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AbStI‘ aCt % Active Learning (,“urve (F Measure Vs Numb?r of Ann?tations)
A survey of existing methods for stopping ac- ol |
tive learning (AL) reveals the needs for meth- 2 sts;gg &%né alrly Soop point 3:
ods that are: more widely applicable; more ag- z results in lower |« srumos o
gressive in saving annotations; and more sta- 2%t ] perormingmodel 30,000 human
ble across changing datasets. A new method 8 gocféoﬁgfénfozéup
for stopping AL based on stabilizing predic- g75
tions is presented that addresses these needs. g
Furthermore, stopping methods are required * 2
to handle a broad range of different annota-
tion/performance tradeoff valuations. Despite 65 ‘ ‘ ‘ ‘
this, the existing body of work is dominated 0 L berocponts frwhich > &
by conservative methods with little (if any) at- Annotations Have Been Requested x40

tention paid to providing users with control
over the behavior of stopping methods. The
proposed method is shown to fill a gap in the

level of aggressiveness available for stopping  performance in terms of F-Measure. As can be seen
AL and supports providing users with control - ¢, the figure, the issue is that if we stop too early
over stopping behavior. . N . .
while useful generalizations are still being made, we
wind up with a lower performing system but if we
1 Introduction stop too late after all the useful generalizations have

been made, we just wind up wasting human annota-
The use of Active Learning (AL) to reduce NLP an-tjgon effort.

notation costs has generated considerable interest rehe termsaggressiveand conservativewill be
cently (e.g. (Bloodgood and Vijay-Shanker, 2009;seqd throughout the rest of this paper to describe the
Baldridge and Osborne, 2008; Zhu et al., 2008a)henhavior of stopping methods. Conservative meth-
To realize the savings in annotation efforts that Algds tend to stop further to the right in Figure 1.
enables, we must have a mechanism for knowinghey are conservative in the sense that they're very
when to stop the annotation process. careful not to risk losing significant amounts of F-
Figure 1 is intended to motivate the value of stopmeasure, even if it means annotating many more ex-
ping at the right time. The x-axis measures the Numymples than necessary. Aggressive methods, on the
ber of human annotations that have been requestggher hand, tend to stop further to the left in Figure 1.
and ranges from 0 to 70,000. The y-axis measurgsey are aggressively trying to reduce unnecessary

*This research was conducted while the first author was @notations. _
PhD student at the University of Delaware. There has been a flurry of recent work tackling the

Figure 1: Hypothetical Active Learning Curve with hy-
pothetical stopping points.
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problem of automatically determining when to stoppplicable when probabilistic base learners are used.
AL (see Section 2). There are three areas where thie gradient of confidence estimates method is more
body of work can be improved: generally applicable (e.g., it can be applied with
o ) our experiments where we use SVMs as the base
applicability Several of the leading methods are refganer). This method, denoted by LS2008 in Tables
stricted to only being used _in certain situationsg 4 Figures, measures the rate of change of model
e.g., they can't be used with some base learns,figence over a window of recent points and when
ers, they have to select points in certain batcl},q gradient falls below a threshold, AL is stopped.
sizes during AL, etc. (See Section 2 for dis-  The margin exhaustion stopping criterion was de-
cussion of the exact applicability constraints O(/eloped for AL with SVMs (AL-SVM). It says to
existing methods.) stop when all of the remaining unlabeled examples
lack of aggressive stopping The leading methods &€ outside of the currgnt model’s margin (Schohn
tend to find stop points that are too far to thé?d €ohn, 2000) and is denoted as SC2000 in Ta-
iples and Figures. Ertekin et al. (2007) developed a
similar technique that stops when the number of sup-
port vectors saturates. This is equivalent to margin
instability Some of the leading methods work wellexhaustion in all of our experiments so this method
on some datasets but then can completely breaknot shown explicitly in Tables and Figures. Since
down on other datasets, either stopping way towe use AL with SVMs, we will compare with mar-
late and wasting enormous amounts of annotayin exhaustion in our evaluation section. Unlike our
tion effort or stopping way too early and losingSP method, margin exhaustion is only applicable for
large amounts of F-measure. (See Section 4 faise with margin-based methods such as SVMs and
empirical confirmation of this.) can't be used with other base learners such as Maxi-
, _ mum Entropy, Naive Bayes, and others. Schohn and
This paper presents a new stopping method basegn, (2000) show in their experiments that margin

