
Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL), pages 174–182,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Lexical Patterns or Dependency Patterns:
Which Is Better for Hypernym Extraction?

Erik Tjong Kim Sang
Alfa-informatica

University of Groningen
e.f.tjong.kim.sang@rug.nl

Katja Hofmann
ISLA, Informatics Institute
University of Amsterdam

khofmann@science.uva.nl

Abstract

We compare two different types of extraction
patterns for automatically deriving semantic
information from text: lexical patterns, built
from words and word class information, and
dependency patterns with syntactic informa-
tion obtained from a full parser. We are partic-
ularly interested in whether the richer linguis-
tic information provided by a parser allows for
a better performance of subsequent informa-
tion extraction work. We evaluate automatic
extraction of hypernym information from text
and conclude that the application of depen-
dency patterns does not lead to substantially
higher precision and recall scores than using
lexical patterns.

1 Introduction

For almost a decade, automatic sentence parsing
systems with a reasonable performance (90+% con-
stituent precision/recall) have been available for En-
glish (Charniak, 1999). In recent years there has
been an increase in linguistic applications which use
parsing as a preprocessing step, e.g. Snow et al.
(2006) and Surdeanu et al. (2008). One of the boosts
for these new applications was the increasing power
of desktop computers, which allows for an easier ac-
cess to the computing-intensive parsing results. An-
other is the increased popularity of dependency pars-
ing of which the results can easily be incorporated
into followup systems.

Although there is a consensus about the fact that
the richness of the dependency structures should, in
principle, enable better performance than lexical in-
formation or shallow parsing results, it is not clear if

these better results can also be obtained in practice.
A performance of 90% precision and recall at con-
stituent level still leaves an average of one error in
a medium-length sentence of ten words. These er-
rors could degrade the performance of any approach
which relies heavily on parser output.

The question of whether to include a full parser as
a preprocessor for natural language processing task,
has led to a heated discussion between the two au-
thors of the paper. One of us argues that full parsers
are slow and make too many errors, and relies on
shallow techniques like part-of-speech tagging for
preprocessing. The other points at the decreasing
costs of computing and improvements in the reliabil-
ity of parsers, and recommends dependency parsers
as preprocessing tools.

While no automatic text preprocessing method is
free of errors, it is indeed true that approaches other
than full parsing, like for example shallow parsing,
offer useful information at a considerably cheaper
processing cost. The choice between using a heavy
full parser or a light shallow language analyzer is
one that developers of language processing systems
frequently have to make. The expected performance
boost of parsed data could be an important motiva-
tion for choosing for full syntactic analysis. How-
ever, we do not know how big the difference be-
tween the two methods will be. In order to find this
out, we designed an experiment in which we com-
pared the effects of preprocessing with and without
using information generated by a full parser.

In this paper, we compare two text preprocess-
ing approaches for a single language processing
task. The first of the two methods is shallow lin-

174

guistic processing, a robust and fast text analysis
method which only uses information from words,
like lemma information and part-of-speech classes.
The second method is dependency parsing which in-
cludes information about the syntactic relations be-
tween words. The natural language processing task
which we will use for assessing the usability of the
two processing methods is automatic extraction of
hypernym information from text. The language of
the text documents is Dutch. We expect that the find-
ings of this study would have been similar if any
other Germanic language (including English) was
used.

The contribution of this paper is a thorough and
fair comparison of the involved preprocessing tech-
niques. There have been earlier studies of hyper-
nym extraction with either lexical or dependency ex-
traction patterns. However, these studies applied the
techniques to a variety of different data sets and used
different evaluation techniques. We will apply the
two methods to the same data, evaluate the results in
a consistent manner and examine the differences.

After this introduction, we will describe the task,
the preprocessing methods and the evaluation setting
in more detail. In the third section, we will show
how our experiments were set up and present the re-
sults. Section four contains a detailed discussion of
the two methods and their effect on the extraction
task. In the final section of the paper, we will present
some concluding remarks.

2 Task and methods

We will apply two different preprocessing methods
to the task of extracting lexical information from
text. In the next sections we describe this task, dis-
cuss different methods for preprocessing the data
and outline the method used for evaluating the re-
sults.

