos1
p.pos + p.children.dprel.bag
a.FEAT1 + a.FEAT3 + a.FEAT4
+ a.FEAT5 + a.FEAT6
a−1.FEAT2 + a.FEAT2
a.FEAT3 + a1.FEAT3
a.FEAT3 + a.h.FEAT3
a.children.FEAT1.noDup
a.children.FEAT3.bag
a.h.lemma
a.lm.dprel + a.form
a.lm.form
a.lm−1.lemma
a.lmn.pos (n=0,1)
a.noFarChildren.pos.bag + a.rm.form
a.pphead.lemma
a.rm.dprel + a.form
a.rm−1.form
a.rm.lemma
a.rn.dprel + a.form
a.lowSupportVerb.lemma
a−1.form
a.form + a1.form
a.form + a.children.pos
a.lemma + a.h.form
a.lemma + a.pphead.form
a1.lemma
a1.pos + a.pos.seq
a.pos + a.children.dprel.bag
a.lemma + p.lemma
(a:p|dpPath.dprel) + p.FEAT1
a:p|linePath.distance
a:p|linePath.FEAT1.bag
a:p|linePath.form.seq
a:p|linePath.lemma.seq
a:p|linePath.dprel.seq
a:p|dpPath.lemma.seq
a:p|dpPath.lemma.bag
a:p|dpPathArgu.lemma.seq
a:p|dpPathArgu.lemma.bag

Table 5: Feature set for Catalan argument classification

P (ai|ai−1, ...) in equation (1) may be simplified as
P (ai) if the input feature template set does not con-
cerned with the previous argument label output. A
beam search algorithm is used to find the parsing de-
cision sequence.

8 Evaluation Results

Our evaluation is carried out on two computational
servers, (1) LEGA, a 64-bit ubuntu Linux installed
server with double dual-core AMD Opteron proces-
sors of 2.8GHz and 24GB memory. This server was
also used for our previous participation in CoNLL-
2008 shared task. (2) MEGA, a 64-bit ubuntu Linux
installed server with six quad-core Intel Xeon pro-
cessors of 2.33GHz and 128GB memory.

Altogether nearly 60,000 machine learning rou-
tines were run to select the best fit feature template
sets for all seven languages within two months. Both
LEGA and MEGA were used for this task. How-
ever, training and test for the final submission of
Chinese, Czech and English run in MEGA, and the
rest in LEGA. As we used multiple thread training
and multiple routines run at the same time, the exact
time cost for either training or test is hard to esti-
mate. Here we just report the actual time and mem-
ory cost in Table 7 for reference.

The official evaluation results of our system are in
Table 6. Numbers in bold in the table stand for the
best performances for the specific languages. The
results in development sets are also given. The first
row of the table reports the results using golden in-
put features.

Two facts as the following suggest that our system
does output robust and stable results. The first is that
two results for development and test sets in the same
language are quite close. The second is about out-of-
domain (OOD) task. Though for each OOD task, we
just used the same model trained from the respective
language and did nothing to strengthen it, this does
not hinder our system to obtain top results in Czech
and English OOD tasks.

In addition, the feature template sets from auto-
matical selection procedure in this task were used
for the joint task of this shared task, and also output
top results according to the average score of seman-
tic labeled F1 (Zhao et al., 2009).
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average Catalan Chinese Czech English German Japanese Spanish
Development with Gold 81.24 81.52 78.32 86.96 84.19 77.75 78.67 81.32

Development 80.46 80.66 77.90 85.35 84.01 76.55 78.41 80.39
Test (official scores) 80.47 80.32 77.72 85.19 85.44 75.99 78.15 80.46

Out-of-domain 74.34 85.44 73.31 64.26

Table 6: Semantic labeled F1

Catalan Chinese Czech English German Japanese Spanish
Sense Training memory (MB) 418.0 136.0 63.0

Training time (Min.) 11.0 2.5 1.7
Test time (Min.) 0.7 0.2 0.03

Argument Training memory (GB) 0.4 3.7 3.2 3.8 0.2 1.4 0.4
Training time (Hours) 3.0 13.8 24.9 12.4 0.2 6.1 4.4

Test time (Min.) 3.0 144.0 27.1 88.0 1.0 4.2 7.0

Table 7: Computational cost

9 Conclusion

As presented in the above sections, we have tackled
semantic parsing for the CoNLL-2009 shared task
as a word-pair classification problem. Incorporated
with a proper argument candidate pruning strategy
and a large scale feature engineering for each lan-
guage, our system produced top results.
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Lluı́s Màrquez, and Joakim Nivre. 2008. The CoNLL-
2008 shared task on joint parsing of syntactic and se-
mantic dependencies. In Proceedings of the 12th Con-
ference on Computational Natural Language Learning
(CoNLL-2008).
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Abstract

This paper describes our system about mul-
tilingual syntactic and semantic dependency
parsing for our participation in the joint task
of CoNLL-2009 shared tasks. Our system
uses rich features and incorporates various in-
tegration technologies. The system is evalu-
ated on in-domain and out-of-domain evalu-
ation data of closed challenge of joint task.
For in-domain evaluation, our system ranks
the second for the average macro labeled F1 of
all seven languages, 82.52% (only about 0.1%
worse than the best system), and the first for
English with macro labeled F1 87.69%. And
for out-of-domain evaluation, our system also
achieves the second for average score of all
three languages.

1 Introduction

This paper describes the system of National In-
stitute of Information and Communications Tech-
nology (NICT) and City University of Hong Kong
(CityU) for the joint learning task of CoNLL-2009
shared task (Hajič et al., 2009)1. The system is ba-
sically a pipeline of syntactic parser and semantic
parser. We use a syntactic parser that uses very rich
features and integrates graph- and transition-based
methods. As for the semantic parser, a group of well
selected feature templates are used with n-best syn-
tactic features.

1Our thanks give to the following corpus providers, (Taulé
et al., 2008; Palmer and Xue, 2009; Hajič et al., 2006; Surdeanu
et al., 2008; Burchardt et al., 2006) and (Kawahara et al., 2002).

The rest of the paper is organized as follows. The
next section presents the technical details of our syn-
tactic dependency parsing. Section 3 describes the
details of the semantic dependency parsing. Section
4 shows the evaluation results. Section 5 looks into a
few issues concerning our forthcoming work for this
shared task, and Section 6 concludes the paper.

2 Syntactic Dependency Parsing

Basically, we build our syntactic dependency parsers
based on the MSTParser, a freely available imple-
mentation2, whose details are presented in the paper
of McDonald and Pereira (2006). Moreover, we ex-
ploit rich features for the parsers. We represent fea-
tures by following the work of Chen et al. (2008) and
Koo et al. (2008) and use features based on depen-
dency relations predicted by transition-based parsers
(Nivre and McDonald, 2008). Chen et al. (2008) and
Koo et al. (2008) proposed the methods to obtain
new features from large-scale unlabeled data. In our
system, we perform their methods on training data
because the closed challenge does not allow to use
unlabeled data. In this paper, we call these new ad-
ditional features rich features.

2.1 Basic Features
Firstly, we use all the features presented by McDon-
ald et al. (2006), if they are available in data. Then
we add new features for the languages having FEAT
information (Hajič et al., 2009). FEAT is a set of
morphological-features, e.g. more detailed part of
speech, number, gender, etc. We try to align differ-
ent types of morphological-features. For example,

2http://mstparser.sourceforge.net
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we can obtain a sequence of gender tags of all words
from a head h to its dependent d. Then we represent
the features based on the obtained sequences.

Based on the results of development data, we per-
form non-projective parsing for Czech and German
and perform projective parsing for Catalan, Chinese,
English, Japanese, and Spanish.

2.2 Features Based on Dependency Pairs

I    see    a    beautiful    bird    .

Figure 1: Example dependency graph.

Chen et al. (2008) presented a method of extract-
ing short dependency pairs from large-scale auto-
parsed data. Here, we extract all dependency pairs
rather than short dependency pairs from training
data because we believe that training data are reli-
able. In a parsed sentence, if two words have de-
pendency relation, we add this word pair into a list
named L and count its frequency. We consider the
direction. For example, in figure 1, a and bird have
dependency relation in the sentence “I see a beauti-
ful bird.”. Then we add word pair “a-bird:HEAD”3

into list L and accumulate its frequency.
We remove the pairs which occur only once in

training data. According to frequency, we then
group word pairs into different buckets, with bucket
LOW for frequencies 2-7, bucket MID for frequen-
cies 8-14, and bucket HIGH for frequencies 15+.
We set these threshold values by following the set-
ting of Chen et al. (2008). For example, the fre-
quency of pair “a-bird:HEAD” is 5. Then it is
grouped into bucket “LOW”. We also add a vir-
tual bucket “ZERO” to represent the pairs that are
not included in the list. So we have four buckets.
“ZERO”, “LOW”, “MID”, and “HIGH” are used as
bucket IDs.

Based on the buckets, we represent new features
for a head h and its dependent d. We check word
pairs surrounding h and d. Table 1 shows the word
pairs, where h-word refers to the head word, d-word
refers to the dependent word, h-word-1 refers to

3HEAD means that bird is the head of the pair.

the word to the left of the head in the sentence, h-
word+1 refers to the word to the right of the head,
d-word-1 refers to the word to the left of the depen-
dent, and d-word+1 refers the word to the right of
the dependent. Then we obtain the bucket IDs of
these word pairs from L.

We generate new features consisting of indicator
functions for bucket IDs of word pairs. We call these
features word-pair-based features. We also generate
combined features involving bucket IDs and part-of-
speech tags of heads.

h-word, d-word
h-word-1, d-word
h-word+1, d-word
h-word, d-word-1
h-word, d-word+1

Table 1: Word pairs for feature representation

2.3 Features Based on Word Clusters

Koo et al. (2008) presented new features based on
word clusters obtained from large-scale unlabeled
data and achieved large improvement for English
and Czech. Here, word clusters are generated only
from the training data for all the languages. We per-
form word clustering by using the clustering tool4,
which also was used by Koo et al. (2008). The
cluster-based features are the same as the ones used
by Koo et al. (2008).

2.4 Features Based on Predicted Relations

Nivre and McDonald (2008) presented an integrat-
ing method to provide additional information for
graph-based and transition-based parsers. Here, we
represent features based on dependency relations
predicted by transition-based parsers for graph-
based parser. Based on the results on development
data, we choose the MaltParser for Catalan, Czech,
German, and Spanish, and choose another MaxEnt-
based parser for Chinese, English, and Japanese.

2.4.1 A Transition-based Parser: MaltParser
For Catalan, Czech, German, and Spanish, we

use the MaltParser, a freely available implementa-

4http://www.cs.berkeley.edu/˜pliang/software/brown-
cluster-1.2.zip
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tion5, whose details are presented in the paper of
Nivre (2003). More information about the parser can
be available in the paper (Nivre, 2003).

Due to computational cost, we do not select new
feature templates for the MaltParser. Following the
features settings of Hall et al. (2007), we use their
Czech feature file and Catalan feature file. To sim-
ply, we apply Czech feature file for German too, and
apply Catalan feature file for Spanish.

2.4.2 Another Transition-based Parser:
MaxEnt-based Parser

In three highly projective language, Chinese,
English and Japanese, we use the maximum en-
tropy syntactic dependency parser as in Zhao and
Kit (2008). We still use the similar feature notations
of that work. We use the same greedy feature selec-
tion of Zhao et al. (2009) to determine an optimal
feature template set for each language. Full feature
sets for the three languages can be found at website,
http://bcmi.sjtu.edu.cn/˜zhaohai.

2.4.3 Feature Representation
For training data, we use 2-way jackknifing to

generate predicted dependency parsing trees by two
transition-based parsers. Following the features of
Nivre and McDonald (2008), we define features for
a head h and its dependent d with label l as shown in
table 2, where GTran refers to dependency parsing
trees generated by the MaltParser or MaxEnt-base
Parser and ∗ refers to any label. All features are
conjoined with the part-of-speech tags of the words
involved in the dependency.

Is (h, d, ∗) in GTran?
Is (h, d, l) in GTran?
Is (h, d, ∗) not in GTran?
Is (h, d, l) not in GTran?

Table 2: Features set based on predicted labels

3 n-best Syntactic Features for Semantic
Dependency Parsing

Due to the limited computational resource that we
have, we used the the similar learning framework as
our participant in semantic-only task (Zhao et al.,

5http://w3.msi.vxu.se/˜nivre/research/MaltParser.html

Normal n-best Matched
Ca 53 54 50
Ch 75 65 55
En 73 70 63

Table 3: Feature template sets:n-best vs. non-n-best

2009). Namely, three languages, a single maximum
entropy model is used for all identification and clas-
sification tasks of predicate senses or argument la-
bels in four languages, Catalan, Czech, Japanese, or
Spanish. For the rest three languages, an individual
sense classifier still using maximum entropy is ad-
ditionally used to output the predicate sense previ-
ously. More details about argument candidate prun-
ing strategies and feature template set selection are
described in Zhao et al. (2009).

The same feature template sets as the semantic-
only task are used for three languages, Czech, Ger-
man and Japanese. For the rest four languages, we
further use n-best syntactic features to strengthen
semantic dependency parsing upon those automati-
cally discovered feature template sets. However, we
cannot obtain an obvious performance improvement
in Spanish by using n-best syntactic features. There-
fore, only Catalan, Chinese and English semantic
parsing adopted these types of features at last.

Our work about n-best syntactic features still
starts from the feature template set that is originally
selected for the semantic-only task. The original fea-
ture template set is hereafter referred to ’the normal’
or ’non-n-best’. In practice, only 2nd-best syntactic
outputs are actually adopted by our system for the
joint task.

To generate helpful feature templates from the
2nd-best syntactic tree, we simply let all feature tem-
plates in the normal feature set that are based on
the 1st-best syntactic tree now turn to the 2nd-best
one. Using the same notations for feature template
representation as in Zhao et al. (2009), we take an
example to show how the original n-best features
are produced. Assuming a.children.dprel.bag is
one of syntactic feature templates in the normal
set, this feature means that all syntactic children of
the argument candidate (a) are chosen, and their
dependant labels are collected, the duplicated la-
bels are removed and then sorted, finally all these
strings are concatenated as a feature. The cor-
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Language Features
Catalan p:2.lm.dprel

a.lemma + a:2.h.form
a.lemma + a:2.pphead.form
(a:2:p:2|dpPath.dprel.seq) + p.FEAT1

Chinese a:2.h.pos
a:2.children.pos.seq + p:2.children.pos.seq
a:2:p:2|dpPath.dprel.bag
a:2:p:2|dpPathPred.form.seq
a:2:p:2|dpPath.pos.bag
(a:2:p:2|dpTreeRelation) + p.pos
(a:2:p:2|dpPath.dprel.seq) + a.pos

English a:2:p:2|dpPathPred.lemma.bag
a:2:p:2|dpPathPred.pos.bag
a:2:p:2|dpTreeRelation
a:2:p:2|dpPath.dprel.seq
a:2:p:2|dpPathPred.dprel.seq
a.lemma + a:2.dprel + a:2.h.lemma
(a:2:p:2|dpTreeRelation) + p.pos

Table 4: Features for n-best syntactic tree

responding 2nd-best syntactic feature will be a :
2.children.dprel.bag. As all operations to gener-
ate the feature for a.children.dprel.bag is within
the 1st-best syntactic tree, while those for a :
2.children.dprel.bag is within the 2nd-best one. As
all these 2nd-best syntactic features are generated,
we use the same greedy feature selection procedure
as in Zhao et al. (2009) to determine the best fit fea-
ture template set according to the evaluation results
in the development set.

For Catalan, Chinese and English, three opti-
mal n-best feature sets are obtained, respectively.
Though dozens of n-best features are initially gen-
erated for selection, only few of them survive af-
ter the greedy selection. A feature number statis-
tics is in Table 3, and those additionally selected
n-best features for three languages are in Table
4. Full feature lists and their explanation for
all languages will be available at the website,
http://bcmi.sjtu.edu.cn/˜zhaohai.

4 Evaluation Results

Two tracks (closed and open challenges) are pro-
vided for joint task of CoNLL2009 shared task.
We participated in the closed challenge and evalu-
ated our system on the in-domain and out-of-domain
evaluation data.

avg. Cz En Gr
Syntactic (LAS) 77.96 75.58 82.38 75.93

Semantic (Labeled F1) 75.01 82.66 74.58 67.78
Joint (Macro F1) 76.51 79.12 78.51 71.89

Table 6: The official results of our submission for out-of-
domain task(%)

Test Dev
Basic ALL Basic ALL

Catalan 82.91 85.88 83.15 85.98
Chinese 74.28 75.67 73.36 75.64
Czech 77.21 79.70 77.91 80.22
English 88.63 89.19 86.35 87.40
German 84.61 86.24 83.99 85.44
Japanese 92.31 92.32 92.01 92.85
Spanish 83.59 86.29 83.73 86.22
Average 83.32 85.04 82.92 84.82

(+1.72) (+1.90)

Table 7: The effect of rich features for syntactic depen-
dency parsing

4.1 Official Results

The official results for the joint task are in Table 5,
and the out-of-domain task in Table 6, where num-
bers in bold stand for the best performances for the
specific language. For out-of-domain (OOD) eval-
uation, we did not perform any domain adaptation.
For both in-domain and out-of-domain evaluation,
our system achieved the second best performance
for the average Macro F1 scores of all the languages.
And our system provided the first best performance
for the average Semantic Labeled F1 score and the
forth for the average Labeled Syntactic Accuracy
score for in-domain evaluation.

4.2 Further results

At first, we check the effect of rich features for syn-
tactic dependency parsing. Table 7 shows the com-
parative results of basic features and all features on
test and development data, where “Basic” refers to
the system with basic features and “ALL” refers to
the system with basic features plus rich features. We
found that the additional features provided improve-
ment of 1.72% for test data and 1.90% for develop-
ment data.

Then we investigate the effect of different train-
ing data size for semantic parsing. The learning
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average Catalan Chinese Czech English German Japanese Spanish
Syntactic (LAS) 85.04 85.88 75.67 79.70 89.19 86.24 92.32 86.29

Semantic (Labeled F1) 79.96 80.10 76.77 82.04 86.15 76.19 78.17 80.29
Joint (Macro F1) 82.52 83.01 76.23 80.87 87.69 81.22 85.28 83.31

Table 5: The official results of our joint submission (%)

Data Czech Chinese English
normal n-best normal n-best

25% 80.71 75.12 75.24 82.02 82.06
50% 81.52 76.50 76.59 83.52 83.42
75% 81.90 76.92 77.01 84.21 84.30
100% 82.24 77.35 77.34 84.73 84.80

Table 8: The performance in development set (semantic
labeled F1) vs. training corpus size

curves are drawn for Czech, Chinese and English.
We use 25%, 50% and 75% training corpus, respec-
tively. The results in development sets are given in
Table 8. Note that in this table the differences be-
tween normal and n-best feature template sets are
also given for Chinese and English. The results
in the table show that n-best features help improve
Chinese semantic parsing as the training corpus is
smaller, while it works for English as the training
corpus is larger.

5 Discussion

This work shows our further endeavor in syntactic
and semantic dependency parsing, based on our pre-
vious work (Chen et al., 2008; Zhao and Kit, 2008).

Chen et al. (Chen et al., 2008) and Koo et al. (Koo
et al., 2008) used large-scale unlabeled data to im-
prove syntactic dependency parsing performance.
Here, we just performed their method on training
data. From the results, we found that the new fea-
tures provided better performance. In future work,
we can try these methods on large-scale unlabeled
data for other languages besides Chinese and En-
glish.

In Zhao and Kit (2008), we addressed that seman-
tic parsing should benefit from cross-validated train-
ing corpus and n-best syntactic output. These two
issues have been implemented during this shared
task. Though existing work show that re-ranking for
semantic-only or syntactic-semantic joint tasks may
bring higher performance, the limited computational

resources does not permit us to do this for multiple
languages.

To analyze the advantage and the weakness of our
system, the ranks for every languages of our sys-
tem’s outputs are given in Table 9, and the perfor-
mance differences between our system and the best
one in Table 106. The comparisons in these two ta-
bles indicate that our system is slightly weaker in the
syntactic parsing part, this may be due to the reason
that syntactic parsing in our system does not ben-
efit from semantic parsing as the other joint learn-
ing systems. However, considering that the seman-
tic parsing in our system simply follows the output
of the syntactic parsing and the semantic part of our
system still ranks the first for the average score, the
semantic part of our system does output robust and
stable results. It is worth noting that semantic la-
beled F1 in Czech given by our system is 4.47%
worse than the best one. This forby gap in this lan-
guage further indicates the advantage of our system
in the other six languages and some latent bugs or
learning framework misuse in Czech semantic pars-
ing.

6 Conclusion

We describe the system that uses rich features and
incorporates integrating technology for joint learn-
ing task of syntactic and semantic dependency pars-
ing in multiple languages. The evaluation results
show that our system is good at both syntactic and
semantic parsing, which suggests that a feature-
oriented method is effective in multiple language
processing.
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average Catalan Chinese Czech English German Japanese Spanish
Syntactic (LAS) 4 4 4 4 2 3 3 4

Semantic (Labeled F1) 1 1 3 4 1 2 2 1
Joint (Macro F1) 2 1 3 4 1 3 2 1

Table 9: Our system’s rank within the joint task according to three main measures

average Catalan Chinese Czech English German Japanese Spanish
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Abstract

In this paper, we describe our system for the
2009 CoNLL shared task for joint parsing of
syntactic and semantic dependency structures
of multiple languages. Our system combines
and implements efficient parsing techniques to
get a high accuracy as well as very good pars-
ing and training time. For the applications
of syntactic and semantic parsing, the pars-
ing time and memory footprint are very im-
portant. We think that also the development of
systems can profit from this since one can per-
form more experiments in the given time. For
the subtask of syntactic dependency parsing,
we could reach the second place with an ac-
curacy in average of 85.68 which is only 0.09
points behind the first ranked system. For this
task, our system has the highest accuracy for
English with 89.88, German with 87.48 and
the out-of-domain data in average with 78.79.
The semantic role labeler works not as well as
our parser and we reached therefore the fourth
place (ranked by the macro F1 score) in the
joint task for syntactic and semantic depen-
dency parsing.

1 Introduction

Depedendency parsing and semantic role labeling
improved in the last years significantly. One of the
reasons are CoNLL shared tasks for syntactic de-
pendency parsing in the years 2006, 2007 (Buch-
holz and Marsi, 2006; Nivre et al., 2007) and the
CoNLL shared task for joint parsing of syntactic and
semantic dependencies in the year 2008 and of cause
this shared task in 2009, cf. (Surdeanu et al., 2008;

Hajič et al., 2009). The CoNLL Shared Task 2009
is to parse syntactic and semantic dependencies of
seven languages. Therefore, training and develop-
ment data in form of annotated corpora for Cata-
lan, Chinese, Czech, English, German, Japanese and
Spanish is provided, cf. (Taulé et al., 2008; Palmer
and Xue, 2009; Hajič et al., 2006; Surdeanu et al.,
2008; Burchardt et al., 2006; Kawahara et al., 2002).

There are two main approaches to dependency
parsing: Maximum Spanning Tree (MST) based de-
pendency parsing and Transition based dependency
parsing, cf. (Eisner, 1996; Nivre et al., 2004; Mc-
Donald and Pereira, 2006). Our system uses the first
approach since we saw better chance to improve the
parsing speed and additionally, the MST had so far
slightly better parsing results. For the task of seman-
tic role labeling, we adopted a pipeline architecture
where we used for each step the same learning tech-
nique (SVM) since we opted for the possibility to
build a synchronous combined parser with one score
function.

2 Parsing Algorithm

We adopted the second order MST parsing algo-
rithm as outlined by Eisner (1996). This algorithm
has a higher accuracy compared to the first order
parsing algorithm since it considers also siblings and
grandchildren of a node. Eisner‘s second order ap-
proach can compute a projective dependency tree
within cubic time (O(n3)).

Both algorithms are bottom up parsing algorithms
based on dynamic programming similar to the CKY
chart parsing algorithm. The score for a dependency
tree is the score of all edge scores. The following
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equation describes this formally.

score(S, t) =
∑
∀(i,j)∈E score(i, j)

The score of the sentenceS and a treet over S
is defined as the sum of all edge scores where the
words ofS arew0...w1. The tree consists of set of
nodesN and set of edgesE = 〈N ×N〉. The word
indices (0..n) are the elements of the node setN .
The expression(i, j) ∈ E denotes an edge which is
going from the nodei to the nodej.

The edge score (score(i, j)) is computed as the
scalar product of a feature vector representation of
each edge

−→
fS(i, j) with a weight vector−→w where

i, j are the indices of the words in a sentence. The
feature vectorfS might take not only into account
the words with indicesi and j but also additional
values such as the words before and after the words
wi andwj . The following equation shows the score
function.

score(i, j) = −→
fS(i, j) ∗ −→w

Many systems encode the features as strings and
map the strings to a number. The number becomes
the index of the feature in the feature vector and
weight vector. In order to compute the weight vec-
tor, we reimplemented the support vector machine
MIRA which implements online Margin Infused Re-
laxed Algorithm, cf. (Crammer et al., 2003).

