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Abstract

We propose a novel machine learning task that
consists in learning to predict which words in
a text are fixated by a reader. In a first pilot
experiment, we show that it is possible to out-
perform a majority baseline using a transition-
based model with a logistic regression classi-
fier and a very limited set of features. We also
show that the model is capable of capturing
frequency effects on eye movements observed
in human readers.

1 Introduction

Any person engaged in normal skilled reading pro-
duces an alternating series of rapid eye movements
and brief fixations that forms a rich and detailed be-
havioral record of the reading process. In the last
few decades a great deal of experimental evidence
has accumulated to suggest that the eye movements
of readers are reflective of ongoing language pro-
cessing and thus provide a useful source of infor-
mation for making inferences about the linguistic
processes involved in reading (Clifton et al., 2007).
In psycholinguistic research, eye movement data is
now commonly used to study how experimental ma-
nipulations of linguistic stimuli manifest themselves
in the eye movement record.

Another related strand of research primarily at-
tempts to understand what determines when and
where the eyes move during reading. This line of
research has led to mathematically well specified ac-
counts of eye movement control in reading being
instantiated as computational models (Legge et al.,
1997; Reichle et al., 1998; Salvucci, 2001; Engbert

et al., 2002; McDonald et al., 2005; Feng, 2006;
Reilly and Radach, 2006; Yang, 2006). (For a re-
cent overview, see (Reichle, 2006).) These models
receive text as input and produce predictions for the
location and duration of eye fixations, in approxima-
tion to human reading behavior. Although there are
substantial differences between the various models,
they typically combine both mechanisms of visuo-
motor control and linguistic processing. Two impor-
tant points of divergence concern the extent to which
language processing influences eye movements and
whether readers process information from more than
one word at a time (Starr and Rayner, 2001). More
generally, the models that have emerged to date are
based on different sets of assumptions about the un-
derlying perceptual and cognitive mechanisms that
control eye movements. The most influential model
so far, the E-Z Reader model (Reichle et al., 1998;
Reichle et al., 2003; Pollatsek et al., 2006), rests on
the assumptions that cognitive / lexical processing is
the engine that drives the eyes through the text and
that words are identified serially, one at a time.

Although eye movement models typically have
parameters that are fitted to empirical data sets, they
are not based on machine learning in the standard
sense and their predictions are hardly ever tested on
unseen data. Moreover, their predictions are nor-
mally averaged over a whole group of readers or
words belonging to a given frequency class. In this
study, however, we investigate whether saccadic eye
movements during reading can be modeled using
machine learning. The task we propose is to learn
to predict the eye movements of an individual reader
reading a specific text, using as training data the eye
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movements recorded for the same person reading
other texts.

Predicting the eye movements of an individual
reader on new texts is arguably a hard problem, and
we therefore restrict the task to predicting word-
based fixations (but not the duration of these fixa-
tions) and focus on a first pilot experiment inves-
tigating whether we can outperform a reasonable
baseline on this task. More precisely, we present ex-
perimental results for a transition-based model, us-
ing a log-linear classifier, and show that the model
significantly outperforms the baseline of always pre-
dicting the most frequent saccade. In addition, we
show that even this simple model is able to capture
frequency effects on eye movements observed in hu-
man readers.

We want to emphasize that the motivation for this
modeling experiment is not to advance the state of
the art in computational modeling of eye movements
during reading. For this our model is far too crude
and limited in scope. The goal is rather to propose a
novel approach to the construction and evaluation of
such models, based on machine learning and model
assessment on unseen data. In doing this, we want
to establish a reasonable baseline for future research
by evaluating a simple model with a restricted set
of features. In future studies, we intend to inves-
tigate how results can be improved by introducing
more complex models as well as a richer feature
space. More generally, the machine learning ap-
proach explored here places emphasis on modeling
eye movement behavior with few a priori assump-
tions about underlying cognitive and physiological
mechanisms.

The rest of the paper is structured as follows. Sec-
tion 2 provides a brief background on basic charac-
teristics of eye movements in reading. The emphasis
is on saccadic eye movements rather than on tempo-
ral aspects of fixations. Section 3 defines the novel
task of learning to predict fixations during reading
and discusses different evaluation metrics for this
task. Section 4 presents a transition-based model
for solving this task, using a log-linear classifier to
predict the most probable transition after each fixa-
tion. Section 5 presents experimental results for the
model using data from the Dundee corpus (Kennedy
and Pynte, 2005), and Section 6 contains conclu-
sions and suggestions for future research.