2.1 Extracting hypernym relations

We will concentrate on extracting a single type of
lexical relation: hypernymy. Word A is a hypernym
of word B if the meaning of A both covers the mean-
ing of B and is broader. For example, color is a hy-
pernym of red which in turn is a hypernym of scar-
let. If A is a hypernym of B than B is a hyponym of
A.

There has been quite a lot of work on extracting
hypernymy pairs from text. The pioneering work
of Hearst (1992) applied fixed patterns like NP1 ,
especially NP2 to derive that NP1 is a hypernym
of NP2. Lately there has been a lot of interest in
acquiring such text patterns using a set of hyper-
nymy examples, e.g. Pantel et al. (2004) and Snow
(2006). Application of such techniques has not been
restricted to English but also involved other lan-
guages such as Dutch (Tjong Kim Sang and Hof-
mann, 2007). Recent work has also examined ex-
tracting hypernym information from structured data,
like Wikipedia (Sumida and Torisawa, 2008).

For our extraction work, we will closely follow
the approach described in Snow et al. (2006):

1. Collect from a text corpus phrases (consecutive
word sequences from a single sentence) that
contain a pair of nouns

2. Mark each phrase as containing a hypernym
pair or a non-hypernym pair according to a lex-
ical resource

3. Remove the noun pair from the phrases and
register how often each phrase is associated by
hypernym pairs and by non-hypernym pairs

4. Use this information for training a machine
learning system to predict whether two nouns
are a hypernym-hyponym pair based on the
phrases in which they occur in a text corpus

For example, we find two phrases: colors such as
cyan and colors such as birds, both of which contain
the basic phrase such as. We mark the first phrase
as a hypernym phrase (color is a hypernym of cyan)
while the second is marked as non-hypernym (color
is not a hypernym of bird). Thus the pattern such as
will receive a positive point and a negative point. A
machine learning algorithm can deduce from these
numbers that two other nouns occurring in the same
pattern will have an estimated probability of 50% of
being related according to hypernymy. The learner
can use information from other patterns to obtain a
better estimation of this probability.

2.2 Lexical patterns

We use two different text preprocessing methods
which automatically assign linguistic information to
sentences. The first preprocessing method has the

175

advantage of offering a fast analysis of the data but
its results are less elaborate than those of the second
method. The first method consists of three steps:

• Tokenization: sentence boundaries are detected
and punctuation signs are separated from words

• Part-of-speech tagging: part-of-speech classes
like noun and verb are assigned to words

• Lemmatization: words are reduced to their ba-
sic form (lemma)

The analysis process would convert a phrase like
Large cities in northern England such as Liverpool
are beyond revival. to lemmas and their associated
part-of-speech tags: large/JJ city/NN in/IN north/JJ

England/NNP such/DT as/IN Liverpool/NNP be/VB

beyond/IN revival/NN ./.
Like in the work of Snow et al. (2005), the tar-

get phrases for hypernym extraction are two noun
phrases, with a maximum of three tokens in be-
tween and one or two optional extra tokens (a non-
head token of the first noun phrase and/or one of
the second noun phrase). The lexical preprocessing
method uses two basic regular expressions for find-
ing noun phrases: Determiner? Adjective* Noun+
and ProperNoun+. It assumes that the final token
of the matched phrase is the head. Here is one set of
four patterns which can be derived from the example
sentence:

1. NP in NP
2. large NP in NP
3. NP in north NP
4. large NP in north NP

The patterns contain the lemmas rather than the
words of the sentence in order to allow for general
patterns. For the same reason, the noun phrases have
been replaced by the token NP. Each of the four pat-
terns will be used as evidence for a possible hyper-
nymy relation between the two noun phrase heads
city and England. As a novel extension to the work
of Snow et al., we included two additional variants
of each pattern in which either the first NP or the
second NP was replaced by its head:

5. city in NP
6. NP in England

This enabled us to identify among others appositions
as patterns: president NP.

