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Abstract

Unambiguous Non-Terminally Separated
(UNTS) grammars have properties that
make them attractive for grammatical in-
ference. However, these properties do not
state the maximal performance they can
achieve when they are evaluated against a
gold treebank that is not produced by an
UNTS grammar. In this paper we inves-
tigate such an upper bound. We develop
a method to find an upper bound for the
unlabeledr'1 performance that any UNTS
grammar can achieve over a given tree-
bank. Our strategy is to characterize all
possible versions of the gold treebank that
UNTS grammars can produce and to find
the one that optimizes a metric we define.
We show a way to translate this score into
an upper bound for thé'l. In particular,
we show that thé'1 parsing score of any
UNTS grammar can not be beyog#l.2%
when the gold treebank is the WSJ10 cor-
pus.

I ntroduction

underlying language. Moreover, UNTS grammars
have been successfully used to induce grammars
from unannotated corpora in competitions of
learnability of formal languages (Clark, 2007).
UNTS grammars can be used for modeling nat-
ural language. They can be induced using any
training material, the induced models can be eval-
uated using trees from a treebank, and their per-
formance can be compared against state-of-the-
art unsupervised models. Different learning al-
gorithms might produce different grammars and,
consequently, different scores. The fact that the
class of UNTS grammars is PAC learnable does
not convey any information on the possible scores
that different UNTS grammars might produce.
From a performance oriented perspective it might
be possible to have an upper bound over the set
of possible scores of UNTS grammars. Knowing
an upper bound is complementary to knowing that
the class of UNTS grammars is PAC learnable.
Such upper bound has to be defined specifically
for UNTS grammars and has to take into account
the treebank used as test set. The key question
is how to compute it. Suppose that we want to
evaluate the performance of a given UNTS gram-
mar using a treebank. The candidate grammar pro-

Unsupervised learning of natural language has reduces a tree for each sentence and those trees are
ceived alot of attention in the last years, e.g., Kleincompared to the original treebank. We can think
and Manning (2004), Bod (2006a) and Segineithat the candidate grammar has produced a new
(2007). Most of them use sentences from a treeversion of the treebank, and that the score of the
bank for training and trees from the same treebangrammar is a measure of the closeness of the new
for evaluation. As such, the best model for un-treebank to the original treebank. Finding the best
supervised parsing is the one that reports the bestpper bound is equivalent to finding the closest
performance.

Unambiguous

Non-Terminally

UNTS version of the treebank to the original one.

Separated Such bounds are difficult to find for most classes

(UNTS) grammars have properties that makeof languages because the search space is the
them attractive for grammatical inference. Theseset of all possible versions of the treebank that
grammars have been shown to be PAC-learnablmight have been produced by any grammar in the
in polynomial time (Clark, 2006), meaning that class under study. In order to make the problem

under

certain circumstances,

the underlyingractable, we need the formalism to have an easy

grammar can be learned from a sample of thavay to characterize all the versions of a treebank
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it might produce. UNTS grammars have a speciahave thatX = oY~ (Clark, 2007). Unambiguous

characterization that makes the search space eaif'S (UNTS) grammars are those NTS grammars

to define but whose exploration is NP-hard. that parses unambiguously every instance of the
In this paper we present a way to characterizéanguage.

UNTS grammars and a metric function to mea- Gjven any grammars, a substrings of » €

sure the closeness between two different version, () is called aconstituent of r if and only if there
of a treebank. We show that the problem of find-is an x in N such thatS = uXv = usv — r.

ing the closest UNTS version of the treebank cany, contrast, a string is called a non-constituent or
be described as Maximum Weight Independent Sjjiityent of r € L(G) if s is not a constituent of.
(MWIS) problem, a well known NP-hard problem \ye say that is a constituent of a languadeG)
(Karp, 1972). The exploration algorithm retumsi tor every ; that contains, s is a constituent of
a version of the treebank that is the closest to the |, contrasts is a distituent ofZ.(G) if for every
gold standard in terms of our own metric.

