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Abstract

English pronouns likéne andtheyreliably re-
flect the gender and number of the entities to
which they refer. Pronoun resolution systems
can use this fact to filter noun candidates that
do not agree with the pronoun gender. In-
deed, broad-coverage models of noun gender
have proved to be the most important source
of world knowledge in automatic pronoun res-
olution systems.

Previous approaches predict gender by count-
ing the co-occurrence of nouns with pronouns
of each gender class. While this provides use-
ful statistics for frequent nouns, many infre-
guent nouns cannot be classified using this
method. Rather than using co-occurrence in-
formation directly, we use it to automatically
annotate training examples for a large-scale
discriminative gender model. Our model col-
lectively classifies all occurrences of a noun
in a document using a wide variety of con-
textual, morphological, and categorical gender
features. By leveraging large volumes of un-
labeled data, our full semi-supervised system
reduces error by 50% over the existing state-
of-the-art in gender classification.
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lot of world knowledgdgeneral knowledge of word
types). Ifsheis replaced with the pronoumein (1),
Glen becomes the antecedent. Pronoun resolution
systems need the knowledgenafun gendethat ad-
vises thatGlen is usually masculine (and thus re-
ferred to byhe) while Glendais feminine.

English third-person pronouns are grouped in four
gender/number categories: masculihe,(his, him,
himself), feminine €he, her, herself neutral {t, its,
itself), and plural they, their, them, themselye¥ve
broadly refer to these gender and number classes
simply asgender The objective of our work is to
correctly assign gender to English noun tokens, in
context; to determine which class of pronoun will
refer to a given noun.

One successful approach to this problem is to
build a statistical gender model from a noun’s asso-
ciation with pronouns in text. For example, Ge et al.
(1998) learnFord has a 94% chance of being neu-
tral, based on its frequent co-occurrence with neu-
tral pronouns in text. Such estimates are noisy but
useful. Both Ge et al. (1998) and Bergsma and Lin
(2006) show that learned gender is the most impor-
tant feature in their pronoun resolution systems.

English differs from other languages like French
and German in that gender is not an inherent gram-
matical property of an English noun, but rather a

Pronoun resolution is the process of determiningroperty of a real-world entity that is being referred
which preceding nouns are referred to by a partidco. A common noun likdawyer can be (semanti-
ular pronoun in text. Consider the sentence: cally) masculine in one document and feminine in
(1) Glen told Glenda that she was wrong abou]zfmother. While previous statistical gender models
Glendale. earn gender for noun types only, we use document
context to correctly determine the current gender
A pronoun resolution system should determine thatlass of noun tokens, making dynamic decisions on
the pronounsherefers to the nourGlenda Pro- common nouns likdawyer and ambiguous names
noun resolution is challenging because it requireslike Ford. Furthermore, if a noun type has not yet
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been observed (an unknown word), previous a2 Path-based Statistical Noun Gender
proaches cannot estimate the gender. Our system,
on the other hand, is able to correctly determine thateed(noun,genderexamples can be extracted re-
unknown wordscorroboratorsand propeller-heads liably and automatically from raw text, providing
are plural, whilePope Formosugs masculine, using the training data for our discriminative classifier.
learned contextual and morphological cues. We call these examplgsseudeseeds because they
Our approach is based on the key observation thate created fully automatically, unlike the small set
while gender information from noun-pronoun co-of manually-created seeds used to initialize other
occurrence provides imperfect noun coverage, it catPotstrapping approaches (cf. the bootstrapping ap-
nevertheless provide rich and accurate training daf{oaches discussed in Section 6).
for a large-scale discriminative classifier. The clas- We adopt a statistical approach to acquire the
sifier leverages a wide variety of noun properties tpseudo-see¢oun,genderpairs. All previous sta-
generalizeérom the automatically-labeled examples istical approaches rely on a similar observation: if
The steps in our approach are: a noun likeGlenis often referred to by masculine
pronouns, likehe or his, thenGlenis likely a mas-
culine noun. But for most nouns we have no an-
(a) Automatically extract a set of seednotated data recording their coreference with pro-
(noun,gender) pairs from high-quality in- nouns, and thus no data from which we can ex-