2.3 Dependency patterns

A dependency analysis contains the same three steps
used for finding lexical patterns: tokenization, part-
of-speech tagging and lemmatization. Additionally,
it includes a fourth step:

• Dependency parsing: find the syntactic depen-
dency relations between the words in each sen-
tence

The syntactic analysis is head-based which means
that for each word in the sentence it finds another
word that dominates it. Here is a possible analysis
of the previous example sentence:

large:JJ:MOD:NN:city
city:NN:SUBJ:VBD:be
in:IN:MOD:NN:city
north:JJ:MOD:NNP:England
England:NNP:OBJ1:IN:in
such:DT:MOD:IN:as
as:IN:MOD:NN:city
Liverpool:NNP:OBJ1:IN:as
be:VB:–:–:–
beyond:IN:MOD:VB:be
revival:NN::OBJ1:IN:beyond

Each line contains a lemma, its part-of-speech tag,
the relation between the word and its head, the part-
of-speech tag of its head and the lemma of the head
word. Our work with dependency patterns closely
follows the work of Snow et al. (2005). Patterns are
defined as dependency paths with at most three in-
termediate nodes between the two focus nouns. Ad-
ditional satellite nodes can be present next to the two
nouns. The dependency patterns contain more infor-
mation than the lexical patterns. Here is one of the
patterns that can be derived for the two noun phrases
large cities and northern England in the example
sentence:

NP1:NN:SUBJ:VBD:
in:IN:MOD:NN:NP1

NP2:NNP:OBJ1:IN:in

The pattern defines a path from the head lemma city
via in, to England. Note that lemma information
linking outside this pattern (be at the end of the first
line) has been removed and that lemma information

176

from the target noun phrases has been replaced by
the name of the noun phrase (NP1 at the end of the
second line). For each dependency pattern, we build
six variants similar to the six variants of the lexical
patterns: four with additional information from the
two noun phrases and two more with head informa-
tion of one of the two target NPs.

Both preprocessing methods can identify phrases
like N such as N1 , N2 and N3 as well. Such phrases
produce evidence for each of the pairs (N,N1),
(N,N2) and (N,N3). These three noun pairs will be
included in the data collected for the patterns that
can be derived from the phrase.

We expect that an important advantage of using
dependency patterns over lexical patterns will be
that the former offer a wider coverage. In the ex-
ample sentence, no lexical pattern will associate city
with Liverpool because there are too many words in
between. However, a dependency pattern will cre-
ate a link between these two words, via the word
as. This will enable the dependency patterns to find
out that city is a hypernym of Liverpool, where the
lexical patterns are not able to do this based on the
available information.

The two preprocessing methods generate a large
number of noun pairs associated by patterns. Like
Snow et al. (2005), we keep only noun pairs which
are associated by at least five different patterns. The
same constraint is enforced on the extraction pat-
terns: we keep only the patterns which are associ-
ated by at least five different noun pairs. The data
is converted to binary feature vectors representing
noun pairs. These are training data for a Bayesian
Logistic Regression system, BBRtrain (Genkin et
al., 2004). We use the default settings of the learn-
ing system and test its prediction capability in a bi-
nary classification task: whether two nouns are re-
lated according to hypernymy or not. Evaluation is
performed by 10-fold cross validation.

2.4 Evaluation
For parameter optimization we need an automatic
evaluation procedure, since repeated manual checks
of results generated by different versions of the
learner require too much time. We have adopted the
evaluation method of Snow et al (2006): compare
the generated hypernyms with hypernyms present in
a lexical resource, in our case the Dutch part of Eu-

roWordNet (1998).
This choice results in two restrictions. First, we

will only consider pairs of known words (words that
are present in the lexical resource) for evaluation.
We have no information about other words so we
make no assumptions about them. Second, if two
words appear in the lexical resource but not in the
hypernym relation of that same resource then we
will assume that they are unrelated. In other words,
we assume the hypernymy relation specified in the
lexical resource as complete (like in the work of
Snow et al. (2006)).

We use standard evaluation scores. We will com-
pute precision and recall for the candidate hyper-
nyms, as well as the related Fβ=1 rate, the harmonic
mean between precision and recall. Precision will be
computed against all chosen candidate hypernyms.
However, recall will only be computed against the
positive noun pairs which occur in the phrases se-
lected by the examined method. The different pre-
processing methods may cause different numbers of
positive pairs to be selected. Only these pairs will
be used for computing recall scores. Others will be
ignored. For this reason we will report the selected
number of positive target pairs in the result tables as
well1.