on stabilizing predictions that addresses each @naustion has a tendency to stop late. This is fur-
these areas and provides user-adjustable stoppifs, confirmed in our experiments in Section 4.
behavior. The essential idea behind the new method e confidence-based stopping criterion (here-
is to test the predictions of the recently learned modéﬁer’ V2008) in (Vlachos, 2008) says to stop when
els (during AL) on examples which don’t have toqqe| confidence consistently drops. As pointed out
bg_ labeled and stop When the predictions have stgy (Vlachos, 2008), this stopping criterion is based
bilized. Some of the main advantages of the new, the assumption that the learner/feature represen-
methqd are that: it requires .no'addltlonal labeleghion is incapable of fully explaining all the exam-
data, it's widely applicable, it fills a need for ayjes However, this assumption is often violated and
method which can aggressively save annotations, ffen, the performance of the method suffers (see Sec-
has stable performance, and it provides users with,, 4).
control over how aggressively/conservatively to stop T, stopping criteria (max-conf and min-err) are
AL. ] ) ) reported in (Zhu and Hovy, 2007). The max-conf
Section 2 discusses related work. Section 3 &Xpethod indicates to stop when the confidence of the
plains our Stabilizing Predictions (SP) stopping Critngdel on each unlabeled example exceeds a thresh-
terion in detail. Section 4 evaluates the SP methogly | the context of margin-based methods, max-
and discusses results. Section 5 concludes. conf boils down to be simply a generalization of the
2 Reated Work margi_n exhaustion method. Min-err, reported to be
superior to max-conf, says to stop when the accu-
Laws and Schitze (2008) present stopping criteria@cy of the most recent model on the current batch of
based on the gradient of performance estimates agderied examples exceeds some threshold (they use
the gradient of confidence estimates. Their tect8.9). Zhu et al. (2008b) proposes the use of multi-
nigue with gradient of performance estimates is onlgriteria-based stopping to handle setting the thresh-

right in Figure 1. (See Section 4 for empirica
confirmation of this.)
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old for min-err. They refuse to stop and they rais&ection 4, sensitivity analysis to stop set size is per-
the min-err threshold if there have been any classiermed and more principled methods for determin-
fication changes on the remaining unlabeled data lgg stop set size and makeup are discussed.
consecutive actively learned models when the cur- It's important to allow the examples in the stop
rent min-err threshold is satisfied. We denote thiset to be queried if the active learner selects them
multi-criteria-based strategy, reported to work bettelfecause they may be highly informative and ruling
than min-err in isolation, by ZWH2008. As seen inthem out could hurt performance. In preliminary ex-
(Zhu et al., 2008a), sometimes min-err indeed stogseriments we had made the stop set distinct from the
later than desired and ZWH2008 must (by natureet of unlabeled points made available for querying
of how it operates) stop at least as late as min-eshd we saw performance wagsalitativelythe same
does. The susceptibility of ZWH2008 to stoppingout the AL curve was translated down by a few F-
late is further shown emprically in Section 4. Also,measure points. Therefore, we allow the points in
ZWH2008 is not applicable for use with AL setupsthe stop set to be selected during AL.

that select examples in small batches. The essential idea is to compare successive mod-

_ _ _ els’ predictions on the stop set to see if they have
3 A Method for Stopping ActiveLearning  stabilized. A simple way to define agreement be-
Based on Stabilizing Predictions tween two models would be to measure the percent-

_ _ _ ~age of points on which the models make the same
To stop active learning at the point when annotationsreictions. However, experimental results on a sep-

stop providing increases in performance, perhaps theae development dataset show then that the cutoff
most straightforward way is to use a separate set ghreement at which to stop is sensitive to the dataset
labeled data and stop when performance begins fing ysed. This is because different datasets have
level off on that set. But the problem with this is thatyitterent levels of agreement that can be expected by

it requires additional labeled data which is countegpance and simple percent agreement doesn't adjust
to our original reason for using AL in the first place oy this.

