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Abstract

English pronouns likeheandtheyreliably re-
flect the gender and number of the entities to
which they refer. Pronoun resolution systems
can use this fact to filter noun candidates that
do not agree with the pronoun gender. In-
deed, broad-coverage models of noun gender
have proved to be the most important source
of world knowledge in automatic pronoun res-
olution systems.

Previous approaches predict gender by count-
ing the co-occurrence of nouns with pronouns
of each gender class. While this provides use-
ful statistics for frequent nouns, many infre-
quent nouns cannot be classified using this
method. Rather than using co-occurrence in-
formation directly, we use it to automatically
annotate training examples for a large-scale
discriminative gender model. Our model col-
lectively classifies all occurrences of a noun
in a document using a wide variety of con-
textual, morphological, and categorical gender
features. By leveraging large volumes of un-
labeled data, our full semi-supervised system
reduces error by 50% over the existing state-
of-the-art in gender classification.

1 Introduction

Pronoun resolution is the process of determining
which preceding nouns are referred to by a partic-
ular pronoun in text. Consider the sentence:

(1) Glen told Glenda that she was wrong about
Glendale.

A pronoun resolution system should determine that
the pronounshe refers to the nounGlenda. Pro-
noun resolution is challenging because it requires a

lot of world knowledge(general knowledge of word
types). Ifsheis replaced with the pronounhe in (1),
Glen becomes the antecedent. Pronoun resolution
systems need the knowledge ofnoun genderthat ad-
vises thatGlen is usually masculine (and thus re-
ferred to byhe) while Glendais feminine.

English third-person pronouns are grouped in four
gender/number categories: masculine (he, his, him,
himself), feminine (she, her, herself), neutral (it, its,
itself), and plural (they, their, them, themselves). We
broadly refer to these gender and number classes
simply asgender. The objective of our work is to
correctly assign gender to English noun tokens, in
context; to determine which class of pronoun will
refer to a given noun.

One successful approach to this problem is to
build a statistical gender model from a noun’s asso-
ciation with pronouns in text. For example, Ge et al.
(1998) learnFord has a 94% chance of being neu-
tral, based on its frequent co-occurrence with neu-
tral pronouns in text. Such estimates are noisy but
useful. Both Ge et al. (1998) and Bergsma and Lin
(2006) show that learned gender is the most impor-
tant feature in their pronoun resolution systems.

English differs from other languages like French
and German in that gender is not an inherent gram-
matical property of an English noun, but rather a
property of a real-world entity that is being referred
to. A common noun likelawyer can be (semanti-
cally) masculine in one document and feminine in
another. While previous statistical gender models
learn gender for noun types only, we use document
context to correctly determine the current gender
class of noun tokens, making dynamic decisions on
common nouns likelawyer and ambiguous names
like Ford. Furthermore, if a noun type has not yet
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been observed (an unknown word), previous ap-
proaches cannot estimate the gender. Our system,
on the other hand, is able to correctly determine that
unknown wordscorroboratorsandpropeller-heads
are plural, whilePope Formosusis masculine, using
learned contextual and morphological cues.

Our approach is based on the key observation that
while gender information from noun-pronoun co-
occurrence provides imperfect noun coverage, it can
nevertheless provide rich and accurate training data
for a large-scale discriminative classifier. The clas-
sifier leverages a wide variety of noun properties to
generalizefrom the automatically-labeled examples.
The steps in our approach are:

1. Training:

(a) Automatically extract a set of seed
(noun,gender) pairs from high-quality in-
stances in a statistical gender database.

(b) In a large corpus of text, find documents con-
taining these nouns.

(c) For all instances of each noun in each document,
create a single, composite feature vector repre-
senting all the contexts of the noun in the docu-
ment, as well as encoding other selected proper-
ties of the noun type.

(d) Label each feature vector with the seed noun’s
corresponding gender.

(e) Train a 4-way gender classifier (masculine, fem-
inine, neutral, plural) from the automatically-
labeled vectors.

2. Testing:

(a) Given a new document, create a composite fea-
ture vector for all occurrences of each noun.

(b) Use the learned classifier to assign gender to
each feature vector, and thus all occurrences of
all nouns in the document.