3 Experiments and results

We have applied the extraction techniques to two
different Dutch corpora. The first is a collection of
texts from the news domain. It consists of texts from
five different Dutch news papers from the Twente
News Corpus collection. Two versions of this cor-
pus exist. We have worked with the version which
contains the years 1997-2005 (26 million sentences
and 450 million tokens). The second corpus is the
Dutch Wikipedia. Here we used a version of Octo-
ber 2006 (5 million sentences and 58 million words).

Syntactic preprocessing of the material was done
with the Alpino parser, the best available parser for
Dutch with a labeled dependency accuracy of 89%
(Van Noord, 2006). Rather than performing the
parsing task ourselves, we have relied on an avail-
able parsed treebank which included the text corpora

1In a seperate study we have shown that the observed differ-
ences between the two methods remain the same when recall is
computed over sets of similar sizes (Tjong Kim Sang, 2009).

177

that we wanted to use (Van Noord, 2009).
The parser also performs part-of-speech tagging

and lemmatization, tasks which are useful for the
lexical preprocessing methods. However, taking fu-
ture real-time applications in mind, we did not want
the lexical processing to be dependent on the parser.
Therefore we have developed an in-house part-of-
speech tagger and lemmatizer based on the material
created in the Corpus Spoken Dutch project (Eynde,
2005). The tagger achieved an accuracy of 96% on
test data from the same project while the lemmatizer
achieved 98%.

We used the Dutch part of EuroWordNet (Vossen,
1998) as the gold standard lexical resource, both for
training and testing. In the lexicon, many nouns have
different senses. This can cause problems for the
pattern extraction process. For example, if a noun
N1 with sense X is related to another noun N2 then
the appearance of N1 with sense Y with N2 in the
text may be completely accidental and say nothing
about the relation between the two words. In that
case it would be wrong to regard the context of the
two words as an interesting extraction pattern.

There are several ways to deal with this prob-
lem. One is to automatically assign senses to words.
However we do not have a reliable sense tagger for
Dutch at our disposal. Another method was pro-
posed by Snow et al (2005): assume that every word
bears its most frequent sense. But this is also in-
formation which we lack for Dutch: our lexical re-
source does not contain frequency information for
word senses. We have chosen the approach sug-
gested by Hofmann and Tjong Kim Sang (2007):
remove all nouns with multiple senses from the data
set and use only the monosemous words for find-
ing good extraction patterns. This restriction is only
imposed in the training phase. We consider both
monosemous words and polysemous words in the
evaluation process.

We imposed two additional restrictions on the lex-
ical resource. First, we removed the top noun of
the hypernymy hierarchy (iets) from the list of valid
hypernyms. This word is a valid hypernym of any
other noun. It is not an interesting suggestion for
the extraction procedure to put forward. Second, we
restricted the extraction procedure to propose only
known hypernyms as candidate hypernyms. Nouns
that appeared in the lexical resources only as hy-

lexical patterns
Data source Targ. Prec. Recall Fβ=1

AD 620 55.8% 27.9% 37.2
NRC 882 50.4% 23.8% 32.3
Parool 462 51.8% 21.9% 30.8
Trouw 607 54.1% 25.9% 35.0
Volkskrant 970 49.7% 24.1% 32.5
Newspapers 3307 43.1% 26.7% 33.0
Wikipedia 1288 63.4% 44.3% 52.1

dependency patterns
Data source Targ. Prec. Recall Fβ=1

AD 706 42.9% 30.2% 35.4
NRC 1224 26.2% 25.3% 25.7
Parool 584 31.2% 23.8% 27.0
Trouw 760 35.3% 29.0% 31.8
Volkskrant 1204 29.2% 25.5% 27.2
Newspapers 3806 20.7% 29.1% 24.2
Wikipedia 1580 61.9% 47.0% 53.4

Table 1: Hypernym extraction scores for the five news-
papers in the Twente News Corpus (AD, NRC, Parool,
Trouw and Volkskrant) and for the Dutch Wikipedia.
The Targets column shows the number of unique posi-
tive word pairs in each data set. The Dutch Wikipedia
contains about as much data as one of the newspaper sec-
tions.

ponyms (leaf nodes of the hypernymy tree) were
never proposed as candidate hypernyms. This made
sense for our evaluation procedure which is only
aimed at finding known hypernym-hyponym pairs.