We show that tth.l—meas.ure 'S rglated to our An interesting characterization of finite UNTS
measure and that it is possible to find and upper

bound of theF'1-performance for all UNTS gram- grammars 1s that every supstrlng that appear in

. some string of the language is always a constituent

mars. Moreover, we compute this upper bound for - . :

the WSJ10. a subset of the Penn Treebank (Marqr always a distituent. In other words, if there is a
' tringr in L(G) for which s is a constituent, then

cus et al., 1994) using POS tags as the al habe? : .
The upper boun)d weglj‘ound m%% for the lgl s'is a constituent ol (G). By means of this prop-

rty, if we ignore the non-terminal label finit

measure. Our result suggest that UNTS grammare Y, € ignore fhe non-termina abe s a ©

: ) . NTS language is fully determined by its set of

are a formalism that has the potential to achieve . . ,

: : constituentg”. We can show this property for fi-

state-of-the-art unsupervised parsing performance. . .

. nite UNTS languages. We believe that it can also

but does not guarantee that there exists a gramm & shown for non-finite cases, but for our purposes
that can actually achieve tt32.2%. ' purp

To the best of knowledae. th . the finite cases suffices, because we use grammars
0 the best of our knowledge, Inere 1S no pres, parse finite sets of sentences, specifically, the

vious research on finding upper bounds for perfor'sentences of test treebanks. We know that for ev-

mance over aconcrete class of grammars. In Kle"éry finite subset of an infinite language produced
and Manning (2004), the authors compute an Upby a UNTS grammar, there is a UNTS gram-

per bound for parsing with binary trees a gold trees ar & whose language is finite and that parses

bank that is not binary. This upper bound, that isthe finite subset a&. If we look for the upper

88.1% for the WSJ10, is for any parser that returnsbound among the grammars that produce a finite
binary trees, including the concrete models devell'anguage this upper bound is also an upper bound
oped in the same work. But their upper bound doe§Or the cla{ss of infinite UNTS grammars,
not use any specific information of the concrete o _
models that may help them to find better ones. ~ 1"e UNTS characterization plays a very im-
The rest of the paper is organized as followsPOrtant role in the way we look for the upper

Section 2 presents our characterization of UNTS0UNd. Our method focuses on how to determine

grammars. Section 3 introduces the metric we op?VNich of the constituents that appear in the gold

timized and explains how the closest version of thé'® actually the constituents that produce the up-
treebank is found. Section 4 explains how the upP€’ Pound. Suppose that a given gold treebank
per bound for our metric is translated to an up-CONtains two strings and 3 such that theyceur

per bound of theé"1 score. Section 5 presents our ©V&rlapped. Thatis, there exist non-empty strings

/ / / _ /
bound for UNTS grammars using the WSJ10 andj‘/’%/ﬁ such thata = o'y and§ = (" and
finally Section 6 concludes the paper. o’vp" occurs in the treebank. ' is the set of
constituents of a UNTS grammar it can not have

r wheres occurs,s is a distituent of-.

2 UNTSGrammarsand Languages both o and 3. It might have one or the other, but
if both belong toC' the resulting language can not
Formally, a context free grammaG =  be UNTS. In order to find the closest UNTS gram-

(X, N, S, P) is said to be Non-Terminally Sepa- mar we design a procedure that looks for the sub-
rated (NTS) if, for allX,Y € N anda, 3,7 €  set of all substrings that occur in the sentences of
(2 U N)* such thatX = afy andY = 3, we the gold treebank that can be the constituentset
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of a grammar. We do not explicitly build a UNTS ric, and we show that the possible valuesrof
grammar, but find the sét that produces the best can be bounded by a function that takes this score
score. as argument. In this section we present our metric

We say that two strings and3 arecompatible  and the technique we use to find a grammar that
in a languagel. if they do not occur overlapped reports the best value for our metric.

in L, and hence they both can be members'of |fthe original treebani” is not produced by any
If we think of L as a subset of an infinite lan- yNTS grammar, then there are stringsZinthat
guage, itis not possible to check that two overlapyre constituents in some sentences and that are dis-
ping strings do not appear overlapped in the “realijtyents in some other sentences. For each one of
language and hence that they are actually comthem we need a procedure to decide whether they
patible. Nevertheless, we can guarantee compaye members of’ or not. If a stringa appears a
ibility between two stringsy, 5 by requiring that  sjgnificant number of times more as a constituent
they do not overlap at all, this is, that there arengn as a distituent the procedure may choose to
no non-empty strings’, , #" such that = o'y jnclude it in C at the price of being wrong a few
andg = vA3'. We call this type of compatibility times. That is, the new version @fhas all occur-
strong compatibility. Strong compatibility ensures rences ofx either as constituents or as distituents.
that two strings can belong 6 regardless of..  Tne treebank that has all of its occurrences as con-
In our experiments we focus on finding the best setjtyents differs from the original in that there are
C of compatible strings. some occurrences ef that were originally dis-
Any set of compatible string§’ extracted from  tjituents and are marked as constituents. Similarly,
the gold treebank can be used to produce a ney « is marked as distituent in the new treebank, it

version of the treebank. For example, Figure lnhas occurrences of that were constituents if.
shows two trees from the WSJ Penn Treebank.