This algorithm achieves significantly better per-
formance than the existing state-of-the-art statisti-
cal gender classifier, while requiring no manually-
labeled examples to train. Furthermore, by training
on a small number of manually-labeled examples,
we can combine the predictions of this system with
the counts from the original gender database. This
semi-supervised extension achieves 95.5% accuracy
on final unseen test data, an impressive 50% reduc-
tion in error over previous work.

2 Path-based Statistical Noun Gender

Seed(noun,gender)examples can be extracted re-
liably and automatically from raw text, providing
the training data for our discriminative classifier.
We call these examplespseudo-seeds because they
are created fully automatically, unlike the small set
of manually-created seeds used to initialize other
bootstrapping approaches (cf. the bootstrapping ap-
proaches discussed in Section 6).

We adopt a statistical approach to acquire the
pseudo-seed(noun,gender)pairs. All previous sta-
tistical approaches rely on a similar observation: if
a noun likeGlen is often referred to by masculine
pronouns, likehe or his, thenGlen is likely a mas-
culine noun. But for most nouns we have no an-
notated data recording their coreference with pro-
nouns, and thus no data from which we can ex-
tract the co-occurrence statistics. Thus previous ap-
proaches rely on either hand-crafted coreference-
indicating patterns (Bergsma, 2005), or iteratively
guess and improve gender models through expec-
tation maximization of pronoun resolution (Cherry
and Bergsma, 2005; Charniak and Elsner, 2009). In
statistical approaches, the more frequent the noun,
the more accurate the assignment of gender.

We use the approach of Bergsma and Lin (2006),
both because it achieves state-of-the-art gender
classification performance, and because a database
of the obtained noun genders is available online.1

Bergsma and Lin (2006) use an unsupervised
algorithm to identify syntactic paths along which a
noun and pronoun are highly likely to corefer. To
extract gender information, they processed a large
corpus of news text, and obtained co-occurrence
counts for nouns and pronouns connected with these
paths in the corpus. In their database, each noun is
listed with its corresponding masculine, feminine,
neutral, and plural pronoun co-occurrence counts,
e.g.:
glen 555 42 32 34
glenda 8 102 0 11
glendale 24 2 167 18
glendalians 0 0 0 1
glenn 3182 207 95 54
glenna 0 6 0 0

1Available at http://www.cs.ualberta.ca/˜bergsma/Gender/
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This sample of the gender data shows that the
nounglenda, for example, occurs 8 times with mas-
culine pronouns, 102 times with feminine pronouns,
0 times with neutral pronouns, and 11 times with
plural pronouns; 84% of the timeglendaco-occurs
with a feminine pronoun. Note that all nouns in the
data have been converted to lower-case.2

There are gender counts for 3.1 million English
nouns in the online database. These counts form the
basis for the state-of-the-art gender classifier. We
can either take the most-frequent pronoun-gender
(MFPG) as the class (e.g.feminine for glenda), or
we can supply the logarithm of the counts as features
in a 4-way multi-class classifier. We implement the
latter approach as a comparison system and refer to
it as PATHGENDER in our experiments.

In our approach, rather than using these counts
directly, we process the database to automatically
extract a high-coverage but also high-quality set of
pseudo-seed(noun,gender)pairs. First, we filter
nouns that occur less than fifty times and whose
MFPG accounts for less than 85% of counts. Next,
we note that the most reliable nouns should occur
relatively often in a coreferent path. For exam-
ple, note thatimportanceoccurs twice as often on
the web asClinton, but has twenty-four times less
counts in the gender database. This is becauseim-
portanceis unlikely to be a pronoun’s antecedent.
We plan to investigate this idea further in future
work as a possible filter on antecedent candidates
for pronoun resolution. For the present work, sim-
ply note that a high ratio of database-count to web-
count provides a good indication of the reliability of
a noun’s gender counts, and thus we filter nouns that
have such ratios below a threshold.3 After this fil-
tering, we have about 45 thousand nouns to which
we automatically assign gender according to their
MFPG. These(noun,gender)pairs provide the seed
examples for the training process described in the

2Statistical approaches can adapt to the idiosyncrasies of the
particular text domain. In the news text from which this data
was generated, for example, both the wordshipsand specific
instances of ships (the USS Cole, the Titanic, etc.) are neutral.
In Wikipedia, on the other hand, feminine pronouns are often
used for ships. Such differences can be learned automatically.