2 Eye Movements in Reading

Perhaps contrary to intuition, the eyes of readers do
not move smoothly across a line or page of text. It is
a salient fact in reading research that the eyes make
a series of very rapid ballistic movements (called
saccades) from one location to another. In between
saccades, the eyes remain relatively stationary for
brief periods of time (fixations). Most fixations last
about 200-300 ms but there is considerable variabil-
ity, both between and within readers. Thus, some
fixations last under 100 ms while others last over
500 ms (Rayner, 1998). Much of the variability in
fixation durations appears associated to processing
ease or difficulty.

The number of characters that is within the re-
gion of effective vision on any fixation is known as
the perceptual span. For English readers, the per-
ceptual span extends approximately four characters
to the left and fifteen characters to the right of the
fixation. Although readers fixate most words in a
text, many words are also skipped. Approximately
85% of the content words are fixated and 35% of
the function words (Carpenter and Just, 1983). Vari-
ables known to influence the likelihood of skipping
a word are word length, frequency and predictabil-
ity. Thus, more frequent words in the language are
skipped more often than less frequent words. This is
true also when word length is controlled for. Simi-
larly, words that occur in constrained contexts (and
are thus more predictable) are skipped more often
than words in less constrained contexts.

Although the majority of saccades in reading is
relatively local, i.e., target nearby words, more dis-
tant saccades also occur. Most saccades move the
eyes forward approximately 7–9 character spaces.
Approximately 15% of the saccades, however, are
regressions, in which the eyes move back to earlier
parts of the text (Rayner, 1998). It has long been
established that the length of saccades is influenced
by both the length of the fixated word and the word
to the right of the fixation (O’Regan, 1979). Re-
gressions often go back one or two words, but occa-
sionally they stretch further back. Such backward
movements are often thought to reflect linguistic
processing difficulty, e.g., because of syntactic pars-
ing problems. Readers, however, are often unaware
of making regressions, especially shorter ones.
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3 The Learning Task

We define a text T as a sequence of word tokens
(w1, . . . , wn), and we define a fixation sequence
F for T as a sequence of token positions in T
(i1, . . . , im) (1 < ik < n). The fixation set S(F )
corresponding to F is the set of token positions that
occur in F . For example, the text Mary had a lit-
tle lamb is represented by T = (Mary, had, a, little,
lamb); a reading of this text where the sequence of
fixations is Mary – little – Mary – lamb is repre-
sented by F = (1, 4, 1, 5); and the corresponding
fixation set is S(F ) = {1, 4, 5}.

The task we now want to consider is the one
of predicting the fixation sequence F for a spe-
cific reading event E involving person P reading
text T . The training data consist of fixation se-
quences F1, . . . , Fk for reading events distinct from
E involving the same person P but different texts
T1, . . . , Tk. The performance of a model M is eval-
uated by comparing the predicted fixation sequence
FM to the fixation sequence FO observed in a read-
ing experiment involving P and T . Here are some
of the conceivable metrics for this evaluation:

1. Fixation sequence similarity: How similar
are the sequences FM and FO, as measured, for
example, by some string similarity metric?

2. Fixation accuracy: How large is the agree-
ment between the sets S(FM ) and S(FO), as
measured by 0-1-loss over the entire text, i.e.,
how large is the proportion of positions that are
either in both S(FM ) and S(FO) (fixated to-
kens) or in neither (skipped tokens). This can
also be broken down into precision and recall
for fixated and skipped tokens, respectively.

3. Fixation distributions: Does the model pre-
dict the correct proportion of fixated and
skipped tokens, as measured by the difference
between |S(FM )|/|T | and |S(FO)|/|T |? This
can also be broken down by frequency classes
of words, to see if the model captures frequency
effects reported in the literature.

These evaluation metrics are ordered by an implica-
tional scale from hardest to easiest. Thus, a model
that correctly predicts the exact fixation sequence
also makes correct predictions with respect to the

set of words fixated and the number of words fixated
(but not vice versa). In the same fashion, a model
that correctly predicts which words are fixated (but
not the exact sequence) also correctly predicts the
number of words fixated.