Our hypothesis Is that we c_aq sense when to.stop AL Measurement of agreement between human anno-
by looking at (only) thepredictionsof consecutively tators has received significant attention and in that

:engeg rr\;\(/)dels ?tnkexanj?lt(re]s thatd'dcz'nt have to b(f‘eontext, the drawbacks of using percent agreement
abeled. YWe wont know ITthe prediclions are cory, e peen recognized (Artstein and Poesio, 2008).

rect or n.ot.but we can Se?,'f they have Stab'“_zed' I,thernative metrics have been proposed that take
the predictions have stabilized, we hypothesize th hance agreement into account. In (Artstein and
the performance of the models will have stabilize

dvi hich will h ded oesio, 2008), a survey of several agreement met-
anc vice-versawhich will ensure a (mu_c -heede )rics is presented. Most of the agreement metrics are
aggressive approach to saving annotations.

o o of the form:
SP checks for stabilization of predictions on a set

of examples, called the stop set, that don’t have to A, — A,

be labeled. Since stabilizing predictions on the stop agreement = 14, 1)

set is going to be used as an indication that model

stabilization has occurred, the stop set ought to behere A, = observed agreement, and = agree-
representative of the types of examples that will benent expected by chance. The different metrics dif-
encountered at application time. There are two corer in how they compute..

flicting factors in deciding upon the size of the stop The Kappa statistic (Cohen, 1960) measures
set to use. On the one hand, a small set is desggreement expected by chance by modeling each
able because then SP can be checked quickly. @ader (in our case model) with a separate distribu-
the other hand, a large set is desired to ensure wen governing their likelihood of assigning a partic-

don't make a decision based on a set that isn’'t repredar category. Formally, Kappa is defined by Equa-
sentative of the application space. As a compromise

between these factors, we chose a size of 2000. In 'They remain in the stop set if they're selected.
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tion 1 with A. computed as follows: size of k=3 with zero tuning performed. We will
see in Section 4 that this longevity default delivers
Ac= >, Plkler) - PKlea), (@) robust results across all of the folds for all of the
hetHL-1} datasets. Furthermore, Section 4 shows that varying

where eache; is one of the coders (in our case,the longevity requirement provides users with an-

models), andP(k|c;) is the probability that coder other lever for controlling how aggressively SP will

(model)¢; labels an instance as being in categbry behave.

Kappa estimate® (k|c;) based on the proportion of

observed instances that coder (modellabeled as 4 Evaluation and Discussion

being in category:. .

We have found Kappa to be a robust parameteA'r'1 Experimental Setup
that doesn't require tuning when moving to a newVe evaluate the Stabilizing Predictions (SP) stop-
dataset. On a separate development dataset, a Kajpizg method on multiple datasets for Text Classifi-
cutoff of 0.99 worked well. All of the experiments cation (TC) and Named Entity Recognition (NER)
(except those in Table 2) in the current paper used &asks. All of the datasets are freely and publicly
agreement cutoff of Kappa = 0.99 with zero tuningavailable and have been used in many past works.
performed. We will see in Section 4 that this cutoff For Text Classification, we use two publicly avail-
delivers robust results across all of the folds for aléble spam corpora: the spamassassin corpus used in
of the datasets. (Sculley, 2007) and the TREC spam corpus trec0O5p-

The Kappa cutoff captures thiatensity of the 1/ham25 described in (Cormack and Lynam, 2005).
agreement that must occur before SP will concludeor both of these corpora, the task is a binary clas-
to stop. Though an intensity cutoff of K=0.99 issification task and we perform 10-fold cross valida-
an excellent default (as seen by the results in Seton. We also use the Reuters dataset, in particular
tion 4), one of the advantages of the SP method the Reuters-21578 Distribution 1.0 ModApte split
that by giving users the option to vary the intensitySince a document may belong to more than one cat-
cutoff, users can control how aggressive SP will beegory, each category is treated as a separate binary
have. This is explored further in Section 4. classification problem, as in (Joachims, 1998; Du-