3We roughly tuned all the thresholds to obtain the highest
number of seeds such that almost all of them looked correct
(e.g. Figure 1). Further work is needed to determine whethera
different precision/recall tradeoff can improve performance.

. . .
stefanie
steffi graf
steinem
stella mccartney
stellar jayne
stepdaughter
stephanie
stephanie herseth
stephanie white
stepmother
stewardess
. . .

Figure 1: Samplefeminine seed nouns

following section. Figure 1 provides a portion of the
orderedfeminine seed nouns that we extracted.

3 Discriminative Learning of Gender

Once we have extracted a number of pseudo-seed
(noun,gender)pairs, we use them to automatically-
label nouns (in context) in raw text. The auto-
labeled examples provide training data for discrimi-
native learning of noun gender.

Since the training pairs are acquired from a
sparse and imperfect model of gender, what can
we gain by training over them? We can regard the
Bergsma and Lin (2006) approach and our discrim-
inative system as two orthogonal views of gender,
in a co-training sense (Blum and Mitchell, 1998).
Some nouns can be accurately labeled by noun-
pronoun co-occurrence (a view based on pronoun
co-occurrence), and these examples can be used to
deduce other gender-indicating regularities (a view
based on other features, described below).

We presently explain how examples are extracted
using our pseudo-seed pairs, turned into auto-
labeled feature vectors, and then used to train a su-
pervised classifier.

3.1 Automatic example extraction

Our example-extraction module processes a large
collection of documents (roughly a million docu-
ments in our experiments). For each document, we
extract all the nouns, including context words within
±5 tokens of each noun. We then group the nouns by
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Class=masculine String=“Lee”
Contexts =
“led some to suggest that⋆ , who was born in”
“⋆ also downloaded secret files to”
“⋆ says he was just making”
“by mishandling the investigation of⋆ .”

. . .

Figure 2: Sample noun training instance

their (lower-case) string. If a group’s noun-string is
in our set of seed(noun,gender)pairs, we assign the
correspondinggenderto be the class of the group.
Otherwise, we discard the group. To prevent fre-
quent nouns from dominating our training data, we
only keep the first 200 groups corresponding to each
noun string. Figure 2 gives an example training noun
group with some (selected) context sentences. At
test time, all nouns in the test documents are con-
verted to this format for further processing.

We group nouns because there is a strong ten-
dency for nouns to have only one sense (and hence
gender) per discourse. We extract contexts because
nearby words provide good clues about which gen-
der is being used. The notion that nouns have only
one sense per discourse/collocation was also ex-
ploited by Yarowsky (1995) in his seminal work on
bootstrapping for word sense disambiguation.

3.2 Feature vectors

Once the training instances are extracted, they are
converted to labeled feature vectors for supervised
learning. The automatically-determined gender pro-
vides the class label (e.g.,masculine for the group
in Figure 2). The features identify properties of the
noun and its context that potentially correlate with a
particular gender category. We divide the features
into two sets: those that depend on the contexts
within the document (Context features: features of
the tokensin the document), and those that depend
on the noun string only (Type features). In both
cases we induce the feature space from the train-
ing examples, keeping only those features that occur
more than 5 times.

3.2.1 Context features

The first set of features represent the contexts of
the word, using all the contexts in the noun group.

To illustrate the potential utility of the context infor-
mation, consider the context sentences for the mas-
culine noun in Figure 2. Even if these snippets were
all the information we were given, it would be easy
to guess the gender of the noun.

We use binary attribute-value features to flag, for
any of the contexts, the presence of all words at con-
text positions±1,±2, etc. (sometimes calledcol-
location features (Golding and Roth, 1999)). For
example, feature 255920 flags that the word two-to-
the-right of the noun ishe. We also provide fea-
tures for the presence of all wordsanywherewithin
±5 tokens of the noun (sometimes calledcontext
words). We also parse the sentence and provide a
feature for the noun’s parent (and relationship with
the parent) in the parse tree. For example, the in-
stance in Figure 2 has featuresdownloaded(subject),
says(subject), etc. Since plural nouns should be gov-
erned by plural verbs, this feature is likely to be es-
pecially helpful for number classification.