In the experiments reported in Section 5, we will
use variants of the latter two metrics and compare
the performance of our model to the baseline of al-
ways predicting the most frequent type of saccade
for the reader in question. We will report results
both for individual readers and mean scores over all
readers in the test set. The evaluation of fixation se-
quence similarity (the first type of metric) will be
left for future work.

4 A Transition-Based Model

When exploring a new task, we first have to decide
what kind of model to use. As stated in the introduc-
tion, we regard this as a pilot experiment to establish
the feasibility of the task and have therefore chosen
to start with one of the simplest models possible and
see whether we can beat the baseline of always pre-
dicting the most frequent saccade. Since the task
consists in predicting a sequence of different actions,
it is very natural to use a transition-based model,
with configurations representing fixation states and
transitions representing saccadic movements. Given
such a system, we can train a classifier to predict the
next transition given the information in the current
configuration. In order to derive a complete tran-
sition sequence, we start in an initial configuration,
representing the reader’s state before the first fixa-
tion, and repeatedly apply the transition predicted by
the classifier until we reach a terminal state, repre-
senting the reader’s state after having read the entire
text. At an abstract level, this is essentially the same
idea as in transition-based dependency parsing (Ya-
mada and Matsumoto, 2003; Nivre, 2006; Attardi,
2006). In the following subsections, we discuss the
different components of the model in turn, including
the transition system, the classifier used, the features
used to represent data, and the search algorithm used
to derive complete transition sequences.

4.1 Transition System

A transition system is an abstract machine consist-
ing of a set of configurations and transitions between
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configurations. A configuration in the current sys-
tem is a triple C = (L,R, F ), where

1. L is a list of tokens representing the left con-
text, including the currently fixated token and
all preceding tokens in the text.

2. R is a list of tokens representing the right con-
text, including all tokens following the cur-
rently fixated token in the text.

3. F is a list of token positions, representing the
fixation sequence so far, including the currently
fixated token.

For example, if the text to be read is Mary had a
little lamb, then the configuration

([Mary,had,a,little], [lamb], [1,4])

represents the state of a reader fixating the word little
after first having fixated the word Mary.

For any text T = w1 . . . wn, we define initial and
terminal configurations as follows:

1. Initial: C = ([ ], [w1, . . . , wn], [ ])

2. Terminal: C = ([w1, . . . , wn], [ ], F )
(for any F )

We then define the following transitions:1

1. Progress(n):
([λ|wi], [wi+1, . . . , wi+n|ρ], [φ|i])⇒
([λ|wi, wi+1, . . . , wi+n], ρ, [φ|i, i+n])

2. Regress(n):
([λ|wi−n, . . . , wi−1, wi], ρ, [φ|i])⇒
([λ|wi−n], [wi−n+1, . . . , wi|ρ], [φ|i, i−n])

3. Refixate:
([λ|wi], ρ, [φ|i])⇒ ([λ|wi], ρ, [φ|i, i])

The transition Progress(n) models progressive sac-
cades of length n, which means that the next fixated
word is n positions forward with respect to the cur-
rently fixated word (i.e., n−1 words are skipped).
In a similar fashion, the transition Regress(n) mod-
els regressive saccades of length n. If the parameter

1We use the variables λ, ρ and φ for arbitrary sublists of L,
R and F , respectively, and we write the L and F lists with their
tails to the right, to maintain the natural order of words.

n of either Progress(n) or Regress(n) is greater than
the number of words remaining in the relevant di-
rection, then the longest possible movement is made
instead, in which case Regress(n) leads to a terminal
configuration while Progress(n) leads to a configu-
ration that is similar to the initial configuration in
that it has an empty L list. The transition Refixate,
finally, models refixations, that is, cases where the
next word fixated is the same as the current.