The string “in the dark” occurs as a constituent in
(a) and as a distituent in (b). @ contains “in the

The decision procedure becomes harder when
all the substrings that appear in the treebank are
o - o considered. The increase in complexity is a con-
dark”, it can not contain “the dark clouds” given .
that th lao in the vield of (b). A sequence of the number of decisions the procedure

at they overlap in the yield of (b). As a CON" heeds to take and the way these decisions interfere
sequence, the new treebank correctly contains the .

bt A but not th in (b). Instead. th one with another. We show that the problem of
su Idre(? 'S ('a)d . n.ct)) de one in ( )t.h ns eat, edetermining the sef’ is naturally embedded in a
yield of (b) is described as in (c) in the new ree'graph NP-hard problem. We define a way to look

bank. . .
) _ for the optimal grammars by translating our prob-
C defines a new version of the treebank that saf,

_ i -~“1em to a well known graph problem. Létbe the
isfies the UNTS property. Our goal is to obtain a

bankl” h th ' and hank the set of sentences in a treebank, and/gt) be
treebankl™ such that (al” an Tare.tree anks all the possible non-empty proper substringg.of
over the same set of sentences, Tb)is UNTS,

S _ We build a weighted undirected graghin terms
andf (€)T"is the ChIOS?]St treefbarl]nk tb n tlern;]s of of the treebank as follows. Nodesdhcorrespond
performance. The three of them imply that any,, strings inS(L). The weight of a node is a func-

other UNTS grammar is not as similar as the ong; w(s) that models our interest of havingse-

we found. lected as a constituent(s) is defined in terms of

- some information derived from the gold treebank
3 Finding the Best UNTS Grammar T and we discuss it later in this section. Finally,

As our goal is to find the closest grammar in termgW0 Nodes: andb are connected by an edge if their
of performance, we need to define first a WeighltWQ corresponding strings c_onflllct in a sentence of
for each possible grammar and second, an algd- (I-€:, they are not compatible if).

rithm that searches for the grammar with the best Not all elements of. are inS(L). We did not
weight. Ideally, the weight of a candidate gram-include L in S(L) for two practical reasons. The
mar should be in terms aof'1, but we can show first one is that to requird. in S(L) is too re-
that optimization of this particular metric is com- strictive. It states that all strings ih are in fact
putationally hard. Instead of definingl as their constituents. If two stringib and bc of L oc-
score, we introduce a new metric that is easier t@ur overlapped in a third stringbc then there is
optimize, we find the best grammar for this met-no UNTS grammar capable of having the three of
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Figure 1: (a) and (b) are two subtrees that show “in the dark” as ditteerg and as a distituent respec-

tively. (c) shows the result of choosing “in the dark” as a constituent.

them as constituents. The second one is that inmize c¢(s) and minimized(s) at the same time.
cluding them produces graphs that are too sparsé&his can be done by defining the contribution of a
If they are included in the graph, we know thatstring s to the overall score as

any solution should contain them, consequently,

all their neighbors do not belong to any solution w(s) = c(s) — d(s).

and they can be removed from the graph. Our SXWith this definition ofw, the weightW (C) =
periments show that the graph that results from re
scc w(s) becomes the number of constituents

moving nodes related to nodes representing strin
mLarge too small to produce an |Eterestln gresul?gf: T that are inT minus the number of con-
P y 9 stituents that do not. If we define the number of

By means of representing the treebank as Rits to be H(C) = 3", ... c(s) and the number of

graph, selecting a set of constituedtsC S(L) missesto be M(C) = 3. d(s) we have that
is equivalent to selecting an independent set of s€C