Another way to give users control over stoppingnais et al., 1998). Consistent with (Joachims, 1998,;
behavior is to give them control over thengevity Dumais et al., 1998), results are reported for the ten
for which agreement (at the specified intensity) mudargest categories. Other TC datasets we use are the
be maintained before SP concludes to stop. The sirBONewsgroupsnewsgroup article classification and
plest implementation would be to check the mosthe WebKB web page classification datasets. For
recent model with the previous model and stop i#VebKB, as in (McCallum and Nigam, 1998; Zhu et
their agreement exceeds the intensity cutoff. Howal., 2008a; Zhu et al., 2008b) we use the four largest
ever, independent of wanting to provide users witleategories. For all of our TC datasets, we use binary
a longevity control, this is not an ideal approach befeatures for every word that occurs in the training
cause there’s a risk that these two models could hagata at least three times.
pen to highly agree but then the next model will not For NER, we use the publicly available GENIA
highly agree with them. Therefore, we propose ussorpug. Our features, based on those from (Lee et
ing the average of the agreements from a windowl., 2004), are surface features such as the words in
of the k most recent pairs of models. If we call the—; _ _

. http://www.daviddlewis.com/resources/
most recent modeM,,, the previous modeM,,—1  oqicollections/reuters21578
and so on, with a window size of 3, we average the 3we used the “bydate” version of the dataset downloaded
agreements betweéd,, andM,,_;, betweenM,,_;  from http:/people.csail.mit.edu/jrennie/20Newsgrsiip This
and)M,,_», and betweed/,,_, andM,,_s. On sepa- ver§ion is re_com_mended si!wce it makes cross_—experiment_com
rate development data a window size of k=3 workeﬁr:'ns/?:;:;'ﬁsr since there is no randomness in the seladtion
well. All of the experiments (except those in Ta- 4. /www-tsuii.is.s.u-tokyo.ac.jp/GENIA/home/
ble 3) in the current paper used a longevity windowiki.cgi?page=GENIA+Project
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the named entity and two words on each side, suéverage F-measure than a method with a lower aver-
fix information, and positional information. We as-age number of annotations. This can be caused be-
sume a two-phase model where boundary identificagause of the first fact just mentioned about the num-
tion has already been performed, as in (Lee et abgers being averages and/or this can also be caused
2004). by the "less is more” phenomenon in active learn-
SVMs deliver high performance for the dataseting where often with less data, a higher-performing
we use so we employ SVMs as our base learnenodel is learned than with all the data; this was
in the bulk of our experiments (maximum entropyfirst reported in (Schohn and Cohn, 2000) and sub-
models are used in Subsection 4.3). For selection séquently observed by many others (e.g., (Vlachos,
points to query, we use the approach that was us@08; Laws and Schitze, 2008)).
in (Tong and Koller, 2002; Schohn and Cohn, 2000; There are a few observations to highlight regard-
Campbell et al., 2000) of selecting the points that aneg the performance of the various stopping meth-
closest to the current hyperplane. We use $¥M ods:
(Joachims, 1999) for training the SVMs. For the
smaller datasets (less than 50,000 examples in total),
a batch size of 20 was used with an initial training
set of size 100 and for the larger datasets (greater
than 50,000 examples in total), a batch size of 200

e SP is the most parsimonious method in terms
of annotations. It stops the earliest and remark-
ably it is able to do so largely without sacrific-
ing F-measure.

was used with an initial training set of size 1000. ¢ All the methods except for SP and SC2000 are
_ unstable in the sense that on at least one dataset
4.2 Main Results they have a major failure, either stopping way

Table 1 shows the results for all of our datasets. For too late and wasting large numbers of anno-
each dataset, we report the average number of anno- tations (e.g. ZWH2008 and V2008 on TREC
tation® requested by each of the stopping methods Spam) or stopping way too early and losing
as well as the average F-measure achieved by each large amounts of F-measure (e.g. LS2008 on
of the stopping methods. NER-Protein) .