1. Training:

stances in a statistical gender database. tract the co-occurrence statistics. Thus previous ap-
(b) In a large corpus of text, find documents conproaches rely on either hand-crafted coreference-
taining these nouns. indicating patterns (Bergsma, 2005), or iteratively

(c) Forallinstances of each noun in each documenjuess and improve gender models through expec-
create a single, composite feature vector repreation maximization of pronoun resolution (Cherry
senting all the contexts of the noun in the docuand Bergsma, 2005; Charniak and Elsner, 2009). In
ment, as well as encoding other selected propestatistical approaches, the more frequent the noun,

ties of the noun type. _ the more accurate the assignment of gender.
(d) Label each feature vector with the seed noun’s \y,s ;se the approach of Bergsma and Lin (2006)
corresponding gender. both because it achieves state-of-the-art gender

O _Tfa'” a 4-way gender classifier (masculln'e, femélassification performance, and because a database
inine, neutral, plural) from the automatically-

of the obtained noun genders is available onfine.
labeled vectors. Bergsma and Lin (2006) use an unsupervised
2. Testing: algorithm to identify syntactic paths along which a
) , noun and pronoun are highly likely to corefer. To
(@) Given a new document, create a composite fe%i(tract gender information, they processed a large

ture vector for all occurrences of egch noun. corpus of news text, and obtained co-occurrence
(b) Use the learned classifier to assign gender {0 .
c]punts for nouns and pronouns connected with these
each feature vector, and thus all occurrences 0 . . .
. paths in the corpus. In their database, each noun is
all nouns in the document.

listed with its corresponding masculine, feminine,
This algorithm achieves significantly better perneutral, and plural pronoun co-occurrence counts,
formance than the existing state-of-the-art statiste.g.:

cal gender classifier, while requiring no manually- gl en 555 42 32 34
labeled examples to train. Furthermore, by traininggl enda 8 102 0 11

on a small number of manually-labeled examples,gl endal e 24 2 167 18

we can combine the predictions of this system withgl endal i ans 0 0 0 1

the counts from the original gender database. Thigyl enn 3182 207 95 54
semi-supervised extension achieves 95.5% accuracgl enna 0 6 0O O

on final unseen test data, an impressive 50% reduc-

tion in error over previous work. Available at http://www.cs.ualberta.ca/"bergsma/Gehde
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This sample of the gender data shows that the

nounglenda for example, occurs 8 times with mas- stefanie

culine pronouns, 102 times with feminine pronouns, steffi graf

0 times with neutral pronouns, and 11 times with steinem

plural pronouns; 84% of the timglendaco-occurs stella mccartney

with a feminine pronoun. Note that all nouns in the stellar jayne

data have been converted to lower-cése. stepdaughter
There are gender counts for 3.1 million English stephanie

nouns in the online database. These counts form the stephanie hersetn

basis for the state-of-the-art gender classifier. We stephanie white

can either take the most-frequent pronoun-gender stepmother

(MFPG) as the class (e.geminine for glendg, or stewardess

we can supply the logarithm of the counts as features

in a 4-way multi-class classifier. We implement the
latter approach as a comparison system and refer to Figure 1: Samplgeminine seed nouns
it as ATHGENDER in our experiments.

In our approach, rather than using these countg)iqying section. Figure 1 provides a portion of the

directly, we process the database to automaticalyjeredfeminine seed nouns that we extracted.
extract a high-coverage but also high-quality set of

pseudo-seedqnoun,gender)pairs.  First, we filter 3 Discriminative Learning of Gender

nouns that occur less than fifty times and whose

MFPG accounts for less than 85% of counts. Nexf2nce we have extracted a number of pseudo-seed
we note that the most reliable nouns should occifoun,genderpairs, we use them to automatically-
relatively often in a coreferent path. For examiabel nouns (in context) in raw text. The auto-
ple, note thaimportanceoccurs twice as often on labeled examples provide training data for discrimi-
the web aClinton, but has twenty-four times less hative learning of noun gender.