3.2.2 Type features

The next group of features represent morpholog-
ical properties of the noun. Binary features flag the
presence of all prefixes and suffixes of one-to-four
characters. For multi-token nouns, we have features
for the first and last token in the noun. Thus we hope
to learn thatBobbegins masculine nouns whileinc.
ends neutral ones.

Finally, we have features that indicate if the noun
or parts of the noun occur on various lists. Indica-
tor features specify if any token occurs on in-house
lists of given names, family names, cities, provinces,
countries, corporations, languages, etc. A feature
also indicates if a token is a corporate designation
(like inc. or ltd.) or a human one (likeMr. or Sheik).
We also made use of the person-name/instance
pairs automatically extracted by Fleischman et al.
(2003).4 This data provides counts for pairs such
as (Zhang Qiyue,spokeswoman) and (Thorvald
Stoltenberg,mediator). We have features for allcon-
cepts(like spokeswomanand mediator) and there-
fore learn their association with each gender.

3.3 Supervised learning and classification

Once all the feature vectors have been extracted,
they are passed to a supervised machine learn-

4Available at http://www.mit.edu/˜mbf/instances.txt.gz
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ing algorithm. We train and classify using a
multi-class linear-kernel Support Vector Machine
(SVM) (Crammer and Singer, 2001). SVMs are
maximum-margin classifiers that achieve good per-
formance on a range of tasks. At test time, nouns in
test documents are processed exactly as the training
instances described above, converting them to fea-
ture vectors. The test vectors are classified by the
SVM, providing gender classes for all the nouns in
the test document. Since all training examples are
labeled automatically (auto-trained), we denote sys-
tems using this approach as -AUTO.

3.4 Semi-supervised extension

Although a good gender classifier can be learned
from the automatically-labeled examples alone, we
can also use a small quantity of gold-standard la-
beled examples to achieve better performance.

Combining information from our two sets of la-
beled data is akin to a domain adaptation prob-
lem. The gold-standard data can be regarded as
high-quality in-domain data, and the automatically-
labeled examples can be regarded as the weaker, but
larger, out-of-domain evidence.

There is a simple but effective method for com-
bining information from two domains using predic-
tions as features. We train a classifier on the full set
of automatically-labeled data (as described in Sec-
tion 3.3), and then use this classifier’s predictions as
features in a separate classifier, which is trained on
the gold-standard data. This is like the competitive
Featsdomain-adaptation system in Daumé III and
Marcu (2006).

For our particular SVM classifier (Section 4.1),
predictions take the form of four numerical scores
corresponding to the four different genders. Our
gold-standard classifier has features for these four
predictions plus features for the original path-based
gender counts (Section 2).5 Since this approach uses
both automatically-labeled and gold-standard data in
a semi-supervised learning framework, we denote
systems using this approach as -SEMI .

5We actually use 12 features for the path-based counts: the
4 original, and then 4 each for counts for the first and last token
in the noun string. See PATHGENDER+ in Section 4.2.

4 Experiments

4.1 Set-up

We parsed the 3 GB AQUAINT corpus (Vorhees,
2002) using Minipar (Lin, 1998) to create our un-
labeled data. We process this data as described in
Section 3, making feature vectors from the first 4
million noun groups. We train from these exam-
ples using a linear-kernel SVM via the the efficient
SVMmulticlass instance of the SVMstruct software
package (Tsochantaridis et al., 2004).

To create our gold-standard gender data, we fol-
low Bergsma (2005) in extracting gender informa-
tion from the anaphora-annotated portion6 of the
American National Corpus (ANC) (Ide and Sud-
erman, 2004). In each document, we first group
all nouns with a common lower-case string (exactly
as done for our example extraction (Section 3.1)).
Next, for each group we determine if a third-person
pronoun refers to any noun in that group. If so, we
label all nouns in the group with the gender of the
referring pronoun. For example, if the pronounhe
refers to a nounBrown, then all instances ofBrown
in the document are labeled as masculine. We ex-
tract the genders for 2794 nouns in the ANC train-
ing set (in 798 noun groups) and 2596 nouns in the
ANC test set (in 642 groups). We apply this method
to other annotated corpora (including MUC corpora)
to create a development set.