nodes in the graph. Amdependent set is a sub- W(C) = H(C) — M(C). 1)
set of the set of nodes that do not have any pair
of nodes connected by an edge. Clearly, there are As we confirm in Section 5, graphs tend to be
exponentially many possible ways to select an invery big. In order to reduce the size of the graphs,
dependent set, and each of these sets represents a string s hasw(s) < 0, we do not include its
set of constituents. But, since we are interested igorresponding node in the graph. An independent
the best set of constituents, we associate to eactet that does not includehas an equal or higher
independent se€’ the weightW(C) defined as W than the same set including
> sccw(s). Our aim is then to find a set’,q. For example, letI’ be the treebank in Fig-
that maximizes this weight. This problemisawellure 2 (a). The sets of substrings such that
known problem of graph theory known in the lit- w(c) > 0 is {da,cd,be, cda,ab,bch}. The
erature as the Maximum Weight Independent Segraph that corresponds to this set of strings is
(MWIS) problem. This problem is also known to given in Figure 3. Nodes corresponding to
be NP-hard (Karp, 1972). strings {dabch, beda, abe, abf, abg, bei, daj} are

We still have to choose a definition far(s).  Not shown in the figure because the strings do
We want to find the grammar that maximizeés.  not belong toS(L). The figure also shows the
Unfortunately,/"1 can not be expressed in terms of Weights associated to the substrings according to
a sum of weights. Maximization of'1 is beyond their counts in Figure 2 (a). The shadowed nodes
the expressiveness of our model, but our strateggorrespond to the independent set that maximizes
is to define a measure that correlates withand W The trees in the Figure 2 (b) are the sentences
that can be expressed as a sum of weights. of the treebank parsed according the optimal inde-

In order to introduce our measure, we first de-Pendent set.
fine ¢(s) andd(s) as the number of times a string
s appears in the gold treebafikas a constituent
and as a distituent respectively. Observe that iEven though finding the independent set that max-
we choose to include as a constituent of’, the  imizes W is an NP-Hard problem, there are in-
resulting treebani” contains all the:(s) + d(s)  stances where it can be effectively computed, as
occurrences of as a constituent:(s) of thes oc-  we show in the next section. The €f,,, max-
currences irl” are constituents as they arelh imizes W for the WSJ10 and we know that all
andd(s) of the occurrences are constituentdih  othersC produces a lower value d¥. In other
but are in fact distituents ifi. We want to max- words, the se’,,,,, produce a treebarik,,, .. that

An Upper Bound for F1

61



/>\ b/>\ /Ae
d a h 4 2 a b
b ¢ c (ab)e
(da)((bc)h) b((cd)a)
(b)
d(ab)ch b((cd)a) (ab)e

<y <Y R R
a b b b ¢ d a
(ab)f (ab)g (be)i (da)j

a b b b ¢ i d i

Figure 2: (a) A gold treebank. (b) The treebank generated by the gratimal U {cd, ab, cda}.

1 1

"
S

Figure 3: Graph for the treebank of Figure 2.

1

is the closest UNTS version to the WSJ10 interms__ . . . o
dpreC|3|on and recall: precisiog== and recalll.

of W. We can compute the precision, recall an
F1 for C,,4, but there is no warranty that thiél
score is the best for all the UNTS grammars. Thi

F'1-weights for all possible UNTS grammars re-
spectively. Then, ifw is an upper bound o,
then f(w) is an upper bound df. The functionf

is defined as follows:

) =1 (52 501) @
K
whereFl(p,r) = 224, andK = Y- g c(s) is

the total number of constituents in the gold tree-
bankT. From it, we can also derive values for

A recall of 1 is clearly an upper bound for all the

éoossible values of recall, but the value given for

is the case becaus&l and W do not define the precision is not necessarily an upper bound for all

same ordering over the family of candidate con

stituent setg: there are gold treebanks (used
for computing the metrics), and set§, C> such
that F1(Cy) < F1(Cy) andW (Cy) > W(Cy).
For example, consider the gold treebankn Fig-

ure 4 (a). The table in Figure 4 (b) displays two
setsC and (5, the treebanks they produce, and

their values off'1 andW. Note thatCs is the re-
sult of adding the string f to C, also note that
clef) = 1andd(ef) = 2. This improves the'1
score but produces a low#r'.

The F'1 measure we work with is the one de-
fined in the recent literature of unsupervised pars

ing (Klein and Manning, 2004)F'1 is defined in

terms of Precision and Recall as usual, and the IaI
two measures are micro-averaged measures th%ﬁ

T

the possible values of precision. It might exist a

grammar having a higher value of precision but
whoseF'1 has to be below our upper bound.

The rest of section shows th#{1W) is an up-
per bound forF'1, the reader not interested in the
technicalities can skip it.