counts in the gender database. This is becimse  Since the training pairs are acquired from a
portanceis unlikely to be a pronoun’s antecedentsparse and imperfect model of gender, what can
We plan to investigate this idea further in futureWe gain by training over them? We can regard the
work as a possible filter on antecedent candidatdiergsma and Lin (2006) approach and our discrim-
for pronoun resolution. For the present work, siminative system as two orthogonal views of gender,
ply note that a high ratio of database-count to wedh @ co-training sense (Blum and Mitchell, 1998).
count provides a good indication of the reliability ofSOme nouns can be accurately labeled by noun-
a noun’s gender counts, and thus we filter nouns thBfonoun co-occurrence (a view based on pronoun
have such ratios below a threshdldAfter this fil- Co-occurrence), and these examples can be used to
tering, we have about 45 thousand nouns to whicheduce other gender-indicating regularities (a view
we automatically assign gender according to thefpased on other features, described below).

MFPG. Thesdnoun,gender)pairs provide the seed We presently explain how examples are extracted

examples for the training process described in thésing our pseudo-seed pairs, turned into auto-

- labeled feature vectors, and then used to train a su-
*Statistical approaches can adapt to the idiosyncrasié@of tpervised classifier.

particular text domain. In the news text from which this data

was generated, for example, both the wshipsand specific 3.1 Automatic example extraction

instances of shipgife USS Colethe Titanig etc.) are neutral.

In Wikipedia, on the other hand, feminine pronouns are ofte@ur example-extraction module processes a large

used for ships. Such differences can be learned autongtical g|lection of documents (roughly a million docu-

*We roughly tuned all the thresholds to obtain the highes, . .
number of seeds such that almost all of them looked correépems in our experiments). For each document, we

(e.g. Figure 1). Further work is needed to determine whether€Xtract all the nouns, including context words within
different precision/recall tradeoff can improve performoe. +5 tokens of each noun. We then group the nouns by
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Classmasculine | String="Lee” To illustrate the potential utility of the context infor-

Contexts = mation, consider the context sentences for the mas-

“led some to suggest that, who was born in” culine noun in Figure 2. Even if these snippets were

“* also downloaded secret files to” all the information we were given, it would be easy

“x says he was just making” to guess the gender of the noun.

“by mishandling the investigation of.” We use binary attribute-value features to flag, for
any of the contexts, the presence of all words at con-

text positions+1, £2, etc. (sometimes calledol-
Figure 2: Sample noun training instance location features (Golding and Roth, 1999)). For
example, feature 255920 flags that the word two-to-
If a group’s noun-string idhe-right of the noun idie. We also provide fea-

in our set of seehoun,genderpairs, we assign the tures for the presence of all wordsywherewithin

correspondinggenderto be the class of the group. £> tokens of the noun (sometimes calledntext
Otherwise, we discard the group. To prevent fre/0rds. We also parse the sentence and provide a

quent nouns from dominating our training data, Wéeature for the noun’s parent (and relationship with

only keep the first 200 groups corresponding to eaclﬁe par_ent). in the parse tree. For example,_ the in-
noun string. Figure 2 gives an example training noufitance in Figure 2 has featurgswnloaded(subject)

group with some (selected) context sentences. AgYS(Subjectletc. Since plural nouns should be gov-
test time, all nouns in the test documents are coffrned by plural verbs, this feature is likely to be es-

verted to this format for further processing. pecially helpful for number classification.
We group nouns because there is a strong teg-2.2 Type features
dency for nouns to have only one sense (and hencepq next group of features represent morpholog-

gender) per discourse. We extract contexts becaugg properties of the noun. Binary features flag the
nearby words provide good clues about which gergh

their (lower-case) string.

) ' h ' h h resence of all prefixes and suffixes of one-to-four
der is being used. The notion that nouns have only,aracters. For multi-token nouns, we have features

one sense per discourse/collocation was alSo €5, the first and last token in the noun. Thus we hope
ploited by Yarowsky (1995) in his seminal work 0Ny, 64 thaBobbegins masculine nouns whitec.
bootstrapping for word sense disambiguation. ends neutral ones.