3 Labeled Dependency Parsing

The second order parsing algorithm builds an un-
labeled dependency tree. However, all dependency
tree banks of the shared task provide trees with edge
labels. The following two approaches are common
to solve this problem. An additional algorithm la-
bels the edges or the parsing algorithm itself is ex-
tended and the labeling algorithm is integrated into
the parsing algorithm. McDonald et al. (2006) use
an additional algorithm. Their two stage model has
a good computational complexity since the label-
ing algorithm contributes again only a cubic time
complexity to the algorithm and keeps therefore the
joint algorithm still cubic. The algorithm selects
the highest scored label due to the score function
score(wi, label) + score(wj , label) and inserts the
highest scored label into a matrix. The scores are
also used in the parsing algorithms and added to

the edge scores which improves the overall pars-
ing results as well. In the first order parsing sce-
nario, this procedure is sufficient since no combi-
nation of edges are considered by the parsing algo-
rithm. However, in the second order parsing sce-
nario where more than one edge are considered by
the parsing algorithm, combinations of two edges
might be more accurate.

Johansson and Nugues (2008) combines the edge
labeling with the second order parsing algorithm.
This adds an additional loop over the edge labels.
The complexity is therefore O(n4). However, they
could show that a system can gain accuracy of about
2-4% which is a lot.

4 Non-Projective Dependency Parsing

The dependency parser developed in the last years
use two different techniques for non-projective de-
pendency parsing.

Nivre and Nilsson (2005) uses tree rewriting
which is the most common technique. With this
technique, the training input to the parser is first pro-
jectivized by applying a minimal number of lifting
operations to the non-projective edges and encoding
information about these lifts in edge labels. After
these operations, the trees are projective and there-
fore a projective dependency parser can be applied.
During the training, the parser learns also to built
trees with the lifted edges and so indirect to built
non-projective dependency trees by applying the in-
verse operations to the lifting on the projective tree.

McDonald and Pereira (2006) developed a tech-
nique to rearrange edges in the tree in a postpro-
cessing step after the projective parsing has taken
place. TheirApproximate Dependency Parsing Al-
gorithm searches first the highest scoring projective
parse tree and then it rearranges edges in the tree
until the rearrangements does not increase the score
for the tree anymore. This technique is computa-
tionally expensive for trees with a large number of
non-projective edges since it considers to re-attach
all edges to any other node until no higher scoring
trees can be found. Their argument for the algo-
rithm is that most edges in a tree even in language
with lot of non-projective sentences, the portion of
non-projective edges are still small and therefore by
starting with the highest scoring projective tree, typ-
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ically the highest scoring non-projective tree is only
a small number of transformations away.

Our experiments showed that with the non-
projective Approximate Dependency Parsing Algo-
rithm and a threshold for the improvment of score
higher than about 0.7, the parsing accuracy improves
even for English slightly. With a threshold of 1.1, we
got the highest improvements.

5 Learning Framework

As learning technique, we use Margin Infused Re-
laxed Algorithm (MIRA) as developed by Crammer
et al. (2003) and applied to dependency parsing by
McDonald et al. (2005). The online Algorithm in
Figure 1 processes one training instance on each it-
eration, and updates the parameters accordingly.

Algorithm 1 : MIRA
τ = {Sx, Tx}X

x=1 // The set of training data consists
// of sentences and the corresponding dependency trees
−→w (0) = 0,−→v = 0
for n = 1 to N

for x = 1 to X
wi+1 = updatewi according to instance (Sx, Tx)
v = v + wi+1

i = i + 1
end for

end for
w = v/(N ∗X)

The inner loop iterates over all sentencesx of the
training set while the outer loop repeats the traini
times. The algorithm returns an averaged weight
vector and uses an auxiliary weight vectorv that ac-
cumulates the values ofw after each iteration. At
the end, the algorithm computes the average of all
weight vectors by dividing it by the number of train-
ing iterations and sentences. This helps to avoid
overfitting, cf. (Collins, 2002).

The update function computes the update to the
weight vectorwi during the training so that wrong
classified edges of the training instances are possibly
correctly classified. This is computed by increasing
the weight for the correct features and decreasing the
weight for wrong features of the vectors for the tree
of the training set

−→
fTx ∗ wi and the vector for the

predicted dependency tree
−→
fT ′

x
∗ wi.

The update function tries to keep the change to
the parameter vectorwi as small as possible for cor-

rectly classifying the current instance with a differ-
ence at least as large as the loss of the incorrect clas-
sifications.

6 Selected Parsing Features

Table 1, 4 and 2 give an overview of the selected
features for our system. Similar to Johansson and
Nugues (2008), we add the edge labels to each fea-
tures. In the feature selection, we follow a bit more
McDonald and Pereira (2006) since we have in addi-
tion the lemmas, morphologic features and the dis-
tance between the word forms.

For the parsing and training speed, most impor-
tant is a fast feature extraction beside of a fast pars-
ing algorithm.

Standard Features
h-f/l h-f/l, d-pos
h-pos h-pos, d-f/l
d-f/l h-f/l, d-f/l
d-pos h-pos, d-pos
h-f/l,h-pos h-f/l, d-f/l, h-pos
d-f/l,d-pos h-f/l, d-f/l, d-pos

h-pos, d-pos, h-f/l
h-pos, d-pos, d-f/l
h-pos, d-pos, h-f/l, d-f/l

Table 1: Selected standard parsing features. h is the ab-
brevation for head, d for dependent, g for grandchild, and
s for sibling. Each feature contains also the edge label
which is not listed in order to save some space. Addi-
tional features are build by adding thedir ection and the
distance plus the direction. The direction is left if the de-
pendent is left of the head otherwise right. The distance
is the number of words between the head and the depen-
dent, if ≤5, 6 if >5 and 11 if>10. ⊕ means that an
additional feature is built with the previous part plus the
following part. f/l represent features that are built once
with the form and once with the lemma.

Selected morphologic parsing features.
∀ h-morpheme∈ head-morphologic-feature-setdo
∀ d-morpheme∈ dependent-morphologic-feature-setdo

build-feautre: h-pos, d-pos, h-morpheme, d-morpheme

7 Implementation Aspects

In this section, we provide implementation details
considering improvements of the parsing and train-
ing time. The training of our system (parser) has
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Linear Features Grandchild Features Sibling Features
h-pos, d-pos, h-pos + 1 h-pos, d-pos, g-pos, dir(h,d), dir(d,g) d-f/l, s-f/l ⊕ dir(d,s)⊕dist(d,s)
h-pos, d-pos, h-pos - 1 h-f/l, g-f/l, dir(h,d), dir(d,g) d-pos, s-f/l⊕ dir(d,s)⊕dist(d,s)
h-pos, d-pos, d-pos + 1 d-f/l, g-f/l, dir(h,d), dir(d,g) d-pos, s-f/l⊕ dir(d,s)+⊕ dist(d,s)
h-pos, d-pos, d-pos - 1 h-pos, g-f/l, dir(h,d), dir(d,g) d-pos, s-pos⊕dir(d,s)⊕dist(d,s)
h-pos, d-pos, h-pos - 1, d-pos - 1d-pos, g-f/l, dir(h,d), dir(d,g) h-pos, d-pos, s-pos, dir(h,d), dir(d,s)⊕dist(h,s)
h-f/l, g-pos, dir(h,d), dir(d,g) h-f/l, s-f/l, dir(h,d), dir(d,s)⊕dist(h,s) h-pos, s-f/l, dir(h,d), dir(d,s)⊕dist(h,s)
d-f/l, g-pos, dir(h,d), dir(d,g) d-f/l, s-f/l, dir(h,d), dir(d,s)⊕dist(h,s) d-pos, s-f/l, dir(h,d), dir(d,s)⊕dist(h,s)

h-f/l, s-pos, dir(h,d), dir(d,s)⊕dist(h,s)
d-f/l, s-pos, dir(h,d), dir(d,s)⊕dist(h,s)

Table 2: Selected Features.

three passes. The goal of the first two passes is to
collect the set of possible features of the training
set. In order to determine the minimal description
length, the feature extractor collects in the first pass
all attributes that the features can contain. For each
attribute (labels, part-of-speech, etc.), the extractor
computes a mapping to a number which is continous
from 1 to the count of elements without duplicates.

We enumerate in the same way the feature pat-
terns (e.g. h-pos, d-pos) in order to distinguish the
patterns. In the second pass, the extractor builds the
features for all training examples which occur in the
train set. This means for all edges in the training
examples.

We create the features with a function that adds it-
eratively the attributes of a feature to a number rep-
resented with 64 bits and shifts it by the minimal
number of bits to encode the attribute and then enu-
merates and maps these numbers to 32 bit numbers
to save even more memory.

Beside this, the following list shows an overview
of the most important implementation details to im-
prove the speed:

1. We use as feature vector a custom array imple-
mentation with only a list of the features that
means without double floating point value.

2. We store the feature vectors for
f(label, wi, wj), f(label, wi, wj , wg),
f(label, wi, wj , ws) etc. in a compressed
file since otherwise it becomes the bottleneck.

3. After the training, we store only the parameters
of the support vector machine which are higher
than a threshold of 1×10−7

Table 3 compares system regarding their perfor-
mance and memory usage. For the shared task, we

System (1) (2) (3)
Type 2nd order 2nd order 2nd order
Labeling separate separate integrated
System baseline this this
Training 22 hours 3 hours 15 hours

7GB 1.5 GB 3 GB
Parsing 2000 ms 50 ms 610 ms

700 MB 1 GB
LAS 0.86 0.86 0.88

Table 3: Performance Comparison. For the baseline sys-
tem (1), we used the system of McDonald and Pereira
(2006) on a MacPro 2.8 Ghz as well for our implementa-
tion (2). For system (3), we use a computer with Intel i7
3.2 Ghz which is faster than the MacPro. For all systems,
we use 10 training iterations for the SVM Mira.

use the system (3) with integrated labeling.

8 Semantic Role Labeling

The semantic role labeler is implemented as a
pipeline architecture. The components of the
pipeline are predicate selection (PS), argument iden-
tification (AI), argument classification (AC), and
word sense disambiguation (WSD).

In order to select the predicates, we look up the
lemmas in the Prob Bank, Nom Bank, etc. if avail-
able, cf. (Palmer et al., 2005; Meyers et al., 2004).
For all other components, we use the support vec-
tor machine MIRA to select and classify the seman-
tic role labels as well as to disambiguate the word
senese.

The AI component identifies the arguments of
each predicate. It iterates over the predicates and
over the words of a sentence. In the case that the
score function is large or equal to zero the argument
is added to the set of arguments of the predicate in
question. Table 5 lists for the attribute identification
and semantic role labeling.

The argument classification algorithm labels each
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Language Catalan Chinese Czech English German Japanese Spanish Czech English German

Development Set
LAS 86.69 76.77 80.75 87.97 86.46 92.37 86.53
Semantic Unlabeled 93.92 85.09 94.05 91.06 91.61 93.90 93.87
Semantic Labeled 74.98 75.94 78.07 78.79 72.66 72.86 73.01
Macro (F1) 80.84 76.48 79.42 84.52 79.56 82.63 79.77

Test Set Out-of-domain data
LAS 86.35 76.51 80.11 @89.88 @87.48 92.21 87.19 76.40 @82.64 @77.34
Semantic Labeled 74.53 75.29 79.02 80.39 75.72 72.76 74.31 78.01 68.44 63.36
Macro (F1) 80.44 75.91 79.57 85.14 81.60 82.51 80.75 77.20 75.55 70.35

Table 4: Syntactic and Semantic Scores. @ indicate values that are the highest scores of all systems.

Features with part-of-speech tags Features with lemmas Features with rels

arg, path-len arg, p-lemma⊕ dir ⊕ path-len arg, a-rel⊕ path-len
arg, p-pos arg, a-lemma, path, dir arg, a-pos, p-pos, p-rel⊕ path-len
arg, sub-cat, a-pos, p-pos arg, p-lemma - 1, a-pos, path-len, dir arg, p-rel, a-pos, lms-lemma
arg, p-pos, a-pos, a-rmc-pos arg, p-lemma + 1, a-lemma, path, dir arg, a-pos, p-pos, a-rel
arg, p-pos, a-pos, a-lmc-pos arg, p-lemma - 1, a-lemma, path, dir arg, path-rel
arg, p-pos, a-pos, a-lemma-1 arg, p-lemma - 2, a-lemma, path, dir arg, p-lemma, a-pos, path-rel
arg, sub-cat, a-lemma, dir, path-lenarg, p-lemma, a-lemma, pathPos, dir
arg, a-pos, a-lemma + 1 arg, p-lemma, p-lemma + 1
arg, a-pos, a-lemma + 2 arg, p-lemma, p-lemma - 1, a-pos⊕ dir ⊕ path-len
arg, a-pos, a-lemma-lmc arg, p-lemma, a-lms-lemma, a-pos⊕ dir ⊕ path-len
arg, p-sub-cat, p-pos⊕ dir arg, p-lemma, path-len⊕ dir
arg, p-pos, path, p-parent-lemma arg, p-lemma, path-len⊕ dir
arg, p-pos, path, p-parent-pos⊕ dir arg, a-pos, path
arg, p-pos, a-pos, familyship(p,a) arg, p-pos, p-lemma, familyship(p,a)
arg, path-pos arg, a-pos, p-lemma, familyship(p,a)

arg, p-pos, a-lemma, familyship(p,a)

Table 5: Argument identification and semantic role labelingFeatures. p is the abbrivation for predicate and a for
argument. For the AI component, the attribute arg is either the valueyes andno and for the SRL component, ars is
the role label.path is the path in terms of up‘s and down‘s.pathPos is a path plus the part-of-speech on the path.dir
is left, if the argument is left of the predicate,equal if the predicate and argument are equal, otherwise right.rmc is
the abbrivation for right most child,lmc for left most child, and lms left most sibling.familiship(x,y) is a function that
computes the relation between two words: self, parent, child, ancestor, decendant and none.

identified argument with a semantic role label. The
argument classification algorithm selects with a
beam search algorithm the combination of argu-
ments with the highest score.

The last component of our pipeline is the word
sense disambiguation. We put this against the in-
tuition at the end of our pipeline since experiments
showed that other components could not profit from
disambiguated word senses but on the other hand
the word sense disambiguation could profit from the
argument identification and argument classification.
In order to disambiguate, we iterate over the words
in the corpus that have more than one sense and take
the sense with the highest score.

The average time to execute the SRL pipeline on
a sentence is less than 0.15 seconds and the training
time for all languages less than 2 hours.

9 Conclusion

We provided a fast implementation with good pars-
ing time and memory footprint. Even if we traded
off a lot of the speed improvement by using a
more expensive decoder and more attributes to get
a higher accuracy.

For some languages, features are not provided or
the parser does not profit from using these features.
For instance, the English parser does not profit from
the lemmas and the Chinese as well as the Japanese
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corpus does not have lemmas different from the
word forms, etc. Therefore, a possible further ac-
curacy and parsing speed improvement would be to
select different features sets for different languages
or to leave out some features.
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Abstract 

This paper describes the multilingual semantic 
role labeling system of Computational Lin-
guistics Group, Trinity College Dublin, for the 
CoNLL-2009 SRLonly closed shared task. 
The system consists of two cascaded compo-
nents: one for disambiguating predicate word 
sense, and the other for identifying and classi-
fying arguments. Supervised learning tech-
niques are utilized in these two components. 
As each language has its unique characteris-
tics, different parameters and strategies have 
to be taken for different languages, either for 
providing functions required by a language or 
for meeting the tight deadline. The system ob-
tained labeled F1 69.26 averaging over seven 
languages (Catalan, Chinese, Czech, English, 
German, Japanese, and Spanish), which ranks 
the system fourth among the seven systems 
participating the SRLonly closed track. 

1 Introduction 

Semantic role labeling, which aims at computa-
tionally identifying and labeling arguments of 
predicate words, has become a leading research 
problem in computational linguistics with the ad-
vent of various supporting resources (e.g. corpora 
and lexicons) (Màrquez et al., 2008). Word seman-
tic dependencies derived by semantic role labeling 
are assumed to facilitate automated interpretation 
of natural language texts. Moreover, techniques for 
automatic annotation of semantic dependencies can 
also play an important role in adding metadata to 
corpora for the purposes of machine translation 
and speech processing. We are currently investi-
gating such techniques as part of our research into 
integrated language technology in the Center for 
Next Generation Localization (CNGL, 

http://www.cngl.ie). The multilingual nature of the 
CoNLL-2009 shared task on syntactic and seman-
tic dependency analysis, which includes Catalan, 
Chinese, Czech, English, German, Japanese, and 
Spanish (Hajič et al., 2009), makes it a good test-
bed for our research. 

We decided to participate in the CoNLL-2009 
shared task at the beginning of March, signed the 
agreement for getting the training data on March 
2nd, 2009, and obtained all the training data (espe-
cially the part from LDC) on March 4th, 2009. Due 
to the tight time constraints of the task, we chose to 
use existing packages to implement our system. 
These time constraints also meant that we had to 
resort to less computationally intensive methods to 
meet the deadline, especially for some large data-
sets (such as the Czech data). In spite of these dif-
ficulties and resource limitations, we are proud to 
be among the 21 teams who successfully submitted 
the results1. 

As a new participant, our goals in attending the 
CoNLL-2009 SRLonly shared task were to gain 
more thorough knowledge of this line of research 
and its state-of-the-art, and to explore how well a 
system quickly assembled with existing packages 
can fare at this hard semantic analysis problem.  

Following the successful approaches taken by 
the participants of the CoNLL-2008 shared task 
(Surdeanu et al., 2008) on monolingual syntactic 
and semantic dependency analysis, we designed 
and implemented our CoNLL-2009 SRLonly sys-
tem with pipeline architecture. Two main compo-
nents are cascaded in this system: one is for 
disambiguating predicate word sense 2 , and the 
other for identifying and classifying arguments for 

                                                           
1 According to our correspondence with Dr. Jan Hajič, totally 
31 teams among 60 registered ones signed and got the evalua-
tion data. 
2 As predicate words are marked in the CoNLL-2009 datasets, 
we don’t need to identify predicate words. 
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predicate words. Different supervised learning 
techniques are utilized in these two components. 
For predicate word sense disambiguation (WSD), 
we have experimented with three algorithms: SVM, 
kNN, and Naïve Bayes. Based on experimental 
results on the development datasets, we chose 
SVM and kNN to produce our submitted official 
results. For argument identification and classifica-
tion, we used a maximum entropy classifier for all 
the seven datasets. As each language has its unique 
characteristics and peculiarities within the dataset, 
different parameters and strategies have to be taken 
for different languages (as detailed below), either 
for providing functions required by a language or 
for meeting the tight deadline. Our official submis-
sion obtained 69.26 labeled F1 averaging over the 
seven languages, which ranks our system fourth 
among the seven systems in the SRLonly closed 
track. 

The rest of this paper is organized as follows. 
Section 2 discusses the first component of our sys-
tem for predicate word sense disambiguation. Sec-
tion 3 explains how our system detects and 
classifies arguments with respect to a predicate 
word. We present experiments in Section 4, and 
conclude in Section 5. 

2 Predicate Word Sense Disambiguation 

This component tries to determine the sense of a 
predicate word in a specific context. As a sense of 
a predicate word is often associated with a unique 
set of possible semantic roles, this task is also 
called role set determination. Based on the charac-
teristics of different languages, we take different 
strategies in this step, but the same feature set is 
used for different languages. 

2.1 Methods 

Intuitively, each predicate word should be treated 
individually according to the list of its possible 
senses. We therefore designed an initial solution 
based on the traditional methods in WSD: repre-
sent each sense as a vector from its definition or 
examples; describe the predicate word for disam-
biguation as a vector derived from its context; and 
finally output the sense which has the highest simi-
larity with the current context. We also considered 
using singular value decomposition (SVD) to over-
come the data sparseness problem. Unfortunately, 
we found this solution didn’t work well in our pre-

liminary experiments. The main problem is that the 
definition of each sense of a predicate word is not 
available. What we have is just a few example con-
texts for one sense of a predicate word, and these 
contexts are often not informative enough for 
WSD. On the other hand, our limited computing 
resources could not afford SVD operation on a 
huge matrix. 

We finally decided to take each sense tag as a 
class tag across different words and transform the 
disambiguation problem into a normal multi-class 
categorization problem. For example, in the Eng-
lish datasets, all predicates with “01” as a sense 
identifier were counted as examples for the class 
“01”. With this setting, a predicate word may be 
assigned an invalid sense tag. It is an indirect solu-
tion, but works well. We think there are at least 
two possible reasons: firstly, most predicate words 
take their popular sense in running text. For exam-
ple, in the English dataset (training and develop-
ment), 160,477 of 185,406 predicate occurrences 
(about 86.55%) take their default sense “01”. Sec-
ondly, predicates may share some common role 
sets, even though their senses may not be exactly 
the same, e.g. “tell” and “inform”. 

Unlike the datasets in other languages, the Japa-
nese dataset doesn’t have specialized sense tags 
annotated for each predicate word, so we simply 
copy the predicted lemma of a predicate word to its 
PRED field. For other datasets, we derived a train-
ing sample for each predicate word, whose class 
tag is its sense tag. Then we trained a model from 
the generated training data with a supervised learn-
ing algorithm, and applied the learned model for 
predicting the sense of a predicate word. This is 
our base solution. 

When transforming the datasets, the Czech data 
needs some special processing because of its 
unique annotation format. The sense annotation for 
a predicate word in the Czech data does not take 
the form “LEMMA.SENSE”. In most cases, no 
specialized sense tags are annotated. The PRED 
field of these words only contains “LEMMA”. In 
other cases, the disambiguated senses are anno-
tated with an internal representation, which is 
given in a predicate word lexicon. We decomposed 
the internal representation of each predicate word 
into two parts: word index id and sense tag. For 
example, from “zvýšení v-w10004f2” we know “v-
w10004” is the index id of word “zvýšení”, and 
“f2” is its sense tag. We then use these derived 
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sense tags as class tags and add a class tag “=” for 
samples without specialized sense tag. 

For each predicate word, we derive a vector de-
scribing its context and attributes, each dimension 
of which corresponds to a feature. We list the fea-
ture types in the next subsection. Features appear-
ing only once are removed. The TF*IDF weighting 
schema is used to calculate the weight of a feature. 

Three different algorithms were tried during the 
development period: support vector machines 
(SVM), distance-weighted k-Nearest Neighbor 
(kNN) (Li et al., 2004), and Naïve Bayes with mul-
tinomial model (Mccallum and Nigam, 1998). As 
to the SVM algorithm, we used the robust 
LIBSVM package (Chang and Lin, 2001), with a 
linear kernel and default values for other parame-
ters. The algorithms achieving the best results in 
our preliminary experiments are chosen for differ-
ent languages: SVM for Catalan, Chinese, and 
Spanish; kNN for German (k=20). 

We used kNN for English (k=20) and Czech 
(k=10) because we could not finish training with 
SVM on these two datasets in limited time. Even 
with kNN algorithm, we still had trouble with the 
English and Czech datasets, because thousands of 
training samples make the prediction for the 
evaluation data unacceptably slow. We therefore 
had to further constrain the search space for a new 
predicate word to those samples containing the 
same predicate word. If there are not samples con-
taining the same predicate word in the training data, 
we will assign it the most popular sense tag (e.g. 
“01” for English). 

How to use the provided predicate lexicons is a 
challenging issue. Lexicons for different languages 
take different formats and the information included 
in different lexicons is quite different. We derived 
a sense list lexicon from the original predicate 
lexicon for Chinese, Czech, English, and German. 
Each entry in a sense list lexicon contains a predi-
cate word, its internal representation (especially for 
Czech), and a list of sense tags that the predicate 
can have. Then we obtained a variant of our base 
solution, which uses the sense list of a predicate 
word to filter impossible senses. It works as fol-
lows: 

- Disambiguate a new predicate with the base 
solution; 

- Choose the most possible sense from all the 
candidate senses obtained in step 1: if the 
base classifier doesn’t output a vector of 

probabilities for classes, only check 
whether the predicted one is a valid sense 
for the predicate; 

- If there is not a valid sense for a new predi-
cate (including the cases where the predi-
cate does not have an entry in the sense list 
lexicon), output the most popular sense tag; 

Unfortunately, preliminary experiments on the 
German and Chinese datasets didn’t support to in-
clude such a post-processing stage. The perform-
ance with this filtering became a little worse. 
Therefore, we decided not to use it generally, but 
one exception is for the Czech data. 

With kNN algorithm, we can greatly reduce the 
time for training the Czech data, but we do have 
problem with prediction, as there are totally 
469,754 samples in the training dataset. It’s a time-
consuming task to calculate the similarities be-
tween a new sample and all the samples in the 
training dataset to find its k nearest neighbors, thus 
we have to limit the search space to those samples 
that contain the predicate word for disambiguation. 
To process unseen predicate words, we used the 
derived sense list lexicon: if a predicate word for 
disambiguation is out of the sense list lexicon, we 
simply copy its predicted lemma to the PRED field; 
if no sample in the training dataset has the same 
predicate word, we take its first possible sense in 
the sense list lexicon. With this strategy, our sys-
tem can process the huge Czech dataset in short 
time. 