The gold standard ANC training set is used to
set the weights on the counts in the PATHGENDER

classifiers, and to train the semi-supervised ap-
proaches. We also use an SVM to learn these
weights. We use the development set to tune the
SVM’s regularization parameter, both for systems
trained on automatically-generated data, and for sys-
tems trained on gold-standard data. We also opti-
mize each automatically-trained system on the de-
velopment set when we include this system’s pre-
dictions as features in the semi-supervised exten-
sion. We evaluate and state performance for all ap-
proaches on the final unseen ANC test set.

4.2 Evaluation

The primary purpose of our experiments is to de-
termine if we can improve on the existing state-of-
the-art in gender classification (path-based gender

6Available at http://www.cs.ualberta.ca/˜bergsma/CorefTags/
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counts). We test systems both trained purely on
automatically-labeled data (Section 3.3), and those
that leverage some gold-standard annotations in a
semi-supervised setting (Section 3.4). Another pur-
pose of our experiments is to investigate the relative
value of our context-based features and type-based
features. We accomplish these objectives by imple-
menting and evaluating the following systems:

1. PATH GENDER:
A classifier with the four path-based gender
counts as features (Section 2).

2. PATH GENDER+:
A method of back-off to help classify unseen
nouns: For multi-token nouns (likeBob John-
son), we also include the four gender counts
aggregated over all nouns sharing the first to-
ken (Bob .*), and the four gender counts over
all nouns sharing the last token (.* Johnson).

3. CONTEXT -AUTO:
Auto-trained system using only context fea-
tures (Section 3.2.1).

4. TYPE-AUTO:
Auto-trained system using only type features
(Section 3.2.2).

5. FULL -AUTO:
Auto-trained system using all features.

6. CONTEXT -SEMI :
Semi-sup. combination of the PATHGENDER+
features and the CONTEXT-AUTO predictions.

7. TYPE-SEMI :
Semi-sup. combination of the PATHGENDER+
features and the TYPE-AUTO predictions.

8. FULL -SEMI :
Semi-sup. combination of the PATHGENDER+
features and the FULL -AUTO predictions.

We evaluate usingaccuracy: the percentage of
labeled nouns that are correctly assigned a gender
class. As a baseline, note that always choosing
neutral achieves 38.1% accuracy on our test data.

5 Results and Discussion

5.1 Main results

Table 1 provides our experimental results. The orig-
inal gender counts already do an excellent job clas-
sifying the nouns; PATHGENDER achieves 91.0%
accuracy by looking for exact noun matches. Our

1. PATHGENDER 91.0
2. PATHGENDER+ 92.1
3. CONTEXT-AUTO 79.1
4. TYPE-AUTO 89.1
5. FULL -AUTO 92.6
6. CONTEXT-SEMI 92.4
7. TYPE-SEMI 91.3
8. FULL -SEMI 95.5

Table 1: Noun gender classification accuracy (%)

simple method of using back-off counts for the first
and last token, PATHGENDER+, achieves 92.1%.
While PATHGENDER+ uses gold standard data to
determine optimum weights on the twelve counts,
FULL -AUTO achieves 92.6% accuracy using no
gold standard training data. This confirms that our
algorithm, using no manually-labeled training data,
can produce a competitive gender classifier.

Both PATHGENDER and PATHGENDER+ do
poorly on the noun types that have low counts in
the gender database, achieving only 63% and 66%
on nouns with less than ten counts. On these
same nouns, FULL -AUTO achieves 88% perfor-
mance, demonstrating the robustness of the learned
classifier on the most difficult examples for previ-
ous approaches (FULL -SEMI achieves 94% on these
nouns).