Finally, we have features that indicate if the noun

or parts of the noun occur on various lists. Indica-

Once the training instances are extracted, they A& features specify if any token occurs on in-house
converted to labeled feature vectors for supervisegl, of given names, family names, cities, provinces
Igarning. The automatically-determined gender Pr%ountries, corporati’ons, Ianguagés, etcV. A featur’e
vides the class label (e.gnasculine for the group 44 jngicates if a token is a corporate designation
in Figure 2). The features identify properties of the(like inc. orltd.) or a human one (lik&r. or SheiR.
noun and its context that potentially correlate with e also made use of the person-namefinstance
particular gender category. We divide the feature airs automatically extracted by Fleischman et al.

into two sets: those that depend on the contex 003)* This data provides counts for pairs such
within the document (Context features: features g s (Zhang Qiyue,spokeswomanand (Thorvald
the tokensin the document), and those that depen%toltenbergmediat’ob. We have features for atbn-

on the noun string only (Type features). In bothcepts(like spokeswomaand mediato)) and there-
cases we induce the feature space from the tra'ﬂire learn their association with each gender.
ing examples, keeping only those features that occur

more than 5 times. 3.3 Supervised learning and classification

3.2 Feature vectors

3.2.1 Context features Once all the feature vectors have been extracted,
The first set of features represent the contexts él?ey are passed to a supervised machine learn-

the word, using all the contexts in the noun group. “Available at http://www.mit.edu/"mbf/instances.txt.gz
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ing algorithm. We train and classify using a4 Experiments
multi-class linear-kernel Support Vector Machine 1 Setup
(SVM) (Crammer and Singer, 2001). SVMs are

maximum-margin classifiers that achieve good pe\Ve parsed the 3 GB AQUAINT corpus (Vorhees,
formance on a range of tasks. At test time, nouns i8002) using Minipar (Lin, 1998) to create our un-
test documents are processed exactly as the trainilipeled data. We process this data as described in
instances described above, converting them to fe@ection 3, making feature vectors from the first 4
ture vectors. The test vectors are classified by tHgillion noun groups. We train from these exam-
SVM, providing gender classes for all the nouns iples using a linear-kernel SVM via the the efficient
the test document. Since all training examples araVM™#**** instance of the SVM™" software

labeled automatically (auto-trained), we denote sy$ackage (Tsochantaridis et al., 2004).
tems using this approach asu#o. To create our gold-standard gender data, we fol-
low Bergsma (2005) in extracting gender informa-
. _ ) tion from the anaphora-annotated porfioof the
3.4 Semi-supervised extension American National Corpus (ANC) (Ide and Sud-
Although a good gender classifier can be learneg o 2004). "In each document, we first group

. all nouns with a common lower-case string (exactly
from the automatically-labeled examples alone, we

can also use a small quantity of gold-standard | as done for our example extraction (Section 3.1)).

. eklext, for each group we determine if a third-person
beled examples to achieve better performance. .
pronoun refers to any noun in that group. If so, we

Combining information from our two sets of 1a- |apel all nouns in the group with the gender of the
beled data is akin to a domain adaptation prObr'eferring pronoun. For example, if the pronobe
lem.  The gold-standard data can be regarded @gfers to a nouBrown then all instances d8rown
high-quality in-domain data, and the automaticallyi, the document are labeled as masculine. We ex-
labeled examples can be regarded as the weaker, Bt the genders for 2794 nouns in the ANC train-
larger, out-of-domain evidence. ing set (in 798 noun groups) and 2596 nouns in the

There is a simple but effective method for com-ANC test set (in 642 groups). We apply this method
bining information from two domains using predic-to other annotated corpora (including MUC corpora)
tions as features. We train a classifier on the full seb create a development set.
of automatically-labeled data (as described in Sec- The gold standard ANC training set is used to
tion 3.3), and then use this classifier’s predictions aset the weights on the counts in theTRGENDER
features in a separate classifier, which is trained arassifiers, and to train the semi-supervised ap-
the gold-standard data. This is like the competitivproaches. We also use an SVM to learn these
Featsdomain-adaptation system in Daumé Il andveights. We use the development set to tune the
Marcu (2006). SVM’s regularization parameter, both for systems