2.2 Features 

The features we used in this step include3: 
 

a. [Lemma | (Lemma with POS)] of all words in the sen-
tence; 

b. Attributes of predicate word, which is obtained from 
PFEAT field by splitting the field at symbol “|” and 
removing the invalid attribute of “*”; 

c. [Lemma | POS] bi-grams of predicate word and its 
[previous | following] one word; 

d. [Lemma | POS] tri-grams of predicate word and its 
[previous | following] two words; 

e. [Lemma | (Lemma with POS)] of its most [left | right] 
child; 

f. [(Lemma+Dependency_Relation+Lemma) | (POS 
+Dependency_Relation+POS)] of predicate word and 
its most [left | right] child; 

                                                           
3 We referred to those CoNLL-2008 participants’ reports, e.g. 
(Ciaramita et al., 2008), when we designed the feature sets for 
the two components. 
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g. [Lemma | (Lemma with POS)] of the head of the pre-
dicate word; 

h. [(Lemma+Dependency_Relation+Lemma) | (POS+D-
ependency_Relation+POS)] of predicate word and its 
head; 

i. [Lemma | (Lemma with POS)] of its [previous | fol-
lowing] two brothers; 

j. [Lemma | POS | (Dependency relation)] bi-gram of 
predicate word and its [previous | following] one 
brother; 

k. [Lemma | POS | (Dependency relation)] tri-gram of 
predicate word and its [previous | following] two 
brothers. 

3 Argument Identification and Classifica-

tion  

The second component of our system is used to 
detect and classify arguments with respect to a 
predicate word. We take a joint solution rather than 
solve the problem in two consecutive steps: argu-
ment identification and argument classification. 

3.1 Methods  

By introducing an additional argument type tag “_” 
for non-arguments, we transformed the two tasks 
(i.e. argument identification and argument classifi-
cation) into one multi-class classification problem. 
As a word can play different roles with respect to 
different predicate words and a predicate word can 
be an argument of itself, we generate a training set 
by deriving a training example from each word-
predicate pair. For example, if a sentence with two 
predicates has 7 words, we will derive 7*2=14 
training examples. Therefore, the number of train-
ing examples generated in this step will be around 
L times larger than that obtained in the previous 
step, where L is the average length of sentences. 

We chose to use maximum entropy algorithm in 
this step because of its success in the CoNLL-2008 
shared task (Surdeanu et al., 2008). Le Zhang’s 
maximum entropy package (Zhang, 2006) is inte-
grated in our system. 

The Czech data cause much trouble again for us, 
as the training data derived by the above strategy 
became even larger. We had to use a special strat-
egy for the Czech data: we selectively chose word-
predicate pairs for generating the training dataset. 
In other words, not all possible combinations are 
used. We chose the following words with respect 
to each predicate: the first and the last two words 
of a sentence; the words between the predicate and 
any argument of it; two words before the predicate 

or any argument; and two words after the predicate 
or any argument. 

In the Czech and Japanese data, some words 
may play multiple roles with respect to a predicate 
word. We thus have to consider multi-label classi-
fication problem (Tsoumakas and Katakis, 2007) 
for these two languages’ data. We tried the follow-
ing two solutions: 

• Take each role type combination as a class 
and transform the multi-label problem to a 
single-label classification problem; 

• Classify a word with a set of binary classi-
fiers: consider each role type individually 
with a binary classifier; any possible role 
type will be output; if no role type is ob-
tained after considering all the role types, 
the role type with the highest confidence 
value will be output; and, if “_” is output 
with any other role type, remove it. 

We used the second solution in our official 
submission, but we finally found these two solu-
tions perform almost the same. The performance 
difference is very small. We found the cases with 
multi-labels (actually at most two) in the training 
data are very limited: 690 of 414,326 in the Czech 
data and 113 of 46,663 in the Japanese data. 

3.2 Features 

The features we used in this step include: 
 

a. Whether the current word is a predicate; 
b. [Lemma | POS] of current word and its [previous | fol-

lowing] one word; 
c. [Lemma | POS] bi-grams of current word and its [pre-

vious | following] one word; 
d. POS tri-grams of current word, its previous word and 

its following word; 
e. Dependency relation of current word to its head; 
f. [Lemma | POS] of the head of current word; 
g. [Lemma | POS] bi-grams of current word and its head; 
h. [(Lemma+Dependency_Relation+Lemma) | (POS+De 

pendency_Relation+POS)] of current word and its 
head; 

i. [Lemma | POS] of its most [left | right] child; 
j. [Lemma | POS] bi-grams of current word and its most 

[left | right] child; 
k. [(Lemma+Dependency_Relation+Lemma) | (POS+De 

pendency_Relation+POS) of current word and its 
most [left | right] child; 

l. The number of children of the current word and the 
predicate word; 

m. Attributes of the current word, which is obtained from 
PFEAT field by splitting the field at symbol “|” and 
removing the invalid attribute of “*”; 

n. The sense tag of the predicate word; 

76



o. [Lemma | POS] of the predicate word and its head; 
p. Dependency relation of the predicate word to its head; 
q. [Lemma | POS] bi-grams of the predicate word and its 

head; 
r. [(Lemma+Dependency_Relation+Lemma) | (POS+De 

pendency_Relation+POS)] of the predicate word and 
its head; 

s. [Lemma | POS] of the most [left | right] child of the 
predicate word; 

t. [(Lemma+Dependency_Relation+Lemma) | (POS+De 
pendency_Relation+POS)] of predicate word and its 
head; 

u. [Lemma | POS] bi-gram of the predicate word and its 
most [left | right] child; 

v. [(Lemma+Dependency_Relation+Lemma) | (POS+De 
pendency_Relation+POS)] of the predicate word and 
its most [left | right] child; 

w. The relative position of the current word to the predi-
cate one: before, after, or on; 

x. The distance of the current word to the predicate one; 
y. The relative level (up, down, or same) and level dif-

ference on the syntactic dependency tree of the current 
word to the predicate one; 

z. The length of the shortest path between the current 
word and the predicate word. 

4 Experiments 

4.1 Datasets  

The datasets of the CoNLL-2009 shared task con-
tain seven languages: Catalan (CA), Chinese (CN), 
Czech (CZ), English (EG), German (GE), Japanese 
(JP), and Spanish (SP). The training and evaluation 
data of each language (Taulé et al., 2008; Xue et 
al., 2008; Hajič et al., 2006; Palmer et al., 2002; 
Burchardt et al., 2006; Kawahara et al., 2002) have 
been converted to a uniform CoNLL Shared Task 
format. Each participating team is required to 
process all seven language datasets.  
 

Lanuage CA CN CZ EN GE JP SP 

Size (KB) 48974 41340 94284 58155 41091 8948 52430 

# of Sen-
tences 

14924 24039 43955 40613 38020 4643 15984 

# of Predi-
cate words 

42536 110916 469754 185404 17988 27251 48900 

Avg. # of 
Predicates 

per sentence 
2.85 4.61 10.69 4.57 0.47 5.87 3.06 

popular 
sense tag 

a2 
(37%) 

01 
(90%) 

= 
(81%) 

01 
(87%) 

1 
(75%) 

= 
(100%) 

a2 
(39%) 

Table 1. Statistical information of the seven language 
datasets (training and development). 
 

Table 1 shows some statistical information of 
both training and development data for each lan-
guage. The total size of the uncompressed original 
data without lexicons is about 345MB. The Czech 
dataset is the largest one containing 43,955 sen-

tences and 469,754 predicate words, while the 
Japanese dataset the smallest one. On average, 
10.69 predicate words appear in a Czech sentence, 
while only 0.47 predicate words exist in a German 
sentence. The most popular sense tag in the Czech 
datasets is “=”, which means the PRED field has 
the same value as the PLEMMA field or the 
FORM field. About 81% of Czech predicate words 
take this value. 

4.2 Experimental Results  

F1 is used as the main evaluation metric in the 
CoNLL-2009 shared task. As to the SRLonly track, 
a joint semantic labeled F1, which considers predi-
cate word sense disambiguation and argument la-
beling equally, is used to rank systems. 
 

Avg. CA CN CZ EG GE JP SP 

69.26 74.06 70.37 57.46 69.63 67.76 72.03 73.54 

Table 2. Official results of our system. 
 

Table 2 gives the official results of our system 
on the evaluation data. The system obtained the 
best result (74.06) on the Catalan data, but per-
formed very poor (57.46) on the Czech data. Ex-
cept the Czech data, our system performs quite 
stable on the other six language data with mean of 
71.23 and standard deviation of 2.42. 
 

 Avg. CA CN CZ EG GE JP SP 

Over-

all F1 
69.47 74.12 70.52 57.57 70.24 67.97 72.17 73.68 

Pred. 

WSD 

F1 
86.9 84.42 94.54 72.23 92.98 81.09 99.07 83.96 

Arg 

I&C 

F1 
57.24 69.29 57.71 33.19 58.25 60.64 52.72 68.86 

Arg 
I&C 
PR 

69.77 73.43 72.48 62.14 70.14 66.63 69.37 74.23 

Arg 
I&C 
RE 

49.77 65.6 47.94 22.64 49.81 55.64 42.52 64.21 

Table 3. Results of our system after fixing a minor bug. 
 

After submitting the official results, we found 
and fixed a minor bug in the implementation of the 
second component. Table 3 presents the results of 
our system after fixing this bug. The overall per-
formance doesn’t change much. We further ana-
lyzed the bottlenecks by checking the performance 
of different components. 

At the predicate WSD part, our system works 
reasonable with labeled F1 86.9, but the perform-
ance on the Czech data is lower than that of a base-
line system that constantly chooses the most 
popular sense tag. If we use this baseline solution, 
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we can get predicate WSD F1 78.66, which further 
increases the overall labeled F1 on the Czech data 
to 61.68 from 57.57 and the overall labeled F1 
over the seven languages to 70.05 from 69.47. 

From table 3, we can see our system performs 
relatively poorly for argument identification and 
classification (57.24 vs. 86.9). The system seems 
too conservative for argument identification, which 
makes the recall very lower. We explored some 
strategies for improving the performance of the 
second component, e.g. separating argument iden-
tification and argument classification, and using 
feature selection (with DF threshold) techniques, 
but none of them helps much. We are thinking the 
features currently used may not be effective 
enough, which deserves further study. 

5 Conclusion and Future Work  

In this paper, we describe our system for the 
CoNLL-2009 shared task -- SRLonly closed track. 
Our system was built on existing packages with a 
pipeline architecture, which integrated two cas-
caded components: predicate word sense disam-
biguation and argument identification and 
classification. Our system performs well at disam-
biguating the sense of predicate words, but poorly 
at identifying and classifying arguments. In the 
future, we plan to explore much effective features 
for argument identification and classification. 
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Abstract

We present a system developed for the
CoNLL-2009 Shared Task (Hajič et al., 2009).
We extend the Carreras (2007) parser to
jointly annotate syntactic and semantic depen-
dencies. This state-of-the-art parser factor-
izes the built tree in second-order factors. We
include semantic dependencies in the factors
and extend their score function to combine
syntactic and semantic scores. The parser is
coupled with an on-line averaged perceptron
(Collins, 2002) as the learning method. Our
averaged results for all seven languages are
71.49 macro F1, 79.11 LAS and 63.06 seman-
tic F1.

1 Introduction

Systems that jointly annotate syntactic and semantic
dependencies were introduced in the past CoNLL-
2008 Shared Task (Surdeanu et al., 2008). These
systems showed promising results and proved the
feasibility of a joint syntactic and semantic pars-
ing (Henderson et al., 2008; Lluı́s and Màrquez,
2008).

The Eisner (1996) algorithm and its variants are
commonly used in data-driven dependency pars-
ing. Improvements of this algorithm presented
by McDonald et al. (2006) and Carreras (2007)
achieved state-of-the-art performance for English in
the CoNLL-2007 Shared Task (Nivre et al., 2007).
Johansson and Nugues (2008) presented a sys-
tem based on the Carreras’ extension of the Eis-
ner algorithm that ranked first in the past CoNLL-
2008 Shared Task. We decided to extend the Car-

reras (2007) parser to jointly annotate syntactic and
semantic dependencies.

The present year Shared Task has the incentive
of being multilingual with each language presenting
their own particularities. An interesting particularity
is the direct correspondence between syntactic and
semantic dependencies provided in Catalan, Spanish
and Chinese. We believe that these correspondences
can be captured by a joint system. We specially look
at the syntactic-semantic alignment of the Catalan
and Spanish datasets.

Our system is an extension of the Lluı́s and
Màrquez (2008) CoNLL-2008 Shared Task system.
We introduce these two following novelties:

• An extension of the second-order Car-
reras (2007) algorithm to annotate semantic
dependencies.

• A combined syntactic-semantic scoring for
Catalan and Spanish to exploit the syntactic-
semantic mappings.

The following section outlines the system archi-
tecture. The next sections present in more detail the
system novelties.

2 Architecture

The architecture consists on four main components:
1) Preprocessing and feature extraction. 2) Syntactic
preparsing. 3) Joint syntactic-semantic parsing. 4)
Predicate classification.

The preprocessing and feature extraction is in-
tended to ease and improve the performance of
the parser precomputing a binary representation of
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each sentence features. These features are borrowed
from existing and widely-known systems (Xue and
Palmer, 2004; McDonald et al., 2005; Carreras et al.,
2006; Surdeanu et al., 2007).

The following step is a syntactic pre-parse. It
is only required to pre-compute additional features
(e.g., syntactic path, syntactic frame) from the syn-
tax. These new features will be used for the semantic
role component of the following joint parser.

The joint parser is the core of the system. This
single algorithm computes the complete parse that
optimizes a score according to a function that de-
pends on both syntax and semantics. Some of the
required features that could be unavailable or expen-
sive to compute at that time are provided by the pre-
vious syntactic pre-parse.

The predicate sense classification is performed as
the last step. Therefore no features representing the
predicate sense are employed during the training.
The predicates are labeled with the most frequent
sense extracted from the training corpus.

No further postprocessing is applied.

3 Second-order Eisner model

The Carreras’ extension of the Eisner inference al-
gorithm is an expensive O(n4) parser. The number
of assignable labels for each dependency is a hidden
multiplying constant in this asymptotic cost.

We begin describing a first-order dependency
parser. It receives a sentence x and outputs a de-
pendency tree y. A dependency, or first-order factor,
is defined as f1 = 〈h,m, l〉. Where h is the head
token, m the modifier and l the syntactic label. The
score for this factor f1 is computed as:

score1(f1, x,w) = φ(h,m, x) ·w(l)

Where w(l) is the weight vector for the syntactic la-
bel l and φ a feature extraction function.

The parser outputs the best tree y∗ from the set
T (x) of all projective dependency trees.

y∗(x) = argmax
y∈T (x)

∑

f1∈y

score(f1, x,w)

The second-order extension decomposes the de-
pendency tree in factors that include some children
of the head and modifier. A second-order factor is:

f2 = 〈h,m, l, ch, cmo, cmi〉

where ch is the daughter of h closest to m within
the tokens [h, . . . ,m]; cmo is the outermost daugh-
ter of m outside [h, . . . ,m]; and cmi is the furthest
daughter of m inside [h, . . . ,m].

The score for these new factors is computed by

score2(f2, x,w) = φ(h,m, x) ·w(l) +
φ(h,m, ch, x) ·w(l)

ch
+

φ(h,m, cmi, x) ·w(l)
cmi

+

φ(h,m, cmo, x) ·w(l)
cmo

The parser builds the best-scoring projective tree
factorized in second-order factors. The score of the
tree is also defined as the sum of the score of its
factors.

3.1 Joint second-order model

We proceeded in an analogous way in which the
Lluı́s and Màrquez (2008) extended the first-order
parser. That previous work extended a first-order
model by including semantic labels in first-order de-
pendencies.

Now we define a second-order joint factor as:

f2syn-sem =〈
h,m, l, ch, cmo, cmi, lsemp1 , . . . , lsempq

〉

Note that we only added a set of semantic labels
lsemp1 , . . . , lsempq to the second-order factor. Each
one of these semantic labels represent, if any, one
semantic relation between the argument m and the
predicate pi. There are q predicates in the sentence,
labeled p1, . . . , pq.

The corresponding joint score to a given joint fac-
tor is computed by adding a semantic score to the
previously defined score2 second-order score func-
tion:

score2syn-sem(f2syn-sem, x,w) =
score2(f2, x,w) +

∑

pi

scoresem(h,m, pi, lsempi , x,w)
q

where,

scoresem(h,m, pi, lsem, x,w) =
φsem(h,m, pi, x) ·w(lsem)
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We normalize the semantic score by the number
of predicates q. The semantic score is computed as a
score betweenm and each sentence predicate pi. No
second-order relations are considered in these score
functions. The search of the best ch, cmo and cmi is
independent of the semantic components of the fac-
tor. The computational cost of the algorithm is in-
creased by one semantic score function call for every
m, h, and pi combination. The asymptotic cost of
this operation is O(q · n2) and it is sequentially per-
formed among other O(n2) operations in the main
loop of the algorithm.

Algorithm 1 Extension of the Carreras (2007) algo-
rithm
C[s][t][d][m]← 0, ∀s, t, d,m
O[s][t][d][l]← 0,∀s, t, d, l
for k = 1, . . . , n do

for s = 0, . . . , n− k do
t← s+ k
∀l O[s][t][←][l] = maxr,cmi,ch

C[s][r][→][cmi] + C[r + 1][t][←][ch]
+score(t, s, l)+scorecmi(t, s, cmi, l)+
scorech(t, s, l, ch)+∑

pi
maxlsemscoresem(t, s, pi, lsem)/q

∀l O[s][t][→][l] = maxr,cmi,ch

C[s][r][→][ch] + C[r + 1][t][←][cmi]+
score(s, t, l)+scorecmi(s, t, cmi, l)+
scorech(s, t, l, ch)+∑

pi
maxlsemscoresem(t, s, pi, lsem)/q

∀m C[s][t][←][m] = maxl,cmo

C[s][m][←][cmo] +O[m][t][←][l]+
scorecmo(s,m, l, cmo)

∀m C[s][t][→][m] = maxl,cmo

O[s][m][→][l] + C[m][t][→][cmo]+
scorecmo(m, t, l, cmo)

end for
end for

Our implementation slightly differs from the orig-
inal Carreras algorithm description. The main dif-
ference is that no specific features are extracted for
the second-order factors. This allows us to reuse the
feature extraction mechanism of a first-order parser.

Algorithm 1 shows the Carreras’ extension of the

Eisner algorithm including our proposed joint se-
mantic scoring.

The tokens s and t represent the start and end
tokens of the current substring, also called span.
The direction d ∈ {←,→} defines whether t or
s is the head of the last dependency built inside
the span. The score functions scorech,scorecmi and
scorecmo are the linear functions that build up the
previously defined second-order global score, e.g.,
scorech= φ(h,m, ch, x)·w(l)

ch . The two tablesC and
O maintain the dynamic programming structures.

Note that the first steps of the inner loop are ap-
plied for all l, the syntactic label, but the semantic
score function does not depend on l. Therefore the
best semantic label can be chosen independently.

For simplicity, we omitted the weight vectors re-
quired in each score function and the backpointers
tables to save the local decisions. We also omit-
ted the definition of the domain of some variables.
Moreover, the filter of the set of assignable labels
is not shown. A basic filter regards the POS of the
head and modifier to filter out the set of possible ar-
guments for each predicate. Another filter extract
the set of allowed arguments for each predicate from
the frames files. These last filters were applied to the
English, German and Chinese.

3.2 Catalan and Spanish joint model
The Catalan and Spanish datasets (Taulé et al., 2008)
present two interesting properties. The first prop-
erty, as previously said, is a direct correspondence
between syntactic and semantic labels. The second
interesting property is that all semantic dependen-
cies exactly overlap with the syntactic tree. Thus
the semantic dependency between a predicate and
an argument always has a matching syntactic depen-
dency between a head and a modifier. The Chinese
data also contains direct syntactic-semantic map-
pings. But due to the Shared Task time constraints
we did not implemented a specific parsing method
for this language.

The complete overlap between syntax and seman-
tics can simplify the definition of a second-order
joint factor. In this case, a second-order factor will
only have, if any, one semantic dependency. We only
allow at most one semantic relation lsem between
the head token h and the modifier m. Note that h
must be a sentence predicate and m its argument if
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lsem is not null. We extend the second-order fac-
tors with a single and possibly null semantic label,
i.e., f2syn-sem = 〈h,m, l, ch, cmo, cmi, lsem〉. This
slightly simplifies the scoring function:

score2syn-sem(f2syn-sem, x,w) =
score2(f2, x,w) +

α · scoresem(h,m, x,w)

where α is an adjustable parameter of the model and,

scoresem(h,m, x,w) = φsem(h,m, x) ·w(lsem)

The next property that we are intended to exploit
is the syntactic-semantic mappings. These map-
pings define the allowed combinations of syntactic
and semantic labels. The label combinations can
only be exploited when there is semantic depen-
dency between the head h and the modifier m of a
factor. An argument identification classifier deter-
mines the presence of a semantic relation, given h
is a predicate. In these cases we only generate fac-
tors that are compliant with the mappings. If a syn-
tactic label has many corresponding semantic labels
we will score all of them and select the combination
with the highest score.

The computational cost is not significantly in-
creased as there is a bounded number of syntactic
and semantic combinations to score. In addition, the
only one-argument-per-factor constraint reduces the
complexity of the algorithm with respect to the pre-
vious joint extension.

We found some inconsistencies in the frames files
provided by the organizers containing the correspon-
dences between syntax and semantics. For this rea-
son we extracted them directly from the corpus. The
extracted mappings discard the 7.9% of the cor-
rect combinations in the Catalan development cor-
pus that represent a 1.7% of its correct syntactic de-
pendencies. The discarded semantic labels are the
5.14% for Spanish representing the 1.3% of the syn-
tactic dependencies.

4 Results and discussion

Table 1 shows the official results for all seven lan-
guages, including out-of-domain data labeled as
ood. The high computational cost of the second-
order models prevented us from carefully tuning the

system parameters. After the shared task evaluation
deadline, some bug were corrected, improving the
system performance. The last results are shown in
parenthesis.

The combined filters for Catalan and Spanish hurt
the parsing due to the discarded correct labels but
we believe that this effect is compensated by an im-
proved precision in the cases where the correct la-
bels are not discarded. For example, in Spanish
these filters improved the syntactic LAS from 85.34
to 86.77 on the development corpus using the gold
syntactic tree as the pre-parse tree.

Figure 1 shows the learning curve for the English
and Czech language. The results are computed in
the development corpus. The semantic score is com-
puted using gold syntax and gold predicate sense
classification. We restricted the learning curve to
the first epoch. Although the this first epoch is very
close to the best score, some languages showed im-
provements until the fourth epoch. In the figure we
can see better syntactic results for the joint system
with respect to the syntactic-only parser. We should
not consider this improvement completely realistic
as the semantic component of the joint system uses
gold features (i.e., a gold pre-parse). Nonetheless,
it points that a highly accurate semantic component
could improve the syntax.

Table 2 shows the training time for a second-order
syntactic and joint configurations of the parser. Note
that the time per instance is an average and some
sentences could require a significantly higher time.
Recall that our parser is O(n4) dependant on the
sentence length. We discarded large sentences dur-
ing training for efficiency reasons. We discarded
sentences with more than 70 words for all languages
except for Catalan and Spanish where the thresh-
old was set to 100 words in the syntactic parser.
This larger number of sentences is aimed to im-
prove the syntactic performance of these languages.
The shorter sentences used in the joint parsing and
the pruning of the previously described filters re-
duced the training time for Catalan and Spanish. The
amount of main memory consumed by the system is
0.5–1GB. The machine used to perform the compu-
tations is an AMD64 Athlon 5000+.
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avg cat chi cze eng ger jap spa
macro F1 71.49 (74.90) 56.64 (73.21) 66.18 (70.91) 75.95 81.69 72.31 81.76 65.91 (68.46)
syn LAS 79.11 (82.22) 64.21(84.20) 70.53 (70.90) 75.00 87.48 81.94 91.55 83.09 (84.48)
semantic F1 63.06 (67.41) 46.79 (61.68) 59.72 (70.88) 76.90 75.86 62.66 71.60 47.88 (52.30)
ood macro F1 71.92 - - 74.56 73.91 67.30 - -
ood syn LAS 75.09 - - 72.11 80.92 72.25 - -
ood sem F1 68.74 - - 77.01 66.88 62.34 - -

Table 1: Overall results. In parenthesis post-evaluation results.

cat chi cze eng ger jap spa
syntax only (s/sentence) 18.39 8.07 3.18 2.56 1.30 1.07 15.31
joint system (s/sentence) 10.91 9.49 3.99 3.13 2.36 1.25 12.29

Table 2: Parsing time per sentence.
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Figure 1: Learning curves for the syntactic-only and joint
parsers in Czech and English.