We performed two hypernym extraction experi-
ments, one which used lexical extraction patterns
and one which used dependency patterns2. The re-
sults from the experiments can be found in Table
1. The newspaper F-scores obtained with lexical
patterns are similar to those reported for English
(Snow et al., 2005, 32.0) but the dependency pat-
terns perform worse. Both approaches perform well
on Wikipedia data, most likely because of the more
repeated sentence structures and the presence of
many definition sentences. For newspaper data, lex-
ical patterns outperform dependency patterns both
for precision and Fβ=1. For Wikipedia data the dif-
ferences are smaller and in fact the dependency pat-

2The software used in these experiment has been made avail-
able at http://www.let.rug.nl/erikt/cornetto/D08.zip

178

terns obtain the best F-score. For all data sets, the
dependency patterns suggest more related pairs than
the lexical patterns (column Targets). The differ-
ences between the two pattern types are significant
(p < 0.05) for all evaluation measures for Newspa-
pers and for positive targets and recall for Wikipedia.

4 Result analysis

In this section, we take a closer look at the results de-
scribed in the previous section. We start with look-
ing for an explanation for the differences between
the scores obtained with lexical patterns and depen-
dency patterns. First we examine the results for
Wikipedia data and then the results for newspaper
data. Finally, we perform an error analysis to find
out the strengths and weaknesses of each of the two
methods.

4.1 Wikipedia data
The most important difference between the two pat-
tern types for Wikipedia data is the number of posi-
tive targets (Table 1). Dependency patterns find 23%
more related pairs in the Wikipedia data than lexi-
cal patterns (1580 vs. 1288). This effect can also
be simulated by changing the size of the corpus. If
we restrict the data set of the dependency patterns
to 70% of its current size then the patterns retrieve a
similar number of positive targets as the lexical pat-
terns, 1289, with comparable precision, recall and
Fβ=1 scores (62.5%, 46.6% and 53.4). So we expect
that the effect of applying the dependency patterns
is the same as applying the lexical patterns to 43%
more data.

4.2 Newspaper data
Performance-wise there seems to be only a small
difference between the two preprocessing methods
when applied to the Wikipedia data set. However,
when we examine the scores obtained on the news-
paper data (Table 1) then we find larger differences.
Dependency patterns remain finding more positive
targets and obtaining a larger recall score but their
precision score is disappointing. However, when we
examine the precision-recall plots of the two meth-
ods (Figure 1, obtained by varying the acceptance
threshold of the machine learner), they are almost
indistinguishable. The performance line for lexical
patterns extends further to the left than the one of

Figure 1: Performance of individual hypernym extraction
patterns applied to the combination of five newspapers
and Wikipedia. Each + in the graphs represent a differ-
ent extraction pattern. The precision-recall graphs for the
machine learner (lines) are identical for each data source
except for the extended part of the performance line for
lexical patterns.

179

lexical patterns applied to Newspapers
Key Phrase Targ. Prec. Recall Fβ=1

N and other N 376 22.0% 11.4% 15.0
N such as N 222 25.1% 6.7% 10.6
N like N 579 7.6% 17.5% 10.6
N , such as N 263 15.6% 8.0% 10.5
N (N 323 7.5% 9.8% 8.5

dependency patterns applied to Newspapers
Key Phrase Targ. Prec. Recall Fβ=1

N and other N 420 21.1% 11.0% 14.5
N be a N 451 8.2% 11.8% 9.7
N like N 205 27.3% 5.4% 9.0
N be N 766 5.7% 20.1% 8.8
N such as N 199 22.4% 5.2% 8.5

lexical patterns applied to Wikipedia
Key Phrase Targ. Prec. Recall Fβ=1

N be a N 294 40.8% 22.8% 29.3
N be N 418 22.9% 32.5% 26.9
a N be N 185 53.3% 14.4% 22.6
N such as N 161 57.5% 12.5% 20.5
N (N 188 21.2% 14.6% 17.3

dependency patterns applied to Wikipedia
Key Phrase Targ. Prec. Recall Fβ=1

N be N 609 33.6% 38.5% 35.9
N be a N 452 44.3% 28.6% 34.8
the N be N 258 34.0% 16.3% 22.1
a N be N 184 44.7% 11.6% 18.5
N N 234 16.6% 14.8% 15.6

Table 2: Best performing extraction patterns according to
F-scores.

the dependency patterns but the remainder of the two
graphs overlap. The measured performances in Ta-
ble 1 are different because the machine learner put
the acceptance level for extracted pairs at different
points of the graph: the performance lines in both
newspaper graphs contain (recall,precision) points
(26.7%,43.1%) and (29.1%,20.7%).