For our particular SVM classifier (Section 4.1),trained on automatically-generated data, and for sys-
predictions take the form of four numerical scoreems trained on gold-standard data. We also opti-
corresponding to the four different genders. Oufize each automatically-trained system on the de-
gold-standard classifier has features for these fo¥lopment set when we include this system's pre-
predictions plus features for the original path-baseflictions as features in the semi-supervised exten-
gender counts (Section 2)Since this approach usession. We evaluate and state performance for all ap-
both automatically-labeled and gold-standard data iffoaches on the final unseen ANC test set.

a semi-supervised learning framework, we denotg , Evaluation

systems using this approach agns. ) ) )
The primary purpose of our experiments is to de-

termine if we can improve on the existing state-of-

SWe actually use 12 features for the path-based counts: “iﬁe-art in gender classification (path-based gender
4 original, and then 4 each for counts for the first and lasthok

in the noun string. SeeAPH GENDER+ in Section 4.2. 6Available at http://www.cs.ualberta.ca/"bergsma/Ctagt/
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counts). We test systems both trained purely on 1. PATHGENDER 91.0
automatically-labeled data (Section 3.3), and those 2. PATHGENDER+ | 92.1
that leverage some gold-standard annotations in a 3. CONTEXT-AUTO | 79.1
semi-supervised setting (Section 3.4). Another pur- 4. TYPE-AUTO 89.1
pose of our experiments is to investigate the relative 5. FuLL-AuTO 92.6
value of our context-based features and type-based 6. CONTEXT-SEMI | 92.4
features. We accomplish these objectives by imple- 7. TYPE-SEMI 91.3
menting and evaluating the following systems: 8. FULL-SEMI 95.5
1. PATH GENDER: Table 1: Noun gender classification accuracy (%)

A classifier with the four path-based gender

counts as features (Section 2).
2. PATH GENDER+: simple method of using back-off counts for the first

A method of back-off to help classify unseenand last token, ATHGENDER+, achieves 92.1%.

nouns: For multi-token nouns (likBob John- While PATHGENDER+ uses gold standard data to
son), we also include the four gender countgletermine optimum weights on the twelve counts,
aggregated over all nouns sharing the first toFULL-AUTO achieves 92.6% accuracy using no
ken Bob .*), and the four gender counts overgold standard training data. This confirms that our

all nouns sharing the last tokerf Johnson. algorithm, using no manually-labeled training data,
3. CONTEXT-AUTO: can produce a competitive gender classifier.
Auto-trained system using only context fea- Both PATHGENDER and RTHGENDER+ do
tures (Section 3.2.1). poorly on the noun types that have low counts in
4. TYPE-AUTO: the gender database, achieving only 63% and 66%
Auto-trained system using only type featuren nouns with less than ten counts. On these
(Section 3.2.2). same nouns, BLL-AUTO achieves 88% perfor-
5. FuLL -AuUTO: mance, demonstrating the robustness of the learned
Auto-trained system using all features. classifier on the most difficult examples for previ-
6. CONTEXT-SEMI: ous approaches (F.L-SEMI achieves 94% on these
Semi-sup. combination of theaPHGENDER+  nouns).
features and the GNTEXT-AUTO predictions. If we break down the contribution of the two fea-
7. TYPE-SEMI: ture types in BLL-AUTO, we find that we achieve
Semi-sup. combination of thexnPHGENDER+ g9 194 accuracy by only using type features, while
. flfjtlireggﬂnld the IPE-AUTO predictions. we achieve 79.1% with only context features. While

: o not as high as the type-based accuracy, it is impres-
Semi-sup. combination of theAPHGENDER*  gjye that almost four out of five nouns can be classi-
features and the L -AuTO predictions. fied correctly based purely on the document context,
using no information about the noun itself. This is

We evaluate usingiccuracy the percentage of
c]mformatlon that has not previously been systemati-
labeled nouns that are correctly assigned a gende
aIIy exploited in gender classification models.

class. As a baseline, note that always choosing )
neutral achieves 38.1% accuracy on our test data. /& €xamine the relationship between training
data size and accuracy by plotting a (logarithmic-

5 Results and Discussion scale) learning curve for \(LL-AUTO (Figure 3).
Although using four million noun groups originally
seemed sufficient, performance appears to still be in-
Table 1 provides our experimental results. The origereasing. Since more training data can be generated
inal gender counts already do an excellent job clagutomatically, it appears we have not yet reached the
sifying the nouns; RTHGENDER achieves 91.0% full power of the FuLL-AuTO system. Of course,
accuracy by looking for exact noun matches. Oueven with orders of magnitude more data, the system

5.1 Main results
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100 ———r————————————— well with high-dimensional data, they simply cannot
exploit features that do not occur in the training set.