To illustrate how this system works, we may con-
sider the transition sequence corresponding to the
reading of the text Mary had a little lamb used as
an example in Section 3:2

Init ⇒ ([ ], [Mary, . . . , lamb], [ ])
P(1) ⇒ ([Mary], [had, . . . , lamb], [1])
P(3) ⇒ ([Mary, . . . , little], [lamb], [1,4])
R(3) ⇒ ([Mary], [had, . . . , lamb], [1,4,1])
P(4) ⇒ ([Mary, . . . , lamb], [ ], [1,4,1,5])

4.2 Learning Transitions

The transition system defined in the previous section
specifies the set of possible saccade transitions that
can be executed during the reading of a text, but it
does not say anything about the probability of dif-
ferent transitions in a given configuration, nor does
it guarantee that a terminal configuration will ever
be reached. The question is now whether we can
learn to predict the most probable transition in such
a way that the generated transition sequences model
the behavior of a given reader. To do this we need
to train a classifier that predicts the next transition
for any configuration, using as training data the ob-
served fixation sequences of a given reader. Before
that, however, we need to decide on a feature repre-
sentation for configurations.

Features used in this study are listed in Table 1.
We use the notation L[i] to refer to the ith token
in the list L and similarly for R and F . The first
two features refer to properties of the currently fix-
ated token. Length is simply the character length
of the word, while frequency class is an index of
the word’s frequency of occurrence in representative
text. Word frequencies are based on occurrences in
the Bristish National Corpus (BNC) and divided into

2We abbreviate Progress(n) and Regress(n) to P(n) and
R(n), respectively.
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Feature Description
CURRENT.LENGTH The length of the token L[1]
CURRENT.FREQUENCYCLASS The frequency class of the token L[1]
NEXT.LENGTH The length of the token R[1]
NEXT.FREQUENCYCLASS The frequency class of the token R[1]
NEXTPLUSONE.LENGTH The length of the token R[2]
NEXTPLUSTWO.LENGTH The length of the token R[3]
DISTANCE.ONETOTWO The distance, in tokens, between F [1] and F [2]
DISTANCE.TWOTOTHREE The distance, in tokens, between F [2] and F [3]

Table 1: Features defined over fixation configurations. The notation L[i] is used to denote the ith element of list L.

five classes. Frequencies were computed per million
words in the ranges 1–10, 11–100, 101–1000, 1001–
10000, and more than 10000.

The next four features define features of tokens
to the right of the current fixation. For the to-
ken immediately to the right, both length and fre-
quency are recorded whereas only length is con-
sidered for the two following tokens. The last
two features are defined over tokens in the fixa-
tion sequence built thus far and record the history
of the two most recent saccade actions. The first
of these (DISTANCE.ONETOTWO) defines the sac-
cade distance, in number of tokens, that led up
to the token currently being fixated. The second
(DISTANCE.TWOTOTHREE), defines the next most
recent saccade distance, that led up to the previous
fixation. For these two features the following holds.
If the distance is positive, the saccade is progressive,
if the distance is negative, the saccade is regressive,
and if the distance amounts to zero, the saccade is a
refixation.

The small set of features used in the current model
were chosen to reflect experimental evidence on eye
movements in reading. Thus, for example, as noted
in section 2, it is a well-documented fact that short,
frequent and predictable words tend to be skipped.
The last two features are included in the hope of
capturing some of the dynamics in eye movement
behavior, for example, if regressions are more likely
to occur after longer progressive saccades, or if the
next word is skipped more often if the current word
is refixated. Still, it is clear that this is only a tiny
subset of the feature space that might be considered,
and it remains an important topic for future research
to further explore this space and to study the impact

of different features.
Given our feature representation, and given some

training data derived from reading experiments, it
is straightforward to train a classifier for predicting
the most probable transition out of any configura-
tion. There are many learning algorithms that could
be used for this purpose, but in the pilot experiments
we only make use of logistic regression.

4.3 Search Algorithm

Once we have trained a classifier f that predicts the
next transition f(C) out of any configuration C, we
can simulate the eye movement behavior of a person
reading the text T = (w1, . . . , wn) using the follow-
ing simple search algorithm:

1. Initialize C to ([ ], [w1, . . . , wn], [ ]).

2. While C is not terminal, apply f(C) to C.

3. Return F of C.

It is worth noting that search will always terminate
once a terminal configuration has been reached, even
though there is nothing in the transition system that
forbids transitions out of terminal configurations. In
other words, while the model itself allows regres-
sions and refixations after the last word of the text
has been fixated, the search algorithm does not. This
seems like a reasonable approximation for this pilot
study.