We are unable to find major differences in the re-
sults of the two approaches. We conclude that, apart
from an effect which can be simulated with some
extra data, there is no difference between prepro-
cessing text with shallow methods and with a full

56 — covered by other patterns
12 48% required full parsing
6 24% lemmatization errors
3 12% omitted for lack of support
3 12% pos tagging errors
1 4% extraction pattern error

81 100%

45 — covered by other patterns
38 64% parsing errors
10 17% lemmatization errors
7 12% extraction pattern errors
3 5% omitted for lack of support
1 2% pos tagging error

104 100%

Table 3: Primary causes of recall errors made by the lex-
ical pattern N such as N (top) and the best performing
corresponding dependency pattern (bottom).

dependency parser.

4.3 Error analysis

Despite the lack of performance differences between
the two preprocessing methods, there are still inter-
nal differences which cause one method to generate
different related word pairs than the other. We will
now examine in detail two extraction patterns and
specify their distinct effects on the output results.
We hope that by carefully examining their output we
can learn about the strengths and weaknesses of the
two approaches.

We take a closer look at extraction pattern N such
as N for Newspaper data (second best for lexical pat-
terns and fifth best for dependency patterns, see Ta-
ble 2). The lexical pattern found 222 related word
pairs while the dependency pattern discovered 199.
118 of these pairs were found by both patterns which
means that the lexical pattern missed 81 of the pairs
while the dependency pattern missed 104.

An overview of the cause of the recall errors can
be found in Table 3. The two extraction patterns
do not overlap completely. The dependency parser
ignored punctuation signs and therefore the depen-
dency pattern covers both phrases with and without
punctuation. However, these phrase variants result
in different lexical patterns. This is the cause for
56 hypernyms being missed by the lexical pattern.

180

Meanwhile there is a difference between a depen-
dency pattern without the conjunction and and one
with the conjunction, while there is a unified lexi-
cal pattern processing both phrases with and without
conjunctions. This caused the dependency pattern to
miss 45 hypernyms. However, all of these ‘missed’
hypernyms are handled by other patterns.

The main cause of the recall differences between
the two extraction patterns was the parser. The de-
pendency pattern found twelve hypernyms which
the lexical pattern missed because they required an
analysis which was beyond part-of-speech tagging
and the basic noun phrase identifier used by the lex-
ical preprocessor. Six hypernyms required extend-
ing a noun phrase with a prepositional phrase, five
needed noun phrase extension with a relative clause
and one involved appositions. An example of such
a phrase is illnesses caused by vitamin deficits, like
scurvy and beriberi.

However, the syntactic information that was avail-
able to the dependency pattern did also have a neg-
ative effect on its recall. 38 of the hypernyms de-
tected by the lexical pattern were missed by the de-
pendency pattern because there was a parsing error
in the relevant phrase. In more than half of the cases,
this involved attaching the phrase starting with such
as at an incorrect position. We found that a phrase
like N1 such as N2 , N3 and N4 could have been split
at any position. We even found some cases of prepo-
sitional phrases and relative clauses incorrectly be-
ing moved from other positions in the sentence into
the target phrase.

Other recall error causes appear less frequently.
The two preprocessing methods used different
lemmatization algorithms which also made different
errors. The effects of this were visible in the errors
made by the two patterns. Some hypernyms that
were found by both patterns but were not present
in both results because of insufficient support from
other patterns (candidate hypernyms should be sup-
ported by at least five different patterns). The ef-
fect of errors in part-of-speech tags was small. Our
data analysis also revealed some inconsistencies in
the extraction patterns which should be examined.

5 Concluding remarks

We have evaluated the effects of two different pre-
processing methods for a natural language process-
ing task: automatically identifying hypernymy in-
formation. The first method used lexical patterns
and relied on shallow processing techniques like
part-of-speech tagging and lemmatization. The sec-
ond method used dependency patterns which re-
lied on additional information obtained from depen-
dency parsing.