5.2 Further improvements

We can improve performance further by doing some
simple coreference before assigning gender. Cur-
7 rently, we only group nouns with the same string,
and then decide gender collectively for the group.
There are a few cases, however, where an ambiguous
surname, such a#lilley, can only be classified cor-
Figure 3: Noun gender classification learning curve fof€ctly if we link the surname to an earlier instance of
FULL-AUTO the full name, e.gKatherine Willey We thus added

the following simple post-processing rule: If a noun

does not appear destined to reach the performan'g'c,ad"’lssmed asnasculine of feminine (like the am-

obtained through other means described below. biguousWilley), and it was observed earlier as the

We achieve even higher accuracy when the outh?St part of a larger noun, then re-assign the gender

) : . lflo masculine or feminine if one of these is the most
of the -AuTO systems are combined with the orig-
. . . .~ common path-gender count for the larger noun. We
inal gender counts (the semi-supervised extensio

The relative value of the context and type-based fea;?ci;( tﬁg :Sllcr?:rr:\tes i];o[,:;eb;gf\t:;me (e Hathleen

tures is now reversed: using only context-based fea-’__ . .
g ony This enhancement improved thex® GENDER

tures (®ONTEXT-SEMI) achieves 92.4%, while us- 0 0
ing only type-based features YPE-SEMI) achieves and R\T.HGENDER.+ sys_te_ms to 93.3% and 94.3%,
respectively, while raising the accuracy of our

91.3%. This is because much of the type informa- .
F - 79 I
tion is already implicit in the BrH GENDER counts. ULL-SEMI system to 96.7%. his demonstrates

The TypPeE-AUTO predictions contribute little infor- that the surname-matching post-processor is a sim-

mation, only fragmenting the data and leading t(EJIe but worthvyhlle extension to a gender prediétor.
over-training and lower accuracy. On the other hand, ' "€ fémaining errors represent a number of chal-
the CONTEXT-AUTO predictions improve accuracy, '€"9Ing casesUnited Statesgroup andpublic la-

as these scores provide orthogonal and hence helpRfiled asplural but classified asicutral; spectator
information for the semi-supervised classifier. ~ classified asieutral, etc. Some of these may yield

Combining FULL-AUTO with our enhanced path to more sophisticated joint classificatipn of coreferi
gender counts, ATHGENDER*, results in the over- ence and gender, p_e_rha_ps along the lines of work in
all best performance, 95.5% foUEL -SEMmI, signif- named-entity clags,.lflcatlon' (Bunescu gnd Mooney,
icantly better than RrHGENDER+ alone? This is 2004) or anaphoricity (Denis and Baldridge, 2007).

a 50% error reduction over thexPHGENDER sys-  While gender has been shown to be the key fea-

tem, strongly confirming the benefit of our semilture for statistical pronoun resolution (Ge et al.,
1998; Bergsma and Lin, 2006), it remains to be

supervised approach. ) )
To illustrate the importance of the unlabeled datZ>¢" whether the exceptional accuracy obtained here
Hﬂ” translate into improvements in resolution per-

we created a system that uses all features, includi ) >
the RTHGENDER+ counts, and trained this Systemformance. However, given the clear utility of gender

using only the gold standard training data. This sygn coreference, substantial error reductions in gender
tem was unable to leverage the extra features to im- 80ne might wonder, why not provide special features so that

prove performance; its accuracy was 92.0%, roughlyie system catearn how to handle ambiguous nouns that oc-
equal to RTHGENDER+ alone. While SVMs work curred as sub-phrases in earlier names? The nature of aur tra
ing data precludes this approach. We only includembiguous
"We evaluate significance using McNemar's test,0@1. examples as pseudo-seeds in the learning process. Without
Since McNemar’s test assumes independent classificati@ns, providing ambiguous (but labeled) surnames in some way, the
apply the test to the classification of nogoups not instances. learner will not take advantage of features to help claghiyn.