There are two facts worth keeping in mind. First,
the numbers in Table 1 are averages and therefore,
sometimes two methods could have very similar
average numbers of annotations but wildly differ-
ent average F-measures (because one of the meth-
ods was consistently stopping around its average
whereas the other was stopping way too early anthis last point deserves some more discussion. In
way too late). Second, sometimes a method with $ome cases it is clear that one stopping method is
higher average number of annotations has a low#te best. For example, on WKB-Project, the SP

®Better evaluation metrics would use more refined measur method saves the most an-nOtatlm has the high-

. . %st F-measure. But which method performs the
of annotation effort than the number of annotations becaose
all annotations require the same amount of effort to anedtat €St 0N NER-DNA? Arguments can reasonably be
lacking such a refined model for our datasets, we use number@lade for SP, SC2000, or ZWH2008 being the best
annotations in these experiments. ~in this case depending on what exactly the anno-
Tests qf statistical S|gn|f|can_ce are performed ”S'“Qation/performance tradeoff is. A promising direc-
matched pairs t tests at a 95% confidence level. . . ;

"(Vlachos, 2008) suggests using three drops in a row to dé'—on for research on AL stopping methods is to de-

tect a consistent drop in confidence so we do the same in oMelOp user-adjustable stopping methods that stop as

implementation of the method from (Vlachos, 2008). aggressively as the user’s annotation/performance
®Following (Zhu et al., 2008b), we set the starting accurachreferences dictate.

threshold to 0.9 when reimplementing their method. . . .
®(Laws and Schiitze, 2008) uses a window of size 100 One avenue of providing user-adjustable stopping

and a threshold of 0.00005 so we do the same in our rdS that if some methOd_S are known to_perform con-
implementation of their method. sistently in an aggressive manner against annotating

e It's not always clear how to evaluate stopping
methods because the tradeoff between the value
of extra F-measure versus saving annotations is
not clearly known and will be different for dif-
ferent applications and users.
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Task-Dataset | SP | V2008 | SC2000| ZWH200& | LS2008 | All

TREC-SPAM | 2100 | 56000 3900 29220 3160 | 56000
(10-fold AVG) | 98.33| 98.47 | 98.41 98.44 96.63 | 98.47
20Newsgroupy 678 181 1984 1340 1669 11280
(20-cat AVG) | 60.85| 18.06 55.43 60.72 54.79 54.81
Spamassassin| 326 4362 862 398 1176 5400
(10-fold AVG) | 94.57| 95.00 | 95.53 95.94 95.62 | 95.63
NER-protein | 8720 | 67220 | 17680 18580 2360 | 67220
(10-fold AVG) | 89.48| 90.28 90.38 90.31 76.47 90.28
NER-DNA 4020 | 67220 | 10640 7200 3900 | 67220
(10-fold AVG) | 82.40| 84.31 84.73 84.51 7474 | 8431
NER-cellType | 3840 | 29600 5540 11580 4580 | 67220
(10-fold AVG) | 86.15| 86.87 | 87.19 87.32 85.65 | 87.83
Reuters 484 6762 1196 650 1272 9580
(10-cat AVG) | 74.29| 65.81 73.88 76.77 74.00 | 75.64
WKB-Course | 790 184 1752 912 1740 7420
(10-fold AVG) | 83.12| 30.34 80.47 83.16 80.55 | 80.19
WKB-Faculty | 808 892 1932 1062 1818 7420
(10-fold AVG) | 81.53| 40.14 81.79 81.64 81.99 | 82.36
WKB-Project | 646 916 1358 794 1482 7420
(10-fold AVG) | 63.30| 25.33 58.11 61.82 59.30 61.19
WKB-Student | 1258 | 894 2400 1468 2150 7420
(10-fold AVG) | 84.70| 50.66 83.46 84.39 83.19 | 83.30
Average 2152 | 21294 4477 6655 2301 | 28509
(macro-avg) | 81.70| 62.30 80.85 82.27 78.45 81.27