If we break down the contribution of the two fea-
ture types in FULL -AUTO, we find that we achieve
89.1% accuracy by only using type features, while
we achieve 79.1% with only context features. While
not as high as the type-based accuracy, it is impres-
sive that almost four out of five nouns can be classi-
fied correctly based purely on the document context,
using no information about the noun itself. This is
information that has not previously been systemati-
cally exploited in gender classification models.

We examine the relationship between training
data size and accuracy by plotting a (logarithmic-
scale) learning curve for FULL -AUTO (Figure 3).
Although using four million noun groups originally
seemed sufficient, performance appears to still be in-
creasing. Since more training data can be generated
automatically, it appears we have not yet reached the
full power of the FULL -AUTO system. Of course,
even with orders of magnitude more data, the system
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Figure 3: Noun gender classification learning curve for
FULL -AUTO

does not appear destined to reach the performance
obtained through other means described below.

We achieve even higher accuracy when the output
of the -AUTO systems are combined with the orig-
inal gender counts (the semi-supervised extension).
The relative value of the context and type-based fea-
tures is now reversed: using only context-based fea-
tures (CONTEXT-SEMI ) achieves 92.4%, while us-
ing only type-based features (TYPE-SEMI ) achieves
91.3%. This is because much of the type informa-
tion is already implicit in the PATHGENDER counts.
The TYPE-AUTO predictions contribute little infor-
mation, only fragmenting the data and leading to
over-training and lower accuracy. On the other hand,
the CONTEXT-AUTO predictions improve accuracy,
as these scores provide orthogonal and hence helpful
information for the semi-supervised classifier.

Combining FULL -AUTO with our enhanced path
gender counts, PATHGENDER+, results in the over-
all best performance, 95.5% for FULL -SEMI , signif-
icantly better than PATHGENDER+ alone.7 This is
a 50% error reduction over the PATHGENDER sys-
tem, strongly confirming the benefit of our semi-
supervised approach.

To illustrate the importance of the unlabeled data,
we created a system that uses all features, including
the PATHGENDER+ counts, and trained this system
using only the gold standard training data. This sys-
tem was unable to leverage the extra features to im-
prove performance; its accuracy was 92.0%, roughly
equal to PATHGENDER+ alone. While SVMs work

7We evaluate significance using McNemar’s test, p<0.01.
Since McNemar’s test assumes independent classifications,we
apply the test to the classification of noungroups, not instances.

well with high-dimensional data, they simply cannot
exploit features that do not occur in the training set.

5.2 Further improvements

We can improve performance further by doing some
simple coreference before assigning gender. Cur-
rently, we only group nouns with the same string,
and then decide gender collectively for the group.
There are a few cases, however, where an ambiguous
surname, such asWilley, can only be classified cor-
rectly if we link the surname to an earlier instance of
the full name, e.g.Katherine Willey. We thus added
the following simple post-processing rule: If a noun
is classified asmasculine or feminine (like the am-
biguousWilley), and it was observed earlier as the
last part of a larger noun, then re-assign the gender
to masculine or feminine if one of these is the most
common path-gender count for the larger noun. We
back off to counts for the first name (e.g.Kathleen
.*) if the full name is unobserved.

This enhancement improved the PATHGENDER

and PATHGENDER+ systems to 93.3% and 94.3%,
respectively, while raising the accuracy of our
FULL -SEMI system to 96.7%. This demonstrates
that the surname-matching post-processor is a sim-
ple but worthwhile extension to a gender predictor.8

The remaining errors represent a number of chal-
lenging cases:United States, group, andpublic la-
beled asplural but classified asneutral ; spectator
classified asneutral , etc. Some of these may yield
to more sophisticated joint classification of corefer-
ence and gender, perhaps along the lines of work in
named-entity classification (Bunescu and Mooney,
2004) or anaphoricity (Denis and Baldridge, 2007).

While gender has been shown to be the key fea-
ture for statistical pronoun resolution (Ge et al.,
1998; Bergsma and Lin, 2006), it remains to be
seen whether the exceptional accuracy obtained here
will translate into improvements in resolution per-
formance. However, given the clear utility of gender
in coreference, substantial error reductions in gender

8One might wonder, why not provide special features so that
the system canlearn how to handle ambiguous nouns that oc-
curred as sub-phrases in earlier names? The nature of our train-
ing data precludes this approach. We only includeunambiguous
examples as pseudo-seeds in the learning process. Without
providing ambiguous (but labeled) surnames in some way, the
learner will not take advantage of features to help classifythem.
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assignment will likely be a helpful contribution.