5 Conclusion

We have shown that a joint syntactic-semantic
parsing can be based on the state-of-the-art Car-
reras (2007) parser at an expense of a reasonable
cost. Our second-order parser still does not repro-
duce the state-of-the art results presented by similar
systems (Nivre et al., 2007). Although we achieved
mild results we believe that a competitive system
based in our model can be built. Further tuning is
required and a complete set of new second-order fea-
tures should be implemented to improve our parser.

The multilingual condition of the task allows us to
evaluate our approach in seven different languages.
A detailed language-dependent evaluation can give
us some insights about the strengths and weaknesses
of our approach across different languages. Unfor-

tunately we believe that this objective was possibly
not accomplished due to the time constraints.

The Catalan and Spanish datasets presented in-
teresting properties that could be exploited. The
mapping between syntax and semantics should be
specially useful for a joint system. In addition
the semantic dependencies for these languages are
aligned with the projective syntactic dependencies,
i.e., the predicate-argument pairs exactly match syn-
tactic dependencies. This is a useful property to si-
multaneously build joint dependencies.

6 Future and ongoing work

Our syntactic and semantic parsers, as many others,
is not exempt of bugs. Furthermore, very few tuning
and experimentation was done during the develop-
ment of our parser due to the Shared Task time con-
straints. We believe that we still did not have enough
data to fully evaluate our approach. Further exper-
imentation is required to asses the improvement of
a joint architecture vs. a pipeline architecture. Also
a careful analysis of the system across the different
languages is to be performed.
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Abstract

This paper presents our system for the CoNLL
2009 Shared Task on Syntactic and Semantic
Dependencies in Multiple Languages (Hajič
et al., 2009). In this work we focus only on the
Semantic Role Labelling (SRL) task. We use
Markov Logic to define a joint SRL model and
achieve the third best average performance in
the closed Track for SRLOnly systems and the
sixth including for both SRLOnly and Joint
systems.

1 Markov Logic

Markov Logic (ML, Richardson and Domingos,
2006) is a Statistical Relational Learning language
based on First Order Logic and Markov Networks.
It can be seen as a formalism that extends First Or-
der Logic to allow formulae that can be violated with
some penalty. From an alternative point of view, it is
an expressive template language that uses First Or-
der Logic formulae to instantiate Markov Networks
of repetitive structure.

In the ML framework, we model the SRL task
by first introducing a set of logical predicates1 such
as word(Token,Ortho) or role(Token,Token,Role). In
the case of word/2 the predicate represents a word
of a sentence, the type Token identifies the position
of the word and the type Ortho its orthography. In
the case of role/3, the predicate represents a seman-
tic role. The first token identifies the position of the
predicate, the second the syntactic head of the argu-
ment and finally the type Role signals the semantic
role label. We will refer to predicates such as word/2

1In the cases were is not obvious whether we refer to SRL
or ML predicates we add the prefix SRL or ML, respectively.

as observed because they are known in advance. In
contrast, role/3 is hidden because we need to infer it
at test time.

With the ML predicates we specify a set of
weighted first order formulae that define a distribu-
tion over sets of ground atoms of these predicates (or
so-called possible worlds). A set of weighted formu-
lae is called a Markov Logic Network (MLN). For-
mally speaking, an MLN M is a set of pairs (φ,w)
where φ is a first order formula and w a real weight.
M assigns the probability

p (y) =
1
Z

exp


 ∑

(φ,w)∈M

w
∑

c∈Cφ

fφ
c (y)


 (1)

to the possible world y. Here Cφ is the set of all
possible bindings of the free variables in φ with the
constants of our domain. fφ

c is a feature function
that returns 1 if in the possible world y the ground
formula we get by replacing the free variables in φ
by the constants in c is true and 0 otherwise. Z
is a normalisation constant. Note that this distri-
bution corresponds to a Markov Network (the so-
called Ground Markov Network) where nodes repre-
sent ground atoms and factors represent ground for-
mulae.

In this work we use 1-best MIRA (Crammer and
Singer, 2003) Online Learning in order to train the
weights of an MLN. To find the SRL assignment
with maximal a posteriori probability according to
an MLN and observed sentence, we use Cutting
Plane Inference (CPI, Riedel, 2008) with ILP base
solver. This method is used during both test time
and the MIRA online learning process.
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2 Model

In order to model the SRL task in the ML frame-
work, we propose four hidden predicates. Consider
the example of the previous section:

argument/1 indicates the phrase for which its head
is a specific position is an SRL argument.
In our example argument(2) signals that the
phrase for which the word in position 2 is its
head is an argument (i.e., Ms. Haag).

hasRole/2 relates a SRL predicate to a SRL argu-
ment. For example, hasRole(3,2) relates the
predicate in position 3 (i.e., play) to the phrase
which head is in position 2 (i.e., Ms. Haag).

role/3 identifies the role for a predicate-argument
pair. For example, role(3,2,ARG0) denotes the
role ARG0 for the SRL predicate in the posi-
tion 2 and the SRL argument in position 3.

sense/2 denotes the sense of a predicate at a specific
position. For example, sense(3,02) signals that
the predicate in position 3 has the sense 02.

We also define three sets of observable predicates.
The first set represents information about each token
as provided in the shared task corpora for the closed
track: word for the word form (e.g. word(3,plays));
plemma/2 for the lemma; ppos/2 for the POS tag;
feat/3 for each feature-value pair; dependency/3 for
the head dependency and relation; predicate/1 for
tokens that are predicates according to the “FILL-
PRED” column. We will refer to these predicates as
the token predicates.

The second set extends the information provided
in the closed track corpus: cpos/2 is a coarse POS
tag (first letter of actual POS tag); possibleArg/1 is
true if the POS tag the token is a potential SRL argu-
ment POS tag (e.g., PUNC is not); voice/2 denotes
the voice for verbal tokens based on heuristics that
use syntactic information, or based on features in the
FEAT column of the data. We will refer to these
predicates as the extended predicates.

Finally, the third set represents dependency infor-
mation inspired by the features proposed by Xue and
Palmer (2004). There are two types of predicates
in this set: paths and frames. Paths capture the de-
pendency path between two tokens, and frames the
subcategorisation frame for a token or a pair of to-
kens. There are directed and undirected versions of

paths, and labelled (with dependency relations) and
unlabelled versions of paths and frames. Finally, we
have a frame predicate with the distance from the
predicate to its head. We will refer to the paths and
most of the frames predicates as the path predicates,
while we will consider the frame predicates for a
unique token part token predicates.

The ML predicates here presented are used within
the formulae of our MLN. We distinguish between
two types of formula: local and global.

2.1 Local formulae
A formula is local if its groundings relate any num-
ber of observed ground atoms to exactly one hidden
ground atom. For example, a grounding of the local
formula

lemma(p, +l1)∧lemma(a,+l2)⇒ hasRole(p, a)

connects a hidden hasRole/2 ground atom to two ob-
served plemma/2 ground atoms. This formula can be
interpreted as the feature for the predicate and argu-
ment lemmas in the argument identification stage of
a pipeline SRL system. Note that the “+” prefix indi-
cates that there is a different weight for each possible
pair of lemmas (l1, l2).

We divide our local formulae into four sets, one
for each hidden predicate. For instance, the set for
argument/1 only contains formulae in which the hid-
den predicate is argument/1.

The sets for argument/1 and sense/2 predicates
have similar formulae since each predicate only in-
volves one token at time: the SRL argument or the
SRL predicate token. The formulae in these sets are
defined using only token or extended observed pred-
icates.

There are two differences between the argument/1
and sense/2 formulae. First, the argument/1 for-
mulae use the possibleArg/1 predicate as precondi-
tion, while the sense formulae are conditioned on
the predicate/1 predicate. For instance, consider the
argument/1 formula based on word forms:

word(a,+w) ∧ possibleArg(a)⇒ argument(a),

and the equivalent version for the sense/2 predicate:

word(p, +w) ∧ predicate(p)⇒ sense(p, +s).

This means we only apply the argument/1 formulae
if the token is a potential SRL argument, and the
sense/2 formulae if the token is a SRL predicate.
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The second difference is the fact that for the
sense/2 formulae we have different weights for each
possible sense (as indicated by the +s term in the
second formula above), while for the argument/1
formulae this is not the case. This follows naturally
from the fact that argument/1 do not explicitly con-
sider senses.

Table 1 presents templates for the local formuale
of argument/1 and sense/2. Templates allow us to
compactly describe the FOL clauses of a ML. The
template column shows the body of a clause. The
last two columns of the table indicate if there is a
clause with the given body and argument(i) (I) or
sense(i,+s) (S) head, respectively. For example,
consider the first row: since the last two columns
of the row are marked, this template expands into
two formulae: word(i,+w) ⇒ argument(i) and
word(i,+w) ⇒ sense(i,+s). Including the pre-
conditions for each hidden predicate we obtain the
following formulae:

possibleArg(i) ∧ word(i,+w)⇒ argument(i)

and

predicate(i) ∧ word(i,+w)⇒ sense(i,+s).

In the case of the template marked with a “*”
sign, the parameters P and I, where P ∈
{ppos, plemma} and I ∈ {−2,−1, 0, 1, 2}, have to
be replaced by any combination of possible values.
Since we generate argument and sense formulae
for this template, the row corresponds to 20 formu-
lae in total.

Table 2 shows the local formuale for hasRole/2
and role/3 predicates, for these formulae we use to-
ken, extended and path predicates. In this case,
these templates have as precondition the formula
predicate(p) ∧ possibleArg(a). This ensures that
the formulae are only applied for SRL predicates
and potential SRL arguments. In the table we in-
clude the values to replace the template parame-
ters with. Some of these formulae capture a no-
tion of distance between SRL predicate and SRL
argument and are implicitely conjoined with a
distance(p, a, +d) atom. If a formulae exists both
with and without distance atom, we write Both in
the “Dist” column; if it only exists with the distance
atom, we write Only, otherwise No.

Note that Tables 1 and 2 do not mention
the feature information provided in the cor-

Template I S
word(i, +w) X X
P(i + I,+v)* X X
cpos(i + 1,+c1) ∧ cpos(i− 1,+c2) X X
cpos(i + 1,+c1) ∧ cpos(i− 1,+c2) ∧
cpos(i + 2,+c3) ∧ cpos(i− 2,+c4)

X X

dep(i, ,+d) X X
dep( , i,+d) X X
ppos(i, +o) ∧ dep(i, j, +d) X X
ppos(i, +o1) ∧ ppos(j, +o2) ∧
dep(i, j, +d)

X X

ppos(j, +o1) ∧ ppos(k, +o2) ∧
dep(j, k, ) ∧ dep(k, i,+d)

X X

plemma(i, +l) ∧ dep(j, i, +d) X X
frame(i, +f) X X
(Empty Body) X

Table 1: Templates of the local formulae for argument/1
and sense/2. I: head of clause is argument(i), S: head of
clause is sense(i,+s)

pora because this information was not avail-
able for every language. We therefore group
the formulae which consider the feature/3 pred-
icate into another a set we call feature formu-
lae. This is the summary of these formulae:
feat(p, +f,+v)⇒ sense(p, +s)
feat(p, +f,+v)⇒ argument(a)
feat(p, +f,+v1) ∧ feat(p, f, +v2)⇒
hasRole(p, a)

feat(p, +f,+v1) ∧ feat(p, f, +v2)⇒
role(p, a, +r)
Additionally, we define a set of language spe-

cific formulae. They are aimed to capture the re-
lations between argument and its siblings for the
hasRole/2 and role/3 predicates. In practice in
turned out that these formulae were only beneficial
for the Japanese language. This is a summary of
such formulae which we called argument siblings:
dep(a, h, ) ∧ dep(h, c, ) ∧ ppos(a,+p1)∧
ppos(c,+p2)⇒ hasRole(p, a)

dep(a, h, ) ∧ dep(h, c, ) ∧ ppos(a,+p1)∧
ppos(c,+p2)⇒ role(p, a, +r)

dep(a, h, ) ∧ dep(h, c, ) ∧ plemma(a,+p1)∧
ppos(c,+p2)⇒ hasRole(p, a)

dep(a, h, ) ∧ dep(h, c, ) ∧ plemma(a,+p1)∧
ppos(c,+p2)⇒ role(p, a, +r)
With these sets of formulae we can build specific

MLNs for each language in the shared task. We
group the formulae into the modules: argument/1,

87



Template Parameters Dist. H R
P(p, +v) P ∈ S1 Both X X
plemma(p, +l) ∧ ppos(a,+o) No X
ppos(p, +o) ∧ plemma(a,+l) No X
plemma(p, +l1) ∧ plemma(a,+l2) Only X X
ppos(p, +o1) ∧ ppos(a,+o2) Only X
ppos(p, +o1) ∧ ppos(a + I,+o2) I ∈ {−1, 0, 1} Only X
plemma(p, +l) Only X
voice(p, +e) ∧ lemma(a,+l) Only X
cpos(p, +c1) ∧ cpos(p + I,+c2) ∧ cpos(a,+c3) ∧ cpos(a + J, c4) I,J ∈ {−1, 1}2 No X X
ppos(p, +v1) ∧ ppos(a, IN) ∧ dep(a,m, ) ∧P(m,+v2) P ∈ S1 No X X
plemma(p, +v1) ∧ ppos(a, IN) ∧ dep(a,m, ) ∧ ppos(m,+v2) No X X
P(p, a, +v) P ∈ S2 No X X
P(p, a, +v) ∧ plemma(p, +l) P ∈ S3 No X X
P(p, a, +v) ∧ plemma(p, +l1) ∧ plemma(a,+l2) P ∈ S4 No X X
pathFrame(p, a, +t) ∧ plemma(p, +l) ∧ voice(p, +e) No X X
pathFrameDist(p, a, +t) Only X X
pathFrameDist(p, a, +t) ∧ voice(p, +e) Only X X
pathFrameDist(p, a, +t) ∧ plemma(p, +l) Only X X
P(p, a, +v) ∧ plemma(a,+l) P ∈ S5 Only X X
P(p, a, +v) ∧ ppos(p, +o) P ∈ S5 Only X X
pathFrameDist(p, a, +t) ∧ ppos(p, +o1) ∧ ppos(a,+o2) Only X X
path(p, a, +t) ∧ plemma(p, +l) ∧ cpos(a,+c) Only X X
dep( , a,+d) Only X X
dep( , a,+) ∧ voice(p, +e) Only X X
dep( , a,+d1) ∧ dep( , p,+d2) Only X X
(EmptyBody) No X X

Table 2: Templates of the local formulae for hasRole/2 and role/3. H: head of clause is hasRole(p, a), R:
head of clause is role(p, a, +r) and S1 = {ppos, plemma}, S2 = {frame, unlabelFrame, path}, S3 =
{frame, pathFrame}, S4 = {frame, pathFrame, path}, S5 = {pathFrameDist, path}

hasRole/2, role/3, sense/3, feature and argument sib-
lings. Table 3 shows the different configurations of
such modules that we used for the individual lan-
guages. We omit to mention the argument/1, has-
Role/2 and role/3 modules because they are present
for all languages.

A more detailed description of the formulae can
be found in our MLN model files.2 They can be
used both as a reference and as input to our Markov
Logic Engine,3 and thus allow the reader to easily
reproduce our results.

2.2 Global formulae
Global formulae relate several hidden ground atoms.
We use them for two purposes: to ensure consis-

2http://thebeast.googlecode.com/svn/
mlns/conll09

3http://thebeast.googlecode.com

Set Feature sense/2 Argument
siblings

Catalan Yes Yes No
Chinese No Yes No
Czech Yes No No
English No Yes No
German Yes Yes No
Japanese Yes No Yes
Spanish Yes Yes No

Table 3: Different configuration of the modules for the
formulae of the languages.
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tency between the decisions of all SRL stages and
to capture some of our intuition about the task. We
will refer to formulae that serve the first purpose
as structural constraints. For example, a structural
constraint is given by the (deterministic) formula

role(p, a, r)⇒ hasRole(p, a)

which ensures that, whenever the argument a is
given a label r with respect to the predicate p, this
argument must be an argument of a as denoted by
hasRole(p,a).

The global formulae that capture our intuition
about the task itself can be further divided into two
classes. The first one uses deterministic or hard con-
straints such as

role(p, a, r1) ∧ r1 6= r2 ⇒ ¬role(p, a, r2)

which forbids cases where distinct arguments of a
predicate have the same role unless the role de-
scribes a modifier.

The second class of global formulae is soft or non-
deterministic. For instance, the formula

lemma(p, +l) ∧ ppos(a,+p)
∧hasRole(p, a)⇒ sense(p, +f)

is a soft global formula. It captures the observation
that the sense of a verb or noun depends on the type
of its arguments. Here the type of an argument token
is represented by its POS tag.

Table 4 presents the global formulae used in this
model.

3 Results

For our experiments we use the corpora provided in
the SRLonly track of the shared task. Our MLN
is tested on the following languages: Catalan and
Spanish (Taulé et al., 2008) , Chinese (Palmer and
Xue, 2009), Czech (Hajič et al., 2006),4 English
(Surdeanu et al., 2008), German (Burchardt et al.,
2006), Japanese (Kawahara et al., 2002).

Table 5 presents the F1-scores and training/test
times for the development and in-domain corpora.
Clearly, our model does better for English. This is

4For training we use only sentences shorter than 40 words in
this corpus.

Structural constraints
hasRole(p, a)⇒ argument(a)
role(p, a, r)⇒ hasRole(p, a)
argument(a)⇒ ∃p.hasRole(p, a)
hasRole(p, a)⇒ ∃r.role(p, a, r)

Hard constraints
role(p, a, r1) ∧ r1 6= r2 ⇒ ¬role(p, a, r2)
sense(p, s1) ∧ s1 6= s2 ⇒ ¬sense(p, r2)
role (p, a1, r) ∧ ¬mod (r) ∧ a1 6= a2 ⇒
¬role (p, a2, r)

Soft constraints
role (p, a1, r) ∧ ¬mod (r) ∧ a1 6= a2 ⇒
¬role (p, a2, r)
plemma(p, +l)∧ppos(a,+p)∧hasRole(p, a)⇒
sense(p, +f)
plemma(p, +l)∧ role(p, a, +r)⇒ sense(p, +f)

Table 4: Global formulae for ML model

Language Devel Test Train Test
time time

Average 77.25% 77.46% 11h 29m 23m
Catalan 78.10% 78.00% 6h 11m 14m
Chinese 77.97% 77.73% 36h 30m 34m
Czech 75.98% 75.75% 14h 21m 1h 7m
English 82.28% 83.34% 12h 26m 16m
German 72.05% 73.52% 2h 28m 7m
Japanese 76.34% 76.00% 2h 17m 4m
Spanish 78.03% 77.91% 6h 9m 16m

Table 5: F-scores for in-domain in corpora for each lan-
guage.

in part because the original model was developed for
English.

To put these results into context: our SRL system
is the third best in the SRLOnly track of the Shared
Task, and it is the sixth best on both Joint and SR-
LOnly tracks. For five of the languages the differ-
ence to the F1 scores of the best system is 3%. How-
ever, for German it is 6.19% and for Czech 10.76%.
One possible explanation for the poor performance
on Czech data will be given below. Note that in com-
parison our system does slightly better in terms of
precision than in terms of recall (we have the fifth
best average precision and the eighth average recall).

Table 6 presents the F1 scores of our system for
the out of domain test corpora. We observe a similar
tendency: our system is the sixth best for both Joint
and SRLOnly tracks. We also observe similar large
differences between our scores and the best scores
for German and Czech (i.e., > 7.5%), while for En-
glish the difference is relatively small (i.e., < 3%).
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Language Czech English German
F-score 77.34% 71.86% 62.37%

Table 6: F-scores for out-domain in corpora for each lan-
guage.

Finally, we evaluated the effect of the argument
siblings set of formulae introduced for the Japanese
MLN. Without this set the F-score is 69.52% for the
Japanese test set. Hence argument siblings formulae
improve performance by more than 6%.

We found that the MLN for Czech was the one
with the largest difference in performance when
compared to the best system. By inspecting our
results for the development set, we found that for
Czech many of the errors were of a rather techni-
cal nature. Our system would usually extract frame
IDs (such as “play.02”) by concatenating the lemma
of the token and outcome of the sense/2 prediction
(for the “02” part). However, in the case of Czech
some frame IDs are not based on the lemma of the
token, but on an abstract ID in a vocabulary (e.g.,
“v-w1757f1”). In these cases our heuristic failed,
leading to poor results for frame ID extraction.

4 Conclusion

We presented a Markov Logic Network that per-
forms joint multi-lingual Semantic Role Labelling.
This network achieves the third best semantic F-
scores in the closed track among the SRLOnly sys-
tems of the CoNLL-09 Shared Task, and sixth best
semantic scores among SRLOnly and Joint systems
for the closed task.

We observed that the inclusion of features which
take into account information about the siblings of
the argument were beneficial for SRL performance
on the Japanese dataset. We also noticed that our
poor performance with Czech are caused by our
frame ID heuristic. Further work has to be done in
order to overcome this problem.
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Lluı́s Màrquez, and Joakim Nivre. The CoNLL-
2008 shared task on joint parsing of syntactic
and semantic dependencies. In Proceedings of
CoNLL-2008, 2008.
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Abstract

We present the Crotal system, used in the
CoNLL09 Shared Task. It is based on XCRF,
a highly configurable CRF library which can
take into account hierarchical relations. This
system had never been used in such a context
thus the performance is average, but we are
confident that there is room for progression.

1 Introduction

In this paper we present the Crotal Semantic Role
Labelling (SRL) system, which has been used in
the CoNLL 2009 Shared Task (Hajič et al., 2009)1.
This system is based on Conditional Random Fields
(CRF) (Lafferty et al., 2001; Sutton and McCallum,
2006): our idea is that we can use the provided
dependency structure as the skeleton of a graphi-
cal model expressing independence asumptions in
a CRF model. CRF are a powerful machine learn-
ing technique that has been successfully applied to
a large number of natural language tasks, mainly
to tag sequences. Compared to classification tech-
niques, CRF can easily take into account dependen-
cies among annotations: it is therefore possible to
represent tree-like structures in the input of the al-
gorithm. Recently, CRF using tree structures were
used in (Finkel et al., 2008) in the case of parsing.

Before participating to this Shared Task, our pro-
totype had only been used to annotate function tags
in a French Treebank: these data were drastically

∗This work has been funded by the French National project
ANR-07-MDCO-03 “CRoTAL”.

1We have participated in the SRL-only category.

smaller, and the task was simpler. Therefore CoNLL
2009 ST is the first time the Crotal System is run
for a quite complex task, with so many data as in-
put, and seven different languages (Catalan, Span-
ish (Taulé et al., 2008), Chinese (Palmer and Xue,
2009), Czech (Hajič et al., 2006), English (Surdeanu
et al., 2008), German (Burchardt et al., 2006) and
Japanese (Kawahara et al., 2002)). In this context,
the performance we obtained seems reasonable: our
average F1-measure is 66.49% (evaluation dataset).

One of the advantages we want to emphasise
about our system is its genericity: the system does
not need a lot of information as input (we mainly
useposanddeprelcolumns, and the frame sets have
not been used), and it was able to achieve satisfy-
ing results for the seven different languages using
nearly the same parameters (differences were essen-
tially due to the volume of data, since it was some-
times necessary to reduce the processing time). Of
course, we hope to improve this prototype thanks to
this experience: it may become necessary to lose in
genericity in order to gain in performance, but our
goal is to maintain as much as possible this advan-
tage.

In section 2 we explain the general architecture
for Crotal, then we explain how features are selected
in our system in section 3, and finally we detail and
discuss the results in section 4.

2 The Crotal System Architecture

2.1 General principle

The system we propose is based on the public library
XCRF (Gilleron et al., 2006; Jousse, 2007), which
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implements CRF model(s) to learn to annotate trees
represented by XML documents. Of course, its per-
formance depends on the way it is used, and espe-
cially on how featuresare chosen to reliably repre-
sent the labeled data. In order to keep the system
as generic as possible, features are generated auto-
matically and only a few parameters may vary. The
global process has been divided into a sequence of
steps, by creating clusters (one for each predicate,
except the less frequent ones). Indeed, one expects
that the behaviour of the arguments for a given pred-
icate is more regular than for all predicates put to-
gether. Moreover, the size of the training set for
all seven languages allows such a clustering, and it
would even be difficult to process the whole set of
predicates due to time and memory limitations. Thus
the global process is2:

1. Data conversion from CoNLL format to XCRF
format:

• For each sentence containingn predicates,
generaten different XML trees3.

• The tree is simply built following the
dependencies (as provided by thehead
column). Therefore the possible non-
projectivity of a tree is ignored, though the
order of words is of course prefered when-
ever possible. An artificial root node is al-
ways added (useful for languages where
several roots are possible).

• In each such XML tree, there is only one
(marked) predicate, and in the annotated
version its arguments (extracted from the
corresponding column) and only them are
reported in the corresponding nodes.