Table 1: Methods for stopping AL. For each dataset, the aenamber of annotations at the automatically determined
stopping points and the average F-measure at the autotheadiegermined stopping points are display&mld entries

are statistically significantly differentthan SP (and rawld entries are not). The Average row is simply an unweidhte
macro-average over all the datasets. The final column @db&ll”) represents standard fully supervised passive
learning with the entire set of training data.

too much while others are known to perform consisious criteria on a graph with the active learning curve
tently in a conservative manner, then users can piaian help one visualize how the methods perform.
the stopping criterion that's more suitable for theifFigure 2 shows the graph for a representative 8id.
particular annotation/performance valuation. Foflhe x-axis measures the number of human annota-
this purpose, SP fills a gap as the other stopping ctiions that have been requested so far. The y-axis
teria seem to be conservative in the sense definatkasures performance in terms of F-Measure. The
in Section 1. SP, on the other hand, is more of avertical lines are where the various stopping meth-
aggressive stopping criterion and is less likely to amds would have stopped AL if we hadn’t continued
notate data that is not needed. the simulation. The figure reinforces and illustrates

A second avenue for providing user-adjustabléf\'hat we have seen in Table 1, namely that SP stops

stopping is a single stopping method that is itself adnore aggressively than existing criteria and is able

justable. To this end, Section 4.3 shows hiaten- 19t doesn’t make sense to show a graph for the average over
sity andlongevityprovide levers that can be used tocross validation because the average number of annotattons

control the behavior of SP in a controlled fashion. the stopping point may cross the learning curve at a coniplete
misleading point. Consider a method that stops way too early

Sometimes viewing the stopping points of the varand way too late at times.

44



% Intensity | Annotations| F-Measure
K=99.5 364 96.01
%5 K=99.0 326 94.57
> K=98.5 304 95.59
$ 8o K=98.0 262 93.75
w K=97.5 242 93.35
g7 K=97.0 224 90.91
é 707
& Table 2: Controlling the behavior of stopping through the

| use ofintensity For Kappa intensity levels if97.0, 97.5,
l 98.0, 98.5,99.0, 99J5the 10-fold average number of an-
. ‘ ‘ ‘ ‘ ‘ notations at the automatically determined stopping points
O humbelof Huran Anmbtations Requgst%oj and the 10-fold average F-measure at the automatically
determined stopping points are displayed for the Spamas-

o))
a
T

[e2]
(=]

Figure 2: Graphic with stopping criteria in action for fold sassin dataset.
1 of NER of DNA from the GENIA corpus. The x-axis

ranges from O to 70,000. Longevity | Annotations| F-Measure
k=1 284 95.17
k=2 318 94.95