The key insight for the proof is that both metrics
F'1 andWW can be written in terms of precision and
recall. LetT be the treebank that is used to com-
pute all the metrics. And Ief” be the treebank
produced by a given constituent €€t If a string
s belongs toC, then itsc(s) + d(s) occurrences
in 7" are marked as constituents. Moreoveis
correctly tagged a(s) number of times while it
is incorrectly tagged d(s) number of times. Us-
this, P, R and F'1 can be computed faf' as
ows:

include full-span brackets, and that ignore both

unary branches and brackets of span one. For sim-
plicity, the previous example does not count the

full-span brackets.

As the example shows, the upper boundfior
might not be an upper bound f1, but it is pos-

sible to find a way to define an upper bound of

F'1 using the upper bound d¥. In this section
we define a functiory’ with the following prop-
erty. LetX andY be the sets ofV/-weights and
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@)

a b d e f e f h e f i
(ab)c a(bd) (ef)g efh efi
(b)
C T, P R F1 W
C1 = {abc,abd,efg,efh,efi,ab} {(ab)c, (ab)d,efg,efh,efi} 50% | 33% | 40% 1-1=0
Cy = {abc,abd,efg,efh,efi,ab,ef} | {(ab)c, (ab)d, (ef)g, (ef)h,(ef)i} || 40% | 67% | 50% || 2 -3 = —1

Figure 4: (a) A gold treebank. (b) Two grammars, the treebanks thesragen and their scores.

W can also be written in terms @ and R as fixed weightiW = w¢. The function is monoton-
1 ically increasing inr, so we can apply it to both
wW(C)=(2- m)R(C)K (5) sides of the following inequalityc < 1, which is

trivially true. As result, we geflc < f(wc¢) as
This formula is proved to be equivalent to Equa-required. The second inequality is proved by ob-
tion (1) by replacingP(C) and R(C') with equa-  serving thatf(w) is monotonically increasing in
tions (3) and (4) respectively. Using the last twow, and by applying it to both sides of the hypothe-
equations, we can rewrit€1 andW takingp and  sisw. < w.

r, representing values of precision and recall, as

parameters: 5 UNTSBoundsfor the WSJ10 Treebank
2pr In this section we focus on trying to find real upper
Fl(p,r) = Pt bounds building the graph for a particular treebank
1 T. We find the best independent set, we build the
Wi(p,r) = (2 - E)T’K (6)  UNTS versiorT},., of T and we compute the up-

per bound forF'1. The treebank we use for exper-
Using these equations, we can prove tlfat iments is the WSJ10, which consists of the sen-
correctly translates upper bounds1df to upper tences of the WSJ Penn Treebank whose length
bounds ofF'1 using calculus. In contrast t61, is at most 10 words after removing punctuation
W not necessarily take values betw®andl. In-  marks (Klein and Manning, 2004). We also re-
stead, it takes values betwe&hand —oco. More-  moved lexical entries transforming POS tags into
over, it is negative whep < % and goes to-oo  our terminal symbols as it is usually done (Klein
whenp goes to0. Let C be an arbitrary UNTS and Manning, 2004; Bod, 2006a).
grammar, and lepc, rc andwe be its precision, We start by finding the best independent set. To
recall andW-weight respectively. Letv be our solve the problem in the practice, we convert it
upper bound, so thats < w. If f1¢ is defined into an Integer Linear Programming (ILP) prob-
asF1(pc,rc) we needto show thatle < f(w). lem. ILP is also NP-hard (Karp, 1972), but there
We boundf1¢ in two steps. First, we show that is software that implements efficient strategies for
solving some of its instances (Achterberg, 2004).
fle < f(we) ILP problems are defined by three parameters.
First, there is a set of variables that can take val-
ues from a finite set. Second, there is an objective
Flwe) < fw). function that has to be maximized, and third, there
is a set of constraints that must be satisfied. In our
The first inequality is proved by observing thatcase, we define a binary variabte € {0, 1} for
flec andf(wce) are the values of the function every nodes in the graph. Its value is 1 or 0, that
respectively determines the presence or absence of

and second, we show that

fl(r)=F1 (1W7r> s in the setC),... The objective function is
~ Kr
at the pOintSr = rC and’l“ = 1 reSpeCtiver. SE;(L) xsw(s)

This function corresponds to the line defined by
the F'1 values of all possible models that have aThe constraints are defined using the edges of the
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graph. For every edgésy, s2) in the graph, we Gold constituents K 35302
add the following constraint to the problem: Strings |S(L)| | 68803
Nodes 7029