Figure 1 shows the labeled XML tree obtained
for a (part of) example sentence.

2. Clustering bylemma: all dependency trees hav-
ing the same lemma as predicate are put to-
gether if the number of such trees is at least a

2Remark: unless stated otherwise, we will use terms
“lemma”, “POS tag” “dependency relation” or “head” to refer
to the information contained in the corresponding “P-columns”
for each word. It is worth noticing that performance would be
better using the “real” columns, but we have followed the in-
structions given by the organizers.

3Thus sentences with no predicate are skipped and several
trees possibly correspond to the same sentence.

given threshold (generally 3, also tested with
2 to 5). There is a special cluster for less fre-
quent lemmas4. Then, for each cluster, in train-
ing mode the process consists of:

(a) Generation of features for the arguments
training step.

(b) The CRF model for arguments is trained
with XCRF.

(c) Generation of features for the senses train-
ing step.

(d) The CRF model for senses5 is trained with
XCRF.

In annotation mode, the CRF model for argu-
ments is first applied to the input tree, then the
CRF model for senses (if possible, an individ-
ual evaluation is also computed).

3. Back conversion from XCRF format to CoNLL
format (in annotation mode).

In the framework of this task, features generation
is crucial for improving performance. That is why
we will mainly focus on that point in the remaining
of this paper.

2.2 The XCRF Library

XCRF (Gilleron et al., 2006; Jousse, 2007) is a pub-
lic library which has been applied successfully to
HTML documents in order to extract information or
translate the tree structure intoXML (Jousse, 2007).
More recently we have applied it to annotate func-
tion tags in a French Treebank.

In a CRF model, a feature is a function (usually
providing a boolean result) whose value depends on
the annotations present in a specialclique of the
graph, and on the value of the observed data. In
our system, each feature is defined by a pair(C, T ),
where:

• C is the set of annotations present in a given
clique, i.e. a completely connected subgraph
of the graphical structure between annotations.

4This special cluster is used as a default case. In particular,
if an unknown lemma is encoutered during annotation, it will
be annotated using the model learned for this default cluster.

5Steps 2c and 2d are skipped if the lemma has only one pos-
sible sense (or no sense is needed, like in Japanese data and for
some Czech predicates).
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Several solutions are possible to choose this
graph. In most of our experiments, we have
chosen a graph where only the node-parent
relationship between nodes is taken into ac-
count (denoted FT2), as illustrated by Figure
2. XCRF is also able to deal with simple one-
node cliques (no dependency between annota-
tion, denoted FT1) and node-parent-sibling re-
lationship (denoted FT3).

• T = {t1, . . . , tn} is a (possibly empty) set
of boolean tests on the observation (i.e. not
depending on the annotations). Eachti is an
atomic test6: for example, the test “posattribute
for first left sibling is NNS” is satisfied for node
3 in fig. 1. T is the conjunction of allti.

For example, let us define the following FT2 fea-
ture (C, T ), that would be true for node 4 in fig.
1: C is {apredparent = PRED ∧ apredcurrent =
C-A1} andT is {poschild1 = VB ∧ deprelparent =
VC}.

3 Selecting Features

Our goal is somehow to “learn” features from the
training set, in the sense that we do not explicitly
define them but generate them from the corpus. The
main parameters we use for generating a set of fea-
tures are the following:

• The feature typen, with n ≤ 3. All FT n′,
with n′ ≤ n, are also considered, because some
function tags possibly appear in FTn and not
(or more rarely) in FTn + 1.

• Various kind of accessible information (decom-
posed through two distinct parametersinforma-
tion andneighbourhood):

– Information: form, lemma, POS tags, de-
pendency relation and various secondary
attributes (columnfeatures) are available
for all nodes (i.e. word), in every tree ex-
tracted from the corpus.

– Neighbourhood: Given a current node, the
“neighbourhood” defines the set of nodes

6A test is provided to XCRF as an XPath expression, which
will be applied to the current node in the XML tree correspond-
ing to the sentence.

Sentence

2, are
VBP, ROOT

1, Exports
NNS, SBJ

A1

3, thought
VBN, VC

PRED

4, to
TO, OPRD

C-A1

5, have
VB, IM

6, risen
VBN, VC

7, strongly
RB, MNR

8, in
IN, TMP

9, August
NNP, PMOD

[...]

Figure 1: a labeled example for the (part of) sentence
“Exports are thought to have risen strongly in August
[...]”: the nodes are represented with their POS tags, and
in bold face the corresponding annotation associated with
the predicate “thought” (label PRED was added during
preprocessing, see 3.1)

⊥

⊥

A1 PRED

C-A1

⊥

⊥

⊥ ⊥

⊥

[...]

Figure 2: graph for a FT2-CRF for the annotation of the
sentence of Figure 1 (where⊥ means “no annotation”)
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that will be observed to help deduce its an-
notation: only this node, or also its parent,
possibly its siblings, etc.

• The maximum number of (atomic) tests in the
setT for these nodes: combining several tests
makes features more precise (conjunction), but
also more numerous.

A few other parameters may be added to speed up
learning:

• minimum proportion for an argument label
which is present in the data to be taken into ac-
count,

• minimum proportion for a feature which is
present in the data to be included in the model,

• and maximum number of sentences to process
by XCRF in the training step.

We try to use as less linguistic knowledge as pos-
sible, because we are interested in testing to what
extent the model is able to learn such knowledge by
itself. Moreover, we observe that using too many
features and/or examples as input in XCRF requires
a lot of time and memory (sometimes too much), so
we have to restrict the selection to the most relevant
kind of information in order to get a tractable ma-
chinery. This is why we use only POS tags (pos)
and dependency relations (deprel) (as one can see in
fig. 1). Finally the process of generating features
consists in parsing the training data in the follow-
ing way: for each encoutered clique, all the possible
(combinations of) tests concerning the given neigh-
bourhood are generated, and each of them forms a
feature together with the observed clique.

3.1 Learning Argument Roles

In our system, the arguments and the sense of a pred-
icate are trained (or annotated) one after the other:
the former is always processed before the latter, thus
the dependency holds only in the direction from ar-
guments to sense. Therefore the training of argu-
ments only relies on the observed trees (actually
only the neighbourhood considered and the argu-
ments cliques). In order to help the learner locate
the right arguments, a special labelPRED is added

as “argument” to the node corresponding to the tar-
get predicate: by this way cliques can more easily
take the tree structure into account in the neighbour-
hood of the predicate.

After some tests using the development set as
test set, we observed that the following parameters
were the best suited to build a reliable CRF model
(for the arguments) in a reasonable time (and thus
used them to learn the final models): the neigh-
bourhood consists in the node itself, its parent and
grand-parent, first and second siblings on both sides
and first child; the FT2 model performs quite cor-
rectly (FT3 has been discarded because it would
have taken too much time), and at most two tests
are included in a feature.

3.2 Learning Predicate Senses

The step of predicting senses can use the arguments
that have been predicted in the previous step. In par-
ticular, the list of all arguments that have been found
is added and may be used as a test in any feature.
We did not use at all the frame sets provided with
the data: our system is based only on the sentences.
This choice is mainly guided by our goal to build a
generic system, thus does not need a lot of input in-
formation in various formats. The lemma part of the
predicate is simply copied from thelemmacolumn
(this may cause a few errors due to wrong lemmas,
as observed in the English data).

The fact that sentences have been classified by
lemma makes it convenient to learn/annotate senses:
of course lemmas which can not have more than one
sense are easily processed. In the general case, we
also use XCRF to learn a model to assign senses for
each lemma, using the following parameters: there
is no need to use another model than FT1, since in
each tree there is only one (clearly identified) node
to label; a close neighbourhood (parent, first left and
right siblings and first child) and only two tests are
enough to obtain satisfactory results.

4 Results and Discussion

4.1 General Results

Due to limited time and resources, we had to relax
some time-consuming constraints for some clusters
of sentences (concerning mainly the biggest training
sets, namely Czech and English): in some cases, the
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threshold for a feature to be selected has been in-
creased, resulting in a probably quite lower perfor-
mance for these models. Ideally we would also have
done more tests with all languages to fine-tune pa-
rameters. Nevertheless, we have obtained quite sat-
isfying results for such a generic approach: the av-
erage F1-measure is 66.49%, ranging from 57.75%
(Japanese) to 72.14% (English). These results show
that the system is generic enough to work quite cor-
rectly with all seven languages7.

4.2 Internal Evaluation

Here we report detailed results obtained in anno-
tating the development set. Since we process the
task in two distinct steps, we can evaluate both
separately: for the arguments step, the F1-measure
ranges from 56.0% (Czech) to 61.8% (German), ex-
cept for Japanese data where it is only 27%. For the
senses step, the F1-measure is generally better: it
ranges from 61.5% for the Czech case8 to 93.3% for
Chinese.

It is also interesting to observe the difference
between using “real” indicators (i.e.lemma, pos,
deprel and head columns) versus predicted ones
(i.e. P-columns): for example, with German data
(respectively Catalan data) the F1-measure reaches
73.6% (resp. 70.8%) in the former case, but only
61.8% (resp. 60.6%) in the latter case (for the argu-
ment labeling step only).

4.3 Impact of Parameters

At first we intended to use the most precise CRF
model (namely FT3), but the fact that it generates
many more features (thus taking too much time) to-
gether with the fact that it does not improve perfor-
mance a lot made impossible to use it for the whole
data. More precisely, it was possible but only by set-
ting restrictive values for other parameters (neigh-
bourhood, thresholds), which would have decreased
performance. This is why we had to use FT2 as a

7Actually detailed evaluation shows that the system does not
deal very well with Japanese, since locating arguments is harder
in this language.

8Counting only “real senses”: it is worth noticing that Czech
data were a bit different from the other languages concerning
senses, since most predicates do not have senses (not counted
here and easy to identify) and the set of possible senses is dif-
ferent for each lemma.

compromise, thus making possible to use better val-
ues for the other parameters. We have also tested us-
ing 3 tests instead of only 2, but it does not improve
performance, or not enough to compensate for the
huge number of generated features, which requires
excessive time and/or memory for XCRF learning
step.

One of the most important parameters is the
neighbourhood, since it specifies the location (and
consequently the amount) of the information taken
into account in the features. We have tried differ-
ent cases for both the argument labeling step and the
sense disambiguation step: in the former case, ob-
serving children nodes is useless, whereas observing
the parent and grand-parent nodes together with two
siblings in both left and right handside improves the
model. On the contrary, in the senses step observing
more than close nodes is useless. These facts are not
surprising, since arguments are generally hierarchi-
cally lower than predicates in the dependency trees.

We have also studied the problem of finding an
optimal threshold for the minimum number of sen-
tences by cluster (all sentences in a given cluster
having the same lemma for predicate): if this thresh-
old is too low some clusters will not contain enough
examples to build a reliable model, and if it is too
high a lot of sentences will fall in the default clus-
ter (for which the model could be less precise). But
surprisingly the results did not show any significant
difference between using a threshold of 2, 3 or 5:
actually individual results differ, but the global per-
formance remains the same.

Finally a word has to be said about “efficiency pa-
rameters”: the most important one is the minimum
proportion for a generated feature to be included in
the final set of features for the model. Clearly, the
lower this threshold is, the better the performance
is. Nevertheless, in the framework of a limited time
task, it was necessary to set a value of 0.0005% in
most cases, and sometimes a higher value (up to
0.001%) for the big clusters: these values seem low
but prevent including a lot of features (and probably
sometimes useful ones).

5 Problems, Discussion and Future Work

Since there was a time limit and the system was used
for the first time for such a task, we had to face
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several unexpected problems and solve them quite
rapidly. Therefore one may suppose that our system
could perform better, provided more tests are done to
fine-tune parameters, especially to optimize the bal-
ance between efficiency and performance. Indeed,
there is a balance to find between the amount of in-
formation (number of features and/or examples) and
the time taken by XCRF to process the training step.
Generally speaking, performance increases with the
amount of information, but practically XCRF can
not handle a huge number of features and/or exam-
ples in a reasonable time. This is why selecting the
“right” features as soon as possible is so important.

Among various possible ways to improve the sys-
tem, we should benefit from the fact that CRF do not
need a lot of examples as input to learn quite cor-
rectly. Informally, the XCRF library seems to have
some kind of “optimal point”: before this point the
model learned could be better, but beyond this point
time and/or memory are excessive. Thus one can
try for example to apply an iterative process using a
sufficiently low number of features at each step, to
select the more useful ones depending on the weight
XCRF assigns to them.

Since the Crotal system obtained reasonable re-
sults in this “non ideal” context, we are quite confi-
dent in the fact that it can be significantly improved.
The CoNLL 09 Shared Task has been a good op-
portunity to validate our approach with a non trivial
problem. Even if the performance is not excellent,
several important points are satisfying: this experi-
ence shows that the system is able to handle such a
task, and that it is generic enough to deal with very
different languages.
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Abstract 

This paper describes a pipelined approach for 
CoNLL-09 shared task on joint learning of 
syntactic and semantic dependencies. In the 
system, we handle syntactic dependency pars-
ing with a transition-based approach and util-
ize MaltParser as the base model. For SRL, 
we utilize a Maximum Entropy model to iden-
tify predicate senses and classify arguments. 
Experimental results show that the average 
performance of our system for all languages 
achieves 67.81% of macro F1 Score, 78.01% 
of syntactic accuracy, 56.69% of semantic la-
beled F1, 71.66% of macro precision and 
64.66% of micro recall. 

1 Introduction 

Given a sentence with corresponding part-of-
speech for each word, the task of syntactic and se-
mantic dependency parsing contains two folds: (1) 
identifying the syntactic head of each word and 
assigning the dependency relationship between the 
word and its head; (2) identifying predicates with 
proper senses and labeling semantic dependencies 
for them. 

For data-driven syntactic dependency parsing, 
many approaches are based on supervised learning 
using treebank or annotated datasets. Currently, 
graph-based and transition-based algorithms are 
two dominating approaches that are employed by 
many researchers, especially in previous CoNLL 
shared tasks. Graph-based algorithms (Eisner, 
1996; McDonald et al., 2005) assume a series of 
dependency tree candidates for a sentence and the 

goal is to find the dependency tree with highest 
score. Transition-based algorithms (Yamada and 
Matsumoto, 2003; Nivre et al., 2004) utilize transi-
tion histories learned from dependencies within 
sentences to predict next state transition and build 
the optimal transition sequence. Although different 
strategies were considered, two approaches yielded 
comparable results at previous tasks. 

Semantic role labeling contains two problems: 
identification and labeling. Identification is a bi-
nary classification problem, and the goal is to iden-
tify annotated units in a sentence; while labeling is 
a multi-class classification problem, which is to 
assign arguments with appropriate semantic roles. 
Hacioglu (2004) utilized predicate-argument struc-
ture and map dependency relations to semantic 
roles. Liu et al. (2005) combined two problems 
into a classification one, avoiding some annotated 
units being excluded due to some incorrect identi-
fication results. In addition, various features are 
also selected to improve accuracy of SRL. 

In this paper, we propose a pipelined approach 
for CoNLL-09 shared task on joint learning of syn-
tactic and semantic dependencies, and describe our 
system that can handle multiple languages. In the 
system, we handle syntactic dependency parsing 
with a transition-based approach. For SRL, we util-
ize Maximum Entropy model to identify predicate 
senses and classify arguments. 

The remain of the paper is organized as follows. 
In Section 2, we discuss the processing mechanism 
containing syntactic and semantic dependency 
parsing of our system in detail. In Section 3, we 
give the evaluation results and analysis. Finally, 
the conclusion and future work are given in Sec-
tion 4. 
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2 System Description  

The system, which is a two-stage pipeline, proc-
esses syntactic and semantic dependencies respec-
tively. To reduce the difficulties in SRL, predicates 
of each sentence in all training and evaluation data 
are labeled, thus predicate identification can be 
ignored. 

 
Figure 1. System Architectures 

 
For syntactic dependencies, we employ a state-

of-the-art dependency parser and basic plus ex-
tended features for parsing. For semantic depend-
encies, a Maximum Entropy Model is used both in 
predicate sense identification and semantic role 
labeling. Following subsections will show compo-
nents of our system in detail. 

2.1 Syntactic Dependency Parsing 

In the system, MaltParser1 is employed for syntac-
tic dependency parsing. MaltParser is a data-driven 
deterministic dependency parser, based on a Sup-
port Vector Machine classifier. An extensive re-
search (Nivre, 2007) parsing with 9 different 
languages shows that the parser is language-
independent and yields good results. 

MaltParser supports two kinds of parsing algo-
rithms: Nivre’s algorithms and Covington’s incre-
mental algorithms. Nivre’s algorithms, which are 
deterministic algorithms consisting of a series of 
shift-reduce procedures, defines four operations: 

·Right. For a given triple <t|S, n|I, A>, S 
represents STACK and I represents INPUT. If 
dependency relation t → n exists, it will be 

                                                           
1 http://w3.msi.vxu.se/~jha/maltparser/ 

pendency relation t→n exists, it will be appended 
into A and t will be removed from S. 

·Left. For a given triple <t|S, n|I, A>, if de-
pendency relation n→t exists, it will be appended 
into A and n will be pushed into S. 

·Reduce. If dependency relation n→t does not 
exist, and the parent node of t exists left to it, t will 
be removed from S. 

·Shift. If none of the above satisfies, n will be 
pushed into S. 

The deterministic algorithm simplifies determi-
nation for Reduce operation. As a matter of fact, 
some languages, such as Chinese, have more flexi-
ble word order, and some words have a long dis-
tance with their children. In this case, t should not 
be removed from S, but be handled with Shift op-
eration. Otherwise, dependency relations between t 
and its children will never be identified, thus se-
quential errors of dependency relations may occur 
after the Reduce operation. 

For syntactic dependencies with long distance, 
an improved Reduce strategy is: if the dependency 
relation between n and t does not exist, and the 
parent node of t exists left to it and the dependency 
relation between the parent node and n, t will be 
removed from S. The Reduce operation is projec-
tive, since it doesn’t influence the following pars-
ing procedures. The Improved algorithm is 
described as follows: 

(1) one of the four operations is performed ac-
cording to the dependency relation between t and n 
until EOS; if only one token remains in S, go to (3). 

(2) continue to select operations for remaining 
tokens in S; when Shift procedure is performed, 
push t to S; if only one token remains in S and I 
contains more tokens than only EOS, goto (1). 

(3) label all odd tokens in S as ROOT, pointing 
to EOS. 

We also utilize history-based feature models 
implemented in the parser to predict the next action 
in the deterministic derivation of a dependency 
structure. The parser provides some default fea-
tures that is general for most languages: (1) part-
of-speech features of TOP and NEXT and follow-
ing 3 tokens; (2) dependency features of TOP con-
taining leftmost and rightmost dependents, and of 
NEXT containing leftmost dependents; (3) Lexical 
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features of TOP, head of TOP, NEXT and follow-
ing one token. We also extend features for multiple 
languages: (1) count of part-of-speech features of 
following tokens extend to 5; (2) part-of-speech 
and dependent features of head of TOP. 

2.2 Semantic Dependency Parsing 

Each defacto predicate in training and evaluation 
data of CoNLL09 is labeled with a sign ‘Y’, which 
simplifies the work of semantic dependency pars-
ing. In our system, semantic dependency parsing is 
a pipeline that contains two parts: predicate sense 
identification and semantic role labeling. For 
predicate sense identification, each predicate is 
assigned a certain sense number. For semantic role 
labeling, local and global features are selected. 
Features of each part are trained by a classification 
algorithm.  Both parts employ a Maximum Entropy 
Tool MaxEnt in a free package OpenNLP 2 as a 
classifier. 

2.2.1  Predicate Sense Identification 

The goal of predicate sense identification is to de-
cide the correct frame for a predicate. According to 
PropBank (Palmer, et al., 2005), predicates contain 
one or more rolesets corresponding to different 
senses. In our system, a classifier is employed to 
identify each predicate’s sense.  

Suppose { }01, 02, , LC = … N

s t

                                                          

 is the sense set 
(NL is the count of categories corresponding to the 
language L, eg., in Chinese training set NL = 10 
since predicates have at most 10 senses in the set), 
and ti is the ith sense of word w in sentence s. The 
model is implemented to assign each predicate to 
the most probatilistic sense. 

( | , )i C it P w∈=argmax                (1) 

Features for predicate sense identification are 
listed as follows: 

· WORD, LEMMA, DEPREL: The lexical 
form and lemma of the predicate; the dependency 
relation between the predicate and its head; for 
Chinese and Japanese, WORD is ignored. 

· HEAD_WORD, HEAD_POS: The lexical 
form and part-of-speech of the head of the predi-
cate. 

 
2 http://maxent.sourceforge.net/ 

· CHILD_WORD_SET, CHILD_POS_SET, 
CHILD_DEP_SET: The lexical form, part-of-
speech and dependency relation of dependents of 
the predicate. 

·LSIB_WORD, LSIB_POS, LSIB_DEPREL, 
RSIB_WORD, RSIB_POS, RSIB_DEPREL: The 
lexical form, part-of-speech and dependency rela-
tion of the left and right sibling token of the predi-
cate. Features of sibling tokens are adopted, 
because senses of some predicates can be inferred 
from its left or right sibling. 

For English data set, we handle verbal and 
nominal predicates respectively; for other lan-
guages, we handle all predicates with one classifier. 
If a predicate in the evaluation data does not exist 
in the training data, it is assigned the most frequent 
sense label in the training data. 

2.2.2  Semantic Role Labeling 

Semantic role labeling task contains two parts: ar-
gument identification and argument classification. 
In our system the two parts are combined as one 
classification task. Our reason is that those argu-
ment candidates that potentially become semantic 
roles of corresponding predicates should not be 
pruned by incorrect argument identification. In our 
system, a predicate-argument pair consists of any 
token (except predicates) and any predicate in a 
sentence. However, we find that argument classifi-
cation is a time-consuming procedure in the ex-
periment because the classifier spends much time 
on a great many of invalid predicate-argument 
pairs. To reduce useless computing, we add a sim-
ple pruning method based on heuristic rules to re-
move invalid pairs, such as punctuations and some 
functional words.  

Features used in our system are based on (Ha-
cioglu, 2004) and (Pradhan et al, 2005), and de-
scribed as follows:  

·WORD, LEMMA, DEPREL: The same with 
those mentioned in section 2.2.1. 

·VOICE: For verbs, the feature is Active or 
Passive; for nouns, it is null. 

·POSITION: The word’s position correspond-
ing to its predicate: Left, Right or Self. 

·PRED: The lemma plus sense of the word. 
·PRED_POS: The part-of-speech of the predi-

cate. 
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·LEFTM_WORD, LEFTM_POS, RIGHTM_ 
WORD, RIGHTM_POS: Leftmost and rightmost 
word and their part-of-speech of the word. 

· POS_PATH: All part-of-speech from the 
word to its predicate, including Up, Down, Left 
and Right, eg. “NN↑VV↓CC↓VV”. 

·DEPREL_PATH: Dependency relations from 
the word to its predicate, eg. “COMP↑RELC↑

COMP↓”. 
·ANC_POS_PATH, ANC_DEPREL_PATH: 

Similar to POS_PATH and DEPREL_PATH, part-
of-speech and dependency relations from the word 
to the common ancestor with its predicate. 

·PATH_LEN: Count of passing words from 
the word to its predicate. 

· FAMILY: Relationship between the word 
and its predicate, including Child, Parent, Descen-
dant, Ancestor, Sibling, Self and Null. 

· PRED_CHD_POS, PRED_CHD_DEPREL: 
Part-of-speech and dependency relations of all 
children of the word’s predicate. 

For different languages, some features men-
tioned above are invalid and should be removed, 
and some extended features could improve the per-
formance of the classifier. In our system we mainly 
focus on Chinese, therefore, WORD and VOICE 
should be removed when processing Chinese data 
set. We also adopt some features proposed by (Xue, 
2008): 

· POS_PATH_BA, POS_PATH_SB, POS_ 
PATH_LB: BA and BEI are functional words that 
impact the order of arguments. In PropBank, BA 
words have the POS tag BA, and BEI words have 
two POS tags: SB (short BEI) and LB (long BEI). 

3 Experimental Results  

Our experiments are based on a PC with a Intel 
Core 2 Duo 2.1G CPU and 2G memory. Training 
and evaluation data (Taulé et al., 2008; Xue et al., 
2008; Hajič et al., 2006; Palmer et al., 2002; Bur-
chardt et al., 2006; Kawahara et al., 2002) have 
been converted to a uniform CoNLL Shared Task 
format. In all experiments, SVM and ME model 
are trained using training data, and tested with 
development data of all languages.  