to do so without sacrificing performance. k=3 326 94.57
k=4 336 95.40

4.3 Additional Experiments k=5 346 96.41
k=6 366 94.53

All of the additional experiments in this subsection

were _CondUCted on our least 'computatlonally. deT’able 3: Controlling the behavior of stopping through the
manding dataset, Spamassassin. The results in T ofiongevity For window length k longevity levels in
bles 2 and 3 show how varying the intensity cut{1 2 3, 4, 5, 6, the 10-fold average number of annota-
off and the longevity requirement, respectively, otions at the automatically determined stopping points and
SP enable a user to control stopping behavior. Bothe 10-fold average F-measure at the automatically deter-
methods enable a user to adjust stopping in a coRAtned stopping points are displayed for the Spamassassin
trolled fashion (without radical changes in behavdataset.
ior). Areas of future work include: combining the
intensity and longevity methods for controlling be-could be developed to create stop sets with high rep-
havior; and developing precise expectations on th@sentativeness (in terms of feature space) density
change in behavior corresponding to changes in tigmeaning representativeness of stop set divided by
intensity and longevity settings. size of stop set). For example, a possibility is to
The results in Table 4 show results for differentcluster examples before AL begins and then make
stop set sizes. Even with random selection of a stagure the stop set contains examples from each of the
set as small as 500, SP’s performance holds fairlslusters. Another possibility is to use a greedy algo-
steady. This plus the fact that random selection afthm where the stop set is iteratively grown where
stop sets of size 2000 worked across all the folds an each iteration the center of mass of the stop set
all the datasets in Table 1 show that in practice pein feature space is computed and an example in the
haps the simple heuristic of choosing a fairly largainlabeled pool that is maximally far in feature space
random set of points works well. Nonetheless, wé&om this center of mass is selected for inclusion in
think the size necessary will depend on the datastte stop set. This could be useful for efficiency (in
and other factors such as the feature representatitarms of getting the same stopping performance with
so more principled methods of determining the siza smaller stop set as could be achieved with a larger
and/or the makeup of the stop set are an area fetop set) and also as a way to ensure adequate repre-
future work. For example, construction techniquesentation of the task space. The latter can be accom-
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Task-Dataset | SP | V2008 | ZWH2008 | LS2008| All
Spamassassin 286 | 1208 386 756 5400
(10-fold AVG) | 94.92| 89.89 95.31 96.40 | 91.74

Table 5: Methods for stopping AL with maximum entropy as thedlearner. For each stopping method, the average
number of annotations at the automatically determineddétgppoint and the average F-measure at the automatically
determined stopping point are displayd®bld entries are statistically significantly different than SP (and ramoie
entries are not). SC2000, the margin exhaustion methoatishown since it can’t be used with a non-margin-based
learner. The final column (labeled "All") represents stamidf@lly supervised passive learning with the entire set of
training data.

Stop Set Sizg Annotations| F-Measure 100 | AL—MéxE”ti SP‘amassaS‘Si” FO'd‘5
2500 326 95.58 (7 e e eV
2000 326 94.57 o0l —SP____—v2o08

1500 314 95.00 e w2008

1000 328 95.73

500 314 9457 | O

Table 4: Investigating the sensitivity to stop set size. Fc 707

stop set sizes i§2500, 2000, 1500, 1000, 5pOthe 10-
fold average number of annotations at the automatical 607
determined stopping points and the 10-fold average |

measure at the automatically determined stopping poin 50

are displayed for the Spamassassin dataset. 0 1000 2000 3000 4000 5000 6000
Number of Human Annotations Requested

Performance (F-Measure)

plished by perhaps continuing to add examples toigure 3: Graphic with stopping criteria in action for fold
the stop set until adding new examples is no Iongé of TC of the spamassassin corpus. The x-axis ranges
increasing the representativeness of the stop set. oM 010 6,000.

As one of the advantages of SP is that it's widely
applicable, Table 5 shows the results when using
maximum entropy models as the base learner dur-

ing AL (the query points selected are those which The empirical evaluation of SP and the existing
the model is most uncertain about). The results rgnethods was informative for evaluating the crite-
inforce our conclusions from the SVM experimentsyig pyt it was also informative for demonstrating the
with SP performing aggressively and all statisticallyyjfficulties for rigorous objective evaluation of stop-
significant differences in performance being in SP'ging criteria due to different annotation/performance
favor. Figure 3 shows the graph for a representati@adeoff valuations. This opens up a future area for
fold. work on user-adjustable stopping. Two potential
avenues for enabling user-adjustable stopping are a
single criterion that is itself adjustable or a suite of
Effective methods for stopping AL are crucial for re-methods with consistent differing levels of aggres-
alizing the potential annotation savings enabled bgiveness/conservativeness from which users can pick
AL. A survey of existing stopping methods identi-the one(s) that suit their annotation/performance
fied three areas where improvements are called fdradeoff valuation. SP substantially widens the range
The new stopping method based on Stabilizing Pref behaviors of existing methods that users can
dictions (SP) addresses all three areas: SP is widetfioose from. Also, SP’s behavior itself can be ad-
applicable, stable, and aggressive in saving annotisted through user-controllable parameters.

tions.

5 Conclusions
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