5 Experiments

5.1 Experimental Setup

The experiments we report are based on data from
the English section of the Dundee corpus. This sec-
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Fixation Accuracy Fixations Skips
Reader # sentences Baseline Model Prec Rec F1 Prec Rec F1

a 136 53.3 70.0 69.9 73.8 71.8 69.0 65.8 67.4
b 156 55.7 66.5 65.2 85.8 74.1 70.3 80.4 75.0
c 151 59.9 70.9 72.5 82.8 77.3 67.4 53.1 59.4
d 162 69.0 78.9 84.7 84.8 84.7 66.0 65.8 65.9
e 182 51.7 71.8 69.1 78.4 73.5 75.3 65.2 69.9
f 157 63.5 67.9 70.9 83.7 76.8 58.7 40.2 47.7
g 129 43.3 56.6 49.9 80.8 61.7 72.2 38.1 49.9
h 143 57.6 66.9 69.4 76.3 72.7 62.8 54.3 58.2
i 196 56.4 69.1 69.6 80.3 74.6 68.2 54.7 60.7
j 166 66.1 76.3 82.2 81.9 82.0 65.0 65.4 65.2

Average 157.8 57.7 69.5 70.3 80.9 75.2 67.5 58.3 62.6

Table 2: Fixation and skipping accuracy on test data; Prec = precision, Rec = recall, F1 = balanced F measure.

tion contains the eye tracking record of ten partici-
pants reading editorial texts from The Independent
newspaper. The corpus contains 20 texts, each of
which were read by all participants. Participants also
answered a set of multiple-choice comprehension
questions after having finished reading each text.
The corpus consists of 2379 sentences, 56212 tokens
and 9776 types. The data was recorded using a Dr.
Bouis Oculometer Eyetracker, sampling the position
of the right eye every millisecond (see Kennedy and
Pynte, 2005, for further details).

For the experiments reported here, the corpus was
divided into three data sets: texts 1-16 for training
(1911 sentences), texts 17-18 for development and
validation (237 sentences), and the last two texts 19-
20 for testing (231 sentences).

Since we want to learn to predict the observed
saccade transition for any fixation configuration,
where configurations are represented as feature vec-
tors, it is not possible to use the eye tracking data
directly as training and test data. Instead, we simu-
late the search algorithm on the corpus data of each
reader in order to derive, for each sentence, the fea-
ture vectors over the configurations and the tran-
sitions corresponding to the observed fixation se-
quence. The instances to be classified then consist of
feature representations of configurations while the
classes are the possible transitions.

To somewhat simplify the learning task in this
first study, we removed all instances of non-local
saccades prior to training. Progressions stretching

further than five words ahead of the current fixation
were removed, as were regressions stretching further
back than two words. Refixations were not removed.
Thus we reduced the number of prediction classes to
eight. Removal of the non-local saccade instances
resulted in a 1.72% loss over the total number of in-
stances in the training data for all readers.

We trained one classifier for each reader using lo-
gistic regression, as implemented in Weka (Witten
and Eibe, 2005) and default options. In addition, we
trained majority baseline classifiers for all readers.
These models always predict the most frequent sac-
cadic eye movement for a given reader.

The classifiers were evaluated with respect to the
accuracy achieved when reading previously unseen
text using the search algorithm in 4.3. To ensure
that test data were consistent with training data, sen-
tences including any saccade outside of the local
range were removed prior to test. This resulted
in removal of 18.9% of the total number of sen-
tences in the test data for all readers. Accuracy was
measured in three different ways. First, we com-
puted the fixation accuracy, that is, the proportion
of words that were correctly fixated or skipped by
the model, which we also broke down into precision
and recall for fixations and skips separately.3 Sec-
ondly, we compared the predicted fixation distribu-

3Fixation/skip precision is the proportion of tokens fix-
ated/skipped by the model that were also fixated/skipped by
the reader; fixation/skip recall is the proportion of tokens fix-
ated/skipped by the reader that were also fixated/skipped by the
model.
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tions to the observed fixation distributions, both over
all words and broken down into the same five fre-
quency classes that were used as features (see Sec-
tion 4). The latter statistics, averaged over all read-
ers, allow us to see whether the model correctly pre-
dicts the frequency effect discussed in section 2.

5.2 Results and Discussion
Table 2 shows the fixation accuracy, and precision,
recall and F1 for fixations and skips, for each of the
ten different models and the average across all mod-
els (bottom row). Fixation accuracy is compared to
the baseline of always predicting the most frequent
saccade type (Progress(2) for readers a and e, and
Progress(1) for the rest).