The system for closed challenge is designed as 
two parts. For syntactic dependency training and 
parsing, we utilize the projective model in Malt-
Parser for data sets. We also follow default settings 

in MaltParser, such as assigned parameters for 
LIBSVM and combined prediction strategy, and 
utilize improved approaches mentioned in section 
2. For semantic dependency training and parsing, 
we choose the count of iteration as 100 and cutoff 
value as 10 for the ME model. Table 1 shows the 
training time for syntactic and semantic depend-
ency of all languages. Parsing time for syntactic is 
not more than 30 minutes, and for semantic is not 
more than 5 minutes of each language. 

 
 syn prd sem 

English 7h 12min 47min 
Chinese 8h 18min 61min 
Japanese 7h 14min 46min 

Czech 13h 46min 77min 
German 6h 16min 54min 
Spanish 6h 15min 55min 
Catalan 6h 15min 50min 

Table 1. Training cost for all languages. syn, prd and 
sem mean training time for syntactic dependency, predi-
cate identification and semantic dependency. 

3.1 Syntactic Dependency Parsing 

We utilize MaltParser with improved algorithms 
mentioned in section 2.1 for syntactic dependency 
parsing, and the results are shown in Table 2. 

 
 LAS UAS label-acc. 

English 87.57 89.98 92.19 
Chinese 79.17 81.22 85.94 
Japanese 91.47 92.57 97.28 

Czech 57.30 75.66 65.39 
German 76.63 80.31 85.97 
Spanish 76.11 84.40 84.69 
Catalan 77.84 86.41 85.78 

Table 2. Performance of syntactic dependency parsing 
 
Table 2 indicates that parsing for Japanese and 

English data sets has a better performance than 
other languages, partly because determinative algo-
rithm and history-based grammar are more suited 
for these two languages. To compare the perform-
ance of our approach of improved deterministic 
algorithm and extended features, we make another 
experiment that utilize original arc-standard algo-
rithm and base features for syntactic experiments. 
Due to time limitation, the experiments are only 
based on Chinese training and evaluation data. The 
results show that LAS and UAS drops about 2.7% 
and 2.2% for arc-standard algorithm, 1.6% and 
1.2% for base features. They indicate that our de-
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terministic algorithm and the extend features can 
help to improve syntactic dependency parsing. We 
also notice that the results of Czech achieve a 
lower performance than other languages. It mainly 
because the language has more rich morphology, 
usually accompanied by more flexible word order. 
Although using a large training set, linguistic prop-
erties greatly influence the parsing result. In addi-
tion, extended features are not suited for this 
language and the feature model should be opti-
mized individually. 

For all of the experiments we mainly focus on 
the language of Chinese. When parsing Chinese 
data sets we find that the focus words where most 
of the errors occur are almost punctuations, such as 
commas and full stops. Apart from errors of punc-
tuations, most errors occur on prepositions such as 
the Chinese word ‘at’. Most of these problems 
come from assigning the incorrect dependencies, 
and the reason is that the parsing algorithm con-
cerns the form rather than the function of these 
words. In addition, the prediction of dependency 
relation ROOT achieves lower precision and recall 
than others, indicating that MaltParser overpredicts 
dependencies to the root. 

3.2 Semantic Dependency Parsing 

MaxEnt is employed as our classifier to train and 
parse semantic dependencies, and the results are 
shown in Table 3, in which all criterions are la-
beled. 

 
 P R F1 

English 76.57 60.45 67.56 
Chinese 75.45 69.92 72.58 
Japanese 91.93 43.15 58.73 

Czech 68.83 57.78 62.82 
German 62.96 47.75 54.31 
Spanish 40.11 39.50 39.80 
Catalan 41.34 40.66 41.00 

Table 3. Performance of semantic dependency parsing 
 
As shown in Table 3, the scores of the latter 

five languages are quite lower than those of the 
former two languages, and the main reason could 
be inferred from the scores of Table 2 that the drop 
of the performance of semantic dependency pars-
ing comes from the low performance of syntactic 
dependency parsing. Another reason is that, mor-
phological features are not be utilized in the classi-
fier. Our post experiments after submission show 

that average performance could improve the per-
formance after adding morphological and some 
combined features. In addition, difference between 
precision and recall indicates that the classification 
procedure works better than the identification 
procedure in semantic role labeling.  

For Chinese, semantic role of some words with 
part-of-speech VE have been mislabeled. It’s 
mainly because that these words in Chinese have 
multiple part-of-speech. The errors of POS and 
PRED greatly influence the system to perform 
these words. Another main problem occurs on the 
pairs NN + A0/A1. Identification of the two pairs 
are much lower than VA/VC/VE/VV + A0/A1 
pairs. The reason is that the identification of nomi-
nal predicates have more errors than that of verbal 
predicates due to the combination of SRL for these 
two kinds of predicates. For further study, verbal 
predicates and nominal predicates should be han-
dled respectively so that the overall performance 
can be improved.  

3.3 Overall Performance 

The average performance of our system for all lan-
guages achieves 67.81% of macro F1 Score, 
78.01% of syntactic accuracy, 56.69% of semantic 
labeled F1, 71.66% of macro precision and 64.66% 
of micro recall. 

4 Conclusion 

In this paper, we propose a pipelined approach for 
CoNLL-09 shared task on joint learning of syntac-
tic and semantic dependencies, and describe our 
system that can handle multiple languages. Our 
system focuses on improving the performance of 
syntactic and semantic dependency respectively. 
Experimental results show that the overall per-
formance can be improved for multiple languages 
by long distance dependency algorithm and ex-
tended history-based features. Besides, the system 
fits for verbal predicates than nominal predicates 
and the classification procedure works better than 
identification procedure in semantic role labeling. 
For further study, respective process should be 
handled between these two kinds of predicates, and 
argument identification should be improved by 
using more discriminative features for a better 
overall performance. 
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Abstract

I describe a fast multilingual parser for seman-
tic dependencies. The parser is implemented
as a pipeline of linear classifiers trained with
support vector machines. I use only first or-
der features, and no pair-wise feature combi-
nations in order to reduce training and pre-
diction times. Hyper-parameters are carefully
tuned for each language and sub-problem.

The system is evaluated on seven different
languages: Catalan, Chinese, Czech, English,
German, Japanese and Spanish. An analysis
of learning rates and of the reliance on syn-
tactic parsing quality shows that only modest
improvements could be expected for most lan-
guages given more training data; Better syn-
tactic parsing quality, on the other hand, could
greatly improve the results. Individual tun-
ing of hyper-parameters is crucial for obtain-
ing good semantic parsing quality.

1 Introduction

This paper presents my submission for the seman-
tic parsing track of the CoNLL 2009 shared task on
syntactic and semantic dependencies in multiple lan-
guages (Hajič et al., 2009). The submitted parser is
simpler than the submission in which I participated
at the CoNLL 2008 shared task on joint learning of
syntactic and semantic dependencies (Surdeanu et
al., 2008), in which we used a more complex com-
mittee based approach to both syntax and semantics
(Samuelsson et al., 2008). Results are on par with
our previous system, while the parser is orders of
magnitude faster both at training and prediction time
and is able to process natural language text in Cata-
lan, Chinese, Czech, English, German, Japanese and
Spanish. The parser depends on the input to be anno-
tated with part-of-speech tags and syntactic depen-
dencies.

2 Semantic parser

The semantic parser is implemented as a pipeline of
linear classifiers and a greedy constraint satisfaction
post-processing step. The implementation is very
similar to the best performing subsystem of the com-
mittee based system in Samuelsson et al. (2008).

Parsing consists of four steps: predicate sense
disambiguation, argument identification, argument
classification and predicate frame constraint satis-
faction. The first three steps are implemented us-
ing linear classifiers, along with heuristic filtering
techniques. Classifiers are trained using the sup-
port vector machine implementation provided by the
LIBLINEAR software (Fan et al., 2008). MALLET

is used as a framework for the system (McCallum,
2002).

For each classifier, the c-parameter of the SVM
is optimised by a one dimensional grid search using
threefold cross validation on the training set. For
the identification step, the c-parameter is optimised
with respect to F1-score of the positive class, while
for sense disambiguation and argument labelling the
optimisation is with respect to accuracy. The regions
to search were identified by initial runs on the devel-
opment data. Optimising these parameters for each
classification problem individually proved to be cru-
cial for obtaining good results.

2.1 Predicate sense disambiguation

Since disambiguation of predicate sense is a multi-
class problem, I train the classifiers using the method
of Crammer and Singer (2002), using the implemen-
tation provided by LIBLINEAR. Sense labels do not
generalise over predicate lemmas, so one classifier
is trained for each lemma occurring in the training
data. Rare predicates are given the most common
sense of the predicate. Predicates occurring less than
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7 times in the training data were heuristically deter-
mined to be considered rare. Predicates with unseen
lemmas are labelled with the most common sense
tag in the training data.

2.1.1 Feature templates
The following feature templates are used for predi-
cate sense disambiguation:

PREDICATEWORD

PREDICATE[POS/FEATS]
PREDICATEWINDOWBAGLEMMAS

PREDICATEWINDOWPOSITION[POS/FEATS]
GOVERNORRELATION

GOVERNOR[WORD/LEMMA]
GOVERNOR[POS/FEATS]
DEPENDENTRELATION

DEPENDENT[WORD/LEMMA]
DEPENDENT[POS/FEATS]
DEPENDENTSUBCAT.

The *WINDOW feature templates extract features
from the two preceding and the two following tokens
around the predicate, with respect to the linear order-
ing of the tokens. The *FEATS templates are based
on information in the PFEATS input column for the
languages where this information is provided.

2.2 Argument identification and labelling

In line with most previous pipelined systems, iden-
tification and labelling of arguments are performed
as two separate steps. The classifiers in the identi-
fication step are trained with the standard L2-loss
SVM formulation, while the classifiers in the la-
belling step are trained using the method of Cram-
mer and Singer.

In order to reduce the number of candidate argu-
ments in the identification step, I apply the filter-
ing technique of Xue and Palmer (2004), trivially
adopted to the dependency syntax formalism. Fur-
ther, a filtering heuristic is applied in which argu-
ment candidates with rare predicate / argument part-
of-speech combinations are removed; rare meaning
that the argument candidate is actually an argument
in less than 0.05% of the occurrences of the pair.
These heuristics greatly reduce the number of in-
stances in the argument identification step and im-
prove performance by reducing noise from the train-
ing data.

Separate classifiers are trained for verbal pred-
icates and for nominal predicates, both in order
to save computational resources and because the
frame structures do not generalise between verbal
and nominal predicates. For Czech, in order to re-
duce training time I split the argument identification
problem into three sub-problems: verbs, nouns and
others, based on the part-of-speech of the predicate.
In hindsight, after solving a file encoding related bug
which affected the separability of the Czech data
set, a split into verbal and nominal predicates would
have sufficed. Unfortunately I was not able to rerun
the Czech experiments on time.

2.2.1 Feature templates
The following feature templates are used both for
argument identification and argument labelling:

PREDICATELEMMASENSE

PREDICATE[POS/FEATS]
POSITION

ARGUMENT[POS/FEATS]
ARGUMENT[WORD/LEMMA]
ARGUMENTWINDOWPOSITIONLEMMA

ARGUMENTWINDOWPOSITION[POS/FEATS]
LEFTSIBLINGWORD

LEFTSIBLING[POS/FEATS]
RIGHTSIBLINGWORD

RIGHTSIBLING[POS/FEATS]
LEFTDEPENDENTWORD

RIGHTDEPENDENT[POS/FEATS]
RELATIONPATH

TRIGRAMRELATIONPATH

GOVERNORRELATION

GOVERNORLEMMA

GOVERNOR[POS/FEATS]
Most of these features, introduced by Gildea and Ju-
rafsky (2002), belong to the folklore by now. The
TRIGRAMRELATIONPATH is a ”soft” version of the
RELATIONPATH template, which treats the relation
path as a bag of triplets of directional labelled depen-
dency relations. Initial experiments suggested that
this feature slightly improves performance, by over-
coming local syntactic parse errors and data sparse-
ness in the case of small training sets.

2.2.2 Predicate frame constraints
Following Johansson and Nugues (2008) I impose
the CORE ARGUMENT CONSISTENCY and CON-
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TINUATION CONSISTENCY constraints on the gen-
erated semantic frames. In the cited work, these
constraints are used to filter the candidate frames
for a re-ranker. I instead perform a greedy search
in which only the core argument with the highest
score is kept when the former constraint is violated.
The latter constraint is enforced by simply dropping
any continuation argument lacking its correspond-
ing core argument. Initial experiments on the de-
velopment data indicates that these simple heuristics
slightly improves semantic parsing quality measured
with labelled F1-score. It is possible that the im-
provement could be greater by using L2-regularised
logistic regression scores instead of the SVM scores,
since the latter can not be interpreted as probabili-
ties. However, logistic regression performed consis-
tently worse than the SVM formulation of Crammer
and Singer in the argument labelling step.

2.2.3 Handling of multi-function arguments

In Czech and Japanese an argument can have multi-
ple relations to the same predicate, i.e. the seman-
tic structure needs sometimes be represented by a
multi-graph. I chose the simplest possible solution
and treat these structures as ordinary graphs with
complex labels. This solution is motivated by the
fact that the palette of multi-function arguments is
small, and that the multiple functions mostly are
highly interdependent, such as in the ACT|PAT com-
plex which is the most common in Czech.

3 Results

The semantic parser was evaluated on in-domain
data for Catalan, Chinese, Czech, English, German,
Japanese and Spanish, and on out-of-domain data
for Czech, English and German. The respective
data sets are described in Taulé et al. (2008), Palmer
and Xue (2009), Hajič et al. (2006), Surdeanu et al.
(2008), Burchardt et al. (2006) and Kawahara et al.
(2002).

My official submission scores are given in table
1, together with post submission labelled and un-
labelled F1-scores. The official submissions were
affected by bugs related to file encoding and hyper-
parameter search. After resolving these bugs, I ob-
tained an improvement of mean F1-score of almost
10 absolute points compared to the official scores.

Lab F1 Lab F1 Unlab F1

Catalan 57.11 67.14 93.31
Chinese 63.41 74.14 82.57
Czech 71.05 78.29 89.20
English 67.64 78.93 88.70
German 53.42 62.98 89.64
Japanese 54.74 61.44 66.01
Spanish 61.51 69.93 93.54
Mean 61.27 70.41 86.14
Czech† 71.59 78.77 87.13
English† 59.82 68.96 86.23
German† 50.43 47.81 79.52
Mean† 60.61 65.18 84.29

Table 1: Semantic labelled and unlabelled F1-scores for
each language and domain. Left column: official labelled
F1-score. Middle column: post submission labelled F1-
score. Right column: post submission unlabelled F1-
score. † indicates out-of-domain test data.

Clearly, there is a large difference in performance
for the different languages and domains. As could
be expected the parser performs much better for the
languages for which a large training set is provided.
However, as discussed in the next section, simply
adding more training data does not seem to solve the
problem.

Comparing unlabelled F1-scores with labelled
F1-scores, it seems that argument identification and
labelling errors contribute almost equally to the total
errors for Chinese, Czech and English. For Catalan,
Spanish and German argument identification scores
are high, while labelling scores are in the lower
range. Japanese stands out with exceptionally low
identification scores. Given that the quality of the
predicted syntactic parsing was higher for Japanese
than for any other language, the bottleneck when
performing semantic parsing seems to be the limited
expressivity of the Japanese syntactic dependency
annotation scheme.

Interestingly, for Czech, the result on the out-of-
domain data set is better than the result on the in-
domain data set, even though the unlabelled result
is slightly worse. For English, on the other hand
the performance drop is in the order of 10 absolute
labelled F1 points, while the drop in unlabelled F1-
score is comparably small. The result on German
out-of-domain data seems to be an outlier, with post-
submission results even worse than the official sub-
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10% 25% 50% 75% 100%
Catalan 54.86 60.52 65.22 66.35 67.14
Chinese 72.93 73.40 73.77 74.08 74.14
Czech 75.42 76.90 77.69 78.00 78.29
English 75.75 77.56 78.37 78.71 78.93
German 47.77 54.74 58.94 61.02 62.98
Japanese 59.82 60.34 60.99 61.37 61.44
Spanish 58.80 64.32 68.35 69.34 69.93
Mean 63.62 66.83 69.05 69.84 70.41
Czech† 76.51 77.48 78.41 78.59 78.77
English† 66.04 67.54 68.37 69.00 68.96
German† 41.65 45.94 46.24 47.45 47.81
Mean† 61.40 63.65 64.34 65.01 65.18

Table 2: Semantic labelled F1-scores w.r.t. training set
size. † indicates out-of-domain test data.

mission results. I suspect that this is due to a bug.

3.1 Learning rates

In order to assess the effect of training set size on
semantic parsing quality, I performed a learning rate
experiment, in which the proportion of the training
set used for training was varied in steps between
10% and 100% of the full training set size.

Learning rates with respect to labelled F1-scores
are given in table 2. The improvement in scores are
modest for Chinese, Czech, English and Japanese,
while Catalan, German and Spanish stand out by
vast improvements with additional training data.
However, the improvement when going from 75% to
100% of the training data is only modest for all lan-
guages. With the exception for English, for which
the parser achieves the highest score, the relative
labelled F1-scores follow the relative sizes of the
training sets.

Looking at learning rates with respect to unla-
belled F1-scores, given in table 3, it is evident that
adding more training data only has a minor effect on
the identification of arguments.

From table 4, one can see that predicate sense dis-
ambiguation is the sub-task that benefits most from
additional training data. This is not surprising, since
the senses does not generalise, and hence we cannot
hope to correctly label the senses of unseen predi-
cates; the only way to improve results with the cur-
rent formalism seems to be by adding more training
data.

The limited power of a pipeline of local classi-

10% 25% 50% 75% 100%
Catalan 93.12 93.18 93.28 93.35 93.31
Chinese 82.37 82.45 82.54 82.55 82.57
Czech 89.03 89.12 89.17 89.21 89.20
English 87.96 88.38 88.52 88.67 88.70
German 88.23 89.02 89.63 89.53 89.64
Japanese 65.64 65.75 65.88 66.02 66.01
Spanish 93.52 93.49 93.52 93.53 93.54
Mean 85.70 85.91 86.08 86.12 86.14
Czech† 86.76 87.02 87.16 87.08 87.13
English† 85.67 86.14 86.22 86.20 86.23
German† 77.35 78.31 79.09 79.10 79.52
Mean† 83.26 83.82 84.16 84.13 84.29

Table 3: Semantic unlabelled F1-scores w.r.t. training set
size. † indicates out-of-domain test data.

10% 25% 50% 75% 100%
Catalan 30.61 40.29 53.83 55.83 58.95
Chinese 94.06 94.37 94.71 95.10 95.26
Czech 83.24 84.75 85.78 86.21 86.60
English 92.18 93.68 94.83 95.35 95.60
German 34.91 47.27 58.18 62.18 66.55
Japanese 99.07 99.07 99.07 99.07 99.07
Spanish 38.53 50.22 59.59 62.01 66.26
Mean 67.51 72.81 78.00 79.39 81.18
Czech† 89.05 89.88 91.06 91.38 91.56
English† 83.64 84.27 84.83 85.70 85.94
German† 33.64 43.36 42.59 44.44 45.22
Mean† 68.78 72.51 72.83 73.84 74.24

Table 4: Predicate sense disambiguation F1-scores w.r.t.
training set size. † indicates out-of-domain test data.

fiers shows itself in the exact match scores, given
in table 5. This problem is clearly not remedied by
additional training data.

3.2 Dependence on syntactic parsing quality

Since I only participated in the semantic parsing
task, the results reported above rely on the provided
predicted syntactic dependency parsing. In order to
investigate the effect of parsing quality on the cur-
rent system, I performed the same learning curve
experiments with gold standard parse information.
These results, shown in tables 6 and 7, give an upper
bound on the possible improvement of the current
system by means of improved parsing quality, given
that the same syntactic annotation formalism is used.

Labelled F1-scores are greatly improved for all
languages except for Japanese, when using gold
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10% 25% 50% 75% 100%
Catalan 6.77 9.08 11.39 11.17 12.24
Chinese 17.02 17.33 17.61 17.76 17.68
Czech 9.33 9.59 9.97 9.95 10.11
English 12.01 12.76 12.96 13.13 13.17
German 76.95 78.50 78.95 79.20 79.50
Japanese 1.20 1.40 1.80 1.60 1.60
Spanish 8.23 10.20 12.93 13.39 13.16
Mean 18.79 19.84 20.80 20.89 21.07
Czech† 2.53 2.79 2.79 2.87 2.87
English† 19.06 19.53 19.76 20.00 20.00
German† 15.98 19.24 17.82 19.94 20.08
Mean† 12.52 13.85 13.46 14.27 14.32

Table 5: Percentage of exactly matched predicate-
argument frames w.r.t. training set size. † indicates out-
of-domain test data.

10% 25% 50% 75% 100%
Catalan 62.65 72.50 75.39 77.03 78.86
Chinese 82.59 83.23 83.90 83.94 84.03
Czech 79.15 80.62 81.46 81.91 82.24
English 79.84 81.74 82.65 83.01 83.25
German 52.15 60.66 65.12 65.71 68.36
Japanese 60.85 61.76 62.55 62.85 63.23
Spanish 66.40 72.47 75.70 77.73 78.38
Mean 69.09 73.28 75.25 76.03 76.91
Czech† 78.64 80.07 80.77 81.01 81.20
English† 73.05 74.18 74.99 75.28 75.81
German† 52.06 52.77 54.72 56.22 56.35
Mean† 67.92 69.01 70.16 70.84 71.12

Table 6: Semantic labelled F1-scores w.r.t. training set
size, using gold standard syntactic and part-of-speech tag
annotation. † indicates out-of-domain test data.

standard syntactic and part-of-speech annotations.
For Catalan, Chinese and Spanish the improvement
is in the order of 10 absolute points. For Japanese
the improvement is a meagre 2 absolute points. This
is not surprising given that the quality of the pro-
vided syntactic parsing was already very high for
Japanese, as discussed previously.

Results with respect to unlabelled F1-scores fol-
low the same pattern as for labelled F1-scores.
Again, with Japanese the semantic parsing does not
benefit much from better syntactic parsing quality.
For Catalan and Spanish on the other hand, the iden-
tification of arguments is almost perfect with gold
standard syntax. The poor labelling quality for these
languages can thus not be attributed to the syntactic

10% 25% 50% 75% 100%
Catalan 99.94 99.98 99.99 99.99 99.99
Chinese 92.55 92.67 92.72 92.63 92.62
Czech 91.21 91.27 91.30 91.30 91.31
English 92.34 92.61 92.85 92.89 92.95
German 93.46 93.59 94.08 93.85 94.14
Japanese 66.98 67.20 67.58 67.62 67.74
Spanish 99.99 99.99 100.00 100.00 100.00
Mean 90.92 91.04 91.22 91.18 91.25
Czech† 89.00 89.22 89.34 89.38 89.36
English† 92.71 92.56 92.91 93.06 93.04
German† 90.54 90.23 90.77 90.86 90.99
Mean† 90.75 90.67 91.01 91.10 91.13

Table 7: Semantic unlabelled F1-scores w.r.t. training set
size, using gold standard syntactic and part-of-speech tag
annotation. † indicates out-of-domain test data.

parse quality.

3.3 Computational requirements

Training and prediction times on a 2.3 GHz quad-
core AMD OpteronTMsystem are given in table 8.
Since only linear classifiers and no pair-wise feature
combinations are used, training and prediction times
are quite modest. Verbal and nominal predicates are
trained in parallel, no additional parallelisation is
employed. Most of the training time is spent on op-
timising the c parameter of the SVM. Training times
are roughly ten times as long as compared to training
times with no hyper-parameter optimisation. Czech
stands out as much more computationally demand-
ing, especially in the sense disambiguation training
step. The reason is the vast number of predicates in
Czech compared to the other languages. The ma-
jority of the time in this step is, however, spent on
writing the SVM training problems to disk.

Memory requirements range between approxi-
mately 1 Gigabytes for the smallest data sets and
6 Gigabytes for the largest data set. Memory us-
age could be lowered substantially by using a more
compact feature dictionary. Currently every feature
template / value pair is represented as a string, which
is wasteful since many feature templates share the
same values.

4 Conclusions

I have presented an effective multilingual pipelined
semantic parser, using linear classifiers and a simple
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Sense ArgId ArgLab Tot Pred
Catalan 7m 11m 33m 51m 13s
Chinese 7m 13m 22m 42m 15s
Czech 10h 1h 1.5h 12.5h 34.5m
English 16m 14m 28m 58m 14.5s
German 4m 2m 5m 13m 3.5s
Japanese 1s 1m 4m 5m 4s
Spanish 10m 16m 40m 1.1h 13s

Table 8: Training times for each language and sub-
problem and approximate prediction times. Columns:
training times for sense disambiguation (Sense), ar-
gument identification (ArgId), argument labelling (Ar-
gLab), total training time (Tot), and total prediction time
(Pred). Training times are measured w.r.t. to the union
of the official training and development data sets. Predic-
tion times are measured w.r.t. to the official evaluation
data sets.

greedy constraint satisfaction heuristic. While the
semantic parsing results in these experiments fail to
reach the best results given by other experiments, the
parser quickly delivers quite accurate semantic pars-
ing of Catalan, Chinese, Czech, English, German,
Japanese and Spanish.