6 Related Work

Most coreference and pronoun resolution papers
mention that they use gender information, but few
explain how it is acquired. Kennedy and Boguraev
(1996) use gender information produced by their en-
hanced part-of-speech tagger. Gender mistakes ac-
count for 35% of their system’s errors. Gender is
less crucial in some genres, like computer manuals;
most nouns are either neutral or plural and gender
can be determined accurately based solely on mor-
phological information (Lappin and Leass, 1994).

A number of researchers (Evans and Orăsan,
2000; Soon et al., 2001; Harabagiu et al., 2001) use
WordNet classes to infer gender knowledge. Unfor-
tunately, manually-constructed databases like Word-
Net suffer from both low coverage and rare senses.
Pantel and Ravichandran (2004) note that the nouns
computerandcompanyboth have a WordNet sense
that is a hyponym ofperson, falsely indicating these
nouns would be compatible with pronouns likehe
or she. In addition to using WordNet classes, Soon
et al. (2001) assign gender if the noun has a gen-
dered designator (likeMr. or Mrs.) or if the first
token is present on a list of common human first
names. Note that we incorporate such contextual
and categorical information (among many other in-
formation sources) automatically in our discrimina-
tive classifier, while they manually specify a few
high-precision rules for particular gender cues.

Ge et al. (1998) pioneered the statistical approach
to gender determination. Like others, they consider
gender and number separately, only learning statis-
tical gender for the masculine, feminine, and neu-
tral classes. While gender and number can be han-
dled together for pronoun resolution, it might be use-
ful to learn them separately for other applications.
Other statistical approaches to English noun gender
are discussed in Section 2.

In languages with ‘grammatical’ gender and plen-
tiful gold standard data, gender can be tagged along
with other word properties using standard super-
vised tagging techniques (Hajič and Hladká, 1997).
While our approach is the first to exploit a dual
or orthogonal representation of English noun gen-
der, a bootstrapping approach has been applied to

determining grammatical gender in other languages
by Cucerzan and Yarowsky (2003). In their work,
the two orthogonal views are: 1) the context of the
noun, and 2) the noun’s morphological properties.
Bootstrapping with these views is possible in other
languages where context is highly predictive of gen-
der class, since contextual words like adjectives and
determiners inflect to agree with the grammatical
noun gender. We initially attempted a similar system
for English noun gender but found context alone to
be insufficiently predictive.

Bootstrapping is also used in general information
extraction. Brin (1998) shows how to alternate be-
tween extracting instances of a class and inducing
new instance-extracting patterns. Collins and Singer
(1999) and Cucerzan and Yarowsky (1999) apply
bootstrapping to the related task of named-entity
recognition. Our approach was directly influenced
by the hypernym-extractor of Snow et al. (2005) and
we provided an analogous summary in Section 1.
While their approach uses WordNet to label hyper-
nyms in raw text, our initial labels are generated au-
tomatically. Etzioni et al. (2005) also require no la-
beled data or hand-labeled seeds for their named-
entity extractor, but by comparison their classifier
only uses a very small number of both features and
automatically-generated training examples.

7 Conclusion

We have shown how noun-pronoun co-occurrence
counts can be used to automatically annotate the
gender of millions of nouns in unlabeled text. Train-
ing from these examples produced a classifier that
clearly exceeds the state-of-the-art in gender classi-
fication. We incorporated thousands of useful but
previously unexplored indicators of noun gender as
features in our classifier. By combining the pre-
dictions of this classifier with the original gender
counts, we were able to produce a gender predic-
tor that achieves 95.5% classification accuracy on
2596 test nouns, a 50% reduction in error over the
current state-of-the-art. A further name-matching
post-processor reduced error even further, resulting
in 96.7% accuracy on the test data. Our final system
is the broadest and most accurate gender model yet
created, and should be of value to many pronoun and
coreference resolution systems.
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