If we consider the fixation accuracy, we see that
all models improve substantially on the baseline
models. The mean difference between models and
baselines is highly significant (p < .001, paired t-
test). The relative improvement ranges from 4.4 per-
centage points in the worst case (model of reader f )
to 20.1 percentage points in the best case (model of
reader e). The highest scoring model, the model of
reader d, has an accuracy of 78.9%. The lowest scor-
ing model, the model of reader g, has an accuracy
of 56.6%. This is also the reader for whom there
is the smallest number of sentences in the test data
(129), which means that a large number of sentences
were removed prior to testing because of the greater
number of non-local saccades made by this reader.
Thus, this reader has an unusually varied saccadic
behaviour which is particularly hard to model.

Comparing the precision and recall for fixation
and skips, we see that while precision tends to be
about the same for both categories (with a few no-
table exceptions), recall is consistently higher for
fixations than for skips. We believe that this is due
to a tendency of the model to overpredict fixations,
especially for low-frequency words. This has a great
impact on the F1 measure (unweighted harmonic
mean of precision and recall), which is considerably
higher for fixations than for skips.

Figure 1 shows the distributions of fixations
grouped by reader and model. The models appear
reasonably good at adapting to the empirical fixa-
tion distribution of individual readers. However, the
models typically tend to look at more words than the
readers, as noted above. This suggests that the mod-

els lack sufficient information to learn to skip words
more often. This might be overcome by introducing
features that further encourage skipping of words. In
addition to word length and word frequency, that are
already accounted for, n-gram probability could be
included as a measure of predictability, for example.

We also note that there is a strong linear relation
between the capability of fitting the empirical dis-
tribution well and achieving high fixation accuracy
(Pearson’s r: -0.91, as measured by taking the dif-
ferences of each pair of distributions and correlating
them with the fixation accuracy of the models).

Figure 2 shows the mean observed and predicted
fixation and skipping probability as a function of
word frequency class, averaged over all readers. As
seen here, model prediction is responsive to fre-
quency class in a fashion comparable to the read-
ers, although the predictions typically tend to exag-
gerate the observed frequency effect. In the lower
to medium classes (1–3), almost every word is fix-
ated. Then there is a clear drop in fixation proba-
bility for words in frequency class 4 which fits well
with the observed fixation probability. Finally there
is another drop in fixation probability for the most
frequent words (5). The skipping probabilities for
the different classes show the corresponding reverse
trend.

6 Conclusion

In this paper we have defined a new machine learn-
ing task where the goal is to learn the saccadic eye
movement behavior of individual readers in order
to predict the sequence of word fixations for novel
reading events. We have discussed different evalua-
tion metrics for this task, and we have established a
first benchmark by training and evaluating a simple
transition-based model using a log-linear classifier
to predict the next transition. The evaluation shows
that even this simple model, with features limited to
a few relevant properties in a small context window,
outperforms a majority baseline and captures some
of the word frequency effects on eye movements ob-
served in human readers.

This pilot study opens up a number of direc-
tions for future research. With respect to mod-
eling, we need to explore more complex models,
richer feature spaces, and alternative learning algo-

99



a b c d e f g h i j

Reader
Model

Pr
op
or
tio
n

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 1: Proportion of fixated tokens grouped by reader and model

F F

F

F

F

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
F

F

F

F

S S

S

S

S

S
S

S

S

S

Fi
xa

tio
n 

pr
ob

ab
ilit

y

Frequency class

F
F
S
S

Fixation ! Observed
Fixation ! Predicted
Skipping ! Observed
Skipping ! Predicted

Figure 2: Mean observed and predicted fixation and skipping probability for five frequency classes of words

rithms. For example, given the sequential nature
of the task, it seems natural to explore probabilistic
sequence models such as HMMs (see for example
Feng (2006)). With respect to evaluation, we need
to develop metrics that are sensitive to the sequential
behavior of models, such as the fixation sequence
similarity measure discussed in Section 3, and in-
vestigate to what extent results can be generalized

across readers. With respect to the task itself, we
need to introduce additional aspects of the reading
process, in particular the duration of fixations. By
pursuing these lines of research, we should be able
to gain a better understanding of how machine learn-
ing methods in eye movement modeling can inform
and advance current theories and models in reading
and psycholinguistic research.
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