Ts; + Tsy <1 Edges 1204

The 7422 trees of th_e WSJ10 treebank have a 1hpje 1 Figures for the WSJ10 and its graph.
total of 181476 substrings of length> 2, that

form the setS(L) of 68803 different substrings. Hits H | 22169
The number of substrings ifi(L) does not grow Misses | M | 2127
too much with respect to the number of strings in Weight | W | 20042
L because substrings are sequences of POS tags, Precisionl 7| 91.2%
meaning that each substring is very frequent in the Recall R | 62.8%
corpus. If substrings were made out of words in- F1 1 74.4%

stead of POS tags, the number of substrings would
grow much faster, making the problem harder to
solve. Moreover, removing the stringsuch that
w(s) < 0 gives a total of only7029 substrings.
Since there is a node for each substring, the result- Table 3 shows results that allow us to com-
ing graph contain§029 nodes. Recall that there pare the upper bounds with state-of-the-art pars-
is an edge between two strings if they occur overing scores. BestW corresponds to the scores of
lapped. Our graph contaifif04 edges. The ILP T,,., and UBoundF1 is the result of our transla-
version hasr029 variables,1204 constraints and tion function f. From the table we can see that
the objective function sums ov&029 variables. an unsupervised parser based on UNTS grammars
These numbers are summarized in Table 1. may reach a sate-of-the-art performance over the
The solution of the ILP problem is a set of WSJ10. RBranch is a WSJ10 version where all
6583 variables that are set to one. This set corretrees are binary and right branching. DMV, CCM
sponds to a seft),,,.. of nodes in our graph of the and DMV+CCM are the results reported in Klein
same number of elements. Using,,, we build and Manning (2004). U-DOP and UML-DOP
a new versiorl,,,, of the WSJ10, and compute are the results reported in Bod (2006b) and Bod
its weightWW, precision, recall an@'1. Their val-  (2006a) respectively. Incremental refers to the re-
ues are displayed in Table 2. Since the elementsults reported in Seginer (2007).
of L were not introduced it$ (L), elements of_ We believe that our upper bound is a generous
are not necessarily i@,,,,, but in order to com- one and that it might be difficult to achieve it for
pute precision and recall, we add them by handtwo reasons. First, since the WSJ10 corpus is
Strictly speaking, the set of constituents that wea rather flat treebank, from th&8803 substrings
use for buildingT},,4z iS Ciraz plus the full span  only 10% of them are such that(s) > d(s). Our
brackets. procedure has to decide among thi¥% which
We can, using equation (2), compute the up-of the strings are constituents. An unsupervised
per bound ofF'1 for all the possible scores of all method has to choose the set of constituents from
UNTS grammars that use POS tags as alphabet: the set of all68803 possible substrings. Second,
we are supposing a recall 890% which is clearly
f(Wmaz) = F1 (2 — }umwl) — 82.9% too optimistic. We beI_ievFe that we can find a
tighter upper bound by finding an upper bound for
recall, and by rewriting/ in equation (2) in terms
of the upper bound for recall.
1 It must be clear the scope of the upper bound
= 69.8% we found. First, note that it has been computed
over the WSJ10 treebank using the POS tags as
while its recall isk = 100%. Note from the pre- the alphabet. Any other alphabet we use, like for
vious section thaP (w,,; ) is not an upper bound example words, or pairs of words and POS tags,
for precision but just the precision associated tachanges the relation of compatibility among the
the upper bound (wpqz)- substrings, making a completely different universe

Table 2: Summary of the scores 6},

The precision for this upper bound is

P(wma:p) =

2 _ Wmax
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[ Model UP UR [F1 | alphabet.

RBranch 55.1 70.0 | 61.7 From a more abstract perspective, we intro-
DMV 46.6 59.2 | 52.1 duced a different approach to assess the usefulness
CCM 64.2 816 | 71.9 of a grammatical formalism. Usually, formalism
DMV+CCM 69.3 88.0 | 77.6 are proved to have interesting learnability proper-
U-DOP 70.8 88.2 | 785 ties such as PAC-learnability or convergence of a
UML-DOP 82.9 probabilistic distribution. We present an approach
Incremental 75.6 76.2 | 75.9 that even though it does not provide an effective
BestW(UNTS) 912 628 | 744 way of computing the best grammar in an unsu-
UBoundF1(UNTS)| 69.8 100.0| 82.2 pervised fashion, it states the upper bound of per-

formance for all the class of UNTS grammars.
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