Optimising the hyper-parameters of each of the
individual classifiers is essential for obtaining good
results with this simple architecture. Syntactic pars-
ing quality has a large impact on the quality of the
semantic parsing; a problem that is not remedied by
adding additional training data.
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Abstract

A joint syntactic and semantic dependency
parsing system submitted to the CoNLL-2009
shared task is presented in this paper. The
system is composed of three components: a
syntactic dependency parser, a predicate clas-
sifier and a semantic parser. The first-order
MSTParser is used as our syntactic depen-
dency pasrser. Projective and non-projective
MSTParsers are compared with each other on
seven languages. Predicate classification and
semantic parsing are both recognized as clas-
sification problem, and the Maximum Entropy
Models are used for them in our system. For
semantic parsing and predicate classifying, we
focus on finding optimized features on multi-
ple languages. The average Macro F1 Score
of our system is 73.97 for joint task in closed
challenge.

1 Introduction

The task for CoNLL-2009 is an extension of the
CoNLL-2008 shared task to multiple languages: En-
glish (Surdeanu et al., 2008), Catalan plus Span-
ish (Mariona Taulé et al., 2008), Chinese (Martha
Palmer et al., 2009), Czech (Jan Hajič et al.,
2006), German (Aljoscha Burchardt et al., 2006) and
Japanese (Daisuke Kawahara et al., 2002). Com-
pared to the CoNLL-2008 shared task, the predi-
cates are given for us in semantic dependencies task.
Therefore, we have only need to label the semantic
roles of nouns and verbs, and the frames of predi-
cates.

In this paper, a joint syntactic and semantic de-
pendency parsing system submitted to the CoNLL-

2009 shared task is presented. The system is com-
posed of three components: a syntactic dependency
parser, a predicate classifier and a semantic parser.
The first-order MSTParser is used as our syntactic
dependency parser. Projective and non-projective
MSTParsers are compared with each other on seven
languages. The predicate classifier labeling the
frames of predicates and the semantic parser label-
ing the semantic roles of nouns and verbs for each
predicate are both recognized as classification prob-
lem, and the Maximum Entropy Models (MEs) are
used for them in our system. Among three com-
ponents, we mainly focus on the predicate classifier
and the semantic parser.

For semantic parsing and predicate classifying,
features of different types are selected to our sys-
tem. The effect of them on multiple languages will
be described in the following sections in detail.

2 System Description

Generally Speaking, a syntactic and semantic de-
pendency parsing system is usually divided into four
separate subtasks: syntactic parsing, predicate iden-
tification, predicate classification, and semantic role
labeling. In the CoNLL-2009 shared task, the pred-
icate identification is not required, since the pred-
icates are given for us. Therefore, the system we
present is only composed of three components: a
syntactic dependency parser, a predicate classifier
and a semantic parser. The syntactic dependencies
are processed with the MSTParser 0.4.3b. The pred-
icates identification and semantic role label are pro-
cessed with MEs-based classifier respectively. Un-
like conventional systems, the predicates identifica-
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tion and the semantic parser are independent with
each other. Figure 1 is the architecture of our sys-
tem.

Figure 1: System Architecture

In our system, we firstly select an appropriate
mode (projective or non-projective) of Graph-based
Parser (MSTParser) for each language, then con-
struct the MEs-based predicates classification and
the MEs-based semantic parser with syntactic de-
pendency relationships and predicate classification
respectively.

2.1 Syntactic Dependency Parsing

MSTParser (McDonald, 2008) is used as our syn-
tactic dependency parser. It is a state-of-the-art de-
pendency parser that searches for maximum span-
ning trees (MST) over directed graph. Both of pro-
jective and non-projective are supported by MST-
Parser. Our system employs the first-order frame-
work with projective and non-projective modes on
seven given languages.

2.2 Predicate Classification

In this phase, we label the sense of each predicate
and the MEs are adopted for classification. Features
of different types are extracted for each predicate,
and an optimized combination of them is adopted in
our final system. Table 1 lists all features. 1-20 are
the features used in Li’s system (Lu Li et al., 2008),

No Features No Features
1 w0 20 Lemma
2 p0 21 DEPREL
3 p−1 22 CHD POS
4 p1 23 CHD POS U
5 p−1p0 24 CHD REL
6 p0p1 25 CHD REL U
7 p−2p0 26 SIB REL
8 p0p2 27 SIB REL U
9 p−3p0 28 SIB POS
10 p0p3 29 SIB POS U
11 p−1p0p1 30 VERB V
12 w0p0 31 4+11
13 w0p−1p0 32 Indegree
14 w0p0p1 33 Outdegree
15 w0p−2p0 34 Degree
16 w0p0p2 35 ARG IN
17 w0p−3p0 36 ARG OUT
18 w0p0p3 37 ARG Degree
19 w0p−1p0p1 38 Span

Table 1: Features for Predicate Classification.

and 21-31 are a part of the optimized features pre-
sented in Che’s system (Wanxiang Che et al., 2008)

In Table 1, ”w” denotes the word and ”p” de-
notes POS of the words. Features in the form of
part1 part2 denote the part2 of the part1, while fea-
tures in the form of part1+part2 denote the combi-
nation of the part1 and part2. ”CHD” and ”SIB” de-
note a sequence of the child and the sibling words
respectively, ”REL” denotes the type of relations,
”U” denotes the result after reducing the adjacent
duplicate tags to one, ”V” denotes whether the part
is a voice, ”In” and ”OUT” denote the in degree and
out degree, which denotes how many dependency
relations coming into this word and going away from
this word,and ”ARG” denotes the semantic roles of
the predicate. The ”Span” denotes the maximum
length between the predicate and its arguments. The
final optimized feature combination is :1-31 and 33-
37.

2.3 Semantic Role Labeling

The semantic role labeling usually contains two sub-
tasks: argument identification and argument classi-
fication. In our system, we perform them in a single

110



stage through one classifier, which specifies a par-
ticular role label to the argument candidates directly
and assigns ”NONE” label to the argument candi-
dates with no role. MEs are also adopted for classifi-
cation. For each word in a sentence, MEs gives each
candidate label (including semantic role labels and
none label) a probability for the predicate. The fea-
tures except for the feature (lemma plus sense num-
ber of the predicate in (Lu Li et al., 2008)) and the
features 32-38 in Table 1 are selected in our system.

3 Experiments and Results

We train the first-order MSTParser 1 with projective
and non-projective modes in terms of default param-
eters respectively. Our maximum entropy classifiers
are implemented with the Maximum Entropy Mod-
eling Toolkit 2 . The default classifier parameters are
used in our system except for iterations. All mod-
els are trained using all training data, and tested on
the whole development data and test data, with 64-
bit 3.00GHz Intel(R) Pentium(R) D CPU and 4.0G
memory.

3.1 Syntactic Dependency Parsing
Table 2 is a performance comparison between pro-
jective parser and non-projective parser on the devel-
opment data of seven languages. In Table 2, ”LAS”,
”ULAS” and ”LCS” denote as Labeled attachment
score, Unlabeled attachment score and Label accu-
racy score respectively.

The experiments show that Catalan, Chinese and
Spanish have projective property and others have
non-projective property.

3.2 Predicate Classification
To get the optimized system, three group features are
used for comparison.

• group 1: features 1-20 in Table 1.

• group 2: features 1-31 in Table 1.

• group 3: all features in Table 1.

The performance of predicate classification on the
development data of the six languages, which con-
tain this subtask, are given in Table 3. The results

1http://sourceforge.net/projects/mstparser.
2http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html.

LAS(%) ULAS(%) LCS(%)
Catalan 84.18 88.18 91.76

83.69 87.74 91.59
Chinese 72.58 77.06 82.07

62.85 69.47 73.00
Czech 72.79 81.40 80.93

73.18 81.86 81.30
English 86.89 90.29 91.50

86.88 90.34 91.58
German 83.43 86.89 90.24

84.00 87.40 90.61
Japanese 92.23 93.16 98.38

92.23 93.14 98.45
Spanish 83.88 87.93 91.36

83.46 87.46 91.37

Table 2: Performance of Syntactic Dependency
Parsing with different modes. The above line is the
performance of projective mode, while the below
one is the performance of non-projective mode for
each language.

group 1 group 2 group 3
Catalan 75.51 80.90 82.23
Chinese 93.79 94.99 94.75
Czech 91.83 91.77 91.86
English 92.12 92.48 93.20
German 74.49 74.14 75.85
Spanish 74.01 76.22 76.53

Table 3: Performance of predicate classification (F1
scores) for different group features on the develop-
ment data of the six languages.

show that Che’s features and the degrees of the pred-
icate and its arguments are useful for all languages,
the former improves the labeled F1 measure by 0.3%
to 5.4%, and the latter by 0.3% to 1.7%.

3.3 Semantic Role Labeling

In this phase, feature selection and performance lose
caused by P-columns are studied. Firstly, we com-
pare the following two group features:

• group 1: The features except for the lemma
plus sense number of the predicate in (Lu Li
et al., 2008).
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LF1 ULF1 PF1
Catalan 73.25 92.69 38.41

72.71 91.93 35.22
83.23 100.00 61.88

Chinese 69.60 82.15 28.35
71.49 81.71 29.41
85.44 95.21 58.20

Czech 80.62 92.49 70.04
79.10 91.44 68.34
85.42 96.93 77.78

English 73.91 87.26 33.16
76.10 88.58 36.28
79.35 91.74 43.32

German 64.85 88.05 27.21
65.36 88.63 26.70
72.78 94.54 41.50

Japanese 69.43 82.79 29.27
69.87 83.31 29.69
72.80 87.13 34.96

Spanish 73.49 93.15 39.64
78.18 91.68 33.57
81.96 99.98 59.20

Table 4: Performance of Semantic Role Labeling
(F1 score) with different features.

• group 2: group1+the degrees of the predicate
and its arguments presented in the last section.

Secondly, features extracted from golden-columns
and P-columns are both used for testing.

The performance of them are given in Table 4,
where ”LF1”, ”ULF1” and ”PF1” denote as Labeled
F1 score, Unlabeled F1 score and Proposition F1
score respectively. The above line is the F1 scores of
Semantic Role Labeling with different features. The
uppermost line is the result of group1 features, the
middle line is the result of group2 features extracted
from P-columns, and the downmost one is the result
of group2 features extracted from golden-columns
for each language.

The results show that the features of degree also
improves the labeled F1 measure by 3.4% to 15.8%,
the different labeled F1 between golden-columns
and P-columns is about 2.9%–13.9%.

LAS LF1 M LF1
Catalan 84.18 72.71 81.46

75.68 66.95 71.32
Chinese 72.58 71.49 72.20

63.95 67.06 65.53
Czech 73.18 79.10 76.37

72.60 79.08 75.85
Czech-ood 69.81 79.80 74.81
English 86.88 76.10 82.89

86.61 77.17 81.92
English-ood 80.09 67.21 73.69
German 84.00 65.36 83.06

79.85 61.98 70.93
German-ood 71.86 61.83 66.86
Japanese 92.23 69.87 83.77

91.26 69.58 80.49
Spanish 83.88 71.18 80.74

77.21 66.23 71.72

Table 5: Overall performance of our final joint sys-
tem.

3.4 Overall Performance

In the final system, we select the optimized feature
subset discussed in the former sections. The overall
performance of the system on the development data ,
test data and Out-of-domain data are shown in Table
5 (all features are extracted from P-columns). The
average Macro F1 Scores of our system are 73.97
on test data and 71.79 on Out-of-domain data.

In Table 5, ”LAS”, ”LF1” and ”M LF1” denote
as Labeled accuracy score for Syntactic Dependency
Parsing, Labeled F1 score for Semantic Role Label-
ing, and Overall Macro Labeled F1 score respec-
tively. The topmost line is the result on the devel-
opment data, the middle one is the result on the test
data for each language and the downmost one is the
result on the Out-of-domain data if the data exist.

4 Conclusion and Discussion

We present a joint syntactic and semantic depen-
dency parsing system for CoNLL2009 Shared Task,
which composed of three components: a syntac-
tic dependency parser, a predicate classifier and a
semantic parser. All of them are built with some
state-of-the-art methods. For the predicate classifier
and the semantic parser, a new kind of features—
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degrees, which reflect the activeness of the words
in a sentence improves their performance. In order
to improve the performance further, we will study
new machine learning methods for semantic depen-
dency parsing, especially the joint learning methods,
which can avoid the information loss problem of our
system.
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Abstract

This paper describes a system for syntactic-
semantic dependency parsing for multiple lan-
guages. The system consists of three parts: a
state-of-the-art higher-order projective depen-
dency parser for syntactic dependency pars-
ing, a predicate classifier, and an argument
classifier for semantic dependency parsing.
For semantic dependency parsing, we ex-
plore use of global features. All components
are trained with an approximate max-margin
learning algorithm.

In the closed challenge of the CoNLL-2009
Shared Task (Hajič et al., 2009), our system
achieved the 3rd best performances for En-
glish and Czech, and the 4th best performance
for Japanese.

1 Introduction

In recent years, joint inference of syntactic and se-
mantic dependencies has attracted attention in NLP
communities. Ideally, we would like to choose the
most plausible syntactic-semantic structure among
all possible structures in that syntactic dependencies
and semantic dependencies are correlated. How-
ever, solving this problem is too difficult because
the search space of the problem is extremely large.
Therefore we focus on improving performance for
each subproblem: dependency parsing and semantic
role labeling.

In the past few years, research investigating
higher-order dependency parsing algorithms has
found its superiority to first-order parsing algo-
rithms. To reap the benefits of these advances, we

use a higher-order projective dependency parsing al-
gorithm (Carreras, 2007) which is an extension of
the span-based parsing algorithm (Eisner, 1996), for
syntactic dependency parsing.

In terms of semantic role labeling, we would
like to capture global information about predicate-
argument structures in order to accurately predict the
correct predicate-argument structure. Previous re-
search dealt with such information using re-ranking
(Toutanova et al., 2005; Johansson and Nugues,
2008). We explore a different approach to deal
with such information using global features. Use
of global features for structured prediction problem
has been explored by several NLP applications such
as sequential labeling (Finkel et al., 2005; Krishnan
and Manning, 2006; Kazama and Torisawa, 2007)
and dependency parsing (Nakagawa, 2007) with a
great deal of success. We attempt to use global fea-
tures for argument classification in which the most
plausible semantic role assignment is selected using
both local and global information. We present an
approximate max-margin learning algorithm for ar-
gument classifiers with global features.

2 Dependency Parsing

As in previous work, we use a linear model for de-
pendency parsing. The score function used in our
dependency parser is defined as follows.

s(y) =
∑

(h,m)∈y

F (h, m,x) (1)

where h and m denote the head and the dependent
of the dependency edge in y, and F (h,m,x) is a
Factor that specifies dependency edge scores.
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We used a second-order factorization as in (Car-
reras, 2007). The second-order factor F is defined
as follows.

F (h,m,x) = w ·Φ(h,m,x)+w ·Φ(h,m, ch,x)
+ w · Φ(h,m, cmi,x) + w · Φ(h,m, cmo,x) (2)

where w is a parameter vector, Φ is a feature vector,
ch is the child of h in the span [h...m] that is closest
to m, cmi is the child of m in the span [h...m] that is
farthest from m and cmo is the child of m outside the
span [h...m] that is farthest from m. For more details
of the second-order parsing algorithm, see (Carreras,
2007).

For parser training, we use the Passive Aggres-
sive Algorithm (Crammer et al., 2006), which is an
approximate max-margin variant of the perceptron
algorithm. Also, we apply an efficient parameter av-
eraging technique (Daumé III, 2006). The resulting
learning algorithm is shown in Algorithm 1.

Algorithm 1 A Passive Aggressive Algorithm with
parameter averaging

input Training set T = {xt,yt}T
t=1, Number of iterations

N and Parameter C
w ← 0, v ← 0, c ← 1
for i ← 0 to N do

for (xt,yt) ∈ T do
ŷ = arg maxy w · Φ(xt,y) + ρ(yt, ŷ)

τt = min
“

C, w·Φ(xt,ŷ)−w·Φ(xt,yt)+ρ(yt,ŷ)

||Φ(xt,yt)−Φ(xt,ŷ)||2
”

w ← w + τt(Φ(xt,yt)− Φ(xt, ŷ))
v ← v + cτt(Φ(xt,yt)− Φ(xt, ŷ))
c ← c + 1

end for
end for
return w − v/c

We set ρ(yt, ŷ) as the number of incorrect head
predictions in the ŷ, and C as 1.0.

Among the 7 languages of the task, 4 languages
(Czech, English, German and Japanese) contain
non-projective edges (13.94 %, 3.74 %, 25.79 %
and 0.91 % respectively), therefore we need to deal
with non-projectivity. In order to avoid losing the
benefits of higher-order parsing, we considered ap-
plying pseudo-projective transformation (Nivre and
Nilsson, 2005). However, growth of the number of
dependency labels by pseudo-projective transforma-
tion increases the dependency parser training time,
so we did not adopt transformations. Therefore, the

parser ignores the presence of non-projective edges
in the training and the testing phases.

The features used for our dependency parser are
based on those listed in (Johansson, 2008). In addi-
tion, distance features are used. We use shorthand
notations in order to simplify the feature represen-
tations: ’h’, ’d’, ’c’, ’l’, ’p’, ’−1’ and ’+1’ cor-
respond to head, dependent, head’s or dependent’s
child, lemma , POS, left position and right position
respectively.

First-order Features

Token features: hl, hp, hl+hp, dl, dp and dl+dp.

Head-Dependent features: hp+dp, hl+dl, hl+dl,
hl+hp+dl, hl+hp+dp, hl+dl+dp, hp+dl+dp and
hl+hp+dl+dp.

Context features: hp+hp+1+dp−1+dp,
hp−1+hp+dp−1+dp, hp+hp+1+dp+dp+1 and
hp−1+hp+dp+dp+1.

Distance features: The number of tokens between the
head and the dependent.

Second-order Features

Head-Dependent-Head’s or Dependent’s Child:
hl+cl, hl+cl+cp, hp+cl, hp+cp, hp+dp+cp, dp+cp,
dp+cl+cp, dl+cp, dl+cp+cl

3 Semantic Role Labeling

Our SRL module consists of two parts: a predicate
classifier and an argument classifier. First, our sys-
tem determines the word sense for each predicate
with the predicate classifier, and then it detects the
highest scored argument assignment using the argu-
ment classifier with global features.

3.1 Predicate Classification
The first phase of SRL in our system is to detect
the word sense for each predicate. WSD can be for-
malized as a multi-class classification problem given
lemmas. We created a linear model for each lemma
and used the Passive Aggressive Algorithm with pa-
rameter averaging to train the models.

3.1.1 Features for Predicate Classification
Word features: Predicted lemma and the predicted POS

of the predicate, predicate’s head, and its conjunc-
tions.

Dependency label: The dependency label between the
predicate and the predicate’s head.
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Dependency label sequence: The concatenation of the
dependency labels of the predicate dependents.

Since effective features for predicate classifica-
tion are different for each language, we performed
greedy forward feature selection.

3.2 Argument Classification

In order to capture global clues of predicate-
argument structures, we consider introducing global
features for linear models. Let A(p) be a joint
assignment of role labels for argument candidates
given the predicate p. Then we define a score func-
tion s(A(p)) for argument label assignments A(p).

s(A(p)) =
∑

k

Fk(x,A(p)) (3)

We introduce two factors: Local Factor FL and
Global Factor FG defined as follows.

FL(x, a(p)) = w · ΦL(x, a(p)) (4)

FG(x,A(p)) = w · ΦG(x,A(p)) (5)

where ΦL, ΦG denote feature vectors for the local
factor and the global factor respectively. FL scores a
particular role assignment for each argument candi-
date individually, and FG treats global features that
capture what structure the assignment A has. Re-
sulting scoring function for the assignment A(p) is
as follows.

s(A(p)) =
∑

a(p)∈A(p)

w·ΦL(x, a(p))+w·ΦG(x,A(p))

(6)
Use of global features is problematic, because it

becomes difficult to find the highest assignment ef-
ficiently. In order to deal with the problem, we use
a simple approach, n-best relaxation as in (Kazama
and Torisawa, 2007). At first we generate n-best as-
signments using only the local factor, and then add
the global factor score for each n-best assignment, fi-
nally select the best scoring assignment from them.
In order to generate n-best assignments, we used a
beam-search algorithm.

3.2.1 Learning the Model
As in dependency parser and predicate classifier,

we train the model using the PA algorithm with pa-
rameter averaging. The learning algorithm is shown

in Algorithm 2. In this algorithm, the weights cor-
respond to local factor features ΦL and global factor
features ΦG are updated simultaneously.

Algorithm 2 Learning with Global Features for Ar-
gument Classification

input Training set T = {xt,At}T
t=1, Number of iterations

N and Parameter C
w ← 0, v ← 0, c ← 1
for i ← 0 to N do

for (xt,At) ∈ T do
let Φ(xt,A) =

P

a∈A ΦL(xt, a) + ΦG(xt,A)
generate n-best assignments {An} using FL

Â = arg maxA∈{An} w · Φ(xt,A) + ρ(At,A)

τt = min
“

C, w·Φ(xt,Â)−w·Φ(xt,At)+ρ(At,Â)

||Φ(xt,At)−Φ(xt,Â)||2

”

w ← w + τt(Φ(xt,At)− Φ(xt, Â))
v ← v + cτt(Φ(xt,At)− Φ(xt, Â))
c ← c + 1

end for
end for
return w − v/c

We set the margin value ρ(A, Â) as the number
of incorrect assignments plus δ(A, Â), and C as 1.0.
The delta function returns 1 if at least one assign-
ment is different from the correct assignment and 0
otherwise.

The model is similar to re-ranking (Toutanova et
al., 2005; Johansson and Nugues, 2008). However
in contrast to re-ranking, we only have to prepare
one model. The re-ranking approach requires other
training datasets that are different from the data used
in local model training.

3.2.2 Features for Argument Classification
The local features used in our system are the same

as our previous work (Watanabe et al., 2008) except
for language dependent features. The global features
that used in our system are based on (Johansson and
Nugues, 2008) that used for re-ranking.

Local Features
Word features: Predicted lemma and predicted POS of

the predicate, predicate’s head, argument candidate,
argument candidate’s head, leftmost/rightmost de-
pendent and leftmost/rightmost sibling.

Dependency label: The dependency label of predicate,
argument candidate and argument candidate’s de-
pendent.

Family: The position of the argument candicate with re-
spect to the predicate position in the dependency
tree (e.g. child, sibling).
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Average Catalan Chinese Czech English German Japanese Spanish
Macro F1 Score 78.43 75.91 73.43 81.43 86.40 69.84 84.86 77.12

(78.00*) (74.83*) (73.43*) (81.38*) (86.40*) (68.39*) (84.84*) (76.74*)
Semantic Labeled F1 75.65 72.35 74.17 84.69 84.26 63.66 77.93 72.50

(75.17*) (71.05*) (74.17*) (84.66*) (84.26*) (61.94*) (77.91*) (72.25*)
Labeled Syntactic Accuracy 81.16 79.48 72.66 78.17 88.54 75.85 91.69 81.74

(80.77*) (78.62*) (72.66*) (78.10*) (88.54*) (74.60*) (91.66*) (81.23*)
Macro F1 Score 84.30 84.79 81.63 83.08 87.93 83.25 85.54 83.94
Semantic Labeled F1 81.58 80.99 79.99 86.67 85.09 79.46 79.03 79.85
Labeled Syntactic Accuracy 87.02 88.59 83.27 79.48 90.77 87.03 91.96 88.04

Table 1: Scores of our system.

Position: The position of the head of the dependency re-
lation with respect to the predicate position in the
sentence.

Pattern: The left-to-right chain of the predicted
POS/dependency labels of the predicate’s children.

Path features: Predicted lemma, predicted POS and de-
pendency label paths between the predicate and the
argument candidate.

Distance: The number of dependency edges between the
predicate and the argument candidate.

Global Features

Predicate-argument label sequence: The sequence of
the predicate sense and argument labels in the
predicate-argument strucuture.

Presence of labels defined in frame files: Whether the
semantic roles defined in the frame present in the
predicate-argument structure (e.g. MISSING:A1 or
CONTAINS:A1.)

3.2.3 Argument Pruning
We observe that most arguments tend to be not far

from its predicate, so we can prune argument candi-
dates to reduce search space. Since the characteris-
tics of the languages are slightly different, we apply
two types of pruning algorithms.

Pruning Algorithm 1: Let S be an argument candi-
date set. Initially set S ← ϕ and start at predicate node.
Add dependents of the node to S, and move current node
to its parent. Repeat until current node reaches to ROOT.

Pruning Algorithm 2: Same as the Algorithm 1 ex-
cept that added nodes are its grandchildren as well as its
dependents.

The pruning results are shown in Table 2. Since
we could not prune arguments in Japanese accu-
rately using the two algorithms, we pruned argument
candidates simply by POS.

algorithm coverage (%) reduction (%)
Catalan 1 100 69.1
Chinese 1 98.9 69.1
Czech 2 98.5 49.1
English 1 97.3 63.1
German 1 98.3 64.3
Japanese POS 99.9 41.0
Spanish 1 100 69.7

Table 2: Pruning results.