In earlier work, McCarthy et al. (2007) found
that for word sense disambiguation using the-
sauri generated from dependency relations perform
only slightly better than thesauri generated from
proximity-based relations. Jijkoun et al. (2004)
showed that information obtained from dependency
patterns significantly improved the performance of a
question answering system. Li and Roth (2001) re-
port that preprocessing by shallow parsing allows for
a more accurate post-processing of ill-formed sen-
tences than preprocessing with full parsing.

Our study supports the findings of McCarthy et
al. (2007). We found only minor differences in per-
formances between the two preprocessing methods.
The most important difference: about 20% extra
positive cases that were identified by the dependency
patterns applied to Wikipedia data, can be overcome
by increasing the data set of the lexical patterns by
half. We believe that obtaining more data may often
be easier than dealing with the extra computing time
required for parsing the data. For example, in the
course of writing this paper, we had to refrain from
using a recent version of Wikipedia because pars-
ing the data would have taken 296 days on a single
processor machine compared with a single hour for
tagging the data.

References

Eugene Charniak. 1999. A maximum-entropy inspired
parser. Technical Report CS-99-12, Brown University.

Frank Van Eynde. 2005. Part of Speech Tagging en Lem-
matisering van het Corpus Gesproken Nederlands.
K.U. Leuven. (in Dutch).

Alexander Genkin, David D. Lewis, and David Madigan.
2004. Large-Scale Bayesian Logistic Regression for
Text Categorization. Technical report, Rutgers Uni-
versity, New Jersey.

181

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
ACL-92. Newark, Delaware, USA.

Katja Hofmann and Erik Tjong Kim Sang. 2007. Au-
tomatic extension of non-english wordnets. In Pro-
ceedings of SIGIR’07. Amsterdam, The Netherlands
(poster).

Valentin Jijkoun, Maarten de Rijke, and Jori Mur. 2004.
Information extraction for question answering: Im-
proving recall through syntactic patterns. In Proceed-
ings of Coling’04. Geneva, Switzerland.

Xin Li and Dan Roth. 2001. Exploring evidence for shal-
low parsing.

Diana McCarthy, Rob Koeling, Julie Weeds, and John
Caroll. 2007. Unsupervised acquisition of predomi-
nant word senses. Computational Linguistics, 33(4).

Patrick Pantel, Deepak Ravichandran, and Eduard Hovy.
2004. Towards terascale knowledge acquisition.
In Proceedings of COLING 2004, pages 771–777.
Geneva, Switzerland.

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. 2005.
Learning syntactic patterns for automatic hypernym
discovery. In NIPS 2005. Vancouver, Canada.

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. 2006.
Semantic taxonomy induction from heterogenous evi-
dence. In Proceedings of COLING/ACL 2006. Sydney,
Australia.

Asuka Sumida and Kentaro Torisawa. 2008. Hacking
wikipedia for hyponymy relation acquisition. In Pro-
ceedings of IJCNLP 2008. Hyderabad, India.

Mihai Surdeanu, Richard Johansson, Lluı́s Màrquez,
Adam Meyers, and Joakim Nivre. 2008. The conll-
2008 shared task on joint learning of syntactic and se-
mantic dependencies. In Proceedings of CoNLL-2008.
Manchester, UK.

Erik Tjong Kim Sang and Katja Hofmann. 2007. Au-
tomatic extraction of dutch hypernym-hyponym pairs.
In Proceedings of CLIN-2006. Leuven, Belgium.

Erik Tjong Kim Sang. 2009. To use a treebank or not –
which is better for hypernym extraction. In Proceed-
ings of the Seventh International Workshop on Tree-
banks and Linguistic Theories (TLT 7). Groningen,
The Netherlands.

Gertjan Van Noord. 2006. At last parsing is now oper-
ational. In Piet Mertens, Cedrick Fairon, Anne Dis-
ter, and Patrick Watrin, editors, TALN06. Verbum Ex
Machina. Actes de la 13e conference sur le traitement
automatique des langues naturelles.

Gertjan Van Noord. 2009. Huge parsed corpora in lassy.
In Proceedings of TLT7. LOT, Groningen, The Nether-
lands.

Piek Vossen. 1998. EuroWordNet: A Multilingual
Database with Lexical Semantic Networks. Kluwer
Academic Publisher.

182