Accuracy (%)

1000 10000 100000 le+06 le+07

70 L

Number of training examples
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assignment will likely be a helpful contribution. determining grammatical gender in other languages
by Cucerzan and Yarowsky (2003). In their work,
6 Related Work the two orthogonal views are: 1) the context of the
noun, and 2) the noun’s morphological properties.
Most coreference and pronoun resolution papefsootstrapping with these views is possible in other
mention that they use gender information, but feVI’anguages where context is highly predictive of gen-
explain how it is acquired. Kennedy and Boguraeyer class, since contextual words like adjectives and
(1996) use gender information produced by their e4eterminers inflect to agree with the grammatical
hanced part-of-speech tagger. Gender mistakes &gun gender. We initially attempted a similar system
count for 35% of their system’s errors. Gender igor English noun gender but found context alone to
less crucial in some genres, like computer manualge insufficiently predictive.
most nouns are either neutral or plural and gender g qstrapping is also used in general information
can be determined accurately based solely on MQgaction. Brin (1998) shows how to alternate be-
phological information (Lappin and Leass, 1994). yeen extracting instances of a class and inducing
A number of researchers (Evans and Orasafey instance-extracting patterns. Collins and Singer
2000; Soon et al., 2001; Harabagiu et al., 2001) US8999) and Cucerzan and Yarowsky (1999) apply
WordNet classes to infer gender knowledge. U”forbootstrapping to the related task of named-entity
tunately, manually-constructed databases like WO"‘i‘ecognition. Our approach was directly influenced
Net suffer from both low coverage and rare Sensepy the hypernym-extractor of Snow et al. (2005) and
Pantel and Ravichandran (2004) note that the nougs provided an analogous summary in Section 1.
computerandcompanyboth have a WordNet senseyyjle their approach uses WordNet to label hyper-
that is a hyponym operson falsely indicating these yms in raw text, our initial labels are generated au-
nouns would be compatible with pronouns like  {omatically. Etzioni et al. (2005) also require no la-
or she In addition to using WordNet classes, S00Thgled data or hand-labeled seeds for their named-
et al. (2001) assign gender if the noun has a gegntity extractor, but by comparison their classifier
dered designator (likdr. or Mrs.) or if the first  oniy yses a very small number of both features and

token is present on a list of common human firshytomatically-generated training examples.
names. Note that we incorporate such contextual

and categorical information (among many other in7 Conclusion
formation sources) automatically in our discrimina-
tive classifier, while they manually specify a fewwe have shown how noun-pronoun co-occurrence
high-precision rules for particular gender cues.  counts can be used to automatically annotate the
Ge et al. (1998) pioneered the statistical approaalender of millions of nouns in unlabeled text. Train-
to gender determination. Like others, they considahg from these examples produced a classifier that
gender and number separately, only learning statistearly exceeds the state-of-the-art in gender classi-
tical gender for the masculine, feminine, and neufication. We incorporated thousands of useful but
tral classes. While gender and number can be hapreviously unexplored indicators of noun gender as
dled together for pronoun resolution, it might be usefeatures in our classifier. By combining the pre-
ful to learn them separately for other applicationsdictions of this classifier with the original gender
Other statistical approaches to English noun gendeounts, we were able to produce a gender predic-
are discussed in Section 2. tor that achieves 95.5% classification accuracy on
In languages with ‘grammatical’ gender and plen2596 test nouns, a 50% reduction in error over the
tiful gold standard data, gender can be tagged alormyirrent state-of-the-art. A further name-matching
with other word properties using standard supeipost-processor reduced error even further, resulting
vised tagging technigues (Haji¢ and Hladka, 1997)n 96.7% accuracy on the test data. Our final system
While our approach is the first to exploit a dualis the broadest and most accurate gender model yet
or orthogonal representation of English noun gercreated, and should be of value to many pronoun and
der, a bootstrapping approach has been applied ¢oreference resolution systems.
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