4 Results

The submitted results on the test data are shown in
the upper part of Table 1. Due to a bug, we mistak-
enly used the gold lemmas in the dependency parser.
Corrected results are shown in the part marked with
*. The lower part shows the post evaluation results
with the gold lemmas and POSs.

For some of the 7 languages, since the global
model described in Section 3.2 degraded perfor-
mance compare to a model trained with only FL,
we did NOT use the model for all languages. We
used the global model for only three languages: Chi-
nese, English and Japanese. The remaining lan-
guages (Catalan, Czech, German and Spanish) used
a model trained with only FL.

4.1 Dependency Parsing Results

The parser achieved relatively high accuracies for
Czech, English and Japanese, and for each language,
the difference between the performance with correct
POS and predicted POS is not so large. However, in
Catalan, Chinese German and Spanish, the parsing
accuracies was seriously degraded by replacing cor-
rect POSs with predicted POSs (6.3 - 11.2 %). This
is likely because these languages have relatively low
predicted POS accuracies (92.3 - 95.5 %) ; Chinese
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FL FL+FG (∆P, ∆R)
Catalan 85.80 85.68 (+0.01, -0.26)
Chinese 86.58 87.39 (+0.24, +1.36)
Czech 89.63 89.05 (-0.87, -0.28)
English 85.66 85.74 (-0.87, +0.98)
German 80.82 77.30 (-7.27, +0.40)
Japanese 79.87 81.01 (+0.17, +1.88)
Spanish 84.38 83.89 (-0.42, -0.57)

Table 3: Effect of global features (semantic labeled F1).
∆P and ∆R denote the differentials of labeled precision
and labeled recall between FL and FL+FG respectively.

has especially low accuracy (92.3%). The POS ac-
curacy may affect the parsing performances.

4.2 SRL Results

In order to highlight the effect of the global fea-
tures, we compared two models. The first model
is trained with only the local factor FL. The sec-
ond model is trained with both the local factor FL

and the global factor FG. The results are shown in
Table 3. In the experiments, we used the develop-
ment data with gold parse trees. For Chinese and
Japanese, significant improvements are obtained us-
ing the global features (over +1.0% in labeled re-
call and the slightly better labeled precision). How-
ever, for Catalan, Czech, German and Spanish, the
global features degraded the performance in labeled
F1. Especially, in German, the precision is substan-
tially degraded (-7.27% in labeled F1). These results
indicate that it is necessary to introduce language de-
pendent features.

4.3 Training, Evaluation Time and Memory
Requirements

Table 4 and 5 shows the training/evaluation times
and the memory consumption of the second-order
dependency parsers and the global argument classi-
fiers respectively. The training times of the predi-
cate classifier were less than one day, and the testing
times were mere seconds.

As reported in (Carreras, 2007; Johansson and
Nugues, 2008), training and inference of the second-
order parser are very expensive. For Chinese, we
could only complete 2 iterations.

In terms of the argument classifier, since N-best
generation time account for a substantial proportion
of the training time (in this work N = 100), chang-

iter hrs./iter sent./min. mem.
Catalan 9 14.6 9.0 9.6 GB
Chinese 2 56.5 3.7 16.2 GB
Czech 8 14.6 20.5 12.6 GB
English 7 22.0 13.4 15.1 GB
German 4 12.3 59.1 13.1 GB
Japanese 7 11.2 21.8 13.0 GB
Spanish 7 19.5 7.3 17.9 GB

Table 4: Training, evaluation time and memory require-
ments of the second-order dependency parsers. The ’iter’
column denote the number of iterations of the model
used for the evaluations. Catalan, Czech and English
are trained on Xeon 3.0GHz, Chinese and Japanese are
trained on Xeon 2.66GHz, German and Spanish are
trained on Opteron 2.3GHz machines.

train (hrs.) sent./min. mem.
Chinese 6.5 453.7 2.0 GB
English 13.5 449.8 3.2 GB
Japanese 3.5 137.6 1.1 GB

Table 5: Training, evaluation time and memory require-
ments of the global argument classifiers. The classifiers
are all trained on Opteron 2.3GHz machines.

ing N affects the training and evaluation times sig-
nificantly.

All modules of our system are implemented in
Java. The required memory spaces shown in Table
4 and 5 are calculated by subtracting free memory
size from the total memory size of the Java VM.
Note that we observed that the value fluctuated dras-
tically while measuring memory usage, so the value
may not indicate precise memory requirements of
our system.

5 Conclusion

In this paper, we have described our system for syn-
tactic and semantic dependency analysis in multilin-
gual. Although our system is not a joint approach
but a pipeline approach, the system is comparable to
the top system for some of the 7 languages.

A further research direction we are investigating
is the application of various types of global features.
We believe that there is still room for improvements
since we used only two types of global features for
the argument classifier.

Another research direction is investigating joint
approaches. To the best of our knowledge, three
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types of joint approaches have been proposed:
N-best based approach (Johansson and Nugues,
2008), synchronous joint approach (Henderson et
al., 2008), and a joint approach where parsing
and SRL are performed simultaneously (Lluı́s and
Màrquez, 2008). We attempted to perform N-
best based joint approach, however, the expen-
sive computational cost of the 2nd-order projective
parser discouraged it. We would like to investigate
syntactic-semantic joint approaches with reasonable
time complexities.
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Abstract 

We describe our CoNLL 2009 Shared Task 
system in the present paper. The system in-
cludes three cascaded components: a genera-
tive dependency parser, a classifier for 
syntactic dependency labels and a semantic 
classifier. The experimental results show that 
the labeled macro F1 scores of our system on 
the joint task range from 43.50% (Chinese) to 
57.95% (Czech), with an average of 51.07%. 

1 Introduction 

The CoNLL 2009 shared task is an extension of 
the tasks addressed in previous years: unlike the 
English-only 2008 task, the present year deals with 
seven languages; and unlike 2006 and 2007, se-
mantic role labeling is performed atop the surface 
dependency parsing. 

We took part in the closed challenge of the joint 
task.1 The input of our system contained gold stan-
dard lemma, part of speech and morphological fea-
tures for each token. Tokens which were 
considered predicates were marked in the input 
data. The system was required to find the follow-
ing information: 

• parent (syntactic dependency) for each to-
ken 

                                                           
1 For more details on the two tasks and challenges, see Haji� et 
al. (2009). 

• label for each syntactic dependency (to-
ken) 

• label for every predicate 

• for every token (predicate or non-
predicate) A and every predicate P in the 
sentence, say whether there is a semantic 
relation between P and A (A is an argu-
ment of P) and if so, provide a label for the 
relation (role of the argument) 

The organizers of the shared task provided train-
ing and evaluation data (Haji� et al., 2006; Sur-
deanu et al., 2008; Burchardt et al., 2006; Taulé et 
al., 2008; Kawahara et al., 2002; Xue and Palmer, 
2009) converted to a uniform CoNLL Shared Task 
format. 

2 System Description 

The system is a sequence of three components: a 
surface syntactic parser, a syntactic tagger that as-
signs labels to the syntactic dependencies and a 
semantic classifier (labels both the predicates and 
the roles of their arguments). We did not attempt to 
gain advantage from training a joint classifier for 
all the subtasks. We did not have time to do much 
beyond putting together the basic infrastructure. 
The components 2 and 3 are thus fairly primitive. 

2.1 Surface Dependency Parser 

We use the parser described by Zeman (2004). The 
parser takes a generative approach. It has a model 
of dependency statistics in which a dependency is 
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specified by the lemma and tag of the parent and 
the child nodes, by direction (left or right) and ad-
jacency. The core of the algorithm can be de-
scribed as repeated greedy selecting of best-
weighted allowed dependencies and adding them 
to the dependency tree. 

There are other components which affect the de-
pendency selection, too. They range from support-
ing statistical models to a few hard-coded rules. 
However, some features of the parser are designed 
to work with Czech, or even with the Prague De-
pendency Treebank. For instance, there is a spe-
cialized model for coordinative constructions. The 
model itself is statistical but it depends on the PDT 
annotation guidelines in various ways. Most nota-
bly, the training component recognizes coordina-
tion by the Coord dependency label, which is not 
present in other treebanks. Other rules (e.g. the 
constraints on the set of allowed dependencies) 
rely on correct interpretation of the part-of-speech 
tags. 

In order to make the parser less language-
dependent in the multilingual environment of the 
shared task, we disabled most of the abovemen-
tioned treebank-bound features. Of course, it led to 
decreased performance on the Czech data.2 

2.2 Assignment of Dependency Labels 

The system learns surface dependency labels as a 
function of the part-of-speech tags and features of 
the parent and the child node. Almost no back-off 
is applied. The most frequent label for the given 
pair of tags (and feature structures) is always se-
lected. If the pair of tags is unknown, the label is 
based on the features of the child node, and if it is 
unknown, too, the most frequent label of the train-
ing data is selected. 

Obviously, both the training and the labeling 
procedures have to know the dependencies. Gold 
standard dependencies are examined during train-
ing while parser-generated dependencies are used 
for real labeling. 

2.3 Semantic Classifier 

The semantic component solves several tasks. 
First, all predicates have to be labeled. Tokens that 

                                                           
2 However, the parser – without adaptation – would not do 
well on Czech anyway because the PDT tags are presented in 
a different format in the shared task data. 

are considered predicates in the particular treebank 
are marked on input, so this is a simple classifica-
tion problem. Again, we took the path of least re-
sistance and trained the PRED labels as a function 
of gold-standard lemmas. 

Second, we have to find semantic dependencies. 
Any token (predicate or not) can be the argument 
of one or more predicates. These relations may or 
may not be parallel to a syntactic dependency. For 
each token, we need to find out 1. which predicates 
it depends on, and 2. what is the label of its seman-
tic role in this relation? 

The task is complex and there are apparently no 
simple solutions to it. We learn the semantic role 
labels as a function of the gold-standard part of 
speech of the argument, the gold-standard lemma 
of the predicate and the flag whether there is a syn-
tactic dependency between the two nodes or not. 
This approach makes it theoretically possible to 
make one token semantically dependent on more 
than one predicate. However, we have no means to 
control the number of the dependencies. 

3 Results 

The official results of our system are given in 
Table 1. The system made the least syntactic errors 
(attachment and labels) for Japanese. The Japanese 
treebank seems to be relatively easy to parse, as 
many other systems achieved very high scores on 
this data. At the other end of the rating scale, Chi-
nese seems to be the syntactically hardest lan-
guage. Our second-worst syntactic score was for 
Czech, most likely owing to the turning off all lan-
guage-dependent (and Czech-biased) features of 
the parser. 

An obvious feature of the table is the extremely 
poor semantic scores (in contrast to the accuracy of 
surface dependency attachment and labels). While 
the simplicity of the additional models does not 
seem to hurt too much the dependency labeling, it 
apparently is too primitive for semantic role label-
ing. We analyze the errors in more detail in Sec-
tion �4. 

The system is platform-independent;3 we have 
been running all the experiments under Linux on 
an AMD Opteron 848 processor, 2 GHz, with 
32 GB RAM. The running times and memory re-
quirements are shown in Table 2. 

                                                           
3 It is written entirely in Perl. 
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To assess the need for data, Table 3 presents se-
lected points on the learning curve of our system. 
The system has been retrained on 25, 50 and 75% 
of the training data for each language (the selection 
process was simple: the first N% of sentences of 
the training data set were used). 

Generally, our method does not seem very data-
hungry. Even for Japanese, with the smallest train-
ing data set, reducing training data to 25% of the 
original size makes the scores drop less than 1% 
point. The drop for other languages lies mostly 
between 1 and 2 points. The exceptions are (unla-
beled) syntactic attachment accuracies of Czech 
and Spanish, and labeled semantic F1 of Spanish 
and Chinese. The Chinese learning curve also con-
tains a nonmonotonic anomaly of syntactic de-
pendency labeling between data sizes of 50 and 
75% (shown in boldface). This can be probably 
explained by uneven distribution of the labels in 
training data. 

As to the comparison of the various languages 
and corpora, Japanese seems to be the most spe-
cific (relatively high scores even with such small 
data). Spanish and Catalan are related languages, 
their treebanks are of similar size, conform to simi-
lar guidelines and were prepared by the same team. 
Their scores are very similar. 

4 Discussion 

In order to estimate sources of errors, we are now 
going to provide some analysis of the data and the 
errors our system does. 

4.1 DEPREL Coverage 

The syntactic tagger (assigns DEPREL syntactic 
labels) and the semantic tagger (assigns PRED and 
APRED labels) are based on simple statistical 
models without sophisticated back-off techniques. 

Language Cs En De Es Ca Ja Zh 
Training sentences 43955 40613 38020 15984 14924 4643 24039 
Training tokens 740532 991535 680710 477810 443317 119144 658680 
Average sentence length 17 24 18 30 30 26 27 
Training minutes 9:21 10:41 8:28 6:17 5:42 1:24 7:01 
Training sentences per secnd 78 63 75 42 44 55 57 
Training tokens per second 1320 1547 1340 1267 1296 1418 1565 
Training rsize memory 3.9 GB 2.2 GB 2.7 GB 2.7 GB 2.4 GB 416 MB 1.5 GB 
Test sentences 4213 2399 2000 1725 1862 500 2556 
Test tokens 70348 57676 31622 50630 53355 13615 73153 
Parsing minutes 6:36 3:11 2:24 5:47 6:05 0:46 5:45 
Parsing sentences per second 10.6 12.6 13.9 5.0 5.1 10.9 7.4 
Parsing tokens per second 178 302 220 146 146 296 212 
Parsing rsize memory 980 MB 566 MB 779 MB 585 MB 487 MB 121 MB 444 MB 
 

Table 2. Time and space requirements of the syntactic parser. 

Language Average Cs En De Es Ca Ja Zh 
Labeled macro F1 51.07 57.95 50.27 49.57 48.90 49.61 57.69 43.50 
OOD lab mac F1 43.67 54.49 48.56 27.97     
Labeled syn accur 64.92 57.06 61.82 69.79 65.98 67.68 82.66 49.48 
Unlab syn accur 70.84 66.04 70.68 72.91 71.22 73.81 83.36 57.87 
Syn labeling accur 79.20 69.10 74.24 84.63 81.83 82.46 95.98 66.13 
OOD lab syn acc 50.20 51.45 62.83 36.31     
OOD unl syn acc 58.08 60.56 71.78 41.90     
OOD syn labeling 69.65 65.64 75.22 68.08     
Semantic lab F1 32.14 58.13 36.05 16.44 25.36 24.19 30.13 34.71 
OOD sem lab F1 32.86 56.83 31.77 9.98     
 

Table 1. The official results of the system. ISO 639-1 language codes are used (cs = Czech, en = English, de = Ger-
man, es = Spanish, ca = Catalan, ja = Japanese, zh = Chinese). “OOD” means “out-of-domain test data”. 
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Sparse data could pose a serious problem. So how 
sparse are the data? Some cue could be drawn from 
Table 3. However, we should also know how often 
the labels had to be assigned to an unknown set of 
input features. 

DEPREL (syntactic dependency label) is esti-
mated based on morphological tag (i.e. POS + 
FEAT) of both the child and parent. If the pair of 
tags is unknown, then it is based on the tag of the 
child, and if it is unknown, too, the most frequent 
label is chosen. Coverage is high: 93 (Czech) to 
97 % (Chinese) of the pairs of tags in test data 
were known from training data. Moreover, the er-
ror rate on the unknown pairs is actually much 
lower than on the whole data!4 

4.2 PRED Coverage 

PRED (predicate sense label) is estimated based on 
lemma. For most languages, this seems to be a 
good selection. Japanese predicate labels are al-
ways identical to lemmas; elsewhere, there are by 
average 1.05 (Chinese) to 1.48 (Spanish) labels per 
lemma; the exception is German with a label-
lemma ratio of 2.33. 

Our accuracy of PRED label assignment ranges 
from 71% (German) to 100% (Japanese). We al-
ways assign the most probable label for the given 

                                                           
4 This might suggest that the input features are chosen inap-
propriately and that the DEPREL label should be based just on 
the morphology of the child. 

lemma; if the lemma is unknown, we copy the 
lemma to the PRED column. Coverage is not an 
issue here. It goes from 94% (Czech) to almost 
100% (German).5 The accuracy on unknown lem-
mas could probably be improved using the sub-
categorization dictionaries accompanying the 
training data. 

 
Language Lemma PREDs 

1. mít 77 Cs 2. p�ijmout 8 
1. take 20 En 2. go 18 
1. kommen 28 De 2. nehmen 25 
1. pasar 10 
1. dar 10 
3. llevar 9 Es 

3. hacer 9 
1. fer 11 Ca 2. pasar 9 

Ja Always 1 PRED per lemma 
1.  (yào) 8 
1.  (y�u) 8 Zh 
1.  (d�) 8 

Table 4. Most homonymous predicates. 

                                                           
5 The coverage of Japanese is 88% but since Japanese PRED 
labels are exact copies of lemmas, even unknown lemmas 
yield 100%-correct labels. 

Score TrSize Average Cs En De Es Ca Ja Zh 
25% 69.38 63.72 69.70 71.36 68.99 72.41 82.58 56.90 
50% 70.14 64.96 70.13 72.11 70.37 72.83 82.99 57.58 
75% 70.51 65.50 70.37 72.50 70.83 73.47 83.17 57.73 

UnLab 
Syn 
Attach 

100% 70.84 66.04 70.68 72.91 71.22 73.81 83.36 57.87 
25% 78.47 68.28 73.79 84.21 80.67 81.92 95.70 64.71 
50% 78.94 68.68 74.08 84.44 81.59 81.99 95.86 65.94 
75% 79.03 68.87 74.14 84.51 81.67 82.19 95.97 65.83 

Syn 
Label 

100% 79.20 69.10 74.24 84.63 81.83 82.46 95.98 66.13 
25% 30.10 56.29 34.47 15.51 22.78 22.14 28.91 30.58 
50% 33.85 57.24 35.34 16.03 24.46 23.13 29.60 33.31 
75% 31.76 57.76 35.85 16.29 24.96 23.77 29.96 33.71 

Labeled 
Sem F1 

100% 32.14 58.13 36.05 16.44 25.36 24.19 30.13 34.71 
25% 49.19 55.87 49.06 48.10 46.22 47.76 56.66 40.64 
50% 50.28 56.99 49.66 48.90 47.97 48.53 57.23 42.66 
75% 50.68 57.53 50.01 49.26 48.47 49.21 57.52 42.73 

Labeled 
Macro 
F1 

100% 51.07 57.95 50.27 49.57 48.90 49.61 57.69 43.50 
 

Table 3. The learning curve of the principal scores. 
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4.3 APRED Assignment Analysis 

The most complicated part of the task is the as-
signment of the APRED labels. In a sense, APRED 
labeling is dependency parsing on a deeper level. It 
consists of several sub-problems: 

• Is the node an argument of any predicate at 
all? 

• If so, how many predicates is the node ar-
gument of? Should the predicate be, say, 
coordination, then the node would seman-
tically depend on all members of the coor-
dination. 

• In what way is the semantic dependency 
related to the syntactic dependency be-
tween the node and its syntactic parent? In 
majority of cases, syntactic and semantic 
dependencies go parallel; however, there 
are still a significant number of semantic 
relations for which this assumption does 
not hold.6 

• Once we know that there is a semantic re-
lation (an APRED field should not be 
empty), we still have to figure out the cor-
rect APRED label. This is the semantic 
role labeling (or tagging) proper. 

                                                           
6 Nearly all Spanish and Catalan semantic dependencies are 
parallel to syntactic ones (but not all syntactic dependencies 
are also semantic); in most other languages, about two thirds 
of semantic relations match syntax. Japanese is the only lan-
guage in which this behavior does not prevail. 

Our system always makes semantic roles paral-
lel to surface syntax. It even does not allow for 
empty APRED if there is a syntactic dependency—
this turned out to be one of the major sources of 
errors.7 

The role labels are estimated based on the 
lemma of the predicate and the part of speech of 
the argument. Low coverage of this pair of features 
in the training data turns to be another major 
source of errors. If the pair is not known from 
training data, the system selects the most frequent 
APRED in the given treebank. Table 5 gives an 
overview of the principal statistics relevant to the 
analysis of APRED errors. 

5 Post-evaluation Experiments 

Finally, we performed some preliminary experi-
ments focused on the syntactic parser. As men-
tioned in Section �2.1, many features of the parser 
have to be turned off unless the parser understands 
the part-of-speech and morphological features. We 
used DZ Interset (Zeman, 2008) to convert Czech 
and English CoNLL POS+FEAT strings to PDT-
like positional tags. Then we switched back on the 
parser options that use up the tags and re-ran pars-
ing. The results (Table 6) confirm that the tag ma-
nipulation significantly improves Czech parsing 
while it does not help with English. 

 

                                                           
7 This is a design flaw that we overlooked. Most likely, mak-
ing empty APRED one of the predictable values would im-
prove accuracy. 

Language Cs En De Es Ca Ja Zh 
Potential APRED slots 1287545 195029 12066 192103 197976 57394 329757 
Filled in APREDs 87934 32968 10480 49904 52786 6547 49047 
Feature pair coverage (%) 46.05 40.04 14.99 29.34 29.89 18.31 38.08 
Non-empty APRED accuracy 73.19 64.65 67.37 56.90 57.89 59.20 68.77 
Unlabeled precision 34.94 26.86 10.88 21.71 20.25 9.13 25.66 
Unlabeled recall 62.61 63.86 97.52 93.40 92.72 22.10 67.82 
Unlabeled F 44.86 37.81 19.57 35.23 33.24 12.93 37.23 
Labeled precision 25.58 17.36 7.33 12.35 11.72 5.41 17.64 
Labeled recall 45.83 41.28 65.70 53.15 53.67 13.08 46.64 
Labeled F 32.83 24.44 13.19 20.05 19.24 7.65 25.60 
 

Table 5. APRED detailed analysis. Non-empty APRED accuracy includes only APRED cells that were non-empty 
both in gold standard and system output. Feature-pair coverage includes all cells filled by the system. Unlabeled preci-
sion and recall count non-empty vs. empty APREDs without respect to their actual labels. Counted on development 
data with gold-standard surface syntax. 
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 Cs En 
Before 65.81 69.48 
After 71.76 68.92 

Table 6. Unlabeled attachment accuracy on de-
velopment data before and after tagset conversion. 

6 Conclusion 

We described one of the systems that participated 
in the CoNLL 2009 Shared Task. We analyzed the 
weaknesses of the system and identified possible 
room for improvement. The most important point 
to focus on in future work is specifying where 
APRED should be filled in. The links between syn-
tactic and semantic structures have to be studied 
further. Subcategorization frames could probably 
help improve these decisions, too—our present 
system ignores the subcategorization dictionaries 
that accompany the participating treebanks. 
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Màrquez, Lluı́s, 1, 79
Martı́, Maria Antònia, 1
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Täckström, Oscar, 103
Tang, Buzhou, 109
Tellier, Isabelle, 91
Titov, Ivan, 37
Torisawa, Kentaro, 61

Uchimoto, Kiyotaka, 61

Van Asch, Vincent, 25
van den Bosch, Antal, 25
Vogel, Carl, 73

Wan, Jing, 97
Wang, Rui, 31
Wang, Xiaolong, 109
Wang, Xuan, 109
Watanabe, Yotaro, 114

127



Xue, Nianwen, 1

Zeman, Daniel, 120
Zhang, Mingyao, 97
Zhang, Yi, 1, 31
Zhao, Hai, 55, 61
Zhou, Guodong, 55


	Conference Program
	The CoNLL-2009 Shared Task: Syntactic and Semantic Dependencies in Multiple Languages
	An Iterative Approach for Joint Dependency Parsing and Semantic Role Labeling
	Joint Memory-Based Learning of Syntactic and Semantic Dependencies in Multiple Languages
	Hybrid Multilingual Parsing with HPSG for SRL
	A Latent Variable Model of Synchronous Syntactic-Semantic Parsing for Multiple Languages
	Multilingual Semantic Role Labeling
	Multilingual Dependency-based Syntactic and Semantic Parsing
	Multilingual Dependency Learning: A Huge Feature Engineering Method to Semantic Dependency Parsing
	Multilingual Dependency Learning: Exploiting Rich Features for Tagging Syntactic and Semantic Dependencies
	Efficient Parsing of Syntactic and Semantic Dependency Structures
	Exploring Multilingual Semantic Role Labeling
	A Second-Order Joint Eisner Model for Syntactic and Semantic Dependency Parsing
	Multilingual Semantic Role Labelling with Markov Logic
	The Crotal SRL System : a Generic Tool Based on Tree-structured CRF
	Parsing Syntactic and Semantic Dependencies for Multiple Languages with A Pipeline Approach
	Multilingual Semantic Parsing with a Pipeline of Linear Classifiers
	A Joint Syntactic and Semantic Dependency Parsing System based on Maximum Entropy Models
	Multilingual Syntactic-Semantic Dependency Parsing with Three-Stage Approximate Max-Margin Linear Models
	A Simple Generative Pipeline Approach to Dependency Parsing and Semantic Role